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Abstract

Integrating different reasoning modes in the construction of an intelligent system is one of
the most interesting and challenging aspects of modern Al. Exploiting the complementarity
and the synergy of different approaches is one of the main motivations that led several re-
searchers to investigate the possibilities of building multi-modal reasoning systems, where dif-
ferent reasoning modalities and different knowledge representation formalisms are integrated
and combined. Case-Based Reasoning (CBR) is often considered a fundamental modality
in several multi-modal reasoning systems; CBR integration has been shown very useful and
practical in several domains and tasks. The right way of devising a CBR integration is how-
ever very complex and a principled way of combining different modalities is needed, in order
to gain the maximum of efficacy and efficiency for a particular task. In the present paper
we present results (both theoretical and experimental) concerning architectures integrating
CBR and Model-Based Reasoning (MBR) in the context of diagnostic problem solving. We
first show that both an MBR approach to diagnosis and a CBR one may suffer from com-
putational intractability, and therefore a careful combination of the two approaches may be
useful to reduce the computational cost in the average case. A main contribution of the
paper concerns the fact that we analyze the different facets that may influence the whole
performance of a multi-modal reasoning system, namely computational complexity, system
competence in problem solving and the quality of the sets of produced solutions. We show
that an opportunistic and flexible architecture able to estimate the right cooperation among
modalities can exhibit a satisfactory behavior with respect to every performance aspect. An
analysis of different ways of integrating CBR is performed both at the experimental and at
the analytical level. On the analytical side, a cost model and a competence model able to
analyze a multi-modal architecture through the analysis of its individual components are
introduced and discussed. On the experimental side, a very detailed set of experiments has
been carried out, showing that a flexible and opportunistic integration can provide significant
advantages in the use of a multi-modal architecture.



1 Introduction

The difficulty of representing in a single formalism all the kinds of knowledge about a complex
system (e.g. an artifact) and of defining efficient reasoning mechanisms for solving problems
in demanding tasks such as diagnosis and planning are well know problems. These problems
have received a significant amount of attention in the past and there has been a recent impulse
in the study of multi-modal reasoning systems, because of the importance of devising flexible
architectures able to integrate and combine different reasoning modalities [3, 19, 49]. The main
motivation for integrating different reasoning methods and styles is to exploit complementarities
and achieve a synergy which produce results that could not be obtained by using each reasoning
mode individually [43]. A reasoning modality that is considered fundamental in several multi-
modal systems is certainly Case-Based Reasoning (CBR) [23, 1, 17]. The design of a multi-modal
architecture very often provides reasoning components able to perform CBR in a combined way
with other reasoning modes [3, 19, 43, 2]; this is so evident in both theoretical research and
applications that the name CBR integrations is now currently used to identify an explicit research
subfield of CBR [29]. A number of possible CBR integrations has been investigated considering
almost every kind of automated reasoning paradigm, ranging from rule-based reasoning, to
model-based reasoning, constraint satisfaction, soft computing etc...

However, the experience gained in developing such a kind of multi-modal reasoning systems
pointed out that approaches based on multiple representations require the solutions to not easy
problems; among them, the selection of specific representations which can be actually useful for
the task at hand and the way different representations are used (and when) by a problem solver,
in order to gain the maximum of efficacy and efficiency for a particular task [19]. As pointed
out in [29], these problems reflect in two open issues concerning CBR integrations:

e determining to what extent different reasoning modalities need different knowledge repre-
sentations and how such representations are integrated;

e finding the best system architecture for the integrated system.

In the present paper we aim at addressing the above issues, by taking into consideration a specific
kind of CBR integration, namely the combination of CBR with Model-Based Reasoning (MBR)
applied to diagnostic tasks. In particular, we propose a principled way of integrating CBR and
MBR for diagnosis, based on both a theoretical and experimental analysis. An important reason
supporting the approach is that a principled integration can provide significant performance
advantages. The inherent complexity of the reasoning mechanisms involved in first principle
systems makes their problem solving activity very heavy from a computational point of view if
real-world domains are taken into consideration [12, 40]. For this reason a number of approaches
for speeding-up problem solving have been proposed and the benefits of supplementing a first-
principle problem solver (theoretically able to solve any solvable problem in the modeled domain)
with a case-based component were made apparent by the experimental analysis of some of the
early systems complementing reasoning from first-principle with CBR (e.g. CASEY [24], KRITIK
[20], PRODIGY-ANALOGY [50]).

On the other hand, an in-depth theoretical analysis of the reasoning mechanisms involved
in re-using past solution shows that there is not always the guarantee of improving problem
solving from the computational point of view. The seminal work by Nebel and Koehler on
case-based planning showed that the theoretical computational complexity of re-using plans



of previously solved problems is at least as hard as generating the plans from scratch, when
a conservative approach is taken [31]. The problem is not peculiar to planning: in [33], we
carried on a theoretical analysis for diagnostic problem solving by comparing a model-based
approach (where a problem is solved from scratch) with an approach involving re-use of the past
solutions, showing results very similar to those obtained in [31]. Then it becomes important to
investigate under which conditions a multi-modal approach combining a case-based component
with a problem solver from first-principle provides better performance than just a first-principle
problem solver alone.

