A Fuzzy Approach to Case-Based Reasoning
through Fuzzy Extension of SQL

Luigi Portinale, Stefania Montani
Dipartimento di Informatica
Universita del Piemonte Orientale ” Amedeo Avogadro”
Alessandria (Italy)

Riccardo Bellazzi
Dipartimento di Informatica e Sistemistica
Universita di Pavia
Pavia (Italy)

TR-INF-2002-07-03-UNIPMN

Keywords: fuzzy retrieval, fuzzy SQL

Corresponding Author:

Luigi Portinale

Dipartimento di Informatica

Universita’ del Piemonte Orientale ” Amedeo Avogadro”
Spalto Marengo 33 - 15100 Alessandria (ITALY)

tel: +39 0131 287 451 fax: +39 0131 287 440
e-mail: portinal@unipmn.it

Abstract

The use of database technologies for implementing CBR techniques is attracting a lot of attention
for several reasons. First, the possibility of using standard DBMS for storing and representing cases
significantly reduces the effort needed to develop a CBR system; in fact, data of interest are usually
already stored into relational databases and used for different purposes as well. Finally, the use of
standard query languages, like SQL, may facilitate the introduction of a case-based system into the
real-world, by putting retrieval on the same ground of normal database queries. Unfortunately, SQL
is not able to deal with queries like those needed in a CBR system, so different approaches have been
tried, in order to build retrieval engines able to exploit, at the lower level, standard SQL. In this
paper, we concentrate on Fuzzy Case-Based Reasoning where case similarity is defined by means
of fuzzy predicates, operators and standard fuzzy logic connectives, rather than through distance
measures as in usual k-NN approaches. We present a proposal where case retrieval is implemented by
using a straightforward fuzzy extension to standard SQL, where the boolean satisfiability condition
for tuple selection is substituted with a fuzzy one. A case-based client/server architecture exploiting
Fuzzy-SQL as a retrieval engine is then presented, together with some possible applications in e-
commerce and medical domains.

1 Introduction

The construction of a case-based system involves a set of different phases, each one related to the
different steps composing the CBR cycle [1]. In particular, in order to implement a particular case
retrieval algorithm, suitable case structuring and case base organization have to be devised. Very often,
the case memory requires specific data structures to be implemented like decision trees, k-d trees, E-
MOPs, associative memories, etc... [10, 18]; this may be a further burden in the construction of a CBR
system, especially if data concerning cases are already available in standard databases.

The use of database techniques for supporting the construction of case-based systems is recently
attracting serious attention; the reasons are twofold:

1. if data of interest are already stored in a database, the database itself can be used as a case base;

2. part of the technological facilities of a DBMS may be exploited in the CBR cycle, in particular
for case retrieval.

This is particularly true in e-commerce applications, where the product database represents the main
data source, which records are easily interpretable as “cases” for a case-based recommendation system
[14, 15, 20], as well as in the broad context of knowledge management, for the implementation of
corporate-wide case-based systems [9, 16]. All these database driven proposals focus on the retrieval
step of the CBR cycle!, since similarity-based retrieval is the fundamental step that allows one to start
with a set of relevant cases (e.g. the most relevant products in e-commerce), in order to apply any
needed revision and/or refinement.

Case retrieval algorithms usually focus on implementing Nearest-Neighbor (NN) techniques, where
local similarity metrics relative to individual features are combined in a weighted way to get a global
similarity between a retrieved and a target case. A k-NN case retrieval algorithm will then return the &
most similar cases to the target one. In [5], it is argued that the notion of acceptance may represent the
needs of a flexible case retrieval methodology better than distance (or similarity). As for distance, local
acceptance functions can be combined into global acceptance functions to determine whether a target
case is acceptable (i.e. it is retrieved) with respect to a given query. In particular, very often local
acceptance functions take the form of fuzzy distributions; in this way, the definition of a fuzzy linguistic
term over the domain of a given attribute of a case can be exploited to characterize the acceptance of
cases having similar (in the fuzzy sense) values for that particular attribute or feature.

The main goals and objectives of our work can be then summarized as follows:

e defining a case retrieval approach suitable for query cases expressible (either directly or indirectly)
with fuzzy concepts;

e exploiting in a sound way fuzzy logic theory;

e exploiting as much as possible standard data representations for implementing cases (i.e. relational
databases);

e exploiting as much as possible standard query tools and languages (like SQL or its extensions) for
implementing retrieval.

L Actually, in [20] a revision of the classical CBR. cycle presented in [1] is proposed, by specifically taking into account
the e-commerce application; however no particular database technique is specifically proposed for implementing this new
cycle.

In the present paper, we will present an approach where local acceptance relative to a feature can be
actually expressed through fuzzy distributions on its domain, abstracting the actual values to linguistic
terms. The peculiarity of the approach is that global acceptance is completely defined in fuzzy terms, by
means of the usual combinations of local distributions through specific defined norms [11]. Moreover, an
extended version of SQL, able to deal with fuzzy predicates and conditions, is introduced as a suitable
way to directly query a case base stored on a relational DBMS; this approach is based on the SQLf
language proposed in [3], extending standard SQL in order to deal with fuzzy queries.

The paper is organized as follows: section 2 compares the different approaches to retrieval, namely
similarity-based and fuzzy-based; section 3 summarizes the standard approach to fuzzy querying on
top of a relational DBMS by also showing how a fuzzy query with a suitable acceptability threshold
can be translated in a boolean one; section 4 shows how the fuzzy querying framework can actually be
exploited to implement fuzzy case retrieval and a client /server architecture able to generate a Fuzzy-SQL
query from a case specification is presented in section 5; finally, in section 6 two different applications
exploiting the presented approach are presented in e-commerce (travel suggestion) and medical domains
(diabetic patient monitoring) respectively. Comparison with related works and some conclusions are
then reported in section 7.

2 Similarity-Based Retrieval versus Fuzzy-Based retrieval

Standard case retrieval approaches are based on distance measures defined on case features (local
distance) that are then combined in a suitable way, in order to get the actual distance between a query
or target case and a retrieved case (global distance). The Nearest-Neighbor approach to case retrieval
is actual based on such a use of distance functions and several retrieval algorithms proposed in the
literature belong to this category. Case similarity is easily defined as a kind of inverse function of case
distance (greater is the distance, smaller is the similarity).

