Dipartimento di Informatica
Universita del Piemonte Orientale ” A. Avogadro’
Spalto Marengo 33, 15100 Alessandria
http://www.di.unipmn.it

?

universita
degli studi
del piemonte
orientale

TECHNICAL REPORT TR-INF-2003-12-07-UNIPMN
(October 2003)

Fault Tolerance in Grid Environment

Author: Massimo Canonico (canonico@mfn.unipmn.it)



Abstract

Computational Grids have the potential to become the main execution plat-
form for high performance and distributed applications. However, such sys-
tems are extremely complex and prone to failures.

The scientific literature proposes different approaches to realize fault
tolerance in Grid environments. In this paper, we present the state of the
art describing the main projects studied.

1 Introduction

The Grid environment refers to the Internet-connected computing environ-
ment in which computing and data resources are geographically dispersed
in different administrative domains with different policies for security and
resource uses. The computing resources are highly heterogeneous, ranging
from single PCs and workstations, cluster of workstations, to supercomput-
ers. With Grid technologies it is possible to construct large-scale applica-
tions over the Grid environment.

Failures or error conditions due to the inherently unreliable nature of the
Grid environment include hardware failures (e.g., host crash, network parti-
tion, etc), software errors (e.g., memory leak, numerical exception, etc) and
other source failures (e.g., machine rebooted by the owner, network conges-
tion, excessive CPU load, etc).

Grid applications should be able to handle failures which are sensitive to
task context, what we call task-specific failures. Each task has its own fail-
ure semantics; that is, failure definition and failure handling strategies are
specific to the task. These task-specific failures as well as failures in the
Grid environment should be able to be detected and handled in a variety
of ways depending on the execution semantics of both the task and overall
Grid application:

e if the task is not completed within 30 minutes, allocate a new resource
and restart;

e if not enough disk space remaining, terminate the task in advance,
and either restart it on a machine with significantly more disk space,
or retry in the same machine, but with a different algorithm which
requires less disk space;

e for long running task, checkpoint periodically and, in case of failure,
restart from the last good state;

e in case of a task running on unreliable execution environments, have
multiple replicas of the task run on different machines, so that as long
as not all replicated task fail, the task will succeed to execute;

e in other case, undo the effect of the failed task and retry.



The development of Grid application is difficult due to the complexity of
both the underlying Grid environment and the application themselves. Cod-
ing manually those task-specific failure detection and failure handling pro-
cedures within the application is not a viable solution because it makes
the design and development of Grid applications much more complicated.
In addition, this approach requires application programmers to start from
scratch by embedding fault tolerance procedures inside the application code
in an ad hoc manner each time-consuming, error-prone, and inflexible. The
scientific literature proposes different approaches to realize fault tolerance
in Grid environments. In the next section, we present the state of the art
describing the main projects studied.

2 Approaches

The main contributions about fault tolerance in Grid computing are Grid
Workflow [1] (from University of Southern California) and WP4 European
DataGrid project [2]. Let’s describe them.

2.1 Grid Workflow System (Grid-WFS)

Grid Workflow is a flexible failure handling framework which addresses the
requirements for fault tolerance in the Grid such as support for diverse failure
handling strategies, separation of failure handling strategies from application
codes, and task-specific failure handling. The Grid-WF'S is implemented as
a standalone application on top of the Globus Toolkit [6] v2.0. Grid-WFS
consists of three major components:

e a Workflow Process Definition Languages using XML (XML WPDL)
that allows users to define workflow process specification in a Directed
Acyclic Graph (DAG) form;

e a Workflow Engine that controls workflow execution by navigating the
workflow specifications, submitting tasks to specified Grid nodes, and
monitoring the status of submitted tasks;

e Workflow runtime service that provide directory services necessary for
the workflow engine to perform resource brokering during the workflow
execution, including software, data and resource category services.

The Grid-WFS allows users to achieve failure recovery in a variety of ways
based on the requirements or constrains of their applications following de-
tection of the two failure levels (Figure 1):

e Task-Level techniques refer to recovery techniques that are to be ap-
plied in the task level to mask the effect of task crash failures. These



techniques realize the so-called masking fault tolerance techniques such
as retrying, checkpointing and replication.

o Workflow-level techniques refer to recovery techniques that enable the
specification of failure recovery procedures as part of application struc-
ture. These techniques realize the so-called nonmasking fault tolerance
techniques such as alternative task; basically, these techniques allow
alternative task to be launched to deal with not only user-defined ez-
ceptions but also the failure that task-level techniques fail to mask
(e.g., due to not enough redundant resources) in the task level.

