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Abstract

Video streaming applications that provide interactive features to the end-user are becoming

more popular also in the Internet environment. Needless to say, interactive operations play

a fundamental role in these applications and studies showed that these operations are well

supported if the end-to-end delay, experienced by the application traÆc, is kept lower than

a pre-de�ned, and application dependent, threshold. Unfortunately, the best e�ort nature

of the Internet may compromise the QoS achieved by these applications, as the presence of

the network jitter may cause the overall end-to-end delay to go above the threshold. Several

mechanisms have been proposed in literature to ameliorate the network jitter and they usually

have the drawback of increasing the overall end-to-end delay. In this paper we suggest another

approach to support interactive video streaming applications: our mechanism acts on the video

QoS in order to keep the end-to-end delay within the acceptable threshold. Our mechanism

has been evaluated through several simulations and results obtained show that it is well suited

for supporting interactive video streaming applications over the Internet, as it ameliorates the

jitter without increasing the end-to-end delay, but only slightly a�ecting the video QoS.

1 Introduction

Quality of Service (QoS) applications over the Internet are becoming more and more popular, but,

despite their popularity, they achieve a QoS that is far from what desired. Videoconferencing,

distance learning, video telephony, on-line games are examples of these applications.

QoS diÆculties are mainly due to the traÆc produced by these applications that is time-

dependent and may be very bandwidth consuming. The great bandwidth requirements are high-

lighted by the video streaming applications; in fact, even using one of the several compression

algorithms proposed in literature (for example, MPEG [12], Motion JPEG [8], H.261 [13]) the com-

pressed video stream can still exhibit signi�cant bit variability [11] and can require high network
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Figure 1: Model of a networked application.

capacity compared to the (usually) available in the Internet. For example, a video stream may

require bandwidth that can span from several Kbps to several Mpbs. In addition to the great

bandwidth requirement, the correlation of data with the time factor is another characteristic of the

stream generated by the applications. In fact, to provide the applications with the QoS they need,

the transmission of this traÆc has, at least, two time-constraints: minimal communication delay

and unnoticeable network jitter to the user [14] [23]. Although these time-constraints can be easily

provided in networks that provide some guarantees to the applications, such as suÆcient bandwidth

and low packet loss, they are very critical to provide in best-e�ort networks, like the Internet. In

fact, best-e�ort networks cannot guarantee low communication delays and/or low jitter.

A sub-set of these QoS applications enables natural interactions (i.e., more life-like as possible)

among end-users. These particular applications are called interactive QoS applications. An example

of interactive QoS application is the voice over IP, where natural conversation between two end-users

is supported. In Fig. 1 we show a very simple network scenario for this application: two end-hosts

are connected each other through the Internet. Roughly, this application works as follows. A user

on the computer A speaks into a microphone, then computer A digitalized the voice and produces

a data stream that is sent towards computer B. After the arrival, the stream is decoded and the

voice of user A can be listened through the speakers of the computer B. The same thing happens

in the opposite directions, with respect to the user B. This application supports the conversation

between user A and user B and hence the application is called interactive.

Interactive applications are more diÆcult to support than normal QoS applications, as they

also pose a constraint on the end-to-end delay, which should be not noticeable to the end-users.

Conversely, if we consider a non-interactive application, such as an audio broadcast application

(e.g., an Internet radio), a large end-to-end delay is allowed, as users do not interact.

The respect of this constraint on the end-to-end delay is hence fundamental for interactive QoS

applications. For this reason, several studies [14] [15] [16] [19] [21] [9] [4] investigated the e�ects

of this delay on human perception. These studies showed that interactive applications are well
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supported if the end-to-end delay is kept within a threshold along the lifetime of the application.

Conversely, if the end-to-end delay goes above this threshold, the interactions between end-users

are seriously compromised. Hence, the threshold represents a bound for the human perceptions:

below this bound the users do not perceive the end-to-end delay and hence the interactions are

well supported; above this bound the end-to-end delay is noticeable to the end-users and hence the

interactions are not well supported. It is to note that the value of this threshold is not �xed [16],

but depends on the characteristics of the application and on the level of interactivity requested by

the end-users (i.e., the more interactive operations are involved, the lower the threshold value has

to be). For instance, if we consider interactive audio applications, a threshold of 150 ms ensures full

satisfaction to the end-users. In this case, if the end-to-end delay goes above 150 ms [23] the users

will experience a bad service, while for values lower than 150 ms, the users can interact without

any problems. In Table 1 we show some possible values of the end-to-end delay with regards to

an audio application: for end-to-end values below 150 ms the users may notice an imperceptible

di�erence between audio and real speech. The di�erence increases as the end-to-end increases and

for values above 600 ms the speech becomes intelligible and incoherent.

End-to-end delay represents the overall delay between the two end-users. This delay, as pointed

out by Baldi and Ofek [1], is composed by di�erent components: the processing delay (the time

spent and the end-hosts to compress/decompress video frames), the network delay (the time needed

to move data from one end-host to the other end-host) and the synchronization delay at the receiver

side (this delay is introduced in order to cancel the network delay jitter).