However, similarity-based retrieval grounded on distance metrics is not the only way of considering
retrieval; in fact, an often cited proposition is that the main difference between database and case-
based systems stands in the fact that database systems are only able to retrieve information that fulfills
particular conditions in a precise way, while imprecise (fuzzy) matching is possible within CBR system.
This means that we can view retrieval as a way of accepting a set of cases, by means of some fuzzy
measure of acceptance.

Despite their relative differences, fuzzy retrieval (based on acceptance) and nearest-neighbor retrieval
(based on distance) have some common grounds. In [5], a correspondence between acceptability and
distance has been pointed out; the way of considering the acceptability induced by a distance measure
is through the so-called characteristics similarity curves. As an example (adapted from [5]) consider
a local distance metric x; on a given feature f;. A very simple similarity metric induced by x; can be
s(z;) = 1 — |z;| (see fig. 1.(a)). Let us consider now the sum (+) combination function for the global
distance; fig. 1.(b) shows the characteristics similarity curves for a given value a and for a query case
composed by two features ¢, q2. They represent the acceptability regions induced by the global distance
measure; every case (f1, f2) inside a particular region (rhombus) has an acceptability greater or equal
to a with respect to the query case (g1, ¢2)-

Acceptability functions can then be used instead of distance or similarity functions and local ac-
ceptability can be combined into global acceptability functions to determine whether the case can be
retrieved, that is whether it is acceptable with respect to the query case and a particular acceptability
threshold (see [5] for more details).

similarity // ////\\ N N\ acceptability

a=
0, NN
/
1 ayd (al,q@2) N\ N\ N
s <) p

s(x)=1-|x| (1—|x1|)+(1—|x2|)=a

(a) (b)

Figure 1: Characteristics similarity curves (adapted from [5]).

Fuzzy membership of a feature value with respect to a particular fuzzy set can then be viewed as
local acceptance functions. Consider for example the feature price of a given product and consider the
fuzzy term average price defined by the fuzzy distribution of fig. 2. As in the case of characteristics sim-
ilarity curves, different acceptability thresholds give rise to different acceptability regions; for instance,
retrieving cases concerning products having an average price with acceptability greater than 0.75 will
result in retrieving cases concerning products with a price between $300 and $700. Notice that, in case
of fuzzy retrieval, the main reference is a linguistic value (i.e. a fuzzy set), while in similarity-based
retrieval the reference is a feature value, not defined on a fuzzy set. This essentially means that fuzzy
retrieval is more general in use, by allowing the fuzzification of the queries, i.e. query cases can be
expressed in terms of both crisp and fuzzy values. We will return on this aspect in section 4.

Finally, if fuzzy membership functions can model local acceptability, global acceptability is easily
obtained by using fuzzy combination through suitable t-norms o t-conorms [11]; this means that the
standard framework of fuzzy logic provides a sound way of aggregating local information (at the feature
level) into a global measure (at the case level). Given the fact that fuzzy logic matching can be formally
used to retrieve a set of cases given a particular query, the problem to solve is how to implement this
kind of fuzzy retrieval. Our aim is to exploit as much as possible standard data representation and
standard query tools. For this reason, we investigated the possibility of exploiting fuzzy extension to
SQL for imprecise querying in relational databases. Next section will discuss how a relational database
can be actually queried in a fuzzy way.

3 Fuzzy Querying in Databases

It is well-known that standard relational databases can only deal with precise information and standard
query languages, like SQL, only support boolean queries. As already mentioned, this is what make CBR
different from usual database technology where, if a specific condition is specified during information
retrieval, only data exactly satisfying such a condition can be obtained, by loosing the possibility of

average

I I I
$600 $700 $900

I I I
$100 $300 $4D0
: : ac:f:eptability:l
. acceptability>=0.75

Figure 2: Fuzzy membership as local acceptability.

retrieving those items that, while not fulfilling the condition, exhibit only small differences with respect
to those fulfilling it. Fuzzy logic provides a natural way of generalizing the strict satisfiability of boolean
logic to a notion of satisfiability with different degrees; this is the reason why considerable efforts has
been dedicated inside the database community toward the possibility of dealing with fuzzy information
in a database.

There are at least two main approaches to the problem:

1. explicit representation of vague and imprecise information inside the database [4, 12];
2. vague and imprecise querying on a regular database [3, 8].

Even if the first class of approaches is more general that the second one, we will concentrate on the
latter, since the interest in this paper is to show how flexible querying in a standard database can be
used to implement case retrieval. In particular, in [3] standard SQL is adopted as the starting point for
a set of extensions able to improve query capabilities from boolean to fuzzy ones. While the long term
goal of the approach is to integrate such extensions directly at the DBMS level (directly providing the
user with specific DBMS algorithms for flexible query processing), in the short term the implementation
of the SQL extensions can be actually provided on top of a standard relational DBMS, by means of
a suitable module able to transform a fuzzy query into a regular one through the so called derivation
principle [2].

In the following, we concentrate on this methodology, by defining a set of fuzzy extensions to SQL
that may be of interest for CBR and by showing how they can be processed, in order to transform
them in standard queries; we will finally show how this can be actually implemented for case retrieval
purposes.

The basic block of an SQL statement follows the form:

SELECT field_list

FROM table_list

WHERE condition
We are interested in simple SQL statements with no nesting (i.e. we consider the WHERE clause to be
a reference to an actual condition and not to nested SQL statements); in our Fuzzy-SQL language, the
condition can be a composite fuzzy formula involving both crisp and fuzzy predicates and operators.

3.1 Fuzzy Predicates

A set of linguistic values can be defined over the domains of the attributes of interest; three different
types of fuzzy predicates are considered:

o fuzzy predicates on continuous domain: a set of linguistic values defined on a continuous domain
and through a continuous distribution (e.g. a trapezoidal, triangular or a Gaussian-like distribu-
tion);

e fuzzy predicates on discrete domains: a set of linguistic values defined on a discrete domain,
but with two different possible types of distribution: continuous for scalar discrete attributes (i.e.
with ordered values) (e.g. a trapezoidal distribution for the linguistic value young defined over the
discrete domain of integers of the attribute age) or discrete for nominal attributes (with unordered
values) (e.g. a vector distribution for the linguistic term bright defined over the attribute color,
associating to each color the membership function to the fuzzy set).

