
Audio-Text Synchronization inside mp3 �les:

A new approach and its implementation

Marco Furini� and Lorenzo Alboresi

Computer Science Department

University of Piemonte Orientale

Spalto Marengo 33

15100 Alessandria Italy

furini@mfn.unipmn.it

TR-INF-2003-07-04-UNIPMN

Abstract

The large usage of multimedia portable devices has contributed to

rapidly increase the demand for multimedia entertainment services. In

this paper we focus on the karaoke service: several systems have been

proposed but they are too diÆcult to be directly used over audio devices.

Conversely, in this paper we propose a very simple approach to provide

a karaoke-like service over any audio device that can play out mp3 �les.

Our approach is essentially new, as no additional �les, beyond the mp3

�le, are necessary. A simple description language has been designed and

the resulting audio-text timing synchronizations are transparently stored

inside the mp3 �le. The e�ectiveness of our approach is proved through

a developed java mp3 player. The simplicity of our approach along with

the java portability allow a straightforward use of our player over any OS

and over any audio device that supports java applications.

KEY WORDS

Entertainment, Novel Applications, Multimedia Technology, Karaoke, Mp3 au-
dio �le

1 Introduction

The popularity of the MPEG layer III audio �les (mp3) [1] on the Internet
con�rms that mp3 became the dominant format for high quality digital music.

�Corresponding author. E-Mail: furini@mfn.unipmn.it

1



The large usage of these mp3 audio �les has contributed to the development
of portable devices designed for listening to mp3 audio �les away from the
computer. The success of these devices a�ected the design of several other
devices that became mp3-compliant (e.g., palm, walkman, cellular, iPod, dvd).

In the near future, with the introduction of broadband wireless technologies
(UMTS [2], WiFi[3]), Mp3 audio �les will be more used, as users will be con-
nected to the Internet regardless of their location, allowing them to have access
to digital musical stores any time and any where. This will certainly increase
the success of mp3 �les. To con�rm this trend, several wireless devices are now
released with mp3 compatibility and several on-line music stores appeared on
the web, so that consumers can directly buy and download digital music in mp3
format (for instance the iMusicstore [4]).

The success of mp3 �les will further increase if textual information, such as
lyrics, would be stored inside the mp3 �le. In fact, this will allow new services
to be proposed. For instance, any user with an mp3 compliant device could
have a high quality audio karaoke-like service, by only using an mp3 �le. In
this way, music listeners may sing a song while listening to it; music producers
may distribute a complete song (music and lyrics) within a single �le and audio
device producers may provide users with new multimedia services.

Karaoke is, in fact, a multimedia entertainment service that receives a large
interest by providing users with on-screen lyrics information synchronized with
audio playout. The success is highlighted by the presence of several karaoke
model architectures (for instance, [5, 6, 7, 8, 9, 10]) that aim at combining
di�erent resources, such as audio, video and text. Roughly, di�erent streams
are stored over a support (for instance over a cd) and the karaoke system reads
and combines these streams. As we better explain later, most of these karaoke
systems do not provide high quality audio or need other resources in addition
to the audio data (e.g., most of them use separate �les for audio and textual
information). This is a limitation as high quality audio is largely used and
the need to have di�erent resources in the Internet scenario is a complex, and
sometimes annoying, approach. The service would be much more consumers
appealing if audio and text were in the same �le.

The contribution of this paper is the design of an mp3 karaoke-like service.
Our idea is to insert lyrics and audio-text timing synchronizations inside an mp3
�le, so that the karaoke-like service may be provided by only using the mp3 �le.
Our approach is essentially new in the sense that no additional �les (i.e., text
�les) are required and that all the necessary information are provided within
the mp3 �le.

In fact, the insertion of textual information inside the mp3 �le is not straight-
forward: the mp3 format [1] does not allow to store textual information inside it.
For this reason, several investigations have been done in order to store textual
information within an mp3 �le and today, the most accepted way to achieve
this, is the so-called ID3 tag [11]. This tag allows to have only a �xed-size
of 128-bytes characters (organized in title, artist, album, year, comment and
genre) at the end of the �le. Needless to say, 128 bytes are not suÆcient to
store lyrics and audio-text timing synchronizations. Further, the location of

2



this information (at the end of the �le), allows to access these information only
if the entire �le is available (i.e., after the download and not while streaming the
audio). Fortunately, a second version (ID3v2), has been released. ID3v2 allows
to store textual �elds at the beginning of the mp3 �le, introduces additional
�elds (track, composer, copyright, comment, url) and removes the 128-bytes
length constraint.

