
Dipartimento di Informatica
Università del Piemonte Orientale "A. Avogadro"

Spalto Marengo 33, 15100 Alessandria
http://www.di.unipmn.it

FIRB Perf Project supported by MIUR
under Grant FIRB-Perf-RBNE019N8N

Performance Evaluation of Complex Systems:

Techniques, Methodologies and Tools.

TECHNICAL REPORT TR-INF-2003-10-06-UNIPMN
(October 2003)

Development of a Dynamic Fault Tree Solver

based on Coloured Petri Nets

and graphically interfaced with DrawNET

Author: D. Codetta Raiteri (raiteri@unipmn.it)

Contents

1 Introduction 2
1.1 Dynamic Fault Trees . 3

1.1.1 Dynamic gates description 3
1.1.2 Parametric Dynamic Fault Trees 5

1.2 Tool overview . 7
1.2.1 Requirements . 10

2 DrawNET as Graphical Interface 12
2.1 DPFT formalism . 13
2.2 DrawNET windows . 16

3 The DPFT processor 22
3.1 DPFTproc parser . 22
3.2 Modules detection . 24
3.3 Transient Analysis by Modularization 25

4 Dynamic Gates Translation in SWN 35
4.1 Priority And . 35
4.2 Functional Dependency Gate 37
4.3 Sequence Enforcing Gate . 40
4.4 Warm Spare Gate . 42
4.5 Modules composition . 44

Bibliography 45

1

Chapter 1

Introduction

This report is about the realization of a tool to solve Dynamic Parametric
Fault Trees (DPFT) [1] [2], an extension of traditional Fault Trees (FT)
[3] that includes S-dependencies; traditional FT's have gained a widespread
acceptance for the dependability and safety analysis of complex systems since
they are simple and easy to manipulate, but they have the limitation that
basic components are assumed to be s-indipendent. S-dependence in the
failure process arises when the failure behaviour of a component depends on
the state of the system.

The approach to solve DFT's presented in this report is based on two
peculiar features; �rst, we adopt a parameterization technique, referred to as
Parametric Fault Tree (PFT) [4] [5] [6], to fold equal subtrees or components
and resort them to a more compact representation; parameterization can be
applied to DFT too, generating the Dynamic Parametric Fault Tree (DPFT)
model. Second, DPFT can be modularized and each module [7] [8] translated
into a Coloured Petri net in the form of Stochastic Well-formed Net (SWN)
[9].

The analysis of DFT's may require the generation of a very large state
space; parameterization, modularization and the conversion to SWN allow a
remarkable reduction of the state space dimensions when redundancies and
symmetries are present in the system.

The tool is composed by a graphic interface (DrawNET [10] [11]), a post
processor and a translator from DPFT to SWN; DrawNET has been adapted
to draw a DPFT, to execute its solver and to collect and visualize the results.
The user has only to draw the DPFT and request the results.

2

Technical Report TR-INF-2003-10-06-UNIPMN 3

1.1 Dynamic Fault Trees

DFT's allow to model systems where there are dependencies between compo-
nents or where the failure of a subsystem may be caused by something more
complicated than a simple combination of failure events as in the traditional
FT. In order to obtain all of that, some new gates called dynamic gates [1]
[2] were introduced and they are:

� Priority And (PAND)

� Functional Dependency Gate (FDEP)

� Sequence Enforcing Gate (SEQ)

� Warm Spare Gate (WSP)

1.1.1 Dynamic gates description

Priority And

PAND gate is speci�ed to fail if all of its input events have occured and in a
speci�c order (from left to right); PAND may have two or more input events
and is similar to AND gate, but it has one more constraint: the order of the
events; if the order is not respected the gate does not fail. PAND gate inputs
may be basic events or internal events.

In Fig. 1.1, A, B and C are the input events of a PAND gate that fails
when A, B, C have failed in this order.

Functional Dependency Gate

FDEP gate causes simultaneous failures; its input events are a trigger event
and a set of dependent components; when the trigger event occurs, the de-
pendent components are forced to fail if they did not before by their own;
in this way FDEP models the functional dependency of a set of components
on another one. The trigger event is tipically a basic event; the number of
dependent events may be one or more and usually they are basic events too.

In Fig. 1.2 we have a FDEP gate whose trigger event is T (connected to
the left side of the gate) while its dependent events are A and B; when T
fails, A and B are forced to fail.

Sequence Enforcing Gate

SEQ forces its input events to occur in a speci�ed order (from left to right);
every component can not fail before its predecessor has not failed yet; this

Technical Report TR-INF-2003-10-06-UNIPMN 4

Figure 1.1: PAND gate

Figure 1.2: FDEP gate

Figure 1.3: SEQ gate

Figure 1.4: WSP gate

Technical Report TR-INF-2003-10-06-UNIPMN 5

gate fails when all of its input events have occured and they can only fail in
the speci�ed order. SEQ input events are basic events.

In Fig. 1.3, A, B and C are forced to occur in this order; B can not fail
until A has failed and C can not fail until B has failed.

Warm Spare Gate

WSP models the presence of a set of spare components associated with a
main component; when the main component fails it can be replaced by one
of its spares; a failure rate � and a dormancy factor � are associated to each
spare component that can be in one of these states:

� dormant (stand by),

� working,

� failed.

Every spare component is dormant initially; in this state, it may fail
by the failure rate �� (0 � � � 1) smaller than � in order to reduce the
probability of failure of the spare during its dormancy state. When the main
component fails, one of the available (not failed and not working) spares
changes its state from dormant to working in order to replace the main
component; during the working state the spare may fail with the failure rate
�.

This gate fails when the main component and all of its spares are failed;
WSP becomes a Hot Spare Gate (HSP) when � = 1; in this case, the failure
rate of the spare is the same during its dormant and working states. Another
version of this gate is the Cold Spare Gate (CSP) when � = 0, so the failure
rate during the dormant state is equal to 0 and the spare can only fail during
its working state.

WSP can be connected only to basic events; one of them must represent
the main component and the other ones must represent the spares; spare
components may be connected to more than one WSP gate; in this case,
they are shared among several main components.

1.1.2 Parametric Dynamic Fault Trees

PFT [4] [5] [6] formalism can be extended to DFT's in order to give a more
compact representation of identical subtrees by connecting (basic) replicator
events to both static and dynamic gates and assigning them parameters.
When a gate is connected to a set of basic events with the same failure rate,

Technical Report TR-INF-2003-10-06-UNIPMN 6

Figure 1.5: Example of DPFT

they can be folded to a unique basic replicator with the same failure rate and
a parameter that can assume as many values as the number of folded basic
events; if a gate is connected to a set of subtrees with the same structure and
failure rates, the identical subtrees can be folded in a unique subtree with the
same structure and failure rates and whose root is a replicated event with a
parameter that can assume as many values as the number of folded subtrees;
this parameter must appear in the events of the new subtree, except in the
case that some (basic) events were shared between the identical subtrees.

For instance, in Fig. 1.4 there is the parametric representation of the main
component P whose set of m spares is represented by the basic replicator
event SP(i) whose parameter i can assume values between 1 and m. When P
fails it is replaced by one of the available SP(i); when, after P failure, every
SP(i) has failed, the gate fails.