The main goal of the paper is to show that a principled way for integrating a case-based
reasoning component in a multi-modal architecture is needed, in order to take into account
all the performance facets of the global architecture. In particular we emphasize that there is
no single parameter able to capture the different aspects of the system performance. In fact,
one could consider the ability of the system to solve different types of problems, the resources it
needs for solving the problem (both in term of time and space) and the quality of the solutions it
produces. Any kind of mechanism for improving a performance facet has to take into account the
utility problem [30]; this is the arising of performance degradation in a knowledge-based system
when knowledge is added in a undistinguished way to its knowledge base, without considering
the actual usefulness of such a knowledge (i.e. searching for the right chunk of knowledge to
use may override the benefits of having more knowledge available). The utility problem affects
most approaches, having in particular a strong impact on CBR (where it is called the swamping
problem) [18, 41] and on multi-modal architectures involving CBR [34, 38, 48].

In the present paper we present results (both theoretical and experimental) concerning ar-
chitectures integrating Case-Based Reasoning (CBR) and Model-Based Reasoning (MBR) in the
context of diagnostic problem solving. In particular, we stress the following points:

e different modalities (CBR and MBR in our case) must share some common knowledge
representation mechanism, in order to successfully cooperate: in our case the model used
to perform MBR is also used by the CBR component for every task involving adaptation
(namely adaptation-guided retrieval and solution adaptation itself);

e an opportunistic and flexible architecture able to estimate the right modality or cooper-
ation among modalities can provide significant advantages with respect to every perfor-
mance facet.

As concerns theory, having characterized in a formal way the notion of model-based diagnosis
in Section 2, in Section 3 we summarize results on the computational complexity of solving
diagnostic problem by adopting a pure MBR approach with respect to the computational com-
plexity of re-using and adapting solutions of previously solved problems. In Section 4, we sketch
the basic architecture of ADAPtER, a diagnostic system based on a multi-modal reasoning
approach, combining CBR and MBR in such a way that the basic reasoning mechanisms used
by the MBR component for solving a problem from scratch, can be used in a focused way by
the CBR component to implement the classical adaptation step. This realizes a master/slave
integration [29] where CBR is the main reasoning component and MBR is essentially used to fill
competence gaps of the case-base and to guide the adaptation step of the CBR cycle.

The analysis of this kind of integration, with respect to the various performance dimensions
related to the utility problem, is then carried out both at the experimental level (Section5) and
at the analytical level (Section 6); in particular, a cost and competence model able to analyse



a multi-modal architecture through the analysis of its individual components is introduced and
discussed. Such analyses point out the needs for more flexible ways of integrating the reasoning
modes, by suggesting the use of more opportunistic strategies [22, 17] able to choose the more
suitable reasoning mode depending on the type of problem to be solved. Section 7 discusses this
opportunistic integration in details and shows the advantages of this kind of integration. Finally
some conclusions and a comparison with other multi-modal proposals found in the literature are
reported in Section 8.

2 Characterizing Diagnostic Problems

In order to discuss both theoretical aspects of adaptation complexity and practical implemen-
tation, we introduce the formal framework we refer to for characterizing diagnostic problems.
The framework has been initially proposed in [14] as a general approach able to unify classical
approaches to model-based diagnosis (namely purely consistency-based and purely abductive
diagnosis).

Definition 2.1 A diagnostic problem is a tuple
DP =(BM,HYP,CXT,(¥", V")) where:

e BM is a set of definite clauses (without recursion) representing the behavioral model of
the system to be diagnosed. In particular, the clauses should have non-empty bodies;

e HYP is a finite set of ground atoms of BM, whose predicates are called abducibles,
representing possible diagnostic hypotheses. Abducibles can appear only in the body of
clauses;

e CXT is a finite set of ground atoms of BM representing contextual information charac-
terizing the diagnostic problem. Context atoms can appear only in the body of clauses and
always in conjunction with some atom not belonging to CXT';

o U is a finite set of ground atoms of BM representing the observations to be accounted
for (i.e. covered) in the current case;

e U™ is a finite set of ground atoms of BM representing the instances of observable param-
eters that conflict with the observations.

In the above definition, we characterize a diagnostic problem in terms of ¥+ and ¥~. Actually,
a diagnostic problem is characterized by OB.S, the set of observations available for the problem
under examination. While ¥~ is uniquely determined given OBS according to the criterion
U~ = {m(y)|m(z) € OBS Az # y}, there are many possible ways for determining ¥+ from
OBS, since we only impose that Y= C OBS .

We assume that each predicate occurring in BM has a finite set of ground instances?. More-
over, since we abstract from temporal aspects we also assume that the following meta-level
constraint holds for every predicate symbol p:

p(z) Aply) = L (z#y)

'Different choices of ¥T give raise to quite different definitions of diagnosis (see [14]), ranging from purely
abductive definitions (¥t = OBS) to purely consistency-based definitions (¥t = ).
2Therefore, BM is equivalent to a propositional definite clause theory.




A set of ground atoms is consistent if and only if it does not violate the above constraint.

Let H be a set of ground atoms, we indicate as P(H) the set of predicate symbols mentioned
in H. For example if H = {p(a), q(b),r(c)} then P(H) = {p,q,r}. If H is consistent, it will be
called an assignment to P(H).

Definition 2.2 Given a diagnostic problem DP = (BM,HY P,CXT,(¥" ¥ ")), an assign-
ment H C HY P such that P(H) = P(HY P) is a diagnosis for DP if and only if

Vm(z) € UT BMUCXTUH + m(z)

Vm(y) € ¥~ BMUCXTUH ¥/ m(y)

3 Complexity Results

In [12] it is shown that, apart from particular restrictions, solving an abductive problem is in
general an NP-hard problem. Diagnostic problems satisfying definition 2.1 can be viewed as a
kind of problems classified in [12] as incompatibility abduction problems: incompatibility relations
are represented by the fact that different ground instances of the same abducible predicate are
incompatible. In the following, when we will refer to a diagnostic problem we will consider a
problem satisfying definition 2.1.

