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Abstract

One of the key problems for delivering interactive video applications
over IP networks is to keep the end-to-end delay below a pre-defined and
application dependent threshold along the application lifetime. Since IP
networks only provide a best-effort service, the overall end-to-end delay
may go above the threshold, and hence may compromise the QoS per-
ceived by the users. A start-up delay solution, effective for non-interactive
QoS applications, cannot be used for interactive applications, as it com-
promises the achieved QoS by introducing an additional delay to the over-
all end-to-end delay. In this paper we propose a new approach, which
adapts the video play out to the network conditions, in order to support
these applications. Instead of using a start-up delay, our mechanism keeps
the end-to-end delay within the acceptable threshold, by modifying the
video QoS. A QoS evaluation is done to investigate the effects of the QoS
modification introduced by our technique. The mechanism evaluation
shows that our approach is effective, as the QoS is slightly affected and
the end-to-end delay is kept within the threshold along the application
lifetime.

KEYWORDS: Adaptive streaming of Multimedia Applications, Multimedia
over Packet-based Networks, Adaptive Multimedia Communication Systems,
Traffic Management and Control, QoS evaluation.

1 Introduction

Video streaming applications over IP networks are becoming more and more
popular, but, despite their popularity, they achieve a QoS that is far from
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Figure 1: Model of a networked application.

what desired. Videoconferencing, distance learning, Video on Demand, video
telephony, on-line games are examples of these applications.

QoS difficulties are mainly due to the traffic produced by these applications
that is time-dependent and may require high network capacity. For instance, a
video streaming application is very bandwidth consuming: even using compres-
sion algorithms such as MPEG [1], Motion JPEG [2] or H.261 [3], the compressed
video stream can require high network capacity compared to the (usually) avail-
able in the Internet. In addition, to provide the applications with the necessary
QoS, two time-constraints have to be met: minimal communication delay and
unnoticeable network jitter to the user [5, 6]. These time-constraints are very
critical to provide with the best-effort service provided by IP networks.

A sub-set of these QoS applications, called interactive applications, enables
natural interactions (i.e., more life-like as possible) among end-users. These
interactive applications pose a constraint on the end-to-end delay (it should not
be noticeable to the end-users) and hence they are more difficult to support
than non-interactive applications. In fact, this constraint is not considered in
non-interactive applications: for instance, an audio broadcast application (e.g.,
an Internet radio) may have a large end-to-end delay, as users do not interact.

The respect of this constraint on the end-to-end delay is hence fundamental
for interactive QoS applications. Several studies [5, 7, 8, 9, 10, 11, 12] in-
vestigated the effects of this delay on human perception and they showed that
interactive applications are well supported if the end-to-end delay is kept within
a threshold along the lifetime of the application. Conversely, if the end-to-end
delay goes above this threshold, the interactions between end-users are seriously
compromised. Hence, the threshold represents a bound for the human percep-
tions: below this bound the users do not perceive the end-to-end delay and hence
the interactions are well supported; above this bound the end-to-end delay is
noticeable to the end-users and hence the interactions are not well supported.
Throughout this paper we denote this threshold with NIT, Natural Interaction
Limit. It is to note that the value of this threshold is not fixed [8], but de-
pends on the characteristics of the application and on the level of interactivity
requested by the end-users. For instance, a threshold of 150 ms ensures full
satisfaction to the end-users of an interactive audio applications[6]. This means
that, if the end-to-end delay goes above 150 ms the users will experience a bad
service, while for values lower than 150 ms, the users can interact without any
problems.

The end-to-end delay, as pointed out by Baldi and Ofek [13], is composed
by different components: the processing delay (the time spent at the end-hosts
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to compress/decompress video frames), the network delay (the time needed to
move data from one end-host to the other end-host) and the synchronization
delay at the receiver side (this delay is introduced in order to cancel the network
delay jitter).

Among the components that affect the end-to-end delay, the network delay
is the most variable. It is essentially composed by two components: propagation,
or transmission, delay and queuing delay. The propagation delay can be easily
computed as it depends on the network capacity and on the size of the data to
transmit. For instance, to transmit f bytes over a network with a capacity of
C bytes/sec, the ratio f/C gives the necessary time to transmit f bytes. Con-
versely, the queuing delay is very variable and unknown a-priori. In fact, data
travel from source to destination along a path, composed of links and routers.
In best-effort networks, this path is usually shared among traffic generated by
other applications and it may happen that a network resource along the path is
busy, causing the data to be delayed until the resource is available.

The network delay is very variable (network jitter) along the application
lifetime and, for this reason, it is necessary to design an adaptive mechanism
that takes into consideration the network conditions. Otherwise, the receiver
may experience QoS problems. For instance, in a video streaming application
the receiver should continuously play out the arriving stream, according to a
pre-defined number of frames every second. Due to the network jitter, some
video frames may be delivered later than expected, causing problems to the
receiver’s play out as video frames may not be available for play out when
needed. This could cause video play out interruptions (a common situation for
users that watch video streams while being connected to the Internet through
a low capacity modem).

In literature there are mechanisms that mask the network jitter using buffer-
ing or smoothing techniques [9, 14, 15, 16]. Roughly, these mechanisms use a
start-up delay to mask the network jitter. While being effective in supporting
QoS applications, these techniques cannot be used to support interactive appli-
cations, as they increase the overall end-to-end delay. In the next section, we
present a better overview of these mechanisms.

Before introducing our mechanism, we first note that when watching a video
stream on a computer, there are two possible scenarios: i) the video stream is
locally available at the user side (either the video is generated with a webcam,
or it is stored on the user’s hard-disk or on a CD-Rom, DVD, and so on) or ii)
the video stream is located somewhere in the network through which the video
application transmits the video stream at the sender side and retrieves the video
stream at the receiver side.