Since ID3v2 is largely used by mp3 players, we decided to use one of the
ID3 tag to store lyrics and audio-text timing synchronizations inside the mp3
�le. To this aim, we develop a synchronization description language (similar to
SMIL [12] language), in order to describe audio-text timing synchronizations.
These information are inserted in the comment �eld of the ID3v2 tag. Hence,
comment-�eld is trojan used. In this way, the mp3 �le format is not modi�ed
and the mp3 �le can be played with any mp3 player.

However, to have a karaoke-like service, the player should be able to read the
comment-�eld (�lled with lyrics and audio-text timing synchronizations) and
to display lyrics on the user's screen according to the read audio-text timing
synchronizations. To this aim, we developed an mp3 player. This player has
been written in Java language, in order to use our player over many di�erent
OS-systems and devices. For instance, the recent released cellulars from several
vendors (e.g., Nokia, Motorola, Sony Ericsson, Panasonic) are Java Compatible
and could immediately run our player and provide the users with high quality
karaoke service.

The remainder of the paper is organized as follows. In Section 2 we present
the characteristics of our approach along with a brief description of the mp3-ID3
tag; in section 3 we present an implementation of our approach and conclusions
are drawn in section 4.

1.1 Related Work

There are several examples of karaoke-like services [5, 6, 7, 8, 9, 10] and one of the
main concerns in the design of a karaoke system is the adopted synchronization
strategy.

A possible (and traditional) solution to play out synchronized digital data is
the MIDI technology that can be used to play karaoke clips. Another important
technology to synchronize multimedia streams is the RealMedia [13], which
allows to synchronize client-server multimedia streaming. Karaoke/Surestream
is an example [6] and Karaoke Online [5] is another example.

Many are the karaoke societies that use SMIL [12], SureStream [6], FLIPS
[14] and other client-server technology to provide streams synchronization.

All these systems provide karaoke by using di�erent �les (one for the audio
object and the other for audio-text timing synchronizations) or by providing a
non high-quality audio. Conversely, our goal is to provide a karaoke-like service
using high-quality mp3 audio �les and by storing audio-text timing synchro-
nizations information within the mp3 �le (i.e., only one �le).

3



2 ATS Approach

In this section we explain characteristics and properties of our Audio-Text-
Synchronization (ATS) approach, which aims at providing a high quality audio
karaoke-like service using mp3 �les. Our approach uses only one �le (i.e., the
mp3 �le) to provide a karaoke-like service. The mp3 �le is modi�ed in order
to contain lyrics and audio-text timing synchronizations information. However,
the introduced modi�cations do not cause any problem to the audio playout.
Hence, even though the mp3 �le contains lyrics and timing information, it can
still be played out by any mp3 player without any problem.

The mp3 �le is hence self-contained: the karaoke-like service may be provided
by any mp3 player able to manage the textual information (audio-text timing
synchronizations) stored inside the �le.

In this section we show how the mp3 is modi�ed and we also present a very
simple description language we designed in order to describe lyrics and audio-
text timing synchronizations. By describing these information and by putting
them into the mp3 �le, we produce an mp3 �le ready to provide a karaoke-like
service.

In the following we show that our mechanism is very simple to implement,
causing our approach to be exploited by the following categories of users:

� Music listeners may want to sing a song while listening to it;

� Music producers may wish to exploit our approach to distribute a complete
song (music and lyrics);

� Audio device producers may want to provide users with the capability of
reading what they are listening to.

2.1 Audio and Text with mp3 �le

The MPEG layer III (mp3) [1] has been released in 1992 and provides high-
�delity audio at low bit-rates with little or no perceptual di�erence between the
original signal and the reconstructed signal. It uses psychoacoustic models to
remove the least perceptually relevant portions of the signal.

The achieved high compress ratio and the large usage of P2P systems have
contributed to elect the mp3 as the dominant format for audio in the Internet.
The success of this format caused several portable audio devices to be mp3-
compliant and nowadays mp3-compatibility is provided with almost any audio
device (from Hi-Fis to walk-mans, from audio car systems to cellulars).

This large success has been obtained even though the mp3 audio �le format
has been designed to store only audio information: no textual information can
be stored within the �le. This limitation produced several studies in order to �nd
a way to insert textual information inside the mp3 �le without compromising
its e�ectiveness.

The mp3 �le was �rst modi�ed with the introduction of the so called ID3
tag [11]: a 128-bytes long tag able to contain di�erent textual �elds (Table 1).

4



Song title 30 characters
Artist 30 characters
Album 30 characters
Year 4 characters

Comment 30 characters
Genre 1 byte

Table 1: Format of the ID3v1 Tag.