Definition 3.1 Given a diagnostic problem DP = (BM,HY P,CXT, (¥, V™)) and an assign-
ment to abducibles H C HY P with P(H) = P(HY P):

e CONCHECK is the problem of deciding whether H is consistent with the observations (i.e.
whether Ym(z) € ¥~ BM UCXT U H t/ m(x));

e COVCHECK is the problem of deciding whether H covers the observations to be accounted
for (i.e. whether Ym(z) € ¥TBM UCXT UH + m(z));

e DIAGCHECK is problem of deciding whether H is a diagnosis to DP
(i.e. DIAGCHECK=CONCHECK+COVCHECK).

Since it is well-known that verifying whether a given atom is a consequence of a set of proposi-
tional definite clauses is linear in the size of the set of clauses [16] (and since our system model
BM is equivalent to a propositional definite clause theory), we have the following proposition.

Proposition 3.1 CONCHECK, COVCHECK and DIAGCHECK are in P
Let us then consider the following decision problem.

Definition 3.2 DIAGSAT is the decision problem consisting of determining whether an in-
stance of a diagnostic problem DP = (BM,HY P,CXT,{(¥*,¥~)) has a solution.

In [12], incompatibility abduction problems have been proved to be NP-hard in general, with
some special class of incompatibility problems (i.e. independent incompatibility abduction prob-
lems) being NP-complete. We can show that the NP-completeness property also holds for
DIAGSAT.

Theorem 3.1 DIAGSAT is NP-complete.



(see the appendix for the proof)

Let us then define what we mean by diagnosis adaptation problem. We are essentially
interested in studying adaptation strategies that can be classified as replacement of abducibles
(interpreted as deletion of an abducible followed by the addition of a new one). As also noticed
in [31], a case-based system adopting a conservative approach tries to re-use as much as possible
of the retrieved solution to be adapted; we will then consider the following problem.

Definition 3.3 Diagnosis Adaptation Problem. DASAT is the decision problem defined as
follows: given a diagnostic problem DP, = (BM,HY P,CXTy,(¥], V), a diagnosis H to the
problem DP = (BM,HY P,CXT,(V",¥)) and an integer k < |H|, determine whether there
exists a diagnosis H' to DP; containing a sub-assignment of H of cardinality at least k.

In order to transform H into H', we have to define an adaptation strateqy A. Such a strategy
has to determine which abducibles to be deleted and which others to be added to H, in order
to obtain H'; the number of abducibles that A replaces must be at most |H| — k abducibles (in
order to have H' containing a sub-assignment of H of cardinality at least k).

Theorem 3.2 DASAT is NP-complete.

(see the appendix for the proof)

If we consider DA1SAT to be the decision problem DASAT restricted to the case where the
set U = U+ U{a} (i.e. observations to be accounted for in the new problem differ only for one
atom from those of the old problem), then we obtain the following corollary.

Corollary 3.1 DA1SAT is NP-complete

Theorem 3.2 and Corollary 3.1 are particularly relevant, since they show that the problem of
adapting in a conservative way (i.e. by re-using as much as possible of the retrieved solution)
can be as hard as generating the new solution from scratch, even if the retrieved and the current
case are very similar. This result may seem to clash with the intuition that the re-use of solution
for a similar problem is always easy. However, this result is not peculiar to diagnostic problem
solving: Nebel and Koehler have carried an in-depth analysis of case-based planning and they
have shown that the theoretical computational complexity of conservatively adapting plans of
previously solved problems is in general at least as hard as generating the plans from scratch [31].
In particular, results analogous to Theorem 3.2 and Corollary 3.1 in [31] are still worse, since
they show that for a planning problem for which plan generation is polynomial, plan adaptation
is NP-complete.?

The above results are important since they show that there is no guarantee that a CBR ap-
proach is in general less expensive from a computational point of view than MBR, and therefore
any multi-modal reasoning architecture for diagnosis based on the re-use of past solution has
to be carefully conceived. The potential for a significant improvement in terms of speed-up for
complex tasks like diagnosis and planning by integrating CBR with problem solving from first
principles is supported by empirical studies (particular relevant for this point are the results
obtained by Veloso in planning [50] and by Koton in diagnosis [24]). In the rest of the paper we
discuss under which conditions we have good chances that a multi-modal architecture combining
CBR and MBR provides better performance that a pure MBR system in diagnostic problem
solving. This analysis is carried on by taking into consideration ADAPtER, an architecture
integrating a case-based module with a model-based diagnostic module, firstly presented in [32].

3In citeAu:02, the authors show that the results of Nebel and Koeler do not apply to the (non conservative)
plan adaptation via Derivational Analogy. See Section 8 for a brief comparison with this work.



4 The ADAPtER System

The name ADAPtER is an acronym for Abductive Diagnosis through Adaptation of Past
Episodes for Re-use and indicates a diagnostic architecture combining model-based reasoning
and case-based reasoning in a uniform and flexible framework based on the well-founded speci-
fication of the notion of diagnosis specified in Section 2. A peculiar feature of the system is the
use of two different knowledge bases:

e a CASE MEMORY containing a set of solved diagnostic problems with the corresponding
solutions; each stored case is characterized as C = (CXT,(¥*, V), SOL) where CXT
is the contextual information under which the case has been solved, U™ is the set of
manifestations covered by the solutions of the case, ¥~ is the set of manifestation that
the case solutions must not imply and SOL = {H;,... H,} is the set of possible diagnoses
(i.e. solutions) of the case;

e 3 BEHAVIORAL MODEL corresponding to the domain model used by the model-based
component for solving a problem from scratch.