Among the components that a�ect the end-to-end delay, it is worth analyzing the network

delay. This component is, in fact, the most variable. It is essentially composed by two components:

propagation delay and queuing delay. The propagation delay can be easily computed as it depends

on the network capacity and on the size of the data to transmit. For instance, to transmit f bytes

over a network with a capacity of C bytes/sec, the ratio f=C gives the necessary time to transmit

f bytes. Conversely, the queuing delay is very variable and unknown a-priori. In fact, data travel

from source to destination along a path, composed of links and routers. In the Internet, this path

is usually shared among traÆc generated by other applications and it may happen that a network

resource along the path is busy, causing the data to be delayed until the resource is available. This

happens because the Internet is a best-e�ort network, and hence all the network traÆc is treated

with the same priority. Even though in the future (Internet2 [31]) there will be di�erent classes of

services [30] [17] and hence the queuing delay may be known a-priori, currently the queuing delay

is unknown and depends on the overall network traÆc characteristics.

The variability of the network delay (the network jitter) may cause QoS problems to the receiver.
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For instance, in a video streaming application, the receiver should continuously play out the arriving

stream, playing a pre-de�ned number of frames every second. If the network jitter is present, it

is possible that the network delays the delivery of some video frames, causing problems to the

receiver's play out as video frames may be not available for play out when needed. This could

cause video play out interruptions and it is common for users that watch video streams while being

connected to the Internet through a low capacity modem.

In literature there were studies aimed to ameliorate the network jitter: bu�ering or smoothing

techniques [19] [6] [5] [22] are examples of mechanism developed to mask the network jitter to

the end-users. Brie
y, these techniques work as follows: when the receiver receives the �rst video

frame, the video play out does not immediately start, but the video frame is stored in the local

bu�er, as well as all the successive arriving frames. The receiver starts retrieving (and playing

out) video frame from the local bu�er only after a portion of time (usually few seconds), called

start-up delay. In essence, the application uses the client bu�er to mask the network jitter. In this

way the receiver's play out should not be a�ected by the network jitter and hence the receiver can

continuously play out the arriving video stream.

Although these techniques are very e�ective in reducing the network jitter, they cannot be

used to support interactive QoS applications, as the start-up delay increases the overall end-to-end

delay, a critical measure of the interactive QoS applications. In fact, as pointed out, interactive

applications have a threshold that represents the limit above which the human perception (and hence

interactions) is a�ected. If we denote this threshold with NIT (Natural Interaction Threshold), it

is mandatory for the end-to-end delay to stay below the NIT value. Since this value is usually less

than 500ms, it is not possible to use mechanisms, as bu�ering techniques, that usually introduce a

start-up delay of few seconds in order to ameliorate the network jitter [29].

For these reasons, we propose a mechanism that does not use any start-up delay and hence, the

�rst video frame that arrives at the receiver is immediately played out.

Before introducing our mechanism, we �rst note that when watching a video stream on a com-

puter, there are two possible scenarios: i) the video stream is locally stored at the user side (either

the video is stored on the user's hard-disk or on a CD-Rom, DVD, and so on) or ii) the video stream

is stored somewhere in the network through which the video application transmits the video stream

at the sender side and retrieves the video stream at the receiver side.

From the user perspective, the ideal scenario to perform interactive operations is when the video

is locally stored. This avoids the network to introduce an excessive delay, causing the end-to-end

delay to be noticeable and, sometimes, annoying. In Fig. 2 we show a possible scenario for a video

application. A video server is in charge of transmitting a video stream into the network. This stream
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Figure 2: Network scenario while transmitting a video stream between a sender and a receiver. The

ideal video play out and the actual video play out are highlighted.

is delivered to the receiver where there is the actual play out of the video stream. In this scenario,

the network delays the transmission of the video stream as well as the interactive requests of the

user at the receiver side. Needless to say, if the network delays these data with a value greater than

the NIT, the natural interaction between the end-user and the video server is compromised. The

ideal scenario to avoid these possible problems, would see the user directly connected to the video

server, such that the video play out would be done without considering the network. Throughout

the paper, we refer to this scenario as the ideal scenario for providing interactions and to the actual

scenario (where video is stored somewhere in the network) as the real scenario.

The goal of our mechanism is to support the video play out in the real scenario, while attempting

to simulate the video play out in the ideal scenario. Hence, our mechanism aims to maintain the

end-to-end delay within the acceptable threshold (i.e., below the NIT value), while allowing the

receiver to continuously play out the video stream. In essence, in interactive applications, the end-

to-end delay can be seen as the time elapsed between the user request and the relative e�ects on

the user's screen. Needless to say, to provide interactions, this delay should be not noticeable.

The mechanism we propose in this paper is an improvement of the mechanism proposed in [9]

where we introduced an adaptive mechanism for supporting video play out over the Internet. The

mechanism in [9] used a three-handshake protocol to periodically measure the end-to-end delay

and a QoS mechanism was used to maintain the end-to-end delay very close to the value measured

with the handshake protocol. Hence, the mechanism adapts the video transmission to the network

conditions: it aims to maintain the status quo of the network delay, while the mechanism proposed

in this paper provides an absolute measure of the end-to-end delay.