Use of
workflow

; . structure
Failures in atask

* host crash “Task el
* network partition - retrying
* machine rebooted Use of T shel i

* goftware bug “ heartheat & - replication
* out of disk space fadure R
7/ event notification

* network congestion -
mechanism

* Workflow level
_| - allemative task
- redundancy

Generic failure

T detection

service

Flexible failure
handling
framework

Figure 1: Overview of Grid-WFS

Some examples about how to realize these failure handling levels following.

Task-Level Failure Handling Examples

There are different way to prevent task crash failures:

Retrying: this might be the simplest failure recovery techniques to use
in hope that whatever cause of failures will not be encountered in
subsequent retries. Figure 2 illustrates a XML WPDL example of
retrying.



<Activiti na.me interval="10
<Input> ... </Inpm

<Output> ... </Output>
<Implement>sum</Implement>
<fActivity>

<Program name=’sum’>
<Option host.na_me

gervice=’jobmanager’
executableDir=’/XML/EXAMPLE/ />
executable=’sum’ />

</Program>

Figure 2: This XML WPDL fragment describes that if the task crash failure
is detected, this particular task named ’summation’ would be retried on the
specified Grid resource (i.e., whose hostname is "ramses.mfn.unipmn.it”) up
to 3 times with a interval of 10 seconds between tries.

Replication: the basic idea of this failure handling technique is to have
replicas of a task run on different Grid resources, so that as long as not
all replicated tasks crash (due to host crash, host partition away from
the Grid client, etc), the task execution would succeed. The following
XML WPDL example shows how specify 3 different resources where
execute the ’summation’ task:

<Activiti name=’summation’ policy=’replica’>

<Implement>sum</Implement>
</Activity>

<Program name=’sum’>

<Option hostname=’ramses.mfn.unipmn.it’/>
<Option hostname=’shrek.mfn.unipmn.it’/>
<Option hostname=’alice.mfn.unipmn.it’/>
</Program>

Checkpointing: many checkpoint libraries and program development li-
braries which support checkpointing are available in Grid-WFS (i.e.,
Dome [3], Fail-safe [4] and CoCheck [5] are examples of such program).
With these checkpointing facilities, checkpoint-enable applications can
be developed simply by linking to them.



WorkFlow-Level Failure Handling Examples

The failure handling techniques that could be applied in the workflow level
are:

Alternative task: a key idea behind this failure technique is that when
a task has failed, an alternative task is to be performed to continue
the execution, as opposed to the retrying technique where the same
task is to be repeated over and over again which may never succeed.
Also in this case there are specific XML tags that permit to define
behaviors like if the Fast_Unreliable_Task has failed, run the alternative
task version that could called Slow_Reliable_Task;

redundancy: as opposed to the task-level replication technique where same
tasks are replicated, having multiple different tasks run in parallel for a
certain computation is the basic idea of this technique. Thus, as long
as at least one task has finished successfully, then the computation
would succeed;

user-defined: this technique allows users to give a special treatment to a
specific failure of a particular task. For example, the Slow_Realiable_Task
is specified to be activated to handle a task-specific failure (i.e., a user-
define exception called disk_full) that might arise during the execution
of Fast_Unreliable_Task. Some experiments show that in heterogeneous
computing environments like the Grid, it appears to be essential to
support multiple fault tolerance techniques and user-defined excep-
tion handling in order to achieve high performance as well as fault
tolerance in presence of failures.

Grid-WF'S demonstrates trough experiments [1] that in heterogeneous com-
puting environments like the Grid, it appears to be essential to support
multiple fault tolerance techniques and users-defined exception handling in
order to achieve high performance as well as fault tolerance in the presence
of failures.

2.2 DataGrid: Fabric Monitoring and Fault Tolerance

The DataGrid Project aims at enabling next generation scientific explo-
ration which requires intensive computation and analysis of shared large-
scale databases(millions of Gigabytes), across widely distributed scientific
communities. "DataGrid” is funded by European Union. In this project,
the Work Package 4(WP/) is dedicated to the Fabric Monitoring and Fault
Tolerance (FMFT) that provides the framework for monitoring of perfor-
mance, functional and environmental changes for all resources contained in
a fabric. The framework contains a global distributed repository for all mon-
itoring measurements and a well-defined interface to plug-in data analysis



routines (Correlation Engines) that regularly check that measurements are
within configured limits and trigger alarms or automatic recovery actions in
case they are not. The FMFT system consists of two parts:

e the monitoring framework for gathering, transporting, storing and ac-
cessing monitoring information;

e 3 basic set of monitoring sensors, fault tolerance correlation engines
and the recovery actuators.