From the user perspective, the ideal scenario to perform interactive opera-
tions is when the video is locally available. This avoids the use of the network
(i.e., no network delay). In Fig. 2 we show a possible scenario for a video ap-
plication. A video server is in charge of transmitting a video stream into the
network. This stream is delivered to the receiver where the actual play out of
the video stream is done. In this scenario, the network delays the transmis-
sion of the video stream as well as the interactive requests of the user at the
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Figure 2: Network scenario while transmitting a video stream between a sender
and a receiver. The ideal video play out and the actual video play out are
highlighted.

receiver side. Needless to say, if the network delays these data with a value
greater than NIT, the interactivity between the end-user and the video server is
compromised. The ideal scenario, to avoid these possible problems, is when the
user is directly connected to the video server. Throughout the paper, we refer
to this scenario as the ideal scenario for providing interactions and to the actual
scenario (where video is stored somewhere in the network) as the real scenario.

The contribution of this paper is to propose an adaptive mechanism that
supports the video play out in the real scenario, while attempting to simulate
the video play out in the ideal scenario. Our mechanism does not use any start-
up delay, but the receiver begins the video play out upon the reception of the
first frame. Our goal is to maintain the end-to-end delay within the acceptable
threshold (i.e., below the NIT value), while allowing the receiver to continuously
play out the video stream.

In essence, this means that the ideal and the actual video play out are syn-
chronized. If the network jitter compromises this synchronization, our mecha-
nism adapts the supported video application to the new network scenario, by
modifying the video QoS of the delivered stream in order to re-synchronize the
actual and the ideal play out.

The mechanism has been evaluated through several simulations, performed
using real network delay traces (obtained transmitting Motion JPEG and MPEG
video traces over our department LAN and over the Internet). In addition to
the mechanism evaluation, we also measure the perceived QoS at the user’s side
in order to investigate the QoS modifications introduced by our mechanism. Re-
sults obtained show that our mechanism is well suited for supporting interactive
video applications over IP networks, as the actual video play out is kept very
close to the ideal video play out and the perceived QoS is only slightly modified.

The remainder of this paper is organized as follows. In section 2 we present
our mechanism and its properties. We also highlight benefits of using our mech-
anism. In section 3 we present characteristics of the experimental scenario we
use to test our mechanism. Results obtained from evaluating our mechanism
are presented in 4 while conclusions are drawn in section 5.
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Figure 3: (a) smoothing mechanism. (b) problems in supporting interactive
applications.

1.1 Related Work

As we already stated, in video streaming applications the network jitter may
cause QoS problems to the receiver, as some video frames may arrive later than
expected, causing video play out interruptions.

In literature there are mechanisms, called buffering or smoothing techniques
[9, 14, 15, 16], that can be used to mask the network jitter.

These techniques, as shown in Fig. 3(a), mask the network jitter by intro-
ducing a start-up delay (during which the arrival stream is inserted in the client
memory buffer) at the destination.

In essence, the client buffer is used to mask the network jitter to the end-
users: when the receiver receives the first video frame, the video play out does
not immediately start, but the video frame is stored in the local buffer, as well
as all the successive arriving frames. The memory buffer operates using a FIFO
discipline and the start up delay is determined by the worst-case jitter and the
bit rate of the information stream. The receiver starts the video play out only
after the start-up delay (usually few seconds). In this way the receiver should
play out continuously the arriving video stream.

Although these techniques are very effective in reducing the network jitter,
they cannot be used to support interactive QoS applications, as the introduced
start-up delay increases the overall end-to-end delay, a critical measure of inter-
active QoS applications. In fact, using the buffering techniques, it may happen
that the overall end-to-end delay goes above the NIT, as shown in Fig. 3(b)
where a hypothetical NIT value is depicted. If this happens, the interactive
application is not well supported. In fact, NIT represents the limit above which
the human perception (and hence interactions) is affected and, to support in-
teractive applications, the end-to-end delay has to stay below the NIT value.

Since for video applications the NIT value is usually less than 500ms, it is
not possible to use mechanisms, as buffering techniques, that usually introduce
a start-up delay of few seconds in order to ameliorate the network jitter [17].
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2 Proposed Mechanism

In this section we present characteristics and properties of the mechanism we
propose to support interactive video streaming applications over IP networks.

As we already pointed out, to support interactive operations it is mandatory
to keep the end-to-end delay within the Natural Interaction Threshold (NIT).
NIT is application dependent and represents the upper bound to the end-to-end
delay in order to provide natural interactions between end-users.

Since a start-up delay approach increases the overall end-to-end delay, our
mechanism does not use any startup-delay and the receiver begins the video
play out upon the reception of the first video frame.

The video play out without any start-up delay is effective in networks that
provide some guarantees to the applications, such as sufficient bandwidth, low
packet-loss and end-to-end delay, but may pose problems if used in best-effort
networks. In fact, in these networks, the end-to-end delay may be very variable,
causing frames to have an unpredictable arrival time. Needless to say, as we
show in section 2.2, this may compromise both the continuity of the video play
out (the receiver may not have received video frames that are requested for the
play out) and the natural interactions between end-users. Due to this variability,
it is necessary to take into consideration the network behavior while supporting
an application. For this reason, our mechanism adapts the video transmission
and the video play out to the network conditions.

As we stated, there is an ideal and an actual position to play out a video
stream. Our mechanism plays out the video stream in the actual position while
attempting to simulate the play out in the ideal position. For this reason, our
mechanism measures the time difference between the actual and the ideal play
out. If this difference is not noticeable to the users, the interactive applications
is well supported. By supposing the clocks at the sender and at the receiver side
synchronized, we can, through a timestamp mechanism, measure this time dif-
ference. This time-difference is denoted with VID (Video Time Difference), and
it is periodically measured at the receiver side. If the VTD is above the NIT, the
application is not well supported: the actual play out is no longer synchronized
with the ideal play out. Hence, the video application must be adapted to the
new network conditions. This is done by our mechanism that re-synchronizes
the actual and the ideal play out by acting on the video QoS. Roughly, this re-
ports the VID within the NIT. In essence, when the receiver finds out that the
VTD is above the acceptable limit, it computes the number of video frames that
is necessary to drop in order to report the VI'D within the NIT and sends this
value to the sender. At the other network side, the sender re-synchronizes the
actual and the ideal play out, by dropping the requested number of frames. In
the following we show that, by acting on the video QoS (i.e., by dropping some
frames of the video), our mechanism is effective in reporting the VID within
the acceptable NIT and hence it is effective in supporting interactive features.