The tag was inserted at the end of the �le, hence the information could not be
displayed until the player has access to the complete �le. This does not cause
any problem is the mp3 �le is completely stored before its play out, but it arises
problems if the mp3 �le is played out in streaming (in this case the player can
read the information only at the end of the play out).

For this reason, a second version was released with the name of ID3v2 [11].
This second version removes the length constraints, allowing �elds to have any
arbitrary length, introduces several other �elds (track, comment, url, composer,
copyright) and puts the textual information prior the audio data. This allows
players to immediately have access to these textual information, regardless of
the type of service provided to users (either streaming or download). Hence,
players can play out the audio content and can show textual information on
users' screen.

The ID3 tag is still in expansion and future versions of this tag will allow to
store additional information, like pictures and lyrics, inside the mp3 audio �le.
The success of this approach is highlighted by noticing that, nowadays, almost
all the mp3 players are compatible with ID3v1 and most of them are compatible
with ID3v2.

Due to the success of the ID3 tag, we decided to not modify the mp3 structure
in order to store textual information inside the mp3 �le. We decided to use
the comment �eld of the ID3v2 tag to store both lyrics and audio-text timing
synchronizations. In this way the mp3 format is not a�ected and hence any
mp3 player can read the mp3 �le without any problem. Lyrics and audio-text
timing synchronizations can be inserted in the comment-�eld as this �eld may
have any arbitrary length.

2.2 Audio-text timing synchronizations

Storing textual information inside the mp3 �le is necessary, but not suÆcient to
provide a karaoke-like service. In fact, it is necessary to well describe the audio-
text timing synchronizations. In this section we present the characteristics of
the language we designed to this purpose.

Currently, the most used synchronization language in multimedia stream
is the SMIL language (Synchronized Multimedia Integration Language) [12].
SMIL is XML-derived mark-up language and it is designed to integrate continu-

5



<body>

<par>

<audio src="song.wma"></audio>

<seq>

<text begin="5s" dur="3s"

region="region1_1">

You and me

</text>

<text dur="3s" region="region1_1">

We used to be together

</text>

...

<text dur="2s" region="region1_1">

Hush, hush don't tell me

</text>

</seq>

</par>

</body>

</smil>

Table 2: Example of a karaoke SMIL �le.

ous media into synchronized multimedia presentation. With SMIL it is possible
to manage the timing behavior of a presentation, by de�ning which multimedia
objects are to be loaded in a speci�c regions. To this aim, tags such as <video>,
<audio> and <text> are exploited. To synchronize, two methods are available:
<par> to concurrently execute multimedia objects in their region and <seq> to
execute multimedia object according to a prede�ned sequential timing schedule.
In Table 2 we show an example of a SMIL �le that provides the user with a
karaoke e�ects: audio is played out and lyrics are displayed on the screen ac-
cording to speci�ed timing descriptions. In this way, the user is provided with
a karaoke-like service.

Since SMIL synchronizes di�erent media streams and since our goal is to
produce a single audio stream with audio-text timing synchronizations inside,
we don't directly use SMIL, but we use it as a basis to design our SMIL-like
language (ATS language). The ATS language will be used to describe the timing
synchronizations between audio and text.

Since we are using the comment-�eld to store our textual information, we use
two tags: one at the beginning of the information (<begintext>) and the other
at the end (</begintext>). All the information within these two tags must
be in the form show-time <text>, meaning that text should be displayed at
showtime, where showtime is expressed in time units. It is worth noting that in
our implementation, a time unit corresponds to 100 milliseconds (from several
experiments we noticed this threshold is suÆcient to describe the timing relation
of each lyrics sentence. However, this value can be changed without problems).

In Table 3 we show an example of audio-text timing synchronizations de-

6



<begintext>

55<You and me>

77<We used to be together>

105<Everyday together always>

...

1937<Hush, hush darlin' Hush,>

2000<Hush, hush don't tell me>

</begintext>

Table 3: Example of our ATS description language.

scription with our ATS language. The textual information contain both lyrics
and audio-text timing relations. For instance, 77<We used to be together>

means that after 77 time units, the singer is singing We used to be together and
so the sentence has to be displayed on the user's screen.

These timing synchronizations can be manually edited into the comment-
�eld of the ID3 tag or, as we describe later, can be automatically inserted by
the mp3 player we implemented.

Although these information are present within the mp3 �le, a karaoke-like
service is not yet provided to the end-user. In fact, there must be a player able
to manage the comment-tag �eld and to determine lyrics and timing synchro-
nizations. In the next section, we present an mp3 player implementation able
to manage these information and to provide a karaoke-like service.