To evaluate our mechanism we �rst collected real network delay traces (obtained transmitting

video traces over our department LAN and over the Internet) and then, using these traces, we

perform several simulations using our mechanism. Results obtained show that our mechanism is
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Audio Latency E�ect of delay on human voice perception

> 600 ms Speech is intelligible and incoherent

600 ms Speech is barely coherent

250 ms Speech is annoying but comprehensible

100 ms Imperceptible di�erence between audio and real speech

50 ms Humans cannot distinguish between audio and real speech

Table 1: E�ects of latency on human voice perception

well suited for supporting interactive QoS applications over the Internet, as the actual video play

out is kept very close to the ideal video play out.

The remainder of this paper is organized as follows. In section 2 we present our mechanism and

its properties. We also highlight bene�ts of using our mechanism. In section 3 we present results

obtained from evaluating our mechanism. Conclusions are drawn in section 4.

2 Proposed Mechanism

In this section we present characteristics and properties of the mechanism we propose in order to

support interactive video streaming applications over the Internet.

As we already pointed out, to support interactive operations in a distributed environment, it is

mandatory for each transmitted message to experience an end-to-end delay lower than a prede�ned

threshold. The value of this threshold, named NIT (Natural Interaction Threshold) throughout this

paper, is application dependent and represents the upper bound to the end-to-end delay in order to

provide natural interaction between end-users. Further, since we are considering applications that

transmit video stream, it is important to guarantee the continuity of the video play out (i.e., no

interruptions during the video play out) at the receiver side. Roughly, this means that the receiver

should always have frames to play out.

As we already stated, we don't use any of the techniques that may increase the overall end-to-

end delay, such as smoothing techniques that introduce a start-up delay to ameliorate the network

jitter. Conversely, with our mechanism, the receiver starts playing out the video upon the reception

of the �rst video frame.

While being e�ective on networks that provide some guarantees to the applications, such as

suÆcient bandwidth, low packet-loss and end-to-end delay, the video play out without any start-up

delay may pose problems if the underlying network is a best-e�ort network. In fact, in a best-e�ort
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network the end-to-end delay may be very variable, causing frames to have an unpredictable arrival

time. This may compromise the continuity of the video play out, as the receiver may not have

received video frames that are requested for the play out. As we show in section 2.2, this network

jitter may also compromise the natural interactions between end-users, as the overall end-to-end

delay may exceed the NIT.

As we stated, our mechanism aims to maintain the actual play out very close to the ideal play

out, in order to support interactive features. For this reason, our mechanism measures the time

di�erence between the actual and the ideal play out. If this di�erence is not noticeable to the users,

the applications is supported with suÆcient QoS. By supposing the clocks at the sender and at the

receiver side synchronized, we can, through a timestamp mechanism, measure this time di�erence.

The time-di�erence is measured through a new metric, named VTD (Video Time Di�erence), that

we introduce in order to measure the time di�erence between the ideal play out of a frame and its

actual play out. Brie
y, the VTD value is periodically measured at the receiver side, and if its value

is within the NIT value, the application is well supported.

Unfortunately, the video stream is transmitted over a best-e�ort network, and hence it is possible

that the network jitter causes the VTD to go above the acceptable threshold. For this reason, our

mechanism is provided with a synchronization phase. In essence, when the receiver �nds out that

the VTD is above the acceptable limit, it informs the sender that a synchronization phase has to

be activate. In essence, this synchronization phase a�ects the video QoS in order to report the

VTD within the acceptable NIT. In the following we show that, by acting on the video QoS (i.e.,

by dropping some frames of the video), our mechanism is e�ective in reporting the VTD within the

acceptable NIT and hence it is e�ective in supporting interactive features.

Before explaining the details of our mechanism, we introduce two de�nitions in order to simplify

the description of our mechanism throughout the paper.

De�nition. The clock at the sender side is denoted with TS, and TS(i) represents the ideal

play out time of the frame i. �

De�nition. The clock at the receiver side is denoted with TR, and TR(i) represents the (actual)

play out time of the frame i at the receiver side. �

2.1 Transmission and Play Out Algorithms

Video streaming applications are usually composed of two main programs: one is located at the

sender side and controls the transmission of the video stream into the network; the other is located

at the receiver side, retrieves video frames from the network and plays them out. In this section
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we describe the details of the algorithm that controls the transmission at the sender side and the

video play out algorithm at the receiver side.

2.1.1 Transmission Algorithm

A video stream is composed of a sequence of video frames that must be displayed a �xed time within

of each other. This technique produces the motion e�ect. Brie
y, the encoding process establishes

the number of frame that must be displayed every second and the video play out algorithm has to

display these frames according to the number of frames per second established during the encoding

process. For instance, the video may be composed of 24 frames per second and in this case video

frames must be displayed 1/24 of a second within of each other.

In the following we denote the number of video frames that must be displayed in one second

with the parameter Æ. Since video frames are transmitted over the Internet, it is important to mark

these frames, so that the receiver can correctly reproduce the video stream. Our mechanism marks

each video frame with a timestamp that represents the ideal play out time of the frame (i.e., the

play out time as if the video would be played out at the sender side). The timestamps are given

according to the following rules:

1. The timestamp of the �rst video frame represents the time at which the video frame is trans-

mitted. If we denote this time with t, it follows that the �rst video frame is marked with

TS(1) = t.

2. A frame i (i > 1) is marked with TS(i) = TS(i�1)+�, where � depends on the number of frame

per seconds Æ (i.e., � = 1=Æ). Hence, a frame i (i > 1) is marked with TS(i) = t+ (i� 1) � �.