Before explaining the details of our mechanism, we introduce two definitions
in order to simplify the description of our mechanism throughout the paper.

Definition. The clock at the sender side is denoted with T's, and Ts(i)
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represents the ideal play out time of the frame i.
Definition. The clock at the receiver side is denoted with T, and Tg(i)
represents the (actual) play out time of the frame i at the receiver side. o

2.1 Transmission and Play Out Algorithms

Video streaming applications are usually composed of two main programs: one
is located at the sender side and controls the transmission of the video stream
into the network; the other, located at the receiver side, retrieves video frames
from the network and plays them out. In this section we describe the details of
the algorithm that controls the transmission at the sender side and the video
play out algorithm at the receiver side.

2.1.1 Transmission Algorithm

A video stream is composed of a sequence of video frames that must be displayed
a fixed time within of each other. This technique produces the motion effect.
Briefly, the encoding process establishes the number of frame that must be
displayed every second and the video play out algorithm has to display these
frames according to the number of frames per second established during the
encoding process. For instance, the video may be composed of 24 frames per
second and, in this case, video frames must be displayed 1/24 of a second within
of each other.

In the following we denote the number of video frames that must be displayed
in one second with the parameter d. Since video frames are transmitted over the
Internet, it is important to mark these frames, so that the receiver can correctly
reproduce the video stream. Our mechanism marks each video frame with a
timestamp that represents the ideal play out time of the frame (i.e., the play
out time as if the video would be played out at the sender side). The timestamps
are given according to the following rules:

1. The timestamp of the first video frame represents the time at which the
video frame is transmitted. If we denote this time with ¢, it follows that
the first video frame is marked with Ts(1) = t¢.

2. A frame i (¢ > 1) is marked with Ts(i) = Ts(i — 1) + «, where a = 1/4.
Hence, a frame i (i > 1) is marked with Ts(i) =t + (i — 1) - a.

2.1.2 Video Play out algorithm

The goal of the video play out algorithm is to play out the video frames in order
to produce the motion effect. In essence, the receiver retrieves video frames
from the network, temporarily stores them into its local buffer and then plays
out these video frames according to the following rules:

1. Video play out starts when the first video frame arrives at the receiver
side, say at time ¢’ and the frame is immediately played out;
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Figure 4: Network scenario while transmitting a video stream between a sender
and a receiver.

2. The receiver plays out the frames at fixed period (i.e., one frame every
a = 1/§ time units;

3. Among the frames present in the local buffer, say k frames, it is selected
(for play out) the frame with the lowest timestamp (i.e. a frame i is
selected if T's(7) = min(Ts(j) for each frame j in the buffer)

4. Once selected, a frame i is removed from the buffer and is played out at
time Tr(i) = Tr(i — 1) + a only if: a) Tr(i) > Ts(i) and b) Ts(i) >
Ts(prev(i)), where prev(i) is the last frame that has been played out. If
conditions a) and b) are not met, then frame i is discarded and a new
frame selection must be done (by applying rule 3);

In other words, rule 4 says that, if a selected frame ¢ has a timestamp lower
than the timestamp of the most recently frame that has been played out (i.e.,
Ts(i) < Ts(prev(i))) then frame i is discarded and a new frame selection (rule
3) must be done. This is done in order to avoid the play out of a frame ¢ that
has been transmitted before the transmission of the frame prev(i), but, due to
network problems, frame ¢ arrives later that the play out time of the prev(i)
frame. Needless to say, it is not possible that Ts(i) = Ts(j), if 1 # j.

Based on the previous rules, the algorithm plays out a frame ¢ at time
Tr(i) = Tr(prev(i)) + a, where prev(i) indicates the frame played out just
before frame 7 and @ = 1 / 0. Note that, in the following we denote the play out
of the first video frame with Tr(1) = ¢'.

2.2 Video play out problems caused by the network jitter

The algorithms described in the previous section are effective and do not pose
any problems if the underlying network provides guarantees such as low com-
munication delay and jitter. Conversely, possible problems may arise in the
Internet scenario, as we describe in Fig. 4, where sender starts transmitting
video frames at fixed rate (i.e., one frame every a = 1/§ time units) at time ¢.
At time ¢, the first video frame arrives at the receiver. Since there is no startup
delay, the receiver immediately plays out frame 1. Frame 2 is supposed to be
played out at time t' + a, but due to network problems, frame 2 is delivered
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Figure 5: VID measured while playing out the video stream.

later than expected. For example, let us suppose that frame 2 arrives between
t'+2a and t' + 3a. Hence, at time t' 4+ «, as well as at time ' + 2a, the receiver
has no frame to play out. This means that the video play out will be freezed
up to time t' + 3a, when it is resumed playing out frame 2.

In this case the network jitter compromised the continuity of the video play
out and, further, the delay experienced by frame 2 affects the play out time of all
the successive frames. In fact, even though all the successive frames are delivered
”on time”, their play out is delayed by the network problems experienced while
transmitting frame 2.

As we describe in the next section, if the supported application is interactive,
possible problems may arise.

2.3 Time difference between ideal and actual play out

The situation described in the previous section highlights the critical role played
by the network jitter in the video play out. As we already stated, when interac-
tive operations are involved, it is fundamental that the end-to-end delay stays
within the NIT value. To investigate whether the application is well supported
or not, our mechanism periodically measures the end-to-end delay and checks if
it is within the NIT value or not. To measure the end-to-end delay experienced
by a video frame, it is to note that only the play out time (and not the arrival
time) is important. In fact, a user notices a video frame when it appears on the
screen and not when it arrives in its buffer.