Furthermore, a set of fuzzy operators can be defined to relate fuzzy or crisp predicates; also in this case
we have different types of operators:

e continuous operators: characterized by a continuous distribution function (e.g. the operator near
over scalar attributes, characterized by a trapezoidal, triangular or Gaussian-like curve centered
at 0 and working on the difference of the operands);

e discrete operators: defining a similarity relation characterized by a symmetric matrix of similarity
degrees (e.g. the operator compatible over the attribute job defining to what degree a pair of
different jobs are compatible).

By allowing fuzzy predicates and operators to form the condition of the WHERE clause, the result of the
SELECT is actually a fuzzy relation, i.e. a set of tuples with associated the degree to which they satisfy
the WHERE clause. Such a degree can be characterized as follows: let

SELECT A FROM R WHERE fc
be a query with fuzzy condition fc; the result will be a fuzzy relation Rf with membership function

prf(a) = sup tye(T)
(zeR)N\(z.A=a)
The fuzzy distribution ps.(x) relative to fc must then be computed by taking into account the logical
connectives involved and their fuzzy interpretation. It is well known that the general way to give a
fuzzy interpretation to logical connectives is to associate negation with complement to one, conjunction
with a suitable ¢t-norm and disjunction with the corresponding ¢-conorm [11]. In the following, we will
concentrate on the simplest t-norm and t-conorm, namely the min and max operators such that

panp(r) = min(pa(z), pe(z))
pave(r) = max(pa(r), us(x))

We will discuss the implementative advantages of this choice and what problems have to be addressed
with other norms.

3.2 Deriving Standard SQL from Fuzzy-SQL

In order to process a query using a standard DBMS, we have to devise a way of translating the Fuzzy-
SQL statement into a standard one. We have noticed that the result of a fuzzy query is always a fuzzy
relation, while the result of a standard query is a boolean relation; this means that, if we are able to
translate a fuzzy query into a standard one, the resulting boolean relation has to satisfy certain criteria
related to the original fuzzy query. The most simple way is to require the fuzzy query to return a
boolean relation R, whose tuples are extracted from the fuzzy relation Ry, by considering a suitable
threshold on the fuzzy distribution of Ry. We consider, as in [3], the following syntax

SELECT (A) A FROM R WHERE fc
whose meaning is that a set of tuples with attribute set A, from relation set R, satisfying the condition
fe with degree p > A is returned (in fuzzy terms, the A-cut of the fuzzy relation R resulting from the
query is returned).

The idea is then to transform the fuzzy query into an SQL query returning a superset of the A-cut of
the result relation. The interesting point is that, if we restrict attention to the kind of queries previously
discussed (which are suitable to model standard case retrieval) and if we adopt min and max operator
as norms, then it is possible to derive from a Fuzzy-SQL query, an SQL query returning exactly the
A-cut required [2].

This can be easily verified as follows: let P be a fuzzy predicate; we write P > X to indicate that P
is satisfied with degree greater or equal than A. Let DNC(P, >, \) be the derived necessary condition
for P > A, i.e. a boolean condition such that P > A\ - DNC(P, >, \).

It is trivial to verify that

AND(Py,...,Py) > A+ min(Py,...,P,) > X < DNC(Pi,>,\)...,DNC(P,,>,\)

OR(Py,...,Py) > A+ max(Py,...,P,) > A & DNC(P1,>,\)...,DNC(P,,>,)\)

This implies that, using min and max operators, each derived necessary condition is also a sufficient
one and thus the obtained boolean condition can be used to return exactly the required A-cut?. Each
DNC can then be obtained from the fuzzy distribution associated to the involved predicate.

Example. Consider a relation product containing the attribute price over which the linguistic
term high is defined. Figure 3 shows the fuzzy distribution of high as well as the distribution of a
fuzzy operator 3> (much greater than). The condition (price =high A price > 1000) > 0.8 will
hold iff min(price = high,price > 1000) > 0.8, iff (price =high) > 0.8 A (price > 1000) > 0.8
iff (1100 < price < 1800) A (price — 1000) > 120. The latter condition can be easily translated in a
standard WHERE clause of SQL.

Unfortunately, there are situations (for instance when norms different that min, max are used) where
the exact derivation of the A-cut is not possible; in these cases a superset of the actual A-cut will be
returned. There are two possible solutions to that:

1. to implement an external filter receiving in input the result set of the query, producing in output
the actual A-cut, by filtering out those tuples having degree less than A;

2Similar results hold for (P, <,\), to be used when negation is involved.

high

price 1100 1800

>>

120
100 125 a-b

Figure 3: Fuzzy Distributions

2. if the DBMS support the inclusion of external functions in the query language, to use this facility
to compute, during query processing, the actual degree of the tuple, by accepting only those
belonging to the A-cut.

In the next section, we will show how these strategies may be implemented in a system able to create
a Fuzzy-SQL query from a target case, in order to retrieve a set of similar cases.

4 Implementing Fuzzy Case Retrieval

In order to make effective a fuzzy retrieval approach on top of a relational database we have defined
the following framework for case retrieval implementation:

e cases are defined as collections of (feature, value) pairs and then represented as tuples of relations;
it may be the case that that the relevant information for a case is scattered in different relations of
a relational schema, however it is always possible to define a suitable view in order to reconstruct
relevant case information in a single (possibly virtual) table or relation?;

e as a consequence of the previous point, case features are represented by standard relational at-
tributes;

e fuzzy terms and fuzzy operators are defined on the case base scheme (the database scheme of the
case base) through a suitable meta-database containing all the fuzzy knowledge;

3Notice that a case is normally defined by a description, a solution and a possible outcome; the (feature,value)
description is usually sufficient to represent all this part of a case.

1 high

1000 price

Figure 4: Fuzzification Example

e a target or query case is defined by specifying values for a set of features in a suitable way (see
below);

e retrieval takes place by generating a Fuzzy-SQL query on the case base with threshold A, returning
the set of cases (tuples) within the X limit of acceptability (i.e. the A-cut of the resulting relation).