2.1.2 Video Play out algorithm

The goal of the video play out algorithm is to play out the video frames in order to produce the

motion e�ect. In essence, the receiver retrieves video frames from the network, temporarily stores

them into its local bu�er and then plays out these video frames according to the following rules:

1. Video play out starts when the �rst video frame arrives at the receiver side, say at time t0

and the frame is immediately played out;

2. The receiver plays out the frames at �xed period (i.e., one frame every � = 1=Æ time units,

where Æ is the number of frames that should be played during every second);



2 PROPOSED MECHANISM 9

1 2 3 4 5 6 7 8 9 10 11 12 13

t

1 2 3 4 5 6 7 8 9 10 11 12 13
t’

- -

Sender

Receiver

Figure 3: Network scenario while transmitting a video stream between a sender and a receiver.

3. Among the frames present in the local bu�er, say k frames, it is selected (for play out) the

frame with the lowest timestamp (i.e. a frame i is selected if TS(i) = min(TS(j) for each

frame j in the bu�er);

4. Once selected, a frame i is removed from the bu�er and is played out at time TR(i) =

TR(i� 1) + � only if: a) TR(i) � TS(i) and b) TS(i) > TS(prec(i)), where prec(i) is the last

frame that has been played out. If conditions a) and b) are not met, then frame i is discarded

and a new frame selection must be done (by applying rule 3);

In other words, this last rule says that, if a selected frame i has a timestamp lower than the

timestamp of the last frame that has been played out (i.e., TS(i) < TS(prec(i))) then frame i is

discarded and a new frame selection (rule 3) must be done. This is done in order to avoid the play

out of a frame i that has been transmitted before the transmission of the frame prec(i), but, due

to network problems, frame i arrives later that the play out time of the prec(i) frame. Needless to

say, it is not possible that TS(i) = TS(j), if i 6= j.

Based on the previous rules, the algorithm plays out a frame i at time TR(i) = TR(prec(i)) +�,

where prec(i) indicates the frame played out just before frame i and � = 1=Æ. Note that, in the

following we denote the play out of the �rst video frame with TR(1) = t0.

2.2 Video play out problems caused by the network jitter

The algorithms described in the previous section are e�ective and do not pose any problems if the

underlying network provides guarantees such as low communication delay and jitter. Conversely,

if the previous algorithms are used in the Internet scenario, possible problems may arise, as we

describe in Fig. 3, where sender starts transmitting video frames at �xed rate (i.e., one frame every

� = 1=Æ time units) at time t. At time t0, the �rst video frame arrives at the receiver. Since there is

no startup delay, the receiver immediately plays out frame 1. Frame 2 is supposed to be played out

at time t0 +�, but due to network problems, frame 2 is delivered later than expected. For example,

let us suppose that frame 2 arrives between t0 + 2� and t0 + 3�. Hence, at time t0 + �, as well as
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Figure 4: VTD measured while playing out the video stream.

at time t0 + 2�, the receiver has no frame to play out. This means that the video play out will be

freezed up to time t0 + 3�, when it is resumed playing out frame 2.

In this case the network jitter compromised the continuity of the video play out and the delay

experienced by frame 2 a�ects the play out time of all the successive frames. In fact, even though

all the successive frames are delivered "in-time", their play out is delayed by the network problems

experienced while transmitting frame 2.

This situation causes problems if interactive operations are allowed, as we describe in the next

section.

2.3 Time di�erence between ideal and actual play out

The situation described in the previous section highlights the importance of the network jitter in

the video play out. As we already stated, when interactive operations are involved, it is fundamen-

tal that the end-to-end delay stays within the NIT value. Before introducing a mechanism that

measures the end-to-end delay, it is to note that the user does not know when a frame arrives at

the bu�er of his/her host, but he/she notices it when this frame appears on his/her screen.

To point out the di�erence between the arrival time of a frame at the end-host and its play-out

time, we consider again the example in Fig. 3. For example, frame 3 arrives just after t0 + 3�, but

this frame appears on the user's display only at time t0 +4�. Hence, from the user's point of view,

it doesn't matter when frame 3 actually arrived (t0 + 3�), but when it is played out (t0 + 4�).

This actual play out time is compared to the ideal play out time of the frame (i.e., the associated

timestamp) and the di�erence between these two values represents the end-to-end delay of the

considered frame.

To measure this di�erence, we introduce the following metric, called Video Time Di�erence

(VTD).

De�nition. Let us consider a video frame i. The Video Time Di�erence of a frame i, denoted
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with VTD(i), is de�ned as the di�erence (in time) between the actual play out of the considered

frame, TR(i), and its ideal play out time, TS(i). Hence, the VTD of a frame i is equal to V TD(i) =

TR(i)� TS(i). �

VTD measures the di�erence between the actual play out time of a frame and its ideal play

out time. Note that, if both sender and receiver applications reside on the same computer (i.e., no

network is involved), the VTD is equal to zero and this represents the ideal condition for human

interactions (i.e., TR(i) = TS(i) for each frame).

To better understand the e�ects of the network jitter on the VTD, in Fig 4 we show the VTD

measured for each played frame, with respect to the scenario described in Fig. 3. A hypothetical

NIT value is also depicted in order to better highlight frames with a VTD below or above the

acceptable limit.