To point out the difference between the arrival time of a frame at the end-host
and its play-out time, we consider again the example in Fig. 4. For example,
frame 3 arrives just after ¢’ + 3a, but this frame appears on the user’s display
only at time ¢’ + 4a. Hence, from the user’s point of view, it doesn’t matter
when frame 3 actually arrived (¢’ + 3a), but when it is played out (¢’ + 4a).

The actual play out time is compared to the ideal play out time of the frame
(i.e., the associated timestamp) and the difference between these two values
represents the end-to-end delay of the considered frame.

To measure this difference, we introduce the following metric, called Video
Time Difference (VID).

Definition. Let us consider a video frame i. The Video Time Difference of
a frame 7, denoted with VTD(7), is defined as the difference (in time) between
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the actual play out of the considered frame, T (i), and its ideal play out time,
Ts(i). Hence, the VTD of a frame i is equal to VT'D(i) = Tr(i) — Ts(7). o

VTD measures the difference between the actual play out time of a frame and
its ideal play out time. Note that, if both sender and receiver applications reside
on the same computer (i.e., no network is involved), the VID is equal to zero and
this represents the ideal condition for human interactions (i.e., Tr(i) = Ts(7)
for each frame).

To better understand the effects of the network jitter on the VID, in Fig 5
we show the VTD measured for each played frame, with respect to the scenario
described in Fig. 4. A hypothetical NIT value is also depicted in order to better
highlight frames with a VI D below or above the acceptable limit.

Since we supposed that Ts(1) = ¢ and Tg(1) = ¢, it follows that VT D(1) =
t' — t. Frame 2 arrives later than expected (it was supposed to arrive before
time ' 4+ «, but it arrives between t' + 2« and ¢’ + 3a). Hence, the play out
of frame 2 happens at time ¢’ + 3a and hence VI'D(2) = t' — ¢t + 2a. Let us
suppose that VID(2) goes above the NIT value (i.e. VT D(2) > NIT). Even
though all the successive frames are delivered without any problem, the VTD
of the successive frames is affected by the network problem experienced while
transmitting frame 2. In fact, VI'D(j) > NIT, for each j > 2.

Needless to say, this situation poses a serious problem if the supported ap-
plication has interactive features, as all the frames, but the first, have a VTD
above the acceptable NIT. For this reason, there is a need to design a mech-
anism that reports the VID within the acceptable NIT. We explain how our
proposed mechanism deals with these problems in the following section.

2.4 Synchronization between ideal and actual play out

In this section we describe how our mechanism recovers from a situation where
natural interactions are compromised (i.e., when the VID is above the NIT
limit). In order to report the VID within the acceptable limit, we design a
mechanism that acts on the video QoS, by discarding video frames. As we
show in the following, the discarding mechanism allows to modify the VITD and
hence it is possible to maintain the VTD within the acceptable value for human
interactions.

First of all, we show that it is possible to reduce the VID of an arbitrary
time quantity. In fact, the following theorem states that the arbitrary time
quantity can be translated in video frames and then by discarding these frames,
the VTD is reduced.

Theorem 1 The VT D can be reduced of p time units, by dropping a number of
frames, say k, that corresponds to p time units (i.e. k-« = p), where a =1/
and § denotes the number of frames that must be played every second.

Proof Let us consider the play out of a frame j and suppose that VT D(j) =
Tr(j) —Ts(j) =t' =t +p-
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By definition, Ts(j) = ¢t + (j — 1) - a. It follows that Tr(j) = VT D(j) +
Ts(j) =t +p+(i—1)-a,

If the network condition will not change while transmitting the successive
frames, the VTD will not change, too. Hence, if we consider a frame z (z > j,
2=j+k+1),VTD(z)=t —t+p.

Now, suppose that the sender, after transmitting frame j, avoids transmit-
ting k consecutive frames and sends frame z just after frame j.

To compute the VID of the frame z (VT D(z) = Tr(z) — Ts(z)) we consider
that: i) the value Ts(z) is known by definition and is equal to t + (z — 1) - 5 ii)
the value Tgr(z) is equal to Tr(z) = Tr(prev(z)) + a, where prev(z) indicates
the frame played out just before frame z.

Since the frame played out just before frame z is the frame j (prev(z) = j),
it follows that Tr(z) = Tr(j) + .

Tr(j) is known and is equal to t' + p+ (j — 1) - . It follows that Tg(z) =
t'+p+7-a

Now, considering that, by definition, p = k-, it is easy to compute VT'D(z)
that is equal to: VT'D(z) =1t —t'.

Hence, this theorem proves that the discard of k consecutive frames reduces
the VTD of p time units. o

The previous Theorem allows us to reduce the VID of a known quantity.
Since, through the timestamp mechanism, we exactly know the amount of time
that exceeds the acceptable limit NIT (i.e., VI'D — NIT), it is easy to report
the VTD within the acceptable limit.

In fact, the value VI'D — NIT (p in Theorem 1) is used to compute the
number of frames that has to be dropped (k in Theorem 1) in order to report
the VTD within the NIT limit. Our mechanism works as follows. The receiver
can easily compute the value VI'D — NIT. If this value is greater than zero,
it is sent to the sender. After receiving this message, the sender can discard a
number of frames that corresponds to the time quantity VI'D — NIT. In this
way, as Theorem 1 states, the VI'D is reduced and hence is reported within the
acceptable NIT limit.

To show the effects of our mechanism, in Fig. 6, we consider again the
example depicted in Fig. 4, but now when the receiver finds out that the
VTD goes above the acceptable value (for instance when playing out frame 2,
it knows that VTD(2) is greater that NIT) it sends to the sender the value
VTD(2) — NIT. When this message arrives at the sender, the synchronization
mechanism is activated. The sender uses this value (VI'D(2) — NIT = p) to
compute the number of frames (k) that has to be discarded in order to report
the VID within the NIT. Let us suppose that it is necessary to drop 2 frames,
the sender discards (i.e., it does not transmit), frame 7 and frame 8. This means
that, just after frame 6, the sender transmits frame 9, frame 10 and so on.