From the architectural point of view, ADAPtER involves the set of components shown in
figure 1 where links represent data flow. The high-level behavior of ADAPtER can be described

data flow

CASE MEMORY MODEL-BASED

MANAGER SUPERVISOR
o " | REASONER

A A A

y

SOLUTION

CASE RE-PLAYER
MEMORY

BEHAVIORAL

MODEL
ADAPTATION /

MODULE

Figure 1: ADAPtER Architecture

by the pseudo-code in which we assume that for each module M,
M(input:...;output: m-solutions,...)= true iff m-solutions is not empty

Important parameters of the modules of the architecture are a set of thresholds S, Ti, T2,
T3, T4. Their meaning will be clarified while describing the architecture; for now it is worth



noting that parameters T1 through T4 are temporal thresholds representing specific time-outs on
the execution of the relative modules, while S is peculiar to the retrieval step and concerns the
adaptability of a retrieved case with respect to the input one. It is worth noting that the set of
m-solution is considered empty also if a corresponding time-out has been reached. ADAPtER
starts with a time limit T1 (i.e. no more that T1 time instants are allowed for the solving a
problem); each specific module receiving a time limit Ti as input will return a new time limit
Tj to be used by the next module, representing the remaining available time.

ADAPtER (new-case,Case-Memory,Behavioral-Model,S, T1):
IF NOT RETRIEVE(input: new-case, Case-Memory, S, T1
output: retrieve-solutions, T2)
THEN IF MBR( input: new-case, Behavioral-Model, T2
output: mbr-solutions);
THEN return(mbr-solutions)
ELSE return("failure")
ELSE IF OK-SOLUTION(input: new-case, retrieve-solutions, Behavioral-Model, T2
output: replayed-solutions, T3)
THEN return (replayed-solutions)
ELSE
IF ADAPTATION(input: new-case, replayed-solutions, Behavioral-Model, T3
output: adaptation-solutions, T4)
THEN return (adaptation-solutions)
ELSE
IF MBR(input: new-case, Behavioral-Model, T4
output: mbr-solutions);
THEN return(mbr-solutions)
ELSE return("failure")

When presented with a new case DP = (CXTy, (U], ¥7)), the SUPERVISOR first invokes
the CASE MEMORY MANAGER (CMM) in order to retrieve the most promising cases from the
CASE MEMORY (RETRIEVE). Such a step evaluates the degree of match between DP (i.e. the
current case to be solved) and the cases in the memory, using a heuristic function which estimates
the adaptation effort rather than just the similarity between the current and the retrieved cases.
RETRIEVE returns the solutions of cases in the case memory with the lowest value of such
heuristic function or returns a failure if it is unable to find in the case memory a case solution
sufficiently easy to be adapted to the input case DP (i.e. there is no case in the case memory
suitable to be adapted to the input case, since the heuristic function reports a value greater
than the threshold S for any case in the case memory).

In particular, a retrieval algorithm called Pivoting-Based Retrieval (PBR) [36] has been
developed for implementing RETRIEVE. Since the description of PBR is out of the scope of
the present paper, it is just worth noting that PBR is a form of Adaptation-Guided Retrieval [42]
and exploits a heuristic function able to estimate the cost of adaptation; this is possible, since
such function has sufficient knowledge for determining what kind of reasoning mechanism the
adaptation module has to invoke, in order to solve the discrepancies between the observations
of the input case and the ones of the case stored in the case memory. The PBR algorithm is
based on the computation of suitable bounds on the adaptation cost of each solution of a case;
such bounds are then used to restrict the search for the best case solution to be retrieved. We
have shown that the search strategy of PBR is admissible, i.e. we are guaranteed to find out
the case solutions which minimizes the heuristic function (see [36] for more details).



If RETRIEVE fails, the control is switched directly to the MODEL-BASED REASONER
(MBR). On the contrary, in case RETRIEVE succeeds, this module returns a set {H; ... Hp,}
representing the best solutions retrieved from the case memory (i.e. those having minimal
estimated adaptation effort, with respect to the input problem DP).

For each H; € {H;...Hy,} the SOLUTION RE-PLAYER is invoked by the SUPERVISOR to
replay the retrieved solution H; (OK-SOLUTION). Let DP, = (BM,HY P,CXTy, (¥}, V7))
be the input problem; the retrieved solution H; is used together with the contextual data C X1}
of the case under examination DP; and the BEHAVIORAL MODEL BM (which at the logical level
is modeled as a set of definite clauses) to recompute all the possible consequences*. This step
computes the transitive closure, in terms of predicate symbols, of the set of atoms C XT1 U H;, by
using the model theory B M ; moreover, for each predicate p(a) such that BMUCXT1UH; F p(a),
it stores the support S(p(a)), i.e. the set of abducibles in H; that are necessary in at least
one derivation of p(a) from the theory BM U CXT; U H; (as illustrated in the following, this
information is used by the adaptation mechanism). Formally, if BM U CXT, U H; - p(a), the
support for p(a) is defined as:

o if p(a) € H;, S(p(a)) = {p(a)};

e if p(a) & H;, let ay — p(a),...,a, — p(a) be the clauses in BM whose head is p(a) and
such that BMUCXT UH; - «; (j =1,...,n) and pi(a1),...,pr(ax) be the (non context)
atoms occurring in the bodies a;; the support for p(a) is S(p(a)) = UF-; S(pi(ar)).