Since we supposed that TS(1) = t and TR(1) = t0, it follows that V TD(1) = t0 � t. Frame 2

arrives later than expected (it was supposed to arrive before time t0+�, but it arrives between t0+2�

and t0+3�). Hence, the play out of frame 2 happens at time t0+3� and hence V TD(2) = t0�t+2�.

Let us suppose that VTD(2) goes above the NIT value (i.e. V TD(2) > NIT ). Even though all the

successive frames are delivered without any problem, the VTD of the successive frames is a�ected

by the network problem experienced while transmitting frame 2. In fact, V TD(j) � NIT , for each

j � 2.

Needless to say, this situation poses a serious problem if the supported application has interactive

features, as all the frames, but the �rst, have a VTD above the acceptable NIT. For this reason,

there is a need to design a mechanism that reports the VTD within the acceptable NIT. We explain

how our proposed mechanism deals with these problems in the following section.

2.4 Synchronization between ideal and actual play out

In this section we describe how our mechanism recovers from a situation where natural interactions

are compromised. As we already stated, this situation happens when the VTD is above the NIT

limit. In order to report the VTD within the acceptable limit, we design a mechanism that acts

on the QoS of the video, by discarding video frames. As we show in the following, the discarding

mechanism allows to modify the VTD and hence it is possible to maintain the VTD within the

acceptable value for human interactions.

First of all, we show that it is possible to reduce the VTD of an arbitrary time quantity. In fact,

the following theorem states that the arbitrary time quantity can be translated in video frames and

then by discarding these frames, the VTD is reduced.
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Theorem 1 The V TD can be reduced of � time units, by dropping a number of frames, say k, that

corresponds to � time units (i.e. k �� = �), where � = 1=Æ and Æ denotes the number of frames that

must be played every second.

Proof Let us consider the play out of a frame j and suppose that V TD(j) = TR(j) � TS(j) =

t0 � t+ �.

By de�nition, TS(j) = t+(j�1) ��. It follows that TR(j) = V TD(j)+TS(j) = t0+�+(j�1) ��.

If the network condition will not change while transmitting the successive frames, the VTD will

not change, too. Hence, if we consider a frame z (z > j, z = j + k + 1), V TD(z) = t0 � t+ �.

Now, suppose that the sender, after transmitting frame j, avoids transmitting k consecutive

frames and sends frame z just after frame j.

To compute the VTD of the frame z (V TD(z) = TR(z) � TS(z)) we consider that: i) the

value TS(z) is known by de�nition and is equal to t + (z � 1) � �; ii) the value TR(z) is equal to

TR(z) = TR(prec(z)) + �, where prec(z) indicates the frame played out just before frame z.

Since the frame played out just before frame z is the frame j (prec(z) = j), it follows that

TR(z) = TR(j) + �.

TR(j) is known and is equal to t0 + �+ (j � 1) � �. It follows that TR(z) = t0 + �+ j � �.

Now, considering that, by de�nition, � = k � �, it is easy to compute V TD(z) that is equal to:

V TD(z) = t� t0.

Hence, the discard of k consecutive frames reduces the VTD of � time units. �

The previous Theorem allow us to reduce the VTD of a known quantity. Since, through the

timestamp mechanism, we exactly know the amount of time that exceeds the acceptable limit NIT

(i.e., V TD �NIT ), it is easy to report the VTD within the acceptable limit.

In fact, the value V TD � NIT (� in Theorem 1) is used to compute the number of frames

that has to be dropped (k in Theorem 1) in order to report the VTD within the NIT limit. Our

mechanism works as follows. The receiver can easily compute the value V TD�NIT . If this value

is greater than zero, it is sent to the sender. After receiving this message, the sender can discard a

number of frames that corresponds to the time quantity V TD �NIT . In this way, as Theorem 1

states, the VTD is reduced and hence is reported within the acceptable NIT limit.

To show the e�ects of our mechanism, in Fig. 5, we consider again the example depicted in Fig.

3, but now when the receiver �nds out that the VTD goes above the acceptable value (for instance

when playing out frame 2, it knows that VTD(2) is greater that NIT) it sends to the sender the

value V TD(2) � NIT . When this message arrives at the sender, the synchronization mechanism

is activated. The sender uses this value (V TD(2) �NIT � �) to compute the number of frames
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Figure 5: Network scenario while transmitting a video stream between a sender and a receiver when

using our mechanism.

(k) that has to be discarded in order to report the VTD within the NIT. Let us suppose that it is

necessary to drop 2 frames, the sender discards (i.e., it does not transmit), frame 7 and frame 8.

This means that, just after frame 6, the sender transmits frame 9, frame 10 and so on.

In Fig. 6 we show the e�ects of our mechanism on the VTD. The bene�ts introduced by our

mechanism starts when playing out frame 9. In fact, if our mechanism is not used (Fig. 4), frame

9 is played out with VTD(9) greater than NIT, but if our mechanism is used (Fig. 6), VTD(9)

is lower than NIT. Moreover, using our mechanism, all the frames transmitted after frame 9 are

within the NIT value.

This means that when our mechanism is not used, the considered application does not provide

suÆcient QoS to the interactive applications, as the VTD is often above the NIT. Conversely, our

mechanism is able to report the VTD within the NIT, dropping only some video frames. Note that,

while evaluating our mechanism, we show that the number of dropped frames is very small.