By considering the above framework, we notice that there is no fuzzy information represented in the
case base. Cases are stored in the case base (the object database) by using, for each feature, only
values from the corresponding attribute domain; on the other hand, query cases may also be specified
by using linguistic (fuzzy) abstractions on such values. This means that, for each feature (attribute) to
be specified in a query case, three different possibilities can be used:

1. specification of a linguistic value (if the corresponding domain allows for it);
2. specification of a crisp value, to be used as is;
3. specification of a crisp value to be fuzzified.

In the last case, fuzzification may take place in different ways; for instance, in case of a scalar attribute
A whose input value is a, the fuzzy expression A near a can be used instead of A = a*.

However, more sophisticated fuzzification strategies can also be defined, by constructing a fuzzy
distribution from those defined over the domain of the attribute and from the input value. An example
is provided in figure 4 where a fuzzification threshold ¢ = 0.1 is specified on the fuzzy distributions
for the linguistic term high of the attribute price with input value 1000; the result is the fuzzification
of price= 1000 in terms of the fuzzy distribution shown as a bold line in figure 4; the slopes of the
distribution can be determined in dependence on the original fuzzy distribution, by setting a spread
factor similar to that used in the HCV algorithm [21]. Fuzzification may be more complex in case the
input value belongs to more than one fuzzy set (i.e. if more linguistic terms are applicable to the input);
in that case the fuzzification process must take into account a suitable norm to combine the results
from each fuzzy set.

In addition to the specification of a crisp or linguistic value, the target case can also specify additional
conditions involving specific (possibly fuzzy) operators (e.g. the user can specify that it requires cases

4A more general solution could be to provide specific operators of nearness near, for each individual scalar attribute
A.

with price=high and price > 1000). Finally, a global retrieval (acceptability) threshold A has to be
specified. A Fuzzy-SQL query can then be generated as follows:

e one or more tables (Ry, ... Ry) whose rows contain the cases of interest for retrieval are selected;

e a fuzzy condition fcis created by taking the AND of all the expressions (crisp, fuzzy and fuzzified)
specified in the target case;

e a query of the form SELECT (A) * FROM R;,...Rj; WHERE fc
is generated and executed.

Retrieved cases will then be obtained as the tuples of the result table obtained from the query.

5 A Client/Server Architecture for Fuzzy CBR

Following the approach outlined in the previous sections, we have implemented a client/server archi-
tecture, able to process Fuzzy-SQL queries on top of a relational DBMS; since emphasis is given to
case retrieval, the system provides a way of generating the relevant fuzzy query from a target case
specification and can be used as a basis for the construction of specific applications where fuzzy case
retrieval is required. The architecture of the system is shown in Figure 5. A case base is implemented
using a standard relational database where cases are stored in a suitable set of tables; in addition to the
object database, a meta-database storing all fuzzy information and knowledge is also required. At the
current stage, all the meta-data (definitions of fuzzy predicates and operators) are stored in a relational
format as well, in such a way that standard queries can be used to process this kind of information (we
have chosen POSTGRES as DBMS for the current implementation).
The relational schema of the meta-database consists of the following tables:

DOMAINS(tab,field,type);

FUZZY_PRD(tab,field,lval,order no,distribution,a,b,c,d);

FUZZY DD(tab,field,attrval,lval,degree);

FUZZY_OP (symbol,operand._t ,description,cardinality,based on,distribution,a,b,c,d);
SIM_TAB(op_name,tab,field,avall,aval2,degree);

Underlined fields represent primary keys of the tables. The DOMAINS table is meant to represent the
type of the fuzzy domain defined on the pair table,field; the supported types are: 'x’ for no fuzzy
domain, ’a’ for continuous distribution on discrete domain, ’c’ for continuous distribution on continuous
domain, 'd’ for discrete distribution on discrete domains.

Table FUZZY_PRD represents the definition of continuous fuzzy distribution on either a continuous
or discrete domain; in particular, each tuple defines a fuzzy predicate with linguistic value 1val on the
attribute field of table tab with a continuous fuzzy distribution having 4 real reference points: a the
last point with membership degree 0, b the first point with degree 1, c the last point with degree 1 and
d the first point with degree 0 again. The attribute distribution of the table is intended as a code
for the type of distribution; for instance, a trapezoidal distribution will be identified by a code different
than the code for a triangular distribution. In particular, the difference between a trapezoidal and a
triangular distribution is that in the latter case a < b = ¢ < d, while in the former a < b < ¢ < d.
Other possible distributions are for example the crisp then decreasing distribution (a =b = —0c0 < ¢

a AUTOMATIC _ TARGET
/)] QUERY CONSTRUCTION| CASE
<G H
m D
USER +«— 10
m MANUAL
E QUERY CONSTRUCTION
Result set % 1}

|

| NORM FILTER

|

Fuzzy Data
Management Operations I A Fuzzy-SQL

| I Query

| _Result set_ |

|

v i \4
Postgres SERVER SQL Query
(RDBMS) FUZZY-SQL SERVER
Fuzzy -
Information PARSER/
> TRANSLATOR
Database Meta-Database

Figure 5: System Architecture

10

< d), the increasing then crisp distribution (a < b < ¢ = d = 400)s, etc ... The attribute order no
simply defines an order on the linguistic values that are defined on the same fields on a table.

Table FUZZY_0P is very similar, since it allows the definition of a continuous distribution correspond-
ing to a fuzzy operator; specific information about the operator cardinality (cardinality), the operand
types (operand_t) and the function on which the operator is based (based_on) are also stored. The
attribute symbol stores the symbol used for the operand in the Fuzzy SQL queries.

Table FUZZY DD deals with discrete distributions; the fuzzy value 1val defined on the table tab and
attribute field is defined such that the value attrval of field has a membership degree in the fuzzy
set equal to degree.

Finally, table SIM_TAB is used to store information for similarity relations; a similarity called op_name
is defined on table tab and attribute field such that the pair of attribute values avall and aval2 has
similarity equal to degree.

Concerning the rest of the architecture, the actual core is a Fuzzy-SQL Server written in Java. It is
devoted to the processing of the fuzzy query, by means of a Parser/Translator, implemented using Lex
and Yacc; the syntax of the fuzzy query is checked and a standard SQL query is then generated, by
deriving the DNCs using the fuzzy knowledge in the meta-database. The DB server and the Fuzzy-SQL
server do not need to run on the same host and communicate via JDBC driver.