Fig. 1.5 is an example of DPFT: this system is composed by three subsys-
tems called SYS1, SYS2 and SYS3; SYS1 fails if at least one among SUB1,
SUB2 and SUB3 (represented as SUB(i)) fails; SUB(i) fails when all of its
component (A(i) and B(j)) fail. B(j) is shared among SUB1, SUB2 and
SUB3.

Technical Report TR-INF-2003-10-06-UNIPMN 7

Figure 1.6: Tool overview

SYS2 fails if both C and D_F fail and C does before D_F; D_F fails
when every D(k) has failed; SYS3 fails if E or Q_F fails; Q_F fails when Q
is failed and there are no spares SP(h) available to replace it.

1.2 Tool overview

The general scheme of the tool is shown in Fig. 1.6; DrawNET [10] [11]
graphic tool allows us to draw the DPFT, de�ne its features and indicate
what type of analysis to be executed on the DPFT (transient analysis). Click-
ing on Transient from the Execute menu, DrawNET generates the XML
representation of the DPFT, saves it into a �le and starts the execution of
the DPFT processor (DPFTproc).

DPFTproc loads the XML representation of the DPFT generated by
DrawNET and parses it �lling its data structures with the information about
the DPFT and the time values for the transient analysis; at this point DPFT-
proc detects the modules [7] [8] (indipendent subtrees) of the DPFT and
their nature (static or dynamic, minimal or not). For each Minimal Dy-
namic Module (MDM) (a module containing at least one dynamic gate and

Technical Report TR-INF-2003-10-06-UNIPMN 8

Figure 1.7: DPFT modules

Technical Report TR-INF-2003-10-06-UNIPMN 9

Figure 1.8: Reduced PFT

not containing other modules) DPFTproc generates its XML representation
according to the same formalism adopted by DrawNET. Fig. 1.7 shows the
MDM's of the DPFT in Fig. 1.5

Each module XML representation is passed to XML�lter that modi�es
the XML code according to the formalism adopted by dpft2swn (translator
from DPFT to SWN), but keeping unaltered the module structure; the new
XML representation of each module is saved by XML�lter and loaded by
dpft2swn that translates the module in its equivalent SWN [9] and saves it
in the GreatSPN [12] format.

Now, for each requested time value, a transient analysis of each SWN is
performed by a speci�c solver (previously realized for the GreatSPN package)
asking for the probability of failure of the module at that time; the results
are collected by DPFTproc that for each time value replaces in the DPFT
each module with a basic event whose failure probability is equal to failure
probability of the module at that time; then, DPFTproc generates the XML
representation of the reduced PFT (now it is static).

This XML �le is taken in input by drawnet2sharpe [13] (previously re-
alized) that translates a PFT expressed in the DrawNET formalism in the

Technical Report TR-INF-2003-10-06-UNIPMN 10

Figure 1.9: DrawNET screenshot

Sharpe [14] formalism after having unfolded it; Sharpe is a tool for the anal-
ysis of several stochastic models and is able to deal with static FT's; Sharpe
is asked to perform the transient analysis of the reduced PFT (Fig. 1.8)
at the current time. The results calculated by Sharpe on the reduced PFT
for each time value are collected by DPFTproc that saves them in a speci�c
�le called tr_results; now DPFTproc ends and DrawNET visualizes in a
window what tr_results contains.

Fig. 1.9 shows how the DPFT in Fig. 1.5 appears in DrawNET with the
visualization of the results of the transient analysis on it.

1.2.1 Requirements

Since our tool is composed by several parts, also several directories of �les are
necessary to the tool to work; they are shown in Fig. 1.10. DPFT2SWN
contains:

� DPFTproc, XML�lter, dpft2swn, Add_Prob and drawnet2sharpe exe-
cutables;

� DPFTproc, XML�lter, dpft2swn, Add_Prob and drawnet2sharpe source
code;

Technical Report TR-INF-2003-10-06-UNIPMN 11

Figure 1.10: Tool directories

� temporary �les containing the XML representations of the modules and
of the reduced PFT;

� temporary �les containing the subnets generated for each gate of a
module by dpft2swn and later connected;

� the Sharpe version of the reduced PFT.

XML is a link to the directory where DrawNET is installed and where XML
representation of the drawn DPFT is saved by DrawNET ; nets is a link to
the directory containing GreatSPN nets; here, there are the SWN for each
module.

To run the tool some other tools and utilities need to be installed on the
system:

� GreatSPN package (to solve SWN)

� algebra (to compose the SWN's representing modules)

� Sharpe tool (to solve static fault trees)

� drawnet2sharpe to unfold and translate a PFT in its Sharpe version.

Chapter 2

DrawNET as Graphical Interface

DrawNET has been used as graphical interface for our tool to draw the
DPFT, to request the results (transient analysis) and to visualize them.
DrawNET has been adapted to support all of that and more speci�cally
it has been modi�ed in order to:

� load the DPFT formalism when DrawNET is run;

� execute the DPFT solver by clicking on Transient from the Execute
menu;

� visualize the results when the analysis has �nished.

DrawNET has been developed in Java language and is executed by run-
ning the DPFTedit class, included in the directory where DrawNET is
installed; the code of this class (DPFTedit.java) follows:

public class DPFTedit

{ public static void main(String[]args)

{

SolverDefinition[] SD = {

new SolverDefinition("Transient", "dpft_tr")};

JFrame f = new PrincipalFrame(new ToolDefinition(

new ModelToXML("xml"), "DPFT", SD));

f.show();

}

}

Using this class, DrawNET loads the DPFT formalism contained in the �le
named DPFT.xml and associate dpft_tr command to the click on Tran-
sient in the Executemenu; dpft_tr is a script that changes the working di-
rectory from the current (where DrawNET is installed) to the DPFT2SWN

12

Technical Report TR-INF-2003-10-06-UNIPMN 13

directory and runs DPFTproc; when DPFTproc ends, the script visualizes
the results by means of the command cat. The output of this script (the
transient analysis results) is shown by DrawNET in a window that appears
when the results become available.