3 ATS player implementation

In this section we present details of the mp3 player we developed in order to
provide a karaoke-like service to the user. The goal of our player is to play
out the mp3 �le, to read the textual information contained in the comment-tag
�eld, to interpret them and to display them on the user's screen when necessary.
This means that these information have to be shown according to the audio-text
timing synchronizations present in the comment-tag �eld.

Our player has been written in Java language, in order to enhance software
portability. In this way our player can be used over any OS or device that
supports Java. Hence, our player can be run over several modern portable de-
vices that support Java applications. For instance, several vendors (e.g., Nokia,
Motorola, Sony Ericsonn) released cellulars that support Java applications and
most of these devices already provide users with mp3 player. Hence, our karaoke-
like service could be introduced in these devices without any diÆcultie. Before
explaining the details of the implementations, we �rst introduce a tool that al-
lows users to automatically insert lyrics and timing synchronizations inside the
comment-�eld tag.

7



mp3 player

thread

Timing

information text display

thread

Figure 1: Threads synchronizations.

3.1 A tool for audio-text synchronizations

As we previously mentioned, lyrics and timing synchronizations may be manu-
ally edited and inserted into the comment-�eld. In fact, these information are
completely described by textual information and hence any text-editor can be
used to edit them. However, to avoid any possible mistake, we designed a tool
that allows the user to automatically edit and store these information inside the
mp3 �le.

To run this tool, user must have two separate �les: one with the mp3 audio
and the other with the song lyrics. Lyrics must be written row by row (as they
are written inside any cd booklet). With these two �les, the user can listen to
the mp3 audio �le and have to press a button each time the singer executes
a new row of the lyrics. At the end of the song, lyrics and audio-text timing
synchronizations are automatically inserted inside the comment-�eld. From now
on, the mp3 �le contains lyrics and timing synchronizations and the text �le is
no longer used.

These information will be used by a player to provide a karaoke-like service:
the mp3 player has to read the comment-�eld and to manage the information
in order to provide the user with a karaoke-like service.

3.2 Player implementation

In this section we describe the characteristics of our mp3 player implementation.
As we mentioned, our player has been written in Java language and has

to: i) play out an mp3 �le, ii) read the textual information contained in the
comment-�eld, iii) provide the users with a karaoke-like service.

In the following, we don't present any detail of the mp3 play out, as these
details goes out of the paper contribution. Instead, we focus our description on
the karaoke-like service implementation.

To this aim, we remind that lyrics and audio-text timing relation are present
inside the mp3 �le in the comment-tag. These information have a �xed struc-
ture, which starts with <begintext> and ends with </begintext>. All the
information between these tags are considered as lyrics to be displayed. In par-
ticular each row must have the format display_time <text>, meaning that
text has to be displayed at time display_time.

When an mp3 �le is selected, our player opens it and checks whether the
comment-�eld contains karaoke information or not. If present, the information
are inserted into an array, indexed according to the display-time value. From

8



now on, the mp3 play out is coupled with a karaoke-like service (each row is
displayed on the user's screen according to its display time).

To provide the karaoke-like service, our implementation considers two threads:
one handles the mp3 play out and the other manages the display of the text.
Throughout the paper, we refer to the thread T1 as the thread used to play out
the mp3 audio �le, and to the thread T2 as the thread used to display lyrics
according to the timing synchronizations.

In a very basic implementation, the two threads are independent: thread
T1 plays out the song and thread T2 displays the text according to its local
timer. While being very simple and e�ective, this solution has some drawbacks:
the cpu scheduler may introduce some delay causing a skew time between the
two threads and further, user cannot act on the mp3 play out (by pausing,
or jumping to another song position) without compromising the karaoke-like
service. In fact, since the two threads are independent, if the user acts on
thread T1 modifying the audio play out, thread T2 should be modi�ed too,
but, since T2 uses its local timer and since this timer is not modi�ed by thread
T1, the text is no longer synchronized with the audio play out.

To avoid these problems, thread T2 displays text according to a timer-
message received by thread T1. Hence, our player architecture is the one de-
picted in Fig. 1: Periodically, T1 thread sends its play out time to the other
thread, and hence T2 is awakened by thread T1. Upon the reception of the
timer message, T2 retrieves the row of text that has to be displayed and dis-
plays it on the user's screen. Timing messages are sent within a time unit from
each other (i.e., in our implementation every 100 milliseconds).