Finally, a Web-Based Graphical User Interface has been implemented as a Java applet, exploiting
standard browser capabilities. The GUI fulfills the following requirements:

e automatic Fuzzy-SQL query generation from a target case template;
e manual Fuzzy-SQL query construction;

e meta-data management operations (definition of fuzzy knowledge) and database administration.

The GUI applet communicates directly with the DB server for database administration operation (as
well as for standard querying) via JDBC, while a socket-based communication is exploited for the
connection with the Fuzzy-SQL server.

The only constraint, in the current version, is that the Fuzzy-SQL Server must run on the same
machine where the WWW server is running, because of the use of Java applets in the implementation
of the GUI; no constraint is put on the location of the DBMS Server. The client browser, the DBMS
and the Fuzzy-SQL Server can in principle be on different machines. Finally, it is worth noting that in
figure 5, a specific module called Norm Filter is shown; this may be needed in case norms different than
min and max are adopted, in order to reduce the result set to the desired A\-cut. As mentioned before,
this filter would not be necessary if the Fuzzy-SQL Server includes in the translation process external
function calls able to verify, during query processing, the degree of satisfiability of the tuples; this
capability must be supported by the DBMS and the Fuzzy-SQL Server has to use the meta-database
for function implementation. The different data flow of the result set in the different situations (use
of the filter or not) are shown in figure 5 with dashed lines. At the current stage, the use of external
functions, even if supported by POSTGRES, has not been implemented yet.

6 Application Examples

6.1 Travel Suggestion

A first application we have tested concerns the construction of a fuzzy retrieval system for an on-line
travel agency. We have been inspired on that by several examples that may be found on the Web and

11

TREVEL hinsted_in HOTEL

Figure 6: ER model for the travel database

| Table.Field

Fuzzy Values

Distribution/Domain Type |

hotel.stars low_cat, med_cat, luxury continuous/discrete
travel.duration short, standard, long continuous/discrete
travel.number_of_persons | small, medium, large continuous/discrete
travel.price very_cheap, cheap, medium, expensive, very_expensive | continuous/discrete

Table 1: Fuzzy predicates for the travel domain.

by the fact that a specific database containing travel information is available from the AI-CBR web site
(www.ai-cbr.org). The object database is very simple and the conceptual data schema is reported in
figure 6. The corresponding relational schema is as follows:

HOTEL (id,name,stars);
TRAVEL (journeycode,holidaytype,price number_of persons,region,transportation,duration,
season,accommodation,hotel);

A foreign key constraint is defined on table TRAVEL as
foreign key(hotel) references HOTEL(id)

Field names can be considered self-explaining; the domain of each attribute in both tables is actually
a discrete domain (either an integer or a varchar SQL type), so both discrete and continuous fuzzy
distributions can be defined (i.e. DOMAINS.type in the meta-database can be either ’a’ or 'd’). A set
of fuzzy predicates has been defined on this schema as shown in table 1. The plotting of the predicate
luzury for hotel.stars as produced by the system in shown as an example in figure 7. In addition
to these predicates, we have also defined a similarity relation sim on the attribute holidaytype of
table travel. The admissible value for such an attribute are: Active, Bathing, Education, Language,
Recreation, Skiing, Wandering, City; for instance an Active type of holiday has a 0 similarity degree
with a Bathing type of holiday, while a City type has a 0.7 similarity degree with an FEducation type.
Finally, some fuzzy operators have been defined as well; for example the operator much less than for
the attribute travel.price (<<p) and the operator near for travel.number of persons (~nop), both
binary and defined on the difference of the operands. The fuzzy membership functions of such operands
are shown in figure 8.

6.2 Example Queries and Retrieval

The object database we have used for our examples contains 1024 cases, each one corresponding to a
different travel; actually this means that the view obtained as

12

Plotting fuzzy distribution X

ok

flunsigned Java Applet Window

Figure 7: Plotting of the fuzzy membership of hotel.stars=luxury

~nop <<p

-5 0 5 -100 -50 0

Figure 8: Membership function for operands <<p and nop.

13

&8 Choose the characteristics you are interested in ... o

travel

F o o o =
= o = = F
hotel

= F o

Choose joins you want to usel

travel hotel = hotel,id

Add Selectedl Quit creator

jﬂUnsigned Java Applet Window

Figure 9: Template for Travel Features Selection

SELECT * FROM travel,hotel WHERE travel.hotel=hotel.id
contains 1024 tuples.
A target or query case is constructed by the user through a suitable template, where the feature he/she
is interested in are selected and instantiated (in a mixed crisp and fuzzy way). The user can be either
an end-user interested in finding a suitable travel form him/her (as in a B2C e-commerce application)
or a travel agent interested in knowing the proposal of a tour operator that can be adopted for his/her
agency (as in a B2B e-commerce application). Suppose for example that a travel agent is interested in
analyzing cases corresponding to a type of holiday similar to Active, with a cheap price (and in fact
much less than 2000 DM), with a small number of people, with a standard duration and which have
been hosted in a medium category hotel. He/She can select the interesting features by a dialog window
as shown in figure 9. A second dialog window is used to instantiate each feature as needed (see fig. 10).
At this stage, the user has also to specify how strict are the conditions he/she requires for the retrieval,
by specifying a number between 0 and 1, with the meaning that, closer is the number to 1, stricter is
the retrieval condition. The specified number is used by the fuzzy query constructor module as the A
threshold for the query, while the user specified retrieval conditions will be used in the WHERE clause
of the generated query.

In this example, if a threshold of 0.8 is specified (as in fig. 10), the following query is generated®:

SELECT (0.8) *

FROM travel, hotel

WHERE travel.hotel = hotel.id AND
travel.holydaytype |sim| ’Active’ AND

travel.price = [cheap] AND travel.price <<p 2000 AND

5Special syntactical notation has been introduced in our Fuzzy-SQL language to identify fuzzy predicates (e.g. square
brackets) or similarity relations (e.g. ’|” symbol).