The OK-SOLUTION step succeeds if consistency and covering between the solution’s pre-
dicted observable parameters and the current set of observations are satisfied. More technically
we have to verify whether

vm(z) € ¥ BM UCXT,UH,; +m(x) (2)

It is worth noting that OK-SOLUTION is the implementation of the DIAGCHECK problem
described in Section 3 that we know to be efficiently solvable.

A failure occurs in OK-SOLUTION if and only if every retrieved solution H; does not
satisfy condition 1 and 2; in such a case, one of the replayed solution is passed on to the
ADAPTATION MODULE for the ADAPTATION step. Actually, ADAPtER can choose whether
to try to adapt one randomly chosen best solution or to try to adapt more than one retrieved
solution®. In the following we will consider the first case for the sake of simplicity; this step tries
to adapt the retrieved solution to be a solution of the current case, by using the same domain
knowledge (that is the BEHAVIORAL MODEL) used by the MODEL-BASED REASONER.

Y1CXT, is potentially different from the contextual data of the diagnostic problem which H; refers to.

SRETRIEVE always returns all the solutions with the minimum estimated adaptation effort (provided this is
less than the threshold S), therefore all the retrieved solutions {Hi, ..., H,} are equally suitable to be adapted.
Three different policies have been defined: (1) only one retrieved solution is selected for adaptation; (2) the
adaptation step selects a retrieved solution at a turn and it stops when either the adaptation succeeds for one
of them or when all the retrieved solutions have been considered; (3) the adaptation is always attempted for all
the retrieved solutions. This last policy could improve the quality (defined in Section 5.1) of the set of computed
solutions.

10



As before, let DP, = (BM,HY P,CXTy,(¥],¥)) be the input problem. Given the replay
of a retrieved solution H; in the new context C X1, computed by OK-SOLUTION, in order
to describe the adaptation mechanism, we define the following sets:

Op = {m(a)/ m is an observable parameter and BM UCXT, U H; - m(a)} is the set of
the values of observable parameters (manifestations) entailed by the retrieved solution H;
in the new context CX T} (i.e. the set of manifestations occurring in the transitive closure
computed by OK-SOLUTION);

Oconrricr = {m(a)/ m(a) € O and m(a) € VT } is the set of manifestations occurring
in the transitive closure and conflicting with the observations for the input case;

Onew = {m(a)/ m(a) € U] and m(a) ¢ Og} is the set of manifestations that are not
present in the transitive closure, but that should be covered in the current problem;

As = Um(e)co, S(m(a)) is the set of abducibles in H; supporting the manifestations
entailed by the retrieved solution in the new context CXT;°;

Ag is the complement of Ag w.r.t. H;.

The goal of the adaptation is to remove possible inconsistencies in the replayed solution and
to build the missing explanations (coverings) for some manifestations of the input case, in order
to obtain a formally correct solution.

The adaptation process works in two steps (for the details see [37, 32]):

1.

Inconsistency removal. If Oconprror # 0, than the replayed solution does not satisfy
condition (1) and consistency must be re-established. This mechanism disproves the ex-
planation leading to each m(a) € OconrricT, by removing from H; a set of abducibles
responsible for such an inconsistency. For each m(a) € Oconrrrcr, the abducibles to be
removed are searched in those ones occurring in the support S(m(a)) of m(a).

. Explanation Construction. Let R be the set of abducibles removed from H; by the

previous step. The Explanation Construction step keeps fixed the set Ag — R of abducibles
and searches for an assignment K for the predicates in P(As U R) such that (As — R) UK
is a solution to the input case. To perform its task, this step uses the same procedure
used by the MODEL-BASED REASONER. In particular, in order condition (2) to hold, this
mechanism builds abductive explanations for all observations in Oy gw and for those ones
in \Iff that are no longer supported by abducibles because of the inconsistency removal
step (i.e. such that Ag — R is not an abductive explanation for them).

It is worth noting that there is no guarantee that ADAPTATION actually generates all
the minimal solutions (i.e. solutions containing the minimal number of abducibles representing
faults) potentially provided by MBR.. We will investigate this problem more deeply in Section 5,
however we have to notice here that ADAPTATION does not necessarily provide a single so-
lution, because there are many ways for constructing explanations. Among the alternatives that
are considered, only the minimal ones are actually produced by ADAPTATION. Moreover,

bIt is worth noting that there can be some abducibles in H; that do not belong to the support of any manifes-
tation in Og. For instance, if BM is a fault model, the abducibles in H; representing normality do not participate
in any derivation of the manifestations in Og, therefore they do not occur in any support.

11



the adaptation mechanism does not explores all the different ways of removing inconsistencies.
Instead, it makes use of some heuristics to choose the set R of abducibles to be removed [37, 32].
It may happen that the set Ag — R of the abducibles retained in the adaptation step prevents
ADAPTATION to find a solution; in this case, ADAPtER. can either try to adapt another
retrieved solution or it can switch to MBR. to solve the input case. As we said, in the present
work we consider the latter policy for our analysis. Therefore, if the attempt to re-use past
solved problems has failed (i.e. either RETRIEVE or both OK-SOLUTION and ADAP-
TATION have failed), MBR is invoked and ADAPtER tries to solve the diagnostic problem
from scratch with a given time limit (see Section 4). MBR implements the characterization of
diagnosis introduced in Section 2 and it is able to provide all minimal diagnoses which cover
the manifestations to be explained, consistently with all the observations. In case the diagnostic
problem is not solved within the time limit, MBR returns a failure, even if the problem could
be solved with more resources.