In Fig. 7 we show the effects of our mechanism on the VID. The benefits
introduced by our mechanism starts when playing out frame 9. In fact, if our
mechanism is not used (Fig. 5), frame 9 is played out with VID(9) greater
than NIT, but if our mechanism is used (Fig. 7), VID(9) is lower than NIT.
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Figure 6: Network scenario while transmitting a video stream between a sender
and a receiver when using our mechanism.
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Figure 7: VTD measured while playing out the video stream when using our
mechanism.

Moreover, using our mechanism, all the frames transmitted after frame 9 are
within the NIT value.

This means that our mechanism may introduce considerable benefits in sup-
porting interactive video streaming applications.

The drawback of our mechanism is that it affects the video QoS. However,
the discard of a good selection of frames does not greatly affect the video QoS,
as showed in [18, 19], where dropping frames techniques are used to reduce
bandwidth allocation requirements.

3 Experimental Scenario

In this section we present characteristics and properties of the scenario we use
to evaluate our mechanism. Results of this evaluation are presented in the next
section.

3.1 Experimental Architecture

As already mentioned, the most important metric that influences the interactive
features of an application is represented by the NIT. If the VTD is kept within
the NIT, the application is well supported, otherwise it is not. The goal of our
mechanism is to keep the VTD within the NIT.

To investigate the benefits introduced by our mechanism we have to compare
situations where our mechanism is used and when it is not and the comparison
has to be done under the same network conditions. To this end, we first collected
video delay traces using an RTP-based video streaming application implemented
at the University of Bologna [31] and then we developed a trace-driven simulator
that reads in the transmission delay of each video frame and detects whether
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the VTD of the video frame is within the NIT or not. For each video trace,
we computed the percentage of video frames with VTD above the NIT in both
situations (with and without using our mechanism). This allows us to measure
the benefits introduced by our mechanism.

Further, since the NIT is not fixed, but it is application dependent, we inves-
tigated the behavior of our mechanism with several different values of the NIT
for each transmitted video, in order to cover different application requirements.
To achieve this, we run the simulator several times with different NIT values
and with the same network traffic conditions.

Another evaluation has been done in order to investigate the drawbacks of
our mechanism. In fact, to keep the VID within the NIT, our mechanism
drops video frames. While the number of dropped video frames is easy to
compute, it is not much related with the perceived QoS at the client side. For
this reason, we use another approach to accounting for the perceptual playout
quality. In particular, as suggested in [18, 19], we use a cost function to measure
the perceived video quality. There are many ways to define a cost function, but
its definition goes beyond the scope of this paper. Hence, we focus on the same
cost function used in [18, 19], which penalizes frame dropping mechanisms that
drop neighboring frames.

Briefly, this cost function takes two aspects into consideration: the length
of a sequence of consecutive discarded frames and the distance between two
adjacent, but non-consecutive, discarded frames. It assigns a cost ¢; to each
discarded frame j, depending on whether it belongs to a sequence of consecu-
tive discarded frames or not. If frame j belongs to a sequence of consecutive
discarded frames, the cost is {; if the frame j is the l;'-h consecutively discarded
frame in the sequence. Otherwise the cost is given by 1+ 1/ \/d_J , where d;
represents the distance from the previous discarded frame. More details about
this cost function can be found in [18, 19].

To have a complete evaluation of our mechanism, we propose several frame
dropping algorithms and, through our developed trace driven simulator, we
evaluate each of them using the same network traffic condition.

Before presenting the experimental results, it is worth analyzing the network
scenario and the characteristics of the video streams we used to collect the
network delay traces.

3.2 Video Delay Traces

The effects of our mechanism can be showed only if compared with situations
where our mechanism is not used. To be comparable, the same network traffic
conditions have to be used both when our mechanism is used and it is not. Since
identical network traffic conditions are impossible to obtain in the Internet, we
first collected network delay traces by transmitting a set of video streams. For
this reason, we developed an RTP-based application, that, while transmitting a
video stream towards a destination, measures the end-to-end delay experienced
by each video frame.
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To cover different situations, we collected network delay traces in both a
100Mbps department LAN and the Internet. We used two sets of video traces
encoded with Motion JPEG and MPEG and the network delay traces have been
collected during different time (peak hours, office hours, evening).

A trace-driven simulator has been developed to use the collected delay traces
and to test the behavior of our mechanism. Results are presented in the following
section.

3.3 Video streams

Two sets of video traces have been considered: one is encoded with Motion
JPEG and the other with MPEG. We selected these two techniques to evaluate
our mechanism with both intra-frame technique (like Motion JPEG) and inter-
frame technique (like MPEG).

With video streams encoded with inter-frame mechanisms (like MPEG) a
domino effect may happen (i.e., a discard of a frame may lead to the impossi-
bility of decoding other video frames) and hence the discarding mechanism has
to take into account all the dependency information among the video frames.
Conversely, if the video streams are encoded with intra-frame technique (like
Motion JPEG), it is possible to discard frames without causing the domino
effect.

We used video traces with different characteristics (cartoons, music videos,
news, movies) in order to have video streams with different bandwidth require-
ments and, hence, to have a complete testbed for our mechanism.

3.3.1 Motion JPEG

Motion JPEG in an intra-frame encoding mechanism that produces a sequence
of video frames, where each frame is independently compressed using the JPEG
technique. There is no correlation between successive frames and hence the
server can immediately discard video frames when it receives the request from
the receiver. The used video traces are The Beauty and The Beast, Jurassic
Park and Total Recall, encoded with 24 fps.

3.3.2 MPEG

The used MPEG video traces are: The Simpsons, MTV and News, encoded
with 24 fps. MPEG is an inter-frame encoding mechanism that yields a smaller
average frame size than the Motion JPEG encoding and the resulting video
stream is composed of frames that don’t have the same importance, as some
frames depend on other frames. For this reason it is important to know what
type of frame the server can discard. Before introducing the proposed discarding
algorithms, we briefly present the characteristics of an MPEG video stream.
MPEG videos are organized in Group of Picture (GOP) (in our experiments
we use GOP composed of 12 frames). The frames may have different importance
and are represented by three type of frames: I, P, and B. Each GOP is
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composed as: IByBsP, B3B,P>B;BgP;B;Bg. To decode a B frame, both the
previous and future I or P frames are needed. To decode a P frame, the
previous P or I frame is needed. Only I frames can be decoded without using
other frames.