14

B Choose the characteristics you are interested in ... ¥

travel,holydaytype |=siml "“Active”™ AND E
travel,price = [cheapl AND travel,price
{4p 2000 AMD travel.numberofpersons =
[smsll]l AND travel,duration = [standard]
AMO hotel.,stars = [med_catl

hd

Quit creatorl Add info to templatel Retrieve szimilar cazes

jﬂUnsigned Java spplet Window

Figure 10: Query Construction Template

travel.numberofpersons = [small] AND
travel.duration = [standard] AND
hotel.stars = [med_cat]

corresponding to the following standard SQL query:

SELECT *
FROM travel,hotel
WHERE travel.hotel = hotel.id AND
((travel.holydaytype = ’Active’) OR
(travel.holydaytype = ’Skiing’) OR
(travel.holydaytype = ’Wandering’)) AND
(travel.price Between 420 And 1040) AND
((travel.price-2000) Between -100000 And -90) AND
(travel.numberofpersons Between O And 2) AND
(travel.duration Between 7 And 15) AND
(hotel.stars = 3)

This results in a retrieval of 19 cases out of 1024 such that 6 cases are travels of type Active, 11 of type
Wandering and 2 of type Skiing. Figure 11 shows the results of the retrieval provided by the system:
the upper canvas reports the automatically generated Fuzzy SQL query, the middle one the translated
standard SQL query and the lower one the set of retrieved cases.

If a more strict threshold is used (e.g. 0.9), the corresponding SQL query is:

SELECT *

FROM travel,hotel

WHERE travel.hotel = hotel.id AND
(travel.holydaytype = ’Active’)) AND
(travel.price Between 435 And 1020) AND

15

B TS QL Query result 4
4

SELECT (0,8) = FROM travel. hotel WHERE travel,hotel = hotel,id AMD travel,holyd

¥
|« -
zelect * from travel.hotel where travel,hotel = hotel,id AMD { { travel,holyday u
i
[journeycode | holydaytype | price | numberofpersons | region &
&0 | Wandering | 951 | 2 | Allgaen
az | Active | 778 | & | Bawvaria
152 | Wandering | 449 | 2 | ElackForest
386 | Active | 928 | & | LakeGarda
410 | Active | 798 | 2 | Tyrol
477 | Wandering | 898 | & | Styria
486 | Wandering | 708 | 2 | Styria
492 | Wandering | 548 | & | Tyrol
497 | Wandering | 798 | 2 | Tyrol
50O | Active | 818 | & | Tyrol
]

|_|

0K

ﬂUnsigned Java Applet Window

Figure 11: Example of Retrieval for travel database

16

((travel.price-2000) Between -100000 And -95) AND
(travel.numberofpersons Between O And 2) AND
(travel.duration Between 7 And 15) AND
(hotel.stars = 3)

restricting the previous set of 19 cases to just 5 cases. As we can notice from the above query, these 5
cases only concern Active travels; one of the previous Active cases is not retrieved, because the restriction
in the threshold also changes the price limits®. The travel agent can then analyze the result of retrieval
and possibly to furtherly restrict the retrieval either by increasing the threshold or by changing some
of the retrieval conditions.

6.3 Diabetic Patient Monitoring

The second example we discuss is a medical application.The introduction of Hospital Information Sys-
tems into clinical practice has led to the memorization of a huge quantity of data, automatically collected
at each hospital during the every day work. This operative knowledge stores individual expertise, orga-
nizational practices, and, obviously, patients’ clinical data. Since CBR is known to be a very suitable
methodology for managing knowledge of the operative type [17], building a case retrieval system for
a medical application would be helpful for maintaining expert’s know-how over time, and for storing
patients’ clinical histories so that, even in presence of changes in the staff, the quality of care would
not decrease due to a lack of information. Moreover, the use of a CBR, application is motivated by the
nature of medical decision making itself. As a matter of fact, physicians normally find useful to recall
past situations similar to the current one and to adapt past solutions to the present problem, but the
process is often biased by the tendency of recalling only more recent cases. It is therefore important to
enable the retrieval of all the operative information, also related to older examples. A CBR. approach
would be particularly useful for supporting chronic diseases treatment, were patients are followed for
long periods of time (sometimes for their whole life), and several cases are collected for each of them.
Starting from these observations, in previous years we developed a complex decision support system
that included a CBR module, and which was applied and successfully tested in the domain of type 1
diabetes mellitus [13]. In that system, where case retrieval was realized resorting to NN techniques,
cases were stored as table rows in a relational database. Therefore, it would be easy to add the fuzzy
querying facility to the existent architecture. In the following, we present some tests we made in this
direction. The diabetes domain was chosen for testing Fuzzy-SQL also because we think that this
solution could provide some advantages from the clinical viewpoint as well.

6.3.1 The Application Domain

Diabetes mellitus, one of the major chronic diseases in the industrialized countries, is a pathology
deriving from an insufficient secretion of insulin by the pancreatic beta-cells. In particular, patients
affected by type 1 diabetes don’t have any residual endogenous insulin production. Therefore, they
need exogenous insulin injections to regulate blood glucose, and to reduce the risk of invalidating
later life complications. Implementing the therapy is therefore a complex task, that requires frequent
contacts with the physician through clinical visits. During the problem identification and therapy
revision process, the physician normally relies not only on structured domain knowledge, that is largely
available and well assessed, but also on previous experience (e.g. the information that a certain insulin

6The excluded case has a price of 434 DM and does not satisfy the new retrieval condition.

17

VISIT relative_to FATIEMT

helongs_to

CLASS

Figure 12: ER schema for DIABETES database

protocol has been applied in the past to that patient, or to patients with similar characteristics, leading
to a positive/negative outcome): the use of case retrieval is therefore largely motivated and a periodical
control visit can be naturally mapped to the concept of case.

6.3.2 The Database

Our case base is composed by about 150 visits (cases), belonging to 29 real pediatric patients. The
conceptual ER schema of the database is reported in figure 12.

Cases are stored in the relational database corresponding to such a schema and can be logically
thought as the tuples of the view corresponding to the join of the tables PATIENT, VISIT and CLASS.
We avoid here the details of the relational schema, however it is worth noting that the relevant in-
formation for retrieval are contained in the tuples of VISIT; each visit is relative to a specific patient
(whose general information is a tuple of PATIENT) that, at the visit time, belongs to one of the defined
diagnostic classes stored in CLASS (see below).