The description of the architecture reported above should have made clear an important
characteristic of ADAPtER: both the CBR and the MBR components share the same domain
knowledge, in particular the same behavioral model. In this way, there is no need of eliciting
from domain experts additional knowledge for performing adaptation. More important, the
same notion of solution applies both to the results provided by CBR and the ones provided
by MBR. For some aspects, we could consider the OK-SOLUTION and ADAPTATION
modules as specialized mechanisms for performing focused MBR.

The described problem solving architecture is complemented (at a meta level) by a learning
architecture working off-line with respect to the problem solving cycle. Indeed, in case MBR
provides a solution, the case that has been solved is learnt together with its solutions in the
case memory. Different learning strategies have been tested in ADAPtER, taking explicitly
into account the utility problem and revising the content of the case memory depending on
the case that is currently learnt. In particular, cases are not only added to case memory, but
specific case deletion or case replacement strategies can be used. Results concerning the efficacy
of such strategies are deeply discussed and described in [35]. Figure 2 shows the details of
the CASE MEMORY MANAGER by considering its internal structure: the RETRIEVER aimed
at implementing the RETRIEVE step (retrieving the set of cases (Cy,...Cy,) with associated
solutions from the case memory in response to the SEARCH (DP) command aimed at searching
the case memory for the n most adaptable case solution with respect to the current diagnostic
problem DP) and the LEARNER whose main task is to interact with the SUPERVISOR, in order
to receive information on which case to add to the case memory and which other cases to remove
from it, as a consequence of a learning operation. In particular, when the SUPERVISOR send a
LEARN(C) command to the learner, the new case C is added to the case memory and a set of
cases (C] ... C}) are possibly removed from the case memory, depending on the case maintenance
strategy adopted (see [35]). The SUPERVISOR invokes the LEARNER only after a case has been
solved by the MODEL-BASED REASONER; in terms of classification of case memory management
strategies this corresponds to an off-line integration type approach [51].

In summary, by considering the multi-modal architecture introduced, we can notice that
there are two main issues that are worth to be considered:

e the MBR process may be computationally intractable in some cases, so the possibility of
solving a new problem in a different, possibly integrated way can be worth to be pursued;
this is true because if a good case memory is available, the need for adaptation is lowered
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Figure 2: Case Memory Manager Architecture

and a simple (and computationally tractable) solution check can be performed. Even in
the situation where adaptation is needed, the worst case complexity of the adaptation
process seems not to be the usual case [33, 34, 35];

e in order to be able to deal with different kinds of cases (even inside the same domain), the
system is not provided with any off-line training phase where the case memory is built; on
the contrary the system is able to start with an empty memory and, through a continuous
learning process, to adapt itself to every change in the characteristics of cases to be solved”;

Next sections will address different ways of multi-modal integration, in order to take into account
such issues.

5 Experimental analysis of ADAPtER

In this section we aim at showing to what extent a multi-modal architecture like ADAPtER can
achieve better performance with respect to a pure MBR architecture. However, the analysis is
complex since the term ”performance” is very general and different specific issues related to this
aspect can be identified.

5.1 The different facets of performance

Although computation time is of paramount importance in characterizing the performance of a
system, other parameters have to be taken into account: it is possible that different architectures
may exhibit different levels of competence in the problem space, so performance is measured
as the percentage of problems that can be solved with respect to the whole problem space;

"In diagnostic problem solving, for instance, the number of faults in the solution of a given problem may
vary significantly during the lifetime of the system to be diagnosed; a case-based diagnostic architecture with a
considerable adaptativity can be successfully adopted in this situation.
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moreover, different problem solving strategies may provide solutions of different quality, because
for instance, different approximations or heuristics are used, so in this case performance is
measured as a suitable metric with respect to optimal solutions. In general it is believed that
approaches based on first-principle guarantee optimal competence (all the problems that can
be solved by using the domain knowledge are actually solved) and quality (the first-principle
problem solver gets optimal solution), while they may result expensive from a computational
point of view. We have then to characterize precisely the notion of computation time, quality
and competence.

First of all, let us examine competence. The CBR module has a reduced competence with
respect to MBR: while the MBR component is in principle able to solve any diagnostic problem
in the modeled domain (as far as the problem description is not inconsistent with respect to the
domain theory); this is not true for the CBR component whose competence strictly depends on
the content of the case base as well as from the available adaptation knowledge.

However, in practice the competence of MBR is not optimal since diagnostic problem solv-
ing has to be performed under limited resources and computation time is a critical resource
(especially when considering diagnosis of real-time systems). In case the diagnostic system is
asked to provide a solution within a predefined time constraint, the practical competence may be
different from theoretical competence. In such situations, the practical competence of the MBR
module may be quite far from the theoretical one, as there may be diagnostic problems that
are not solvable within the specified time limit. In our architecture we have introduced some
time thresholds representing the maximum effort in computation time to be spent for solving a
diagnostic problem. If the threshold is reached without producing the diagnostic solutions, the
problem is considered unsolvable. In this way, in carrying out an experimental analysis we can
consider that both ADAPtER and its pure MBR module are incomplete.

With respect to quality, while a model-based approach is able to provide all minimal diag-
noses for a specific diagnostic problem, we have already pointed out that this is not guaranteed
by ADAPtER (see Section 4). However, part of the problem is intrinsic to the CBR approach,
since the input problem is solved by first retrieving and then adapting a solution of another
problem. If the input problem has a large number of possible alternative solutions, it is clear
that just adapting a single solution of a similar problem has limited chances of getting all the
solutions to the input problem®. For this reason the set of diagnoses obtained by the CBR
component on a given problem may not cover all the possible solutions.