This means that if a I frame is not present, the entire GOP (plus the two
B frames of the previous GOP that depend on the I frame) cannot be decoded
and are discarded. Hence, 14 frames are impossible to decode in an I frame is
missing. If a P, frame is missing, then 11 frames are impossible to be decoded;
if a P» frame is missing, then it is not possible to decode 8 frames; if a P; frame
is missing, then 5 frames cannot be decoded. Only a missing B frame does not
result in additional frame discard.

These dependency rules have been considered while testing our mechanism
and, based on them we propose the following algorithms in order to discard
frames at the server side when the client asks to drop frames. Drop any
frame (DAF): Frames are dropped without any consideration about the frame
type; Drop I frame (DIF): Only I frames are considered (14 frames cannot
be played out for each discarded I frame); Drop P; frame (DP1F): Ouly P,
frames are considered (11 frames cannot be played out for each discarded Py
frame); Drop P, frame (DP2F): Only P, frames are considered (8 frames
cannot be played out for each discarded P, frame); Drop P; frame (DP3F):
Only P; frames are discarded (5 frames cannot be played out for each discarded
P; frame); Drop B frame (DBF): Only B frames are considered.

4 Experimental Results

In the following, we present results obtained from analyzing our mechanism
over a LAN and over the Internet. Since the goal of our mechanism is to keep
the VTD within the NIT, we measure VID for each delivered frame. VTD
is affected by the network jitter and, in fact, it is very variable if the video
is transmitted over best-effort networks. Fig. 8 highlights this variability and
presents the VID measured while transmitting a video trace of the cartoon The
Simpsons. As already pointed out, this variability compromises the QoS of the
supported interactive application. In fact, depending on the NIT value, some
video frames may have the VTD above the NIT value. If this happens, the
application is not well supported. The number of frames with a VTD above the
NIT value depends on the NIT value. Since it is not fixed, but it is application
dependent, we use several different values of the NIT, though using the same
network traffic condition (i.e., we use the same network delay trace), for each
transmitted video in order to investigate the behavior of our mechanism.

For each NIT value, we count the number of frames with the VITD above
the NIT, and then we compute its percentage with respect to the entire video
stream. This percentage is computed under the same traffic conditions for
situations where the video streams are delivered with and without using our
mechanism. A comparison analysis is given for each delivered video streams.

Further, we evaluate the QoS of each delivered video streams using the cost
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Figure 8: Video Time Difference obtained transmitting a clip of The Simpsons.

function presented in the previous section. For each delivered video streams a
QoS evaluation is done both when our mechanism is used and when not. In
fact, the video QoS is affected by both our mechanism and by the network.
To understand how our mechanism affects the video QoS, it is fundamental to
know how the network affects the video QoS. To better understand why the
network affects the video QoS, it is worth analyzing Fig. 8. In particular, it
is interesting to observe the behavior of the VTD curve (our mechanism is not
used). The VID curve goes up and down. While the increasing part is easy
to understand (the network delivers packets later than expected and hence the
play out is delayed), it is interesting to observe the decreasing part. In fact, the
receiver always plays out frames at fixed and pre-defined number of fps, and
hence the VTD should never decrease. However, the decreasing part is caused
by the network packet loss that decreases the VID. As Theorem 1 states, VTD
can be reduced by discarding video frames. In this case, video frames are not
intentionally dropped by our mechanism, but it is the network that drops these
frames. Unfortunately, it is not possible to control the network behavior, as the
network discards frames when it is congestioned. This network behavior causes
the VTD to be variable and affects the video QoS. For this reason we evaluate
the video QoS both when our mechanism is used and when it is not, using the
same network traffic conditions. A comparison analysis is presented.

In conclusion, through a trace-driven simulation, we investigate the following
measures:

e The percentage of video frames with VTD above the NIT with and without
using our mechanism;

e The QoS cost introduced by our mechanism. In particular, with MPEG
video streams, we investigate the QoS cost introduced by several dropping
frames algorithms that we propose in order to discard video frames.

4.1 LAN Environment and Motion JPEG video streams

In Fig. 9(a) we present results obtained from transmitting the The Beauty
and the Beast. With a 80 ms NIT, 5% of the frames has a VID above the
acceptable limit. This percentage decreases while increasing the NIT value and
it drops near zero percent for NIT values greater than 180 ms. Conversely, if
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Figure 9: Transmission of The Beauty and the Beast over the LAN: (a) per-
centage of frames with VID above the NIT. (b) cost of the dropping frames
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Figure 10: Transmission of Total Recall over the LAN: (a) percentage of frames
with VID above the NIT. (b) cost of the dropping frames algorithm.

our mechanism is used, the percentage is kept very close to zero, for all the NIT
values.

In order to keep this percentage close to zero, our mechanism discards video
frames and hence it affects the video QoS. In Fig. 9(b) we present the per-
centage of additional QoS cost introduced by our mechanism, with respect to
the QoS cost computed when our mechanism is not used. It is possible to note
that our mechanism slightly affects the perceived video QoS: the maximum ad-
ditional cost (0.5%) is obtained with a NIT value of 80 ms and the benefits are
considerable as it avoids 5% of the frame to have a VTD above the NIT value.

The reason of this great benefits, obtained by slightly affecting the video
QoS, is highlighted by the example described in sections 2.3 and 2.4. In fact, in
Fig. 5 the delay experienced by frame 2 causes the VID to go above the NIT
limit for all the successive frames. In Fig. 6 and 7 we showed that by discarding
only 2 frames, only few frames have a VID above the NIT limit, while all of
the other frames are within the NIT limit.