Case features are the data collected during the visit, or abstractions made over these data. Some
examples are: age, weight, height, HbAlc, insulin requirement, distance from onset. In particular
HbA1lc is the main indicator of the presence of hyperglycemia in the latest 60 days, insulin requirement
represents daily insulin intake, and the distance from onset is the number of months since diabetes
was diagnosed. The case solution is represented by the insulin therapy prescribed on the visit day,
and the case outcome is summarized by the metabolic indicators (mainly HbAlc) collected during the
following visit (that is another case in the table, belonging to the same patient). On the basis of medical
knowledge, cases can be classified resorting to a set of prototypical classes [13], that describe the typical
pathological or clinical course conditions in which pediatric patients may incur. Classes are mutually
exclusive. In particular, for our tests, we considered some cases belonging to the three following classes:
Anorexia, Bulimia and Clinical Remission. Anorexia and Bulimia are two nutritional disorders, that can

18

| Table.Field | Fuzzy Values | Distribution/Domain Type
visit.age infant, puberal, young, adult continuous/discrete
visit.HbAlc good_control, sufficient_control, poor_ control | continuous/continuous
visit.distance_from_ onset | short, medium, long continuous/discrete

Table 2: Fuzzy predicates for the diabetes domain.

be often diagnosed in diabetic patients. Clinical Remission is a condition in which all newly diagnosed
patient incur, generally until 24 months after diabetes onset; during this period, they normally have
a good metabolic control (due to the great efficacy of the recent introduction of an exogenous insulin
therapy), but they may suffer from hypoglycemia.

The diabetes meta-database stores fuzzy predicates and fuzzy operators helpful for querying the
case base. Table 2 lists some of the predicates and the case feature over which they are defined. All
these predicates are continuous, and the table reports if their domain is discrete or continuous as well.
When more than one predicate is defined, they may be partially overlapping.

The following continuous operators were defined: ~w (near) over the weight attribute, and >h (much
greater) over the height attribute. The operator ~w is defined by means of a trapezoidal distribution,
where a = —4, b = —2, ¢ = 2 and d = 4. On the other hand, the operator >h is defined through an
increasing then crisp distribution, with ¢ =0, b = 10 and ¢ = d = + 0.

6.3.3 Example Queries

From medical knowledge, we know that pediatric patients belonging to the class Anorexia are usually
under-weight, have a good metabolic control (i.e. values of HbAlc < 7.0), are in the puberal age,
and their distance from onset is at least 22 months. To reproduce this situation, we used the fuzzy
predicates good control (over HbAlc), puberal (over age), and medium or long (over distance from
onset). Moreover we limited our search to patients whose weight was ~ w 52 Kg, and whose height was
>h 150 cm. The query is reported below:

SELECT (lambda) * FROM visit

WHERE Hbalc=[good_control] AND

age=[puberal] AND

(distance_from_onset=[long] OR distance_from_onset=[medium]) AND
weight “w 52 AND

height >>h 150

By choosing 1lambda=0.9 we were able to retrieve 9 cases, all belonging to the Anorexia class. The
retrieval results matched our prior knowledge, confirming the capability of the Fuzzy-SQL system of
correctly identifying the required tuples.

Similarly, patients belonging to the Clinical Remission class have a good metabolic control (i.e.
values of HbAlc < 7.0), are in the puberal age, and their distance from onset is less than 24 months.
To reproduce this situation, we used the fuzzy predicates good control (over HbAlc), puberal (over
age), and short or medium (over distance from onset). Moreover we limited our search to patients
whose weight was ~w 63 Kg, and whose height was >h 150 cm. The query is reported below:

SELECT (lambda) * FROM visit

19

WHERE Hbalc=[good_control] AND

age=[puberal] AND

(distance_from_onset=[long] OR distance_from_onset=[medium]) AND
weight “w 63 AND

height >>h 150

Again the fuzzy query with a high lambda (0.9) retrieved 2 cases, both belonging to the Clinical
Remission class. We then repeated the second query, by choosing a lower lambda (0.6). This time we
retrieved 7 cases, 2 of which belonging to Anorexia, and 5 to Clinical Remission. No cases belonging
to the Bulimia class were retrieved: weight has to be > 63 Kg for bulimic patients whose height is
>h 150 cm.

From this simple test, we are able to draw some conclusions. First, it seems that some features don’t
discriminate very well among certain classes; in the example some anorexic patients, and some in the
Clinical Remission phase, can be retrieved by the same query. Only the choice of a high lambda can
restrict the result to cases belonging to just one class. This may indicate that, along certain directions
(i.e. the query features) the two classes are similar: to obtain a complete discrimination we have to
introduce stricter conditions (e.g. imposing that the distance from diabetes onset is short, and not
medium), or conditions on additional features. Querying the visit table is then a way of performing
inter-class retrieval, i.e. to obtain cases from different classes, that, limiting the analysis to the features
in the query, are similar to the target case. Intra-class retrieval (i.e. retrieval of cases belonging to a
single class) can be obtained by the same query, simply by increasing the value of lambda. Identifying
such similarities among the classes could be an added value from the clinical viewpoint: it would be
possible to highlight relations among different prototypical conditions that are not clearly stated by
medical knowledge, but that can be learned from real data.

Moreover, the Fuzzy-SQL approach could be used as the pre-processing step in a data mining
application, for reducing the number of data to work with. The fuzzy query would retrieve cases that
are similar from some viewpoints (again, along the directions of the attributes in the query): then
classical data mining techniques could be applied to discover additional correlations among the other
features of the reduced case set. As a matter of fact, an accurate pre-selection seems to be particularly
critical when dealing with medical data.

Finally, we also envision the possibility of adopting Fuzzy-SQL as a mean for evaluating the quality
of patient’s care. For example, in the diabetes application, it would be possible to retrieve cases with
an unsatisfactory outcome (where unsatisfactory is a fuzzy concept), and to review the therapy (i.e. the
solution of the previous case in terms of time, belonging to the same patient) that led to that outcome.
It would then be possible to verify if similar mistakes (e.g. non adherence to clinical guidelines) were
made in the therapies under examination, or if wrong therapeutic choices were always taken by the
same physician.

7 Conclusions and Related Works

In the present paper a case retrieval client/server architecture, exploiting a fuzzy extension to SQL has
been presented. The system is able to automatically produce a fuzzy query from a target case template
and can exploit the support of a standard relational DBMS for storing and retrieving cases. Unlike
similar approaches, the emphasis is given to acceptance criteria defined through fuzzy distribution,
instead that to distance functions as in NN approaches.