2.1 DPFT formalism

This is what DPFT.xml contains:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE formalism SYSTEM "formalism.dtd">

<formalism parent="" name="PFT">

<propertyType name="Title" default=""/>

<nodeType parent="" name="Event0">

<propertyType name="Label" default=""/>

<propertyType name="Parameters" default=""/>

</nodeType>

<nodeType parent="Event0" name="Event"/>

<nodeType parent="Event0" name="BasicEvent">

<propertyType name="Distribution" default="ALL EXP 0.001"/>

</nodeType>

<nodeType parent="Event" name="ReplicatorEvent">

<propertyType name="DeclaredParameters" default=""/>

</nodeType>

<nodeType parent="BasicEvent" name="BasicReplicatorEvent">

<propertyType name="DeclaredParameters" default=""/>

<propertyType name="alfa" default="1"/>

</nodeType>

<nodeType parent="" name="TopEvent">

<propertyType name="Label" default=""/>

</nodeType>

<nodeType parent="" name="Gate"/>

Technical Report TR-INF-2003-10-06-UNIPMN 14

<nodeType parent="Gate" name="And"/>

<nodeType parent="Gate" name="Or"/>

<nodeType parent="" name="G2of3"/>

<nodeType parent="Gate" name="KofN">

<propertyType name="K" default="2"/>

<propertyType name="N" default="3"/>

</nodeType>

<nodeType parent="" name="PAND"/>

<nodeType parent="" name="SEQ"/>

<nodeType parent="Gate" name="FDEP"/>

<nodeType parent="" name="WSP"/>

<nodeType parent="" name="Parameter">

<propertyType name="ParameterName" default=""/>

<propertyType name="Cardinality" default="1"/>

</nodeType>

<nodeType parent="" name="Transient">

<propertyType name="lower" default="0"/>

<propertyType name="upper" default="1000"/>

<propertyType name="step" default="100"/>

</nodeType>

<edgeType parent="" name="Arc">

<constraint fromType="Gate" fromCardinality="1"

toType="Event" toCardinality="1"/>

<constraint fromType="WSP" fromCardinality="1"

toType="Event" toCardinality="1"/>

<constraint fromType="G2of3" fromCardinality="1"

toType="Event" toCardinality="1"/>

<constraint fromType="PAND" fromCardinality="1"

toType="Event" toCardinality="1"/>

<constraint fromType="SEQ" fromCardinality="1"

toType="Event" toCardinality="1"/>

Technical Report TR-INF-2003-10-06-UNIPMN 15

<constraint fromType="Gate" fromCardinality="1"

toType="TopEvent" toCardinality="1"/>

<constraint fromType="WSP" fromCardinality="1"

toType="TopEvent" toCardinality="1"/>

<constraint fromType="G2of3" fromCardinality="1"

toType="TopEvent" toCardinality="1"/>

<constraint fromType="PAND" fromCardinality="1"

toType="TopEvent" toCardinality="1"/>

<constraint fromType="SEQ" fromCardinality="1"

toType="TopEvent" toCardinality="1"/>

<constraint fromType="Event0" fromCardinality=""

toType="Gate" toCardinality=""/>

<constraint fromType="Event0" fromCardinality=""

toType="G2of3" toCardinality="3"/>

<constraint fromType="BasicEvent" fromCardinality=""

toType="WSP" toCardinality="2"/>

</edgeType>

<edgeType parent="" name="Order">

<propertyType name="No." default="0"/>

<constraint fromType="BasicEvent" fromCardinality=""

toType="PAND" toCardinality=""/>

<constraint fromType="Event" fromCardinality=""

toType="PAND" toCardinality=""/>

<constraint fromType="BasicEvent" fromCardinality=""

toType="SEQ" toCardinality=""/>

</edgeType>

<edgeType parent="" name="Trigger">

<constraint fromType="Event" fromCardinality=""

toType="FDEP" toCardinality="1"/>

<constraint fromType="BasicEvent" fromCardinality=""

toType="FDEP" toCardinality="1"/>

</edgeType>

</formalism>

DPFT.xml is an extension of PFT.xml [15] (previously realized) to include
the de�nition of dynamic gates and some special types of arc:

� Order: it allows to connect the input events to a PAND gate or a SEQ
gate and to assign them an order number (order of failure);

Technical Report TR-INF-2003-10-06-UNIPMN 16

� Trigger: it connects a trigger event to a FDEP gate in order to distin-
guish the trigger event from the dependent events that are connected
by an ordinary arc; a FDEP gate can have only one trigger event con-
nected to; a trigger event may be basic or not.

In every other case an ordinary arc is used; the WSP gate must have two
input events: a basic event to represent the failure of the main component
and a basic replicator event to represent the set of spares.

Respect to the previous PFT formalism (PFT.xml) [15] a new attribute
has been de�ned for the basic replicator event: alpha; alpha is the dormancy
factor of the spare components and must be assigned by the user when a basic
replicator event is connected to a WSP gate; if we assign to alpha 0, the
WSP gate is equal to a Cold Spare Gate (CSP) gate; if we assign to alpha
1, the WSP gate is equal to a Hot Spare Gate (HSP) gate.

This formalism contains also the de�nition of the transient analysis time
values: lower, upper, step.

Colour classes and subclasses do not appear in the formalism and must
not be associated to the parameters any more; only parameters must be
included in the DPFT drawing, while the corresponding colour classes and
subclasses will be generated automatically translating the DPFT modules in
SWN.

2.2 DrawNET windows

The version of DrawNET we use (DrawNET++) is composed by two win-
dows: the main window and the Property Page; the main window contains
the menus and allows us to draw the DPFT and execute the transient anal-
ysis; the Node menu (Fig. 2.1) contains all of the types of node a DPFT
may have, while the Edge menu (Fig. 2.2) contains every type of arc. Fig.
2.3 shows all of the available types of events while Fig. 2.4 shows all of the
gates (static and dynamic).

Property Page changes its aspect selecting an element of the DPFT (a
node or a arc) and shows the attributes relative to the selected element:

� some attributes must be speci�ed for the events as shown from Fig. 2.5
to Fig. 2.8;

� to every parameter (Fig. 2.9) a cardinality must be assigned to specify
the number of values the parameter can assume;

� Fig. 2.10 shows the Property Page for an edge of type Order with the
indication of the order number (in this case, 2);

Technical Report TR-INF-2003-10-06-UNIPMN 17

Figure 2.1: All of the types of node

Technical Report TR-INF-2003-10-06-UNIPMN 18

Figure 2.2: All of the types of edge

Figure 2.3: All of the types of events

Figure 2.4: All of the types of gate

Technical Report TR-INF-2003-10-06-UNIPMN 19

Figure 2.5: Property Page for A(i) basic event

Figure 2.6: Property Page for SP(h) basic replicator event

Figure 2.7: Property Page for SYS1 event

Figure 2.8: Property Page for SUB(i) replicator event

Technical Report TR-INF-2003-10-06-UNIPMN 20

Figure 2.9: Property Page for a parameter

Figure 2.10: Property Page for and Order arc

Figure 2.11: Property Page for transient analysis time values

Technical Report TR-INF-2003-10-06-UNIPMN 21

Figure 2.12: Results of the transient analysis

� in order to set the time values for the transient analysis the user has
to insert the transient icon (a clock) from the Node menu and the
Property Page will appear as in Fig. 2.11; here the user can modify the
time values setting the lower and the upper values and the step.

Clicking on Transient from the Execute menu, the transient analysis
starts and when it ends a window with the results will appear as in Fig. 2.12.

Chapter 3

The DPFT processor

DPFTproc is the core of our tool:

� it detects the modules of the DPFT and their nature;

� for each MDM, DPFTproc generates its XML representation and runs
the translators and the solver;

� it collects the results and generates the XML representation of the
reduced PFT;

� DPFTproc runs Sharpe on the reduced PFT and collects the �nal re-
sults for each time value.

3.1 DPFTproc parser

DPFTproc parser, for each line of the XML representation of the DPFT
generated by DrawNET, examines the initial tag identifying what that line
describes; for every possible tag the parser executes a speci�c procedure that
loads the attributes of the element (a node or a arc) in the corresponding
data structure.