In Fig. 10(a) we present results obtained from transmitting Total Recall. In
this case, the video stream is transmitted quite well over the LAN. In fact, the
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Figure 11: Transmission of The Simpsons over a LAN: (a) percentage of frames
with VID above the NIT. (b) cost of the dropping frames algorithm.

percentage of frames with VTD above the NIT value is kept within 0.1% for all
the considered NIT values.

The Qos evaluation presented in Fig. 10(b) shows that for NIT values greater
than 90 ms, there is no need of dropping frames as the video stream is trans-
mitted without any problems.

The benefits introduced showed that our mechanism is well suited for sup-
porting interactive video applications over a local network.

4.2 LAN Environment and MPEG video streams

In Fig.11 we present results obtained from transmitting the cartoon The Simp-
sons. Fig.11(a) shows that with a NIT of 50 ms, the transmission of the video
stream without using the mechanism causes more than 25% of the frames to go
above the acceptable limit. This percentage decreases while increasing the NIT
value. For instance, with NIT values equal to 70-90 ms, the percentage drops
to 2% and reaches almost zero percent with a NIT value of 150 ms.

Conversely, if we use the mechanism and the discarding algorithms presented
in section 3, the percentage is kept very close to zero. In this case, all the
proposed algorithms produce almost the same benefits (Fig.11(a)).

The QoS evaluation is presented in Fig. 11(b). It is possible to note that
there are small differences among the proposed dropping frame algorithms, and
their costs are similar to the original one. This is due to the small number
of discarder frames. However, it is possible to note that DIF performs worse
than the other algorithms, while DBF is the algorithm that produces the lowest
additional cost (around 0.4% more than the original cost).

Similar results have been obtained with MTV and a NEWS clip. Readers
can refer to [21, 22] for further details.
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Figure 12: Transmission of Sleepless in Seattle over the Internet (8 hops): (a)
percentage of frames with VTD above the NIT. (b) cost of the dropping frames
algorithm.

4.3 The Internet Environment and Motion JPEG video
streams

In this section we evaluated our mechanism in the Internet scenario: one path
is from Bologna to Trieste (9 hops) and the other from Bologna to Alessandria
(8 hops). It is worth noticing that in the two previously mentioned Internet
connections (Bologna-Trieste and Bologna-Alessandria) an average value of the
Round Trip Time equal to 80-90 ms and 300-400ms was measured, respectively.

In Fig. 12(a) we present results obtained from transmitting Sleepless in
Seattle. For NIT values up to 300 ms, more than 90% of the frames has a
VTD above the acceptable limit. This percentage decreases while increasing
the NIT value and it drops near zero percent for NIT values greater than 550
ms. Conversely, if our mechanism is used, the percentage is kept very close to
zero, for all the NIT values.

In Fig. 12(b) we present the QoS evaluation. In this case the additional cost
is kept within 0.7%. Hence, our mechanism is able to keep the video stream
transmission within the acceptable NIT by slightly affecting the video QoS.

In Fig. 13(a) we present results obtained from transmitting Total Recall. For
150 ms NIT value, almost 80% of the frames has a VITD above the acceptable
limit. This percentage decreases while increasing the NIT value and it drops near
zero percent for NIT values greater than 600 ms. Conversely, if our mechanism
is used, the percentage is kept very close to zero, for all the NIT values.

In Fig. 13(b) we present the QoS evaluation. In this case the additional
cost is kept within 0.07%. Once again, our mechanism is able to keep the video
stream transmission within the acceptable NIT by slightly affecting the video
QoS.

In Fig. 14(a) we present results obtained from transmitting Jurassic Park.
For 150 ms NIT value, more than 50% of the frames has a VTD above the
acceptable limit. This percentage decreases while increasing the NIT value and
it drops near zero percent for NIT values greater than 550 ms. Conversely, if
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Figure 13: Transmission of Total Recall over the Internet (8 hops): (a) per-
centage of frames with VID above the NIT. (b) cost of the dropping frames
algorithm.
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Figure 14: Transmission of Jurassic Park over the Internet (8 hops): (a) per-
centage of frames with VITD above the NIT. (b) cost of the dropping frames
algorithm.

our mechanism is used, the percentage is kept very close to zero, for all the NIT
values.

In Fig. 14(b) we present the QoS evaluation. In this case the additional
cost is 12% for 150 ms NIT value and for NIT values greater than 200 ms the
percentage drops to 2% and for NIT values greater than 300 ms the percentage
is less than 1%.

In Fig. 15(a) we present results obtained from transmitting Sleepless in
Seattle. For 100 ms NIT value, almost the entire video stream is above the
acceptable limit. This percentage decreases while increasing the NIT value and
it drops near zero percent for NIT values greater than 120 ms. Conversely, if
our mechanism is used, the percentage is kept very close to zero, for all the NIT
values.

In Fig. 15(b) we present the QoS evaluation. In this case the additional cost
is kept within 1.8%.
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Figure 15: Transmission of Sleepless in Seattle over the Internet (9 hops): (a)
percentage of frames with VTD above the NIT. (b) cost of the dropping frames
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Figure 16: Transmission of News over the Internet (9 hops): (a) percentage of
frames with VTD above the NIT. (b) cost of the dropping frames algorithm.

4.4 The Internet environment and MPEG video streams

In this section we present results obtained from transmitting MPEG video traces
over the Internet.

Fig. 16(a) shows results obtained from transmitting a NEWS clip from
Bologna to Trieste (9 hops). With a NIT of 70 ms, more than 70% of the
frames have a VTD above the NIT. For a NIT value of 110 ms, the percentage
drops to less than 10%, and reaches almost zero for a NIT value around 150 ms.
Conversely, if the mechanism is used, the percentage is kept very close to zero
and the additional cost ranges between 1.7% and 2.3%. Also in this case, DIF
performs worse than the other algorithms, and DBF has the lowest costs with
all the tested NIT (Fig. 16(b)).