To actually measure the impact of the multi-modal architecture on the quality parameter,
we have first to select a gold standard and then to compare how well the solutions provided by
a problem solver PS’ fit the solutions provided by the problem solver PS selected as the gold
standard. Since MBR produces an optimal set of solutions for each diagnostic problem that it is
able to solve (i.e. whenever a diagnostic problem is solved by MBR, all the minimal diagnoses
are returned), MBR has been selected as reference point. Therefore, we operalize the notion
of quality by comparing the set of solutions SOLpg (DP) provided by the PS’ problem solver
for any diagnostic problem DP with SOLy;pr(DP) produced by MBR for the same diagnostic
problem whenever DP is solved both by PS’ and by MBR ?.

8Some CBR systems may address this problem by combining multiple cases (and multiple solutions) to solve
the input problem, however if the given task or domain is not modular, very complex adaptation strategies will
be needed to get all possible solutions.

9The cases in which either PS’ or MBR failed in solving the diagnostic problem are taken into consideration
by the competence parameter.
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If we instantiate the general notion of quality in case of ADAPtER, the quality Qapapipr(DP)
for the diagnostic problem DP is computed in the following way:

|SOLApapirr(DP)NSOLysr(DP)|  if SOLapapiEr(DP) # 0
Qapaprter(DP) = SOLyBR(DP)| and SOLypr(DP) # ()

undefined otherwise

where SOLApapipr(DP) and SOLypr(DP) are the set of solutions for the diagnostic problem
DP determined by ADAPtER and MBR respectively.

It is worth noting that this way of defining the quality parameter is rather penalizing for
the multi-modal architecture, since it ignores any non-minimal solution possibly provided by
it. A more realistic evaluation of the quality could be obtained in restricting the comparison to
cases where MBR provides just a single solution. In [35] we have analyzed such a case and the
experimental results show that the quality of the solutions of ADAPtER is rather satisfying.

5.2 Characterizing the experimental setting

Since theoretical results reported in Section 3 prevent us from claiming that reuse of diagnostic
solutions is, in general, simpler than solving diagnostic problem from scratch, we have carried
on a set of experiments, in order to evaluate and compare the performance of ADAPtER with
respect to the pure MBR component. Moreover, we have seen that performance cannot be
reduced to a single parameter. For this reason the experiments should be able to take into
account the different aspects of performance and possibly to provide material for explaining
some of the relations among them.
In defining the experimental setting, we have to consider:

e the domain(s) used as test-bed
e the test sets used for the experimental analysis

e the setting of the controlled parameters which can influence the performance of the diag-
nostic system

We have performed experiments in two different domains: D1 represents a significant portion
of a fault model of an industrial plant, whereas D2 concerns a (relatively simple) domain of car
faults. D1 is more complex than D2 since the domain model of D1 involves 31 components with
a total number of 100 possible faults, while in D2 we have ten components for 39 possible faults.
Moreover, in D1 we have 46 observable parameters with 104 different manifestations, whereas
in D2 the observable parameters are 14 and the different manifestations 37.

In both domains the knowledge available concerns just the faulty behavior. In other words,
the domain model contains definite clauses relating the presence of faults in the different compo-
nents or parts of the system to be diagnosed with their consequences (both direct and indirect).
As shown in [14] and [27] the type of domain knowledge available has to play a major role in
selecting the appropriate notion of diagnosis. Since we had at disposal fault models of the do-
mains, the set of observations OB.S relevant to a diagnostic problem can be partitioned into the
two sets OBS? and OBSY of the abnormality and normality observations, respectively (with
OBSA # (). Furthermore in our experiments we chose ¥t = OBS4 since we are interested
in diagnoses that covers all the abnormality observations consistently with all the observations
(see definition 2.2).
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IS1 | IS2 | IS3 | IS4 | CE
Domain D1 D1 D1 D1 D2
Cardinality 2000 | 2000 | 2500 | 3000 | 2000
of the set
Max no. of 4 2 3 3 4
injected faults
PyorwmaL 0.8 0.8 1 0.8 0.8

Table 1: Parameters characterizing the test sets

5.3 The Test Sets

In our analysis we had to face the lack of representative sets of diagnostic problems solved by
human experts (in particular, in the industrial domain, we did not have access to them). Even
when a set of solved cases is available, its use for evaluating the performance of a system could
not be straightforward, since the characteristics of the problems (i.e. the value of any parameter
that can have an impact on the performance) could be unknown.

Both the lack of real world solved cases and the need of a precise knowledge and control
on the cases of the test set have suggested the automatic synthesis of test sets by means of
a simulator of the system to be diagnosed in presence of injected faults. In particular, the
simulator is able to generate a case description by predicting, using the specific fault model of
the domain we are considering (either industrial plant or car faults), the values of the observable
parameters when a specific set of faults is assumed and the contextual situation is specified.

The characteristics of a batch of cases automatically generated by the simulator can be
controlled by means of suitable parameters; the most significant one we have used in the ex-
periments reported in the present paper is the maximum number of injected faults (that is, the
maximum number of faults to be included in the case). This parameter is very relevant because
the larger is the number of faults, more complex is the case description and harder is the task
of the diagnostic system (this phenomenon is well known and one of the reasons for adopting
MBR techniques in diagnostic problem solving is the ability of dealing with multiple faults).