The XML code generated by DrawNET for the DPFT in Fig. 1.5 follows:

<?xml version='1.0' encoding='UTF-8' standalone='no'?>

<PFT name='report' visibility='false' Title='technical_report'>

<TopEvent name='TE' visibility='false' Label=''/>

<Event name='SYS2' visibility='false' Label='SYS2' Parameters=''/>

<Event name='SYS1' visibility='false' Label='SYS1' Parameters=''/>

<Event name='SYS3' visibility='false' Label='SYS3' Parameters=''/>

<Or name='Or5' visibility='false'/>

22

Technical Report TR-INF-2003-10-06-UNIPMN 23

<PAND name='PAND6' visibility='false'/>

<Or name='Or7' visibility='false'/>

<Arc name='Arc4' visibility='false' from='Or5' to='SYS1'/>

<Arc name='Arc5' visibility='false' from='PAND6' to='SYS2'/>

<Arc name='Arc6' visibility='false' from='Or7' to='SYS3'/>

<ReplicatorEvent name='SUB(i)' visibility='false'

DeclaredParameters='i' Label='SUB' Parameters='i'/>

<And name='And10' visibility='false'/>

<BasicEvent name='A(i)' visibility='false' Distribution='ALL EXP 0.001'

Label='A' Parameters='i'/>

<BasicEvent name='C' visibility='false' Distribution='ALL EXP 0.001'

Label='C' Parameters=''/>

<Event name='D_F' visibility='false' Label='D_F' Parameters=''/>

<And name='And15' visibility='false'/>

<BasicReplicatorEvent name='D(k)' visibility='false'

DeclaredParameters='k' Distribution='ALL EXP 0.001'

Label='D' Parameters='k' alfa='1'/>

<Arc name='Arc7' visibility='false' from='SUB(i)' to='Or5'/>

<Arc name='Arc8' visibility='false' from='And10' to='SUB(i)'/>

<Arc name='Arc10' visibility='false' from='A(i)' to='And10'/>

<Arc name='Arc11' visibility='false' from='And15' to='D_F'/>

<Arc name='Arc12' visibility='false' from='D(k)' to='And15'/>

<Order name='Order13' visibility='false' from='C' to='PAND6' No.='1'/>

<Order name='Order14' visibility='false' from='D_F' to='PAND6' No.='2'/>

<BasicEvent name='E' visibility='false' Distribution='ALL EXP 0.001'

Label='E' Parameters=''/>

<Event name='Q_F' visibility='false' Label='Q_F' Parameters=''/>

<WSP name='WSP19' visibility='false'/>

<BasicEvent name='Q' visibility='false' Distribution='ALL EXP 0.001'

Label='Q' Parameters=''/>

<BasicReplicatorEvent name='SP(h)' visibility='false'

DeclaredParameters='h' Distribution='ALL EXP 0.001'

Label='SP' Parameters='h' alfa='0.1'/>

<Arc name='Arc15' visibility='false' from='E' to='Or7'/>

<Arc name='Arc16' visibility='false' from='Q_F' to='Or7'/>

<Arc name='Arc17' visibility='false' from='WSP19' to='Q_F'/>

<Arc name='Arc18' visibility='false' from='Q' to='WSP19'/>

<Arc name='Arc19' visibility='false' from='SP(h)' to='WSP19'/>

<Parameter name='i{1-3}' visibility='false'

Cardinality='3' ParameterName='i'/>

<Parameter name='j{1-3}' visibility='false'

Technical Report TR-INF-2003-10-06-UNIPMN 24

Cardinality='3' ParameterName='j'/>

<Parameter name='k{1-2}' visibility='false'

Cardinality='2' ParameterName='k'/>

<Transient name='Transient' visibility='false'

upper='1000' lower='0' step='100'/>

<Or name='Or33' visibility='false'/>

<Arc name='Arc24' visibility='false' from='Or33' to='TE'/>

<Arc name='Arc25' visibility='false' from='SYS1' to='Or33'/>

<Arc name='Arc26' visibility='false' from='SYS2' to='Or33'/>

<Arc name='Arc27' visibility='false' from='SYS3' to='Or33'/>

<BasicReplicatorEvent name='B(j)' visibility='false'

DeclaredParameters='j' Distribution='ALL EXP 0.001'

Label='B' Parameters='j' alfa='1'/>

<Arc name='Arc28' visibility='false' from='B(j)' to='And10'/>

<Parameter name='h{1-2}' visibility='false'

Cardinality='2' ParameterName='h'/>

</PFT>

The declarations in the XML code are in the same order the elements have
been drawn by the user; after having loaded every attribute in the lines of the
XML code, the parser examines every arc and connects the data structure of
every gate with the data structures of its input and output events by means
of pointers.

First, the trigger arcs are examined, connecting the trigger event of a
FDEP gate as the �rst input event; then the ordinary arcs are considered
and �nally the order arcs; if the user forgot to assign the order numbers to
the order arcs, the input events of a PAND or SEQ gate will be connected
in the order the arcs were drawn.

In the XML code there are also the time values (lower, upper, step)
speci�ed by the user for the transient analysis on the line identi�ed by the
<Transient> tag; if the user forgot to specify the time values, DPFTproc
initialize them as 0, 1000, 100.

3.2 Modules detection

A module is an indipendent subtree; we have a module when a subtree does
not share any node with other subtrees and it does not descend from a
dynamic gate (dynamic gates establish some kind of dependance on their
descendants).

To verify the �rst condition we use a linear algorithm [7]; this algorithm
was thought to be executed on traditional FT's (static and not parametric)

Technical Report TR-INF-2003-10-06-UNIPMN 25

and it does not consider the fact that some nodes may be shared by the e�ect
of the parameterization. For instance, in the DPFT in Fig. 1.5, SUB(i) seems
to share no nodes, but if we unfold it we can see that B(j) is shared between
SUB1, SUB2 and SUB3; so SUB(i) is not a module.

This algorithm does not even consider the dependencies given by the
dynamic gates; in Fig. 1.5, D_F is not a module because it descends from
a dynamic gate; a module may be a dynamic or static module if contains or
not at least one dynamic gate; a module of any nature is minimal if does not
contain any other module; for example SYS3 is a dynamic module but it is
not minimal because contains Q_F that is a module too.

A MDM is a module that contains some dynamic gates and does not not
contain any other module.

Modules detection starts using a linear time algorithm [7] adapted to
check also if an internal event descends or not from a dynamic gate [8] [16];
then for every module detected in this way a further control is done on its
parameters to verify if it is really a module: for each parameter associated
to the root of the candidate module we verify if it appears in every node of
the module; if it does, the candidate module is really a module, else there is
some shared nodes and it is not a real module.

At this point for each real module detected we perform another traversal
of it counting the number of dynamic gates and the number of modules it
contains; if it contains no module it is minimal; if it contains at least one
dynamic gate it is dynamic; if both conditions are satis�ed it is a MDM.

The MDM for the DPFT in Fig. 1.5 are in Fig. 1.7.