The main contributions of the present papers are:

20

1. the use of standard fuzzy logic, in order to define acceptability criteria for case retrieval, by taking
advantage of the standard definition of A-cut of a fuzzy set and of standard fuzzy logic connectives
to realize the aggregation of local acceptability measures (defined at the feature level) into a global
acceptability measure (at the case level);

2. the exploitation of database techniques, both for storing and retrieving cases in standard relational
databases, bridging the gap between the need for flexible querying and the need for maintaining
usual databases already present in application fields.

Both issues have been already faced in the past, but usually in different contexts. In [7], a difference
is pointed out between case filtering (as preliminary to retrieval) and case selection; hierarchical fuzzy
classification is proposed for the first step, while a particular pattern matching technique exploiting
fuzzy information is used for case selection.

More emphasis to the problem of aggregating information is given in [19] where the use of fuzzy inte-
grals is suggested as a suitable methodology for the synthetic evaluation of cases; a financial application
is used to present the approach.

Fuzzy extension to standard k-NN techniques is presented in [6] as a useful way for dealing with the
challenging problem of retrieving cases for whether prediction. The approach aims at retrieving the k
most similar cases, in fuzzy terms of similarity, with respect to a target case description. However, the
main goals are slightly different than ours, putting emphasis on classification and prediction via fuzzy
weighting.

Concerning the problem of exploiting standard database techniques for case retrieval, particularly
significant is the work presented in [14]. The use of a relational database and of standard SQL is ex-
ploited for implementing case retrieval in a commercial CBR toolbox called orenge; however, differently
from our approach, no fuzzy extension to SQL is proposed, since the goal is to implement standard
(crisp) k-NN via a query relaxation technique, iterated until the desired result is reached. Commonali-
ties with our approach can be pointed out, since both approaches are implemented on top of a relational
DBMS and suitable thresholds must be defined for case retrieval.

Our future work will concentrate on the possibility of creating more parametric queries, also sup-
porting the different importance a given attribute may have in specific retrievals.

References

[1] A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, methodological variations
and system approaches. AI Communications, 7(1):39-59, 1994.

[2] P. Bosc and O. Pivert. Fuzzy queries in conventional databases. In L. Zadeh and J. Kacprzyk,
editors, Fuzzy Logic for the Management of Uncertainty, pages 645—672. John Wiley, 1992.

[3] P. Bosc and O. Pivert. SQLf: a relational database language for fuzzy querying. IEEE Transactions
on Fuzzy Systems, 3(1), 1995.

[4] B.P. Buckles and F.E. Petry. A fuzzy representation of data for relational databases. Fuzzy Sets
and Systems, 7:213-226, 1982.

[5] H-D. Burkhard. Extending some concepts of CBR: foundations of case retrieval nets. In M. Lenz,
B. Bartsch-Spoerl, H-D. Burkhard, and S. Wess, editors, Case Based reasoning Technology: from
Foundations to Applications, pages 17-50. LNAI 1400, Springer, 1998.

21

[6] B.K. Hansen. Whether prediction using CBR and fuzzy set theory. Master Thesis, Dalhousie
University, 2000. http://www.cs.dal.ca/~ bjarne/thesis.pdf.

[7] M. Jaczynski and B. Trousse. Fuzzy logic for the retrieval step of a case-based reasoner. In 2nd
European Workshop on Case-Based Reasoning - EWCBRY4, pages 313-320, Chantilly, France,
1994.

[8] J. Kacprzyck and A. Ziolowski. Database queries with fuzzy linguistic quantifiers. IEEE Transac-
tions on Systems, Man and Cybernetics, 16(3), 1986.

[9] H. Kitano and H Shimazu. The experience-sharing architecute: a case study in corporate-wide
case-based software quality control. In D.B. Leake, editor, Case Based Reasoning: Ezxperiences,
Lessons and Future Directions. AAAT Press, 1996.

[10] J.L. Kolodner. Case-Based Reasoning. Morgan Kaufmann, 1993.
[11] C.T. Liu and C.S. George Lee. Neural Fuzzy Systems. Prentice Hall, 1996.

[12] M. Medina, O. Pons, and M.A. Vila. GEFRED, a GEnerilized Fuzzy model for REletional
Databases. Information Sciences, 76(1-2):87-109, 1994.

[13] S. Montani, R. Belazzi, L. Portinale, and M. Stefanelli. A multi modal reasoning methodology for
managing IDDM patients. International Journal of Medical Informatics, (58-59):243-256, 2000.

[14] J. Schumacher and R. Bergmann. An efficient approach to similarity-based retrieval on top of
relational databases. In E. Blanzieri and L. Portinale, editors, Proc. 5th EWCBR, pages 273-284,
Trento, 2000. Lecture Notes in Artificial Intelligence 1898.

[15] M. Schumacher and T. Roth-Berghofer. Architectures for integration of CBR systems with
databases for e-commerce. In Proc. 7th German Workshop on CBR (GWCBR’99), 1999.

[16] H. Shimazu, H. Kitano, and A. Shibata. Retrieving cases from relational databases: another strike
toward corporate-wide case-based systems. In Proc. 13th Intern. Joint Conference on Artificial
Intelligence (IJCAI’93), pages 909-914, 1993.

[17] G. Simon and M. Grandbastein. Corporate knowledge: a case study in the detection of metallurgical
flaws. In Proceedings of ISMICK 95, pages 43—-52, Compiegne, France, 1995.

[18] I. Watson. Applying Case-Based Reasoning: Techniques for Enterprise Systems. Morgan Kaufmann
Publ., 1997.

[19] R. Weber-Lee, R. Barcia, and S. Khator. Case-based reasoning for cash flow forecasting using
fuzzy retrieval. In Proc. First International Conference on Case-Based Reasoning - ICCBRY5,
pages 510-519, Sesimbra, Portugal, 1995.

[20] W. Wilke, M. Lenz, and S. Wess. Intelligent sales support with CBR. In M. Lenz, B. Bartsch-
Spoerl, H-D. Burkhard, and S. Wess, editors, Case Based reasoning Technology: from Foundations
to Applications, pages 91-113. LNAT 1400, Springer, 1998.

[21] X. Wu. Fuzzy interpretation of discretized intervals. IEEE Transactions on Fuzzy Systems,
7(6):753-759, 1999.

22