The drawback of our mechanism is the dropping of some frames and this a�ects the video QoS.

In literature, there are techniques that act on the video QoS (by dropping frames) in order to solve

bandwidth allocation problems (see for example, [28] and [10]) and they proposed several heuristic

algorithms to discard frames in video stream encoded with Motion JPEG and MPEG techniques.

They also showed that a good selection of the frames to discard does not greatly a�ect the video QoS.

These techniques are easier to implement when video is encoded with intra-frame mechanism (like

Motion JPEG), as inter-frame mechanisms (like MPEG) can cause a domino e�ect (i.e., a discard

of a frame may lead to the impossibility of decoding other video frames). Our mechanism has been

designed to handle Motion JPEG video stream and hence it is possible to discard frames without

causing the domino e�ect. On the other hand, if video is encoded with inter-frame mechanisms, the

discarding algorithm must take into account the characteristics of any video frame. In this paper

we only consider Motion JPEG video streams.
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3 Simulation scenario and results

In this section we present results obtained from several simulations that have been done in order

to test our proposed mechanism.

Simulations involve both our department LAN and the Internet and are performed using video

delay traces obtained transmitting a set of video traces (each of 20 minutes long) encoded with

Motion JPEG, with a resolution of 320x160 pixels and encoded with di�erent number of frames per

second (12 fps or 24 fps). These delay traces have been collected during di�erent time (peak hours,

oÆce hours, evening) in order to test our mechanism in di�erent situations.

A simulator that uses the collected delay traces to test the behavior of our mechanism has been

developed and results obtained over our LAN and over the Internet are presented in the following

sections.

3.1 LAN Environment

The �rst set of experiments has been done over our department LAN, a 100Mb/s Ethernet network.

Two sets of experiments have been involved. The �rst set uses Motion JPEG video traces encoded

with 12 frames per second (i.e. one frame every 80 millisecond), while the second set is composed

of 24 fps Motion JPEG video traces (i.e. one frame every 40 millisecond). The di�erent number

of fps has been chosen in order to have di�erent bandwidth requirements. In fact, the number of

frames per second a�ects the bandwidth necessary to transmit the video over a network and hence,

varying the fps, we obtained di�erent network conditions. For instance, if we consider a Motion

JPEG frame with a resolution of 320x160, its size may span from some kbytes to more than 10

kbytes. Approximately, a stream composed of frames with these characteristics may need around

960 Kbps. On the other hand, if we consider a video encoded with 24 frames per second, the needed

bandwidth is, more or less, the double. Note that, we are considering video encoded with Motion

JPEG, an intra-frames technique that produces frames whose encoding is inpedendent of each other.
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Figure 8: Transmission of Big: Percentage of packets with a VTD above the Natural Interaction

Limit.

Although 24 fps is used for high quality video, and hence it can be considered oversized for some

interactive multimedia applications, such as distance learning and video games, we analyzed these

traces in order to test our mechanism in critical traÆc condition.

In Fig. 7 we present results obtained from transmitting a video trace of the movie Big, encoded

with 24 fps. We present the VTD obtained with and without using our mechanism. As shown, when

our mechanism is not used, the VTD is variable and reaches the maximum value of 210 millisecond.

This can cause problems to interactive application if the application's NIT is lower than 210 ms.

In Fig. 7 is worth noting the behavior of the VTD curve when our mechanism is not used.

The VTD curve goes up and down. While the increasing part is easy to understand (the network

delivers packets later than expected and hence the play out is delayed), it is interesting to observe the

decreasing part. In fact, the receiver always plays out frames at �xed and pre-de�ned number of fps,

and hence the VTD should never decrease. However, the decreasing part is caused by the network



3 SIMULATION SCENARIO AND RESULTS 16

0

5

10

15

20

25

30

50 100 150 200 250 300 350

With
Without

Natural Interaction Threshold

SIS (24fps)
LAN

%
 o

f f
ra

m
es

 a
bo

ve
 th

e 
N

IT

Figure 9: Transmission of Sleepless in Seattle: Percentage of packets with a VTD above the Natural

Interaction Limit.

packet loss that decreases the VTD. As Theorem 1 states, VTD can be reduced by discarding video

frames. In this case, video frames are not intentionally dropped by our mechanism, but it is the

network that drops these frames. Unfortunately, it is not possible to control the network behavior,

as the network discards frames when it is congestioned. This network behavior causes the VTD to

be variable.

So far, we've described the VTD when our mechanism is not used. Since our mechanism is

activated when the VTD goes above the NIT limit and since the NIT limit is application dependent,

to cover di�erent situations we vary the NIT value from 50 to 210 milliseconds (ms) and we compute

the percentage of frames whose VTD goes above the NIT limit.

As shown in Fig. 8, with a 50 ms NIT, more than 20% of the frames goes above the acceptable

limit. This percentage decreases while increasing the NIT value. For instance, if the NIT value is

equal to 90 ms, the percentage drops to 4% and reaches almost zero percent with a NIT value of

130 ms.

If our mechanism is used, the percentage is kept very close to zero, while dropping very few

frames (i.e. 4, 3, 2, 1 frames dropped for a NIT of 50, 90, 130, 170, respectively).