The advantage of using monitoring is to get a history record of changes and
their timestamps, which will allow for detailed tracing of problems. The
monitoring measurements are stored in such a way as to allow for efficient
retrieval with a triplet key (node, metrics, time). The impact of running
the monitoring and fault tolerance components on the monitored resources
must be under control of the monitoring system itself, limiting the resource
utilization of the controlled sensors.

Functionality
The monitoring framework part of the FMFT subsystem consists of:

Monitoring Sensor Agent (MSA): the MSA is responsible for calling
the monitoring sensors, receiving the measurement data from the sen-
sors and assuring that the data is forwarded to the Measurement
Repository;

A Measurement Repository (MR): the MSAs insert the monitoring mea-

surements into the MR where the information is stored together with
a timestamp. The MR consists of a client API and a global repos-
itory server. The client API provides methods for inserting data in
the repository and a metric-subscription/notification mechanism for
clients to subscribe to metrics and be notified every time those metrics
have been measured. The latest measurements are cached in persistent
local storage (disk), which ensures autonomy for the Fault Tolerance
components that are local to the node in case the network is unreach-
able.

Monitoring User Interface (MUI): the MUI provides an easy-to-use graph-
ical interface to the measurement repository. It automatically queries
the Configuration Management subsystem for high-level configuration
information and presents the user with comprehensive views of the
monitoring information, for instance health and status displays for
entire services rather than individual nodes.

Monitoring Sensor (MS): An MS is an implementation of the Monitor-
ingSensor interface that performs the measurements of one or several



metrics. The MS is typically driven by rules stored in the Configura-
tion Management subsystem. A given MS implementation can thus
be used for several similar metrics, e.g. a single daemon dead sensor
can be used to monitor the running of several daemons. The MS pro-
vides the plug-in layer for any data producer to insert its data into the
monitoring system.

The fault tolerance part of the FMFT subsystem consists of:

Fault Tolerance Correlation engine (FTCE): The FTCE is the active
correlation engine of the FMFT subsystem. The FTCE runs as a dae-
mon process on all nodes and should be implemented to be robust to
most system component failures. The FTCE processes measurements
of one or several metrics stored in the MR to determine if something
has gone wrong or is on its way to go wrong on the the system and if
so, determines what recovery actions are needed, and call the Actua-
tor Dispatcher to launch the those actions. The FTCE implements the
MonitoringSensor interface and is sampled by the MSA as a normal
sensor. The output metrics values contain normally a Boolean that
reflects if any fault tolerance actuators were launched, and if so, the
identifiers of the actuators and their return status. The FTCE process-
ing for a given metric is triggered either through a periodic sampling
request from the MSA or through the metric - subscription/notification
mechanism provided by the MR;

Actuator Dispatcher(AD): The AD is used by the FTCE to dispatch
fault tolerance actuators. It consists of a client API and an agent
that controls all actuators on a local system. The AD agent does not
maintain any permanent channel to the requester. Instead the client
API returns a unique handle for each dispatch request and is able to
return the status of any dispatched actuator given the unique handle.
The completion status of a dispatched actuator can be retrieved asyn-
chronously. The running of the actuators is serialized so that only at
most one actuator can run at any given time. The received requests
are queued for FIFO scheduling. Certain dispatcher requests, e.g. im-
mediate shutdown due to hardware failure, are allowed to bypass the
normal queue;

Fault Tolerance Actuator (FTA): An FTA is an implementation of the
FaultToleranceActuator interface that executes automatic recovery ac-
tions. The FTA is typically driven by rules stored in the Configuration
Management subsystem. A given FTA implementation can thus be
used for several similar recovery actions, e.g. a single daemon restart
FTA can be used to call a restart method in the Software Package
(SP) class of all software packages that are installed on the node. The



FTA is dispatched by the AD agent. Since the FTA may trigger a
reboot of the system, there is no open channel between the FTA and
the AD agent and the return status must be stored in permanent local
storage. For the same reasons the FTA notifies the AD agent when
the return status is available.