The bene�t of this solution is that the client can act on the mp3 play out
(by pausing it or jumping to another position) without causing any problem
to the text synchronization. In fact, text is not displayed according to the T2
thread timer, but to the mp3 playout time. Hence, user can browse the mp3 �le
and the text will be always synchronized with what is sung. This is achieved
because thread T1 always sends the current play out time and T2 uses this time
to show the correspondent text.

In Fig. 2 we show a detailed description of our implementation. Thread T1
starts playing out the mp3 �le and periodically sends a timer-message to thread
T2. This thread reads the time-message and displays the text according to the
textual information contained in the comment-tag �eld. This mechanism allows
to provide a karaoke-like service on the user's screen. If the user modi�es the
audio play out (for instance, before time 400 it rewinds back to time 200) the
displayed text is still synchronized with the audio play out because T1 always
sends the audio play out time to T2).

In Fig. 3 we show a snapshot of our player. A region of the screen is used
to display some information about the mp3 song that is played out and another
region is used to display lyrics currently sung. The �rst row shows the words
that are currently sung, while the second row shows the words that are going
to be sung. When the singer begins singing the sentence of the second row, this
row becomes the �rst one and a new sentence appears in the second row. This
goes on until the end of the song; this provides the user with a karaoke-like

9



Thread T2

text display

Thread T1

mp3 playout

Show text0

100

200

300

Begin

playout

End

playout

XXX

Show text

Show text

Show text

Show text

0

100

200

300

YYY YYY

Audio playout

time

200

300

Show text

Show text

200

300

User rewinds the

audio playout

Figure 2: ATS approach: an example.

service.

4 Conclusions

In this paper we proposed a new approach to provide users with a particular
multimedia entertainment service: the karaoke service. Our goal is to provide
this service with an mp3 �le �lled in with all the necessary information. Our
approach is new in the sense that no additional �les (i.e., text �les) are required
and that the mp3 �le is provided with all the necessary timing synchronizations
information.

To describe these timing synchronizations between lyrics and audio, we de-
signed a simple description language, based on the SMIL language. Timing
information are stored in a transparent way inside the mp3. In this way, the
mp3 format is not a�ected.

Since the karaoke-like service can be provided by players that can manage
the timing synchronizations, we develop an mp3 player to prove the e�ectiveness
of our approach.

Since timing information are transparently stored inside the mp3 �le, if
audio-text timing synchronizations are not present, our player acts as a normal
mp3 player.

Our mp3 player has been written in Java language. Java portability along
with the simplicity of our approach allow to directly insert our player over any
audio device that can support java applications and can provide high quality
audio to the user. For example, several vendors are releasing cellulars with mp3
player and java compatibility.

10



Words currently

pronounced

by the singer

Successive words

pronounced

by the singer

File mp3 currently played

Elapsed time

Id3 Information

Figure 3: The player.

In conclusion, our approach provides a new multimedia service without re-
quiring any additional resource. It is worth noting that our approach is e�ective
not only for entertainment, but also for other purposes, such as speech descrip-
tions, lessons, movie-subtitles, messages, etc.

References

[1] http://mpeg.telecomitalialab.com/

[2] http://www.umts.org

[3] http://www.wi-�.org/

[4] http://www.apple.com/music/store/

[5] Karaoke On Line, http://www.thinks.com/karaoke/

[6] Real Networks Inc., http://www.realnetworks.com

[7] Y. Lee, D.H.C. Du, W. Ma, SESAME: A Scalable and ExtenSible Archi-
tecture for Multimedia Entertainment, in Proc. IEEE 20th International
Computer Software and Applications Conference, Seoul, 1996.

[8] C. Liu, The construction of a multimedia application on public network,
in Proc. SPIE High-Speed Networking and Multimedia Computing Confer-
ence, 1994.

11



[9] W.H. Tseng, J.H. Huang, A high performance video server for karaoke sys-
tem, IEEE Transaction on Consumer Electronics, 40(3), 609-618, August
1994.

[10] M. Roccetti, P. Salomoni, V. Ghini, S. Ferretti, S. Cacciaguerra, Delivering
Music over the WIreless Internet: From Song Distribution to Interactive
Karaoke on UMTS Devices, Chapter 24, Wireless Internet Handbook, B.
Furth, M. Ilyas Editors, CRC Press, 2003.

[11] IDv3 Website. http://www.id3.org/.

[12] W3 Reccomendation, Synchronized Multimedia Integration Language
(SMIL) 2.0 Speci�cation, http://www.w3.org/TR/smil20/, 2001.

[13] Real Media, http://www.real.com

[14] FLIPS, http://www.cs.umn.edu/Research/dms/html/
dlearn.html

12