The reason of this great bene�ts obtained by discarding very few frames is highlighted by the

example described in sections 2.3 and 2.4. In fact, in Fig. 4 the delay experienced by frame 2 causes

the VTD to go above the NIT limit for all the successive frames. In Fig. 5 and 6 we showed that by

discarding only 2 frames, only few frames have a VTD above the NIT limit, while all of the other

frames are within the NIT limit.

Another test has been performed by transmitting a video trace of the movie Sleepless in Seattle,

encoded with 24 fps. If Fig. 9 we show results obtained. In this case, we vary the NIT value from
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Figure 10: Transmission of Sleepless in Seattle: Percentage of packets with a VTD above the Natural

Interaction Limit.
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Figure 11: Transmission of Crocodile Dundee: Percentage of packets with a VTD above the Natural

Interaction Limit.

50 to 290 ms. With a NIT of 50 ms the percentage of video frames that goes above the NIT is

equal to 26%. This case, this value decreases as the NIT increases and the percentage goes very

close to zero when the NIT is around 170 ms. The bene�ts obtained when using our mechanism are

still considerable, as the percentage is kept very close to zero along the lifetime of the application,

dropping very few frames: 6, 2, 2, 1 frames dropped for a NIT of 50, 90, 130, 170, respectively.

Very similar results have been obtained while transmitting Sleepless in Seattle encoded with 12

fps (Fig. 13), Crocodile Dundee encoded with 24 and 12 fps (Fig. 11 and Fig. 12, respectively)

and Big encoded with 12 fps (Fig. 13). The bene�ts introduced showed that our mechanism is well

suited for supporting interactive video applications over a local network.
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Figure 12: Transmission of Crocodile Dundee: Percentage of packets with a VTD above the Natural

Interaction Limit.
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Figure 13: Transmission of Big: Percentage of packets with a VTD above the Natural Interaction

Limit.
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hop Host

1 csgw-fe10-0.cs.unibo.it (130.136.1.254)

2 cesia-csgw.cs.unibo.it (130.136.254.254)

3 almr59.unibo.it (137.204.1.22)

4 192.12.47.22 (192.12.47.22)

5 192.12.47.5 (192.12.47.5)

6 poseidon.csr.unibo.it (137.204.72.49)

Table 2: Hops experienced from cartoonia.cs.unibo.it to poseidon.csr.unibo.it

hop Host

1 cs-gw.cs.unibo.it (130.136.1.56)

2 130.136.254.254 (130.136.254.254)

3 almr55.unibo.it (137.204.1.20)

4 rc-unibo.bo.garr.net (193.206.128.97)

5 rt-rc-2.bo.garr.net (193.206.134.157)

6 mi-bo-1.garr.net (193.206.134.1)

7 ts-mi-1.garr.net (193.206.134.50)

8 ictp-rc.ts.garr.net (193.206.132.2)

9 sv3.ictp.trieste.it (140.105.16.63)

Table 3: Hops experienced from cartoonia.cs.unibo.it to sv3.ictp.trieste.it

3.2 The Internet Environment

In the previous section we evaluated our mechanism over our department LAN and results obtained

showed the bene�ts introduced by our mechanism. However, to test our mechanism in the Internet,

we evaluated it in two more scenarios: one from Bologna to Cesena (hops are shown in Table 2)

and the other from Bologna to Trieste (hops are shown in Table 3).

As we already stated, the capacity needed for transmitting a Motion JPEG encoded video with

12 fps and with a resolution of 320x160 pixel is around 900 Kbps and (more or less) the double for

a 24 fps video. While this quantity can be acceptable in a LAN, it can increase the packet loss if

video is transmitted over the Internet. In some cases, the percentage of packet loss introduced by

the network is considerable, reaching up to 30% of packet loss for a 12 fps video, and more than

40% for a 24 fps video traces.
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Figure 14: Transmission of Jurassic Park: Percentage of packets with a VTD above the Natural

Interaction Limit.

In Fig. 14 we present results obtained from transmitting a video trace of the movie Jurassic

Park, encoded with 12 fps, from Bologna to Cesena (Table 2). Once again, we measured the

percentage of frames that goes above the NIT, with a NIT value that ranges between 50 and 250

ms. As shown, with a 50 ms NIT, more than 70% of the frames goes above the acceptable limit.

This percentage decreases while increasing the NIT value. For a NIT value of 90 ms, the percentage

drops to 11%, and reaches almost zero percent with a NIT value of 130 ms. Also in the Internet

environment, if our mechanism is used, the percentage is kept very close to zero, while dropping

very few frames (i.e. 3, 3, 1, 1 frames dropped for a NIT of 50, 90, 130, 170, respectively).

In Fig. 15 we present results obtained from transmitting a video trace of the movie Big, encoded

with 24 fps, from Bologna to Cesena (Table 2). We vary the NIT value from 90 to 290 ms. As

shown, a NIT of 90 ms causes 60% of the frames to go above the acceptable limit. This percentage

decreases while increasing the NIT value. For a NIT value of 130 ms, the percentage drops to less

than 20%, and reaches almost zero percent for a NIT value around 230 ms. Once again, with our

mechanism, the percentage is kept very close to zero, while dropping very few frames (i.e. 5, 4, 3,

2 frames dropped for a NIT of 90, 130, 170, 210, respectively).