In Fig. 17(a) we present results obtained from transmitting a video trace of
MTYV from Bologna to Alessandria (8 hops). In this case, the network is much
more slower than in the previous experiments. With a NIT value of 100 ms,
more than 90% of the frames have a VTD above NIT. Conversely, the dropping
algorithms allow the mechanism to keep the percentage close to zero. In this
case the dropping algorithms introduce a cost that ranges between 2.8% and



4 EXPERIMENTAL RESULTS 22

= = Without 3
= ¥ DAF S ¥ DAF
i + DIF = + DIF
< DP1F c
= oror | & o DP1F
@ DP3E -153 DP2F
© & DBF I DP3F
o ; i

b 5 A A=RTR g A DBF
< S ¥ ¥ H

Oiﬁw‘é”“ﬁ"FH‘%HWB‘H%H‘%‘H§‘H“H‘ T T T T T T T T T ' '

100 150 200 250 300 350 400 450 500 550 600 100 150 200 250 300 350 400 450 500 550 600

NIT NIT

(a) (b)

Figure 17: Transmission of MTV over the Internet (8 hops): (a) percentage of
frames with VTD above the NIT. (b) cost of the dropping frames algorithm.
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Figure 18: Transmission of NEWS over the Internet (8 hops): (a) percentage of
frames with VTD above the NIT. (b) cost of the dropping frames algorithm.

4%. For NIT values greater than 250 ms, DIF performs worse that the other
and DBF is the one with the lowest cost. For NIT values lower than 250, DAF
is the one that produces the highest cost, while it is difficult to point out an
algorithm that performs better than the others (Fig.17(b)).

In Fig. 18(a) we present results obtained from transmitting a video trace of
a NEWS clip, from Bologna to Alessandria (8 hops). With a NIT value of 100
ms, 70% of the frames have a VTD above the NIT. Here, it is interesting to
note that, due to the network problems, the mechanism is not able to maintain
the percentage close to zero when the NIT is 100 ms, but 9% of the frames goes
above the NIT limit. However, the benefits are still considerable with respect
to the 70% of frames that goes above the NIT if the mechanism is not used.

In Fig.18(b) is possible to note that for a NIT of 100 ms, the cost increases
up to 37% with respect to the original cost. This highlights the great network
problems experienced while transmitting the video stream. The cost decreases
to 2-3% for NIT values between 150 and 250 ms, while, for greater values, the
additional cost is maintained around 12%. For a NIT of 600 ms, the mechanism
discards a very few number of frames, and the cost is very close to the one
produced by the original stream.
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Figure 19: Transmission of The Simpsons over the Internet (8 hops): (a) per-
centage of frames with VITD above the NIT. (b) cost of the dropping frames
algorithm.

Results obtained from transmitting a video trace of The Simpsons, from
Bologna to Alessandria (8 hops) are reported in Fig.19. With a NIT value of
100 ms, more than 80% of the frames go above the acceptable limit and for NIT
values greater than 500 ms the percentage drops to less than 10%. The benefits
of the mechanism are remarkable, as it allows the percentage to stay near the
zero percent and the additional cost is kept within 1.3% (Fig.19(b)).

4.5 Summary of results

All the performed experiments showed that the network jitter greatly affects
the supported application: the percentage of video frames with VTD above the
NIT is considerable. This means that, without a control mechanism, interactive
applications are not well supported over IP networks. Conversely, using our
mechanism the percentage of video frames with VTD above the NIT is highly
reduced, proving that our mechanism is effective in keeping the VITD within
the NIT along the application lifetime. Further, the QoS investigation shows
that our mechanism only slightly affects the perceived QoS of the delivered
video stream. Results obtained along with the QoS evaluation show that our
mechanism is effective in supporting interactive video streaming applications
over IP networks.

5 Conclusions and Future Work

In this paper we proposed a new approach for supporting interactive video
streaming applications over TP networks. Along the application lifetime, our
mechanism controls the network conditions and adapts both the video transmis-
sion and the video play out to the new network conditions when it is necessary.
The adaptation to the network conditions is necessary to support interactive
applications, as these applications have a constraint on the end-to-end delay: it
must be lower than a pre-defined threshold, denoted with NIT, along the appli-
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cation lifetime. For this reason, interactive applications are critical to support
in best-effort networks, as both the network delay and the network jitter affect
the overall end-to-end delay and hence users perceive a QoS that is far from
what desired.

We highlighted that the client can interact without any problems if it is
directly connected to the server (ideal position), but it can have QoS problems
if it is connected to the server through a best-effort network (actual position).

To provide natural interactions between end-users, the time difference (VTD)
between the ideal and the actual play out must have a value lower than NIT.
The time difference is periodically measured through a timestamp mechanism.
If the VTD is above the NIT, it means that the actual play out is late with re-
spect to the ideal play out. In this case, our mechanism, using the new network
conditions, acts on the video QoS in order to re-synchronize the actual and the
ideal play out.

Our mechanism has been evaluated through several simulations, performed
by using real network delay traces obtained transmitting Motion JPEG and
MPEG video streams over both LAN and the Internet. Results obtained showed
the high variability of the VTD and the effectiveness of our mechanism in keep-
ing the VITD within the NIT value. On the application side, this means that
our mechanism ameliorates the system reaction to the end-user command. For
instance, if we consider a video-on-demand applications, our mechanism allows
the user to better interact (pause, fast forward, rewind) with the video server.

A QoS evaluation has been done in order to investigate the effects of our
mechanism on the perceived QoS at the user side. The analysis showed that
our mechanism affects the video QoS in a slightly way.

These evaluations showed that our mechanism is well suited for supporting
interactive video applications (e.g., distance learning, pay per view, video on
demand, etc.), over IP networks.

We are currently investigate the behavior of our mechanism in two more sce-
narios, UMTS and Internet2 (video streaming applications are likely to be the
most used applications into these future environments and interactivity should
heavily contribute to the success of these applications), and we are studying the
relationship between the NIT and the video contents, in order to dynamically
set the NIT along the application lifetime (for instance a distance learning ap-
plication should be more interactive than a football match) and to drop frames
in video situations less important than other (title list, scene cut off).
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