3.3 Transient Analysis by Modularization

For each MDM detected, DPFTproc generates its XML representation in
the same formalism adopted by DrawNET, adding automatically the colour
classes and subclasses associated to every parameter appearing in the DPFT;
for example the XML code for Q_F module is

<?xml version='1.0' encoding='UTF-8' standalone='no'?>

<PFT name='report_Q_F' visibility='false' Title='modulo_SSM_min_di_report'>

<ParameterType name='ParameterType1' visibility='false'

ParameterColor='C1' ParameterName='i'/>

<ParameterType name='ParameterType2' visibility='false'

ParameterColor='C2' ParameterName='j'/>

<ParameterType name='ParameterType3' visibility='false'

ParameterColor='C3' ParameterName='k'/>

Technical Report TR-INF-2003-10-06-UNIPMN 26

<ParameterType name='ParameterType4' visibility='false'

ParameterColor='C4' ParameterName='h'/>

<ColorClass name='C1' visibility='false' SubClassList='c11'

Ordered='false'/>

<ColorClass name='C2' visibility='false' SubClassList='c21'

Ordered='false'/>

<ColorClass name='C3' visibility='false' SubClassList='c31'

Ordered='false'/>

<ColorClass name='C4' visibility='false' SubClassList='c41'

Ordered='false'/>

<ColorSubClass name='c11' visibility='false' ElementList='i{1-3}/>

<ColorSubClass name='c21' visibility='false' ElementList='i{1-3}/>

<ColorSubClass name='c31' visibility='false' ElementList='k{1-2}/>

<ColorSubClass name='c41' visibility='false' ElementList='h{1-2}/>

<TopEvent name='TopEvent0' visibility='false' Label='TE'/>

<WSP name='WSP1' visibility='false'/>

<Arc name='Arc0' visibility='false' from='WSP1' to='TopEvent0'/>

<BasicEvent name='Q' visibility='false' Distribution='ALL EXP 0.001'

Label='Q' Parameters=''/>

<Arc name='Arc1' visibility='false' from='Q' to='WSP1'/>

<BasicReplicatorEvent name='SP(h)' visibility='false' PredSWN=''

DeclaredParameters='h' Distribution='ALL EXP 0.001' Label='SP'

PList='' Parameters='h' alfa='0.1'/>

<Arc name='Arc2' visibility='false' from='SP(h)' to='WSP1'/>

</PFT>

DPFTproc �rst writes in the XML �le the declarations about the parameters
and their colour classes and subclasses; all the parameters are declared even
though some of them are not used in the module. Then, DPFTproc considers
the root of the module and declares it as the Top Event; the declarations of
the descendent arcs and nodes follow.

Every module XML code is passed to XML�lter that translates it in the
dpft2swn formalism; in the case of the Q_F module, the new XML code is

<?xml version='1.0'?>

<!DOCTYPE TREE SYSTEM 'FaultTreeLast.dtd'>

<TREE name='report_Q_F'>

<TOP name='TE'/>

<DECL>

<CLASS_DECL name='C1' ordered=''>

<SBC name='c11' descr='i{1-3}'/>

</CLASS_DECL>

Technical Report TR-INF-2003-10-06-UNIPMN 27

<CLASS_DECL name='C2' ordered=''>

<SBC name='c21' descr='i{1-3}'/>

</CLASS_DECL>

<CLASS_DECL name='C3' ordered=''>

<SBC name='c31' descr='k{1-2}'/>

</CLASS_DECL>

<CLASS_DECL name='C4' ordered=''>

<SBC name='c41' descr='h{1-2}'/>

</CLASS_DECL>

<PARAM_DECL name='i' type='C1'/>

<PARAM_DECL name='j' type='C2'/>

<PARAM_DECL name='k' type='C3'/>

<PARAM_DECL name='h' type='C4'/>

</DECL>

<BE name='Q'>

<ALL/>

<DISTR type='EXP' description='0.001'/>

</BE>

<BE name='SP'>

<PARAM>h</PARAM>

<ALL/>

<DISTR type='EXP' description='0.001'/>

</BE>

<GATE type='wsp' name='wsp0'>

<INPUT name='Q'>

</INPUT>

<INPUT name='SP'>

<PARAM>h</PARAM>

<DECL_PARAM>h</DECL_PARAM>

</INPUT>

<OUTPUT name='TE'>

</OUTPUT>

</GATE>

</TREE>

dpft2swn formalism is more structurated than DrawNET formalism even if
it describes the same module; this XML �le begins with the declarations
of colour classes and subclasses followed by the parameters; then, there are
basic events declarations with their label and probability distribution; the
�le ends with gates declarations: for each gate there is the indication of its
name and type followed by its input events and its output event.

Technical Report TR-INF-2003-10-06-UNIPMN 28

XML�lter makes some adaptions too:

� for PAND and SEQ gates it declares their input events in the failure
order speci�ed by means of order arcs;

� for FDEP gate it declares �rst the trigger event followed by the depen-
dent events;

� for WSP gate it declares �rst the main component, then the spare
components set.

Now DPFTproc runs dpft2swn on each MDM new XML representation
in order to generate its SWN representation in GreatSPN [12] format; a �le
with extension .net (containing SWN places and transitions) and a �le with
extension .def (containing colour classes and subclasses) are created in the
nets directory for each module; since the .def �le must contain the result to
calculate on the net too, DPFTproc runs Add_Prob on it in order to add
the request of the module failure probability.

The .net �le contains both the logic and graphic description of a SWN;
the .net �le for the SWN corresponding to Q_F module follows:

|0|

|

f 0 5 0 5 1 0 0

Q_dn 0 3.000000 1.800000 3.000000 1.550000 0

SP_na 0 8.399998 4.700000 8.150000 4.450000 0 8.150000 4.950000 C4

SP_dn 0 8.399998 8.450000 8.150000 8.200000 0 8.150000 8.700000 C4

TE_dn 0 20.899998 1.800000 20.899998 1.550000 0

SP_curr 0 17.299998 3.300000 17.299997 3.050000 0 17.049997 3.550000 C4

G1 0.000000 0.000000 1

Q_f 0.001000 1 0 0 1 1.20 1.80 0.40 1.55 0.00 1.80 0

1

1 1 0 0

1

1 1 2 0

1.800000 2.400000

2.400000 2.400000

SP_fail_OFF 0.000100 1 0 0 1 3.0 4.7 2.75 4.45 2.75 4.9 0

2

1 3 0 0 -0.150000 0.090000 <h>

1 2 0 0 -0.150000 0.090000 <h>

1

Technical Report TR-INF-2003-10-06-UNIPMN 29

1 2 1 0 -0.150000 0.090000 <h>

3.250000 4.950000

SP_fail_ON 0.001000 1 0 1 0 17.30 1.80 17.05 1.55 17.05 2.00 0

1 5 0 0 -0.150000 0.090000 <h>

1

1 3 2 0 -0.150000 0.090000 <h>

17.120406 2.398641

8.472315 8.039657

0

Q_spare 1.000000 1 1 1 0 14.60 2.55 14.01 2.20 14.01 2.75 0

1 1 2 0

13.983502 2.447251

3.410343 1.872317

3

1 1 2 0

13.983502 2.447251

3.072317 1.389657

1 5 0 0 -0.150000 0.090000 <h>

1 2 2 0 -0.150000 0.090000 <h>

14.841334 3.126526

8.741196 4.460844

2

1 2 2 0 -0.150000 0.090000 <h>

15.041939 2.108058

8.472315 4.289657

1 5 1 0 -0.150000 0.090000 <S>

14.799998 2.350000

TE_fail 1.000000 1 1 2 1 19.10 1.80 18.60 1.45 18.60 2.00 0

1 2 2 0 -0.150000 0.090000 <S>

18.613277 2.192081

8.810341 4.772317

1 1 2 0

18.658057 1.358058

3.239156 2.141197

3

1 4 0 0

1 2 2 0 -0.150000 0.090000 <S>

18.613277 2.192081

8.576006 4.322333

1 1 2 0

18.658057 1.358058

Technical Report TR-INF-2003-10-06-UNIPMN 30

3.341197 1.560844

2

1 5 1 0 -0.150000 0.090000 <S>

19.099998 2.300000

1 4 1 0

19.599998 2.300000

The .def �le for the SWN corresponding to Q_F module contains the
result to calculate on it and the list of colour classes and subclasses:

|256

%

|prob 0.2 0.2 : p{#TE_dn=1};

|

(C1 c 0.500000 0.500000 (@c

u c11

))

(c11 c 0.700000 0.700000 (@c

i{1-3}

))

(C2 c 1.500000 0.500000 (@c

u c21

))

(c21 c 1.700000 0.700000 (@c

i{1-3}

))

(C3 c 2.500000 0.500000 (@c

u c31

))

(c31 c 2.700000 0.700000 (@c

k{1-2}

))

(C4 c 3.500000 0.500000 (@c

u c41

))

(c41 c 3.700000 0.700000 (@c

h{1-2}

))

At this point, every MDM is ready to be analyzed as a SWN; DPFTproc,
for each time value requested by the user makes these operations:

Technical Report TR-INF-2003-10-06-UNIPMN 31

� runs swn_sym_tr (SWN symbolic transient solver included in the
GreatSPN package) on each MDM SWN at the current time;

� looks for the result for each MDM in the .sta �le generated by swn_sym_tr
in the nets directory;

� replaces each MDM with a basic event whose failure probability is equal
to such result;

� generates the reduced PFT XML representation according toDrawNET
formalism; for instance, at time 1000 the reduced PFT (Fig. 1.8) XML
representation is

<?xml version='1.0' encoding='UTF-8' standalone='no'?>

<PFT name='report_TOP' visibility='false' Title='modulo_CSM_MAX'>

<ParameterType name='ParameterType1' visibility='false'

ParameterColor='C1' ParameterName='i'/>

<ParameterType name='ParameterType2' visibility='false'

ParameterColor='C2' ParameterName='j'/>

<ParameterType name='ParameterType3' visibility='false'

ParameterColor='C3' ParameterName='k'/>

<ParameterType name='ParameterType4' visibility='false'

ParameterColor='C4' ParameterName='h'/>

<ColorClass name='C1' visibility='false' SubClassList='c11'

Ordered='false'/>

<ColorClass name='C2' visibility='false' SubClassList='c21'

Ordered='false'/>

<ColorClass name='C3' visibility='false' SubClassList='c31'

Ordered='false'/>

<ColorClass name='C4' visibility='false' SubClassList='c41'

Ordered='false'/>

<ColorSubClass name='c11' visibility='false' ElementList='i{1-3}/>

<ColorSubClass name='c21' visibility='false' ElementList='i{1-3}/>

<ColorSubClass name='c31' visibility='false' ElementList='k{1-2}/>

<ColorSubClass name='c41' visibility='false' ElementList='h{1-2}/>

<TopEvent name='TopEvent0' visibility='false' Label='TE'/>

<Or name='Or1' visibility='false'/>

<Arc name='Arc0' visibility='false' from='Or1' to='TopEvent0'/>

<Event name='SYS1' visibility='false' Label='SYS1' Parameters=''/>

<Or name='Or2' visibility='false'/>

<Arc name='Arc1' visibility='false' from='Or2' to='SYS1'/>

<ReplicatorEvent name='SUB(i)' visibility='false' PredSWN=''

Technical Report TR-INF-2003-10-06-UNIPMN 32

DeclaredParameters='i' Label='SUB' PList='' Parameters='i'/>

<And name='And3' visibility='false'/>

<Arc name='Arc2' visibility='false' from='And3' to='SUB(i)'/>

<BasicEvent name='A(i)' visibility='false' Distribution='ALL EXP 0.001'

Label='A' Parameters='i'/>

<Arc name='Arc3' visibility='false' from='A(i)' to='And3'/>

<BasicReplicatorEvent name='B(j)' visibility='false' PredSWN=''

DeclaredParameters='j' Distribution='ALL EXP 0.001' Label='B'

PList='' Parameters='j' alfa='1'/>

<Arc name='Arc4' visibility='false' from='B(j)' to='And3'/>

<Arc name='Arc5' visibility='false' from='SUB(i)' to='Or2'/>

<Arc name='Arc6' visibility='false' from='SYS1' to='Or1'/>

<BasicEvent name='SYS2' visibility='false'

Distribution='ALL DET 0.168386965990' Label='MOD_SYS2'

Parameters=''/>

<Arc name='Arc7' visibility='false' from='SYS2' to='Or1'/>

<Event name='SYS3' visibility='false' Label='SYS3' Parameters=''/>

<Or name='Or4' visibility='false'/>

<Arc name='Arc8' visibility='false' from='Or4' to='SYS3'/>

<BasicEvent name='E' visibility='false' Distribution='ALL EXP 0.001'

Label='E' Parameters=''/>

<Arc name='Arc9' visibility='false' from='E' to='Or4'/>

<BasicEvent name='Q_F' visibility='false'

Distribution='ALL DET 0.098805271089' Label='MOD_Q_F'

Parameters=''/>

<Arc name='Arc10' visibility='false' from='Q_F' to='Or4'/>

<Arc name='Arc11' visibility='false' from='SYS3' to='Or1'/>

</PFT>

SYS2 and Q_F modules have been replaced by a basic event whose
failure probability is equal to the failure probability of the module at
time 1000.