In Fig. 16 we present results obtained from transmitting a video trace of the movie Crocodile

Dundee, encoded with 24 fps, from Bologna to Cesena (Table 2). We show the percentage of frames

that goes above the NIT, with a NIT value that ranges between 90 and 170 ms. A 90 ms NIT value

causes 6% of the frames to go above the acceptable limit. This percentage decreases while increasing

the NIT value and reaches almost zero percent with a NIT value of 130 ms. If our mechanism is

used, the percentage is kept very close to zero, while dropping very few frames (i.e. 2, 1, 0 frames

dropped for a NIT of 90, 130, 170, respectively).
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Figure 15: Transmission of Big: Percentage of packets with a VTD above the Natural Interaction

Limit.
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Figure 16: Transmission of Crocodile Dundee: Percentage of packets with a VTD above the Natural

Interaction Limit.
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Figure 17: Transmission of Jurassic Park: Percentage of packets with a VTD above the Natural

Interaction Limit.

In Fig. 17 we present results obtained from transmitting a video trace of the movie Jurassic

Park, encoded with 24 fps, from Bologna to Cesena (Table 2). We show the percentage of frames

that goes above the NIT, with a NIT value that ranges between 90 and 290 ms. As shown, with

a 90 ms NIT, 30% of the frames goes above the acceptable limit. This percentage decreases while

increasing the NIT value and reaches almost zero percent with a NIT value of 170 ms. If our

mechanism is used, the percentage is kept very close to zero, while dropping very few frames (i.e.

13, 12, 3, 2 frames dropped for a NIT of 90, 130, 170 and 210 respectively).

In Fig. 18 we present results obtained from transmitting a video trace of the movie Big, encoded

with 12 fps, from Bologna to Trieste (Table 3). We show the percentage of frames that goes above

the NIT, varying the NIT from 150 to 1000 ms. As shown, with a 150 ms NIT, more than 17%

of the frames goes above the acceptable limit. This percentage decreases while increasing the NIT

value and for a NIT value of 550 ms, the percentage drops to 4%. In this case, the percentage

reaches almost zero percent with a NIT value of 1000 ms. The VTD in this case reaches quite

high values and this highlights the diÆculties of delivering video streams over the current Internet.

However, despite these diÆculties, our mechanism allows to have a percentage very close to zero,

but these bene�ts are obtained discarding a larger number of frames. In particular, our mechanism

drops a number of frames that varies from 60 to 50 with a NIT of 150 and 1000, respectively.

In Fig. 19 we present results obtained from transmitting a video trace of the movie Sleepless in

Seattle, encoded with 12 fps, from Bologna to Trieste (Table 3). We show the percentage of frames

that goes above the NIT, with a NIT value that ranges between 150 and 800 ms. As shown, with a

150 ms NIT, around 18% of the frames goes above the acceptable limit. This percentage decreases

while increasing the NIT value and for a NIT value of 350 ms, the percentage drops to 4%, and
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Figure 18: Transmission of Big: Percentage of packets with a VTD above the Natural Interaction

Limit.
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Figure 19: Transmission of Sleepless in Seattle: Percentage of packets with a VTD above the Natural

Interaction Limit.

reaches almost zero percent for a 550 ms NIT value. In this case, our mechanism is able to keep

the percentage close to zero, by discarding very few frames (i.e. 8, 8, 7, 6 frames dropped for a NIT

of 150, 200, 220, 250, respectively).

Despite the network problems, all the performed experiments showed the bene�ts of our mecha-

nism, compared to the number of dropped frames, in keeping the VTD within the acceptable limit

in order to support interactivity in networked applications.

4 Conclusions

In this paper we proposed a new mechanism for supporting video streaming applications that

provide interactive features to the end-user. As we pointed out, this type of application is very
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critical to support in best-e�ort networks, as the interactions are greatly a�ected by network jitter.

In order to interact with who provides the video streaming, we highlighted that the client has

an ideal position to play out the video (i.e., the video stream is locally stored at the user's side)

and an actual position (i.e., where the user actually is: somewhere in the network). Our mechanism

aims to maintain the actual video play out very close to the ideal play out.

To provide natural interactions between end-users, the time di�erence between the ideal and the

actual play out must have a value lower than the NIT value (the upper bound to the end-to-end in

order to provide natural interaction between end-users). This time di�erence is measured through

a new metric, called VTD, and we proved that is possible, by dropping video frames, to reduce the

VTD of an arbitrary time quantity. Through the VTD, our mechanism measures whether the time

di�erence between the actual and the ideal play out is within the NIT threshold or not. If not, our

mechanism computes the number of frames that is necessary to drop in order to report the VTD

within the acceptable limit and then discards them.

Our mechanism deals with Motion JPEG video streams to simplify the selection of the frames

that is necessary to drop. However, since it would be very interesting to handle also MPEG video

streams, we will consider these streams in future investigations.

We evaluated our mechanism through several simulation, performed by using real network delay

traces obtained transmitting Motion JPEG video streams over both LAN and the Internet. Results

obtained showed the high variability of the VTD and the e�ectiveness of our mechanism in keeping

the VTD within the NIT value. These results showed that our mechanism is well suited for sup-

porting video applications that provide interactive features to the end-user (e.g., distance learning,

pay per view, etc.), over the Internet.
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