Human operator host

ML

Central repository Service master node

¥
5 "

MR server B—
Data Y FICE
Base

F

e

Local node

MR ™ FTCE h AD
- - °
MSA - == Contol flow
! :
: ? *f P Data fow

Figure 3: Deployment view of the fabric monitoring and fault tolerance
components

Figure 3 shows the deployment view of the fabric monitoring and fault tol-
erance components together with the information flow. As can be seen the
MR part managing the cache on the local node is contained in the same pro-
cess as the MSA. The FTCE runs both on locally and centrally. The local
FTCE handles all actions, which can be decided locally. The central FTCE
runs on, for instance, a cluster master, and it handles actions, which have
to be correlated between several nodes (e.g. all CPU nodes in the cluster).

3 Conclusion

Fault tolerance is one of the most important open problem in Grid environ-
ment but the scientific literature proposes only two projects.



The system presented in the DataGrid proposal is dated November 2001.
After this date no more documentation has been produced and there isn’t a
implementation of what they proposed. Besides, the documentation is really
superficial:

e it does not explain what measurements are stored in the Measurement
Repository(MR);

e it does not explain how FTA (Fault Tolerance Actuator) detects a
fault querying the MR;

On the contrary, the Grid-Workflow project is definitely in an advanced
status. The system describes in section 2.1 has been implemented as stan-
dalone application over Globus Toolkit v.2.0 (GTK2.0). Besides, the re-
searchers of University of Southern California have tested the Grid-Workflow
in a simulated environment [1]. The simulations have provided interest-
ing results, varying different parameters (i.e., fault rate, checkpoint time,
replications number) using different application (i.e., jobs with long/short
completion time). The results show that:

o for high failure rate the best fault tolerance technique is checkpointing
with replication;

o for low failure rate the best fault tolerance technique is only replication;

In the second case, the use of checkpointing with or without replication
mechanism as a recovery policy appears to be inappropriate due to the
checkpoint overhead. Different tasks needs different techniques to manage
faults.

A contribution for the fault tolerance in Grid environment could be the
study and the development of an infrastructure that provides Grid appli-
cations with QoS requirements concerning not only absolute performance,
but also reliability/availability requirements. More specifically, this infras-
tructure will include a set of fault tolerance mechanisms able to provide the
desired reliability /availability level, a monitoring component in charge of de-
termining the overhead that the various mechanisms induce on application
execution, and a scheduler able to select, for a given application and QoS
requirements, the set of resources that best satisfy the application needs.
Traditionally performances and reliability are considered two independents
aspects, whose interaction is not considered when choosing the resources
where the application will run. Consequently, if the chosen resources become
unavailable after the execution is started, application performance may be
much lower than expected. To solve this problem, we will pursue a differ-
ent approach in which reliability and performances are simultaneously taken
into account when making scheduling decisions. More specifically, we will
develop a software infrastructure supporting different fault tolerance mech-
anisms (based on hardware and/or software replication), that will include a



scheduler able to choose automatically, for each application, the best suited
mechanism to its needs. In our approach the user will be given the possi-
bility of specifying the quality of service both in terms of performance and
reliability (for instance, (s)he could require that the application completes
its execution within a given time with a given probability). The scheduler
will use the information concerning the real status of the resources, their
expected availability, and the overhead of each fault tolerance mechanism to
select the set of resources that satisfy to the maximum possible extent the
user QoS requirements. If these requirements cannot be met, the scheduler
will compute some alternatives, that may be inferior in terms of performance,
reliability, or both, that will be presented to the user, that in this way will
be able to decide whether it is better to accept this lower QoS and start
the application immediately, or to wait until additional/different resources
become available. Besides, each resource has a utilization cost and each user
has a available budget. The scheduler must choose the ”best resource” for
each job considering performances, reliability but also the available budged
of the job submitter. To develop the scheduler, we plan to investigate the
use of mathematical models, based on formalisms of various nature (e.g.,
Petri nets and queuing networks), whose parameters will be instantiated by
measurements collected by means of a suitable monitoring infrastructure.

10



References

[1] S. Hwang, C. Kesselman. Grid Workflow: A Flezible Failure Handling
Framework for the Grid. June 2003.

[2] G. Cancio, O. Barring. DataGrid: Architectural design and evaluation
criteria. WP/ Fabric Management. November 2002.

[3] A. Beguelin, E. Seligman, and P.Stephan. Application level fault toler-
ance in heterogeneous networks of workstations. June 1977.

[4] J. Leon, A. L. Fisher, and P. Steenkiste. Fail-safe pvm: A portable
package for distributed programming with transparent recovery. Febru-
ary 1993.

[6] G. Stellner. Cocheck: Checkpointing and process migration for mpi. April
1996.

[6] http://www.globus.org.

11