� DPFTproc runs drawnet2sharpe on the reduced PFT XML representa-
tion, in order to generate the Sharpe version of it with the indication
of the current time; at time 1000 this is the Sharpe version:

ftree report_TOP

repeat MOD_SYS2 prob(0.168386965990)

repeat E exp(0.001)

Technical Report TR-INF-2003-10-06-UNIPMN 33

repeat MOD_Q_F prob(0.098805271089)

repeat B1 exp(0.001)

repeat B2 exp(0.001)

repeat B3 exp(0.001)

repeat A1 exp(0.001)

repeat A2 exp(0.001)

repeat A3 exp(0.001)

or SYS3 E MOD_Q_F

and SUB1 A1 B1 B2 B3

and SUB2 A2 B1 B2 B3

and SUB3 A3 B1 B2 B3

or SYS1 SUB1 SUB2 SUB3

or TOP SYS1 MOD_SYS2 SYS3

end

format 8

eval(report_TOP) 1000.00 1000.00 1000.00

end

Sharpe does not support PFT, so the PFT must be unfolded to the
corrisponding FT by drawnet2sharpe;

� DPFTproc runs Sharpe on the reduced PFT performing the transient
analysis at the current time; for 1000, Sharpe returns:

system report_TOP

t F(t)

1.00000000 e+03 7.90465249 e-01

� DPFTproc looks for the Sharpe result and appends it in the �le named
tr_results in the XML directory containing the �nal result for each
requested time value.

At the end of this cycle the transient analysis has been completed and
DPFTproc execution ends; tr_results is the �le that DrawNET visualizes
now in a window; in the case of our example, what this �le contains is shown
in Fig. 2.12.

There are two special cases where modularization can not be applied:

Technical Report TR-INF-2003-10-06-UNIPMN 34

� the whole DPFT is a minimal dynamic module (for instance the Top
Event is the output of a dynamic gate);

� the whole DPFT is a maximal static module (if the tree contains no
dynamic gate; it is really a PFT or a FT).

In the �rst case DPFTproc generates the SWN of the DPFT and performs
the transient analysis directly on it without modularization and subtrees
replacements; in the second case the transient analysis of the PFT will be
performed directly by Sharpe after having translated the PFT in its Sharpe
version by means of drawnet2sharpe.

Chapter 4

Dynamic Gates Translation in

SWN

This chapter is about the way dpft2swn translates dynamic gates into SWN;
for each dynamic gate we will see and comment its representation in SWN,
while about static gates (AND, OR, K:N) translation, some information can
be found in [15] (dpft2swn is an extension of pft2swn tool, previously realized,
able to translate PFT in SWN).

4.1 Priority And

Fig. 4.1 shows the Petri net for the gate in Fig. 1.1; the components A, B
and C are represented by the places with the same name; for instance, if a
token appear in A by means of A_fail timed transition, it means that A is
failed; the �ring rate of A_fail is equal to the failure rate of component A.

A token in the place named AB indicates that A and B are failed and
that A failed before B; a token in the place named ABC indicates that A,
B, C failed and they did in such an order (the gate has failed); a token in the
place named Oper indicates that the failure order has not been respected so
the gate has not failed (operative).

The transitions named pand_0 and pand_1 bring the token to ABC
if the order is respected; if it is not respected the transition pand_2 or
pand_3 puts a token in Oper inhibiting pand_0 and pand_1; this logic
can be applied to a PAND gate with two, three, four or more input events;
for example, if we exclude C from the PAND input events, the Petri net will
appear as in Fig. 4.2.

An input event to a PAND may be a basic event or an internal event; in
the second case we will have in the Petri net a subnet connected to the place

35

Technical Report TR-INF-2003-10-06-UNIPMN 36

Figure 4.1: Petri net for PAND gate with three input events

Figure 4.2: Petri net for PAND gate with two input events

Technical Report TR-INF-2003-10-06-UNIPMN 37

Figure 4.3: PAND gate with parameters

representing the internal event, instead of a timed transition.
dpft2swn does not support yet a PAND gate whose input event is a repli-

cated event; anyway a replicated event may be its output event or a PAND
gate may descend from a replicated event; in these cases, the input and
output events of the PAND gate may have some parameters associated to.

An example is the PAND gate in Fig. 4.3 where the output of the gate is
the replicator event R(i) whose parameter is i and the input basic events are
A and B having i as parameter too; this means that for each value of i, A(i)
must occur before B(i) to have the failure of R(i). Assuming that the colour
class associated with i is C1, the SWN for such a gate is shown in Fig. 4.4.

4.2 Functional Dependency Gate

Fig. 4.5 shows the Petri net for the gate in Fig. 1.2; a token representing the
failure may appear in A or B place (dependent components) by means of
fdep_2 or fdep_3 transition that �res when a token in T appears (T fails);
a token in A or B place may already be present because the component has
failed by its own.

fdep_1 transition �res when T fails, to represent the failure of the gate
whose state is equal to the state of the trigger.

FDEP gate may have a replicated dependent event as in Fig. 4.6 whose
corresponding Petri net is shown in Fig. 4.7; in this case, the function on
the arcs connecting fdep_2 transition to the coloured place D means that
every still working D(i) fails when the trigger event occurs.

Technical Report TR-INF-2003-10-06-UNIPMN 38

Figure 4.4: SWN for a PAND gate with parameters

Figure 4.5: Petri net for FDEP gate with two dependent input events

Technical Report TR-INF-2003-10-06-UNIPMN 39

Figure 4.6: FDEP with a replicated dependent event

Figure 4.7: Petri net for FDEP with a replicated dependent event

Technical Report TR-INF-2003-10-06-UNIPMN 40

Figure 4.8: Petri net for SEQ gate

4.3 Sequence Enforcing Gate

Fig. 4.8 shows the Petri net for the gate in Fig. 1.3; the �ring of the transition
representing the failure of B is enabled by the presence of a token in place A
(A is failed); in the same way the failure of C is enabled by the fault state of
B.

seq_1 transition �res when all input events occur, to represent the gate
failure; in such a Petri net the �rst input event to occur may be an internal
event instead of a basic event; in this case, a subnet would replace the timed
transition for the �rst input event.

dpft2swn does not support yet a SEQ gate whose input event is a repli-
cated event; anyway a replicated event may be its output event or a SEQ gate
may descend from a replicated event; in these cases, the input and output
events of the SEQ gate may have some parameters associated to.

An example is the SEQ gate in Fig. 4.9 where the output of the gate is
the replicator event R(i) whose parameter is i and whose input basic events
are A, B and C having i as parameter too; this means that for each value
of i, B(i) is forced to occur after A(i) and C(i) is forced to occur after B(i).
Assuming that the colour class associated with i is C1, the SWN for such a
gate is shown in Fig. 4.10.

Technical Report TR-INF-2003-10-06-UNIPMN 41

Figure 4.9: SEQ gate with parameters

Figure 4.10: SWN for a SEQ gate with parameters

Technical Report TR-INF-2003-10-06-UNIPMN 42

Figure 4.11: Petri net for WSP gate

4.4 Warm Spare Gate

Fig. 4.11 shows the Petri net for the gate in Fig. 1.4; in this case, the
main component is represented by the basic event P while the set of spares is
modeled as the basic replicator event SP whose parameter is i. We say that
a spare is available if it is not already failed or it is not already working.

Let's consider the places of this SWN:

� P_dn; a token here represents the failure of the main component;

� SP_curr is a coloured place with the same colour class of the set of
spares (C1); the presence here of a token whose colour is i means that
in this moment the main component is replaced by the i -th spare;

� WSP_fail; a token here means that the gate has failed;

� SP_na contains the coloured tokens relative to the spares that are
not available to replace the main component because they are already
working or they are failed.

Let's consider now the transitions of the SWN and their e�ects:

� P_f is a timed transition whose �ring means the main component
failure; it puts a token in P_dn and it does not �re any more;

� P_spare �res immediately when P fails and if there is at least an
available spare component; P_spare puts the coloured token corre-
sponding to an available spare in SP_curr and in SP_na in order

Technical Report TR-INF-2003-10-06-UNIPMN 43

Figure 4.12: WSP gate with shared spares

to model that the main component has been replaced and that the re-
served spare has changed to the working state; while there is a token
in SP_curr, P_spare can not �re another time;

� SP_fail_ONmodels the failure of the currently working spare; its �r-
ing rate is equal to the working failure rate of the spare; when this tran-
sition �res the coloured token disappear from P_curr, so P_spare
can �re again if there is at least an available spare;

� SP_fail_OFF is a timed transition to model the failure during the
dormancy state of an available spare; its �ring rate is equal to the
stand-by failure rate of the spare; its e�ect is putting in SP_na a
coloured token (the spare is now not available).

Assuming that for the basic replicator event representing the spares, � is
the failure rate and � is the dormancy factor, the �ring rate for SP_fail_OFF
transition will be ��; if � = 0, SP_fail_OFF will not appear in the SWN.
The �ring rate for SP_fail_ON will be �.

In the case of Fig. 1.4, there is one main component and a set of spares;
the spares may be shared by several main components as in the case of the
system Fig. 4.12; here, there is the parametric representation of a set of main
components that share a set of spares; a spare may replace any of the main
component and P_SP(j) occur when P(j) is failed and there are no available
spares.

The SWN for this gate has the same structure of the SWN in Fig. 4.11,
but some places are now coloured and some arc functions have been added,
as shown in Fig. 4.13 where the parameter j is associated to the colour class
C2; the modi�ed places are:

Technical Report TR-INF-2003-10-06-UNIPMN 44

Figure 4.13: SWN for WSP gate with shared spares

� P_dn has colour C2 and contains the coloured tokens relative to the
failed main components;

� SP_curr has now two colours in this order: C2, C1; when the j -
th main component fails, the transition P_spare puts a token in
SP_curr whose colour is <j,i> to indicate that the j -th main com-
ponent is now replaced by the i -th spare; at the same time, P_spare
puts a token whose colour is <i>, in SP_na to indicate that the i -th
spare is now not available; this transition can not �re again for the
same j until the current spare replacing the j -th main component does
not fail; this happens when the transition SP_fail �res;

� P_SP whose colour is C2 contains the tokens relative to the main
components that can not be replaced because there are no available
spares.

In the case of shared spares we may have more than one spare working at the
same time, but any main component is always replaced by only one spare.

4.5 Modules composition

In the previous sections we explained how dpft2swn translates in SWN every
dynamic gate, but in our tool we must translate in SWN some modules, not
only dynamic gates; dpft2swn generates a SWN for each gate of a module;
at this point the tool called algebra is run to connect all the SWN's together
composing the SWN representing the whole module.

Technical Report TR-INF-2003-10-06-UNIPMN 45

Figure 4.14: SWN for module SYS2

Let's consider the DPFT in Fig. 1.7 and its MDM named SYS2; it is
composed by two gates: PAND, AND; its resulting SWN is shown in Fig.
4.14 where the SWN relative to the AND gate is connected to the SWN
relative to the PAND gate by the place named D_F.

On this SWN the transient analysis will be performed for every requested
time value.

Bibliography

[1] J. Bechta Dugan, S.J. Bavuso, and M.A. Boyd. Dynamic fault-tree
models for fault-tolerant computer systems. IEEE Transactions on Re-
liability, 41:363�377, 1992.

[2] R. Manian, D.W. Coppit, K.J. Sullivan, and J.B. Dugan. Bridging the
gap between systems and dynamic fault tree models. Proceedings IEEE
Annual Reliability and Maintainability Symposium, pages 105�111, 1999.

[3] W.G. Schneeweiss. The Fault Tree Method. LiLoLe Verlag, 1999.

[4] A. Bobbio, G. Franceschinis, R. Gaeta, and L. Portinale. Parametric
fault-tree for the dependability analysis of redundant systems and its
high level Petri net semantics. IEEE Transactions Software Engineering,
29:270�287, 2003.

[5] A. Bobbio, G. Franceschinis, L. Portinale, and R. Gaeta. Dependability
Assessment of an Industrial Programmable Logic Controller via Para-
metric Fault-Tree and High Level Petri Net. In Proceedings 9th Inter-
national Workshop on Petri Nets and Performance Models - PNPM01,
pages 29�38. IEEE Computer Society, 2001.

[6] A. Bobbio, G. Franceschinis, L. Portinale, and R. Gaeta. Exploiting
Petri Nets to Support Fault-Tree Based Dependability Analysis. In 8-
th International Conference on Petri Nets and Performance Models -
PNPM99, pages 146�155. IEEE Computer Society, 1999.

[7] Y. Dutuit and A. Rauzy. A linear-time algorithm to �nd modules of
fault tree. IEEE Transactions on Reliability, 45:422�425, 1996.

[8] A. Anand and A. Somani. Hierarchical analysis of fault trees with de-
pendencies, using decomposition. Proceedings IEEE Annual Reliability
and Maintainability Symposium, pages 69�75, 1998.

46

Technical Report TR-INF-2003-10-06-UNIPMN 47

[9] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic
Well-Formed coloured nets and multiprocessor modelling applications.
In K. Jensen and G. Rozenberg, editors, High-Level Petri Nets. Theory
and Application. Springer Verlag, 1991.

[10] V.Vittorini G.Franceschinis M.Gribaudo M.Iacono C.Bertoncello.
DrawNet++: a Flexible Framework for Building Dependability Mod-
els. Proceedings International Conference on Dependable Systems and
Networks, 2002.

[11] V. Vittorini, G. Franceschinis, M. Gribaudo, M. Iacono, and N. Maz-
zocca. DrawNet++: Model objects to support performance analysis and
simulation of complex systems. In Proceedings 12th International Con-
ference on Modelling Tools and Techniques for Computer and Communi-
cation System Performance Evaluation (TOOLS 2002), pages 233�238,
London, 2002. Springer Verlag - LNCS, Vol 2324.

[12] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7:
Graphical Editor and Analyzer for Timed and Stochastic Petri Nets.
Performance Evaluation, 24:47�68, November 1995.

[13] D. Codetta Raiteri. drawnet2sharpe & sharpe2astra User's manual.
http://143.225.250.111/Iside/, 2002.

[14] R.A.Sahner K.S.Trivedi A.Pulia�to. Performance And Reliability Anal-
ysis Of Computer Systems; An Example-Based Approach Using the
SHARPE Software Package. Kluwer Academic Publishers, 1996.

[15] C.Bertoncello. ptf2swn: technical report, http://143.225.250.111/iside/,
2001.

[16] D. Codetta Raiteri. Sviluppo di Formalismi per Alberi dei Guasti con
Nodi Dipendenti e Riparabili. Master's thesis, Università degli Studi del
Piemonte Orientale �Amedeo Avogadro�, A. A. 2001-2002.