Another aspect which can influence the number of alternative diagnoses produced by a di-
agnostic problem solving is the number of observations available for the case description. In
particular when the case description is partially incomplete (that is, only some of the observable
parameters have an observed value in the case under examination, while for the other manifesta-
tions the value is unknown), the number of alternative diagnoses is very large and the diagnostic
problem may not be considered totally solved, since further observations may reduce the set of
diagnoses and in some cases radically change them. For this reason we have varied the degree
of completeness of the case description (in terms of observations) in the test sets.

Table 1 reports the main characteristics of the test sets and of the parameters used to
generate them. We have generated 5 test sets: 4 for domain D1 and just one for domain D2.
Each test set is quite large and involves cases for which at least one minimal solution exists
since each diagnostic problem has been generated via the injection of at least one fault. Test
sets have different distributions of cases since we have varied the maximum number of faults
injectable in each case. Test sets vary also for the way the set of observations characterizing
the cases are determined. Given the injected faults and the set of contextual information C XT,
the simulator determine the transitive closure using domain theory DT and therefore provides
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CPU time 151 152 CE

0 msec.,200 msec.) 36.95% | 54% 63.65%
200 msec.,500 msec.) | 13.55% | 18.1% | 2.75%
500 msec.,1 sec.) 86% | 9.55% | 18.5%
1 sec.,10 sec.) 20.8% | 13.55% | 11.2%
10 sec.,1 min.) 7.2% 2.8% 3.0%

1 min.,10 min.) 6.0% 1.0% 0.85%
10 min.1 b 5.6% | 05% | 0%
timeout 3.1% 0.35% | 0.0%
out of memory 1.2% 0.15% | 0.05%

Table 2: DP distribution according MBR_time(DP)

the set of abnormal manifestations produced by those faults. All these abnormal manifestations
OBS# are included in the case description. Since we have at disposal only fault model the
simulator cannot directly determine OBSY; it is build by inserting into it (with probability
PnormAr) a manifestation m(normal) any time there is no prediction made by simulator for
manifestation m. In all test sets, but 153, for each diagnostic problem, the 80% (in the average)
of these manifestations are assumed to occur as normal, whilst in 1S3 «all the manifestations
have a known value i.e., Pyoram AL i set equal to one (see Table 1).

We have generated different sets for domain D1 since we are interested in understanding
the influence of different characteristics on the performance of the diagnostic system. More
important, we are interested in a fair evaluation of the performance of a multi-modal reasoning
system with respect to a pure MBR system; for this reason we have decided to use I.S1 and 1.52 as
training sets to infer the values of the parameters governing the control strategy of ADAPtER.
Once the parameter values have been determined, we have run 1S3 and IS4 for the actual
evaluation of ADAPtER. It is worth noting that 153 and 154 have different characteristics from
151 and 152, in particular they differ for the max number of injected faults in each diagnostic
case.

5.4 Experimental results

The first experiment we have performed concerns the actual difficulty of solving diagnostic cases
by a pure MBR system. Since theory predicts that we would have to deal with hard problems, we
are interested in measuring whether intractability occurs and how frequent it is. For this reason
we have run the MBR problem solver on the test sets I.S1, 152 and C'E by putting for each
problem in these sets a time-out of 3.600.000 msec. of CPU time (i.e. 1 hour) on a PENTIUM II
with 128 MB RAM under Solaris operating system'?. For each solved problem D P, we collected
the time M BR_time(DP) spent to solve it. Table 2 reports how the problems of each set are
distributed according to M BR_time(DP). For example, we can see that 6% of the problems in
IS1 require a MBR time included in the interval [1 min.,10 min.) (i.e. the MBR problem solver
has consumed a CPU time between 1 min. and 10 min. for solving each of them), whereas 54%
of the problems in 152 take less than 200 msec. to be solved. The results reported in Table 2
show that there are problems that are very hard to solve (the combinatorial explosion predicted

10A]l the different diagnostic problem solvers referred to in this paper had been implemented using SICStus
Prolog.
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by theoretical results actually occurs). It is worth noting that the number of hard problems is
larger in IS1 (where the maximum number of injected faults is 4), but unfortunately it is not
negligible in 152, despite each DP € IS52 has been generated by injecting a maximum of two
faults. As expected the problems in CE are easier to be solved because domain D2 is simpler;
however also in C'E there are (few) problems that require a huge amount of computational
resources. It is worth noting that also space shortage could prevent some problem to be solved
(see the row ’out of memory’ in Table 2).

We have also run ADAPtER on IS1, 152 and CFE in order to estimate some important
parameters which actually influence the behavior of the diagnostic system. In particular, the
threshold S is used in the RETRIEVE step for deciding whether the retrieved case with the
best estimate of the adaptation effort is sufficiently close to the input case C' to be used for
adaptation. As a result of the experiments on 151, I52 and CE we have determined a value for
S corresponding to a medium adaptability effort for the considered domain'!. Actually, the ex-
periments have allowed to estimate parameters governing the learning component of ADAPtER
(in particular, the case deletion mechanism). The discussion on such parameters is outside the
scope of the paper and details can be found in [35].

A critical parameter for evaluating the performance of ADAPtER in comparison with the
MBR concerns the threshold T1 i.e. the maximum CPU time allocated for solving the diagnostic
problem under consideration.

We have run a set of experiments on test sets 153, 154 and C'E for evaluating speed-up,
competence and quality of ADAPtER. In all these experiments, we have set T1 to 60 seconds
of CPU time on a PC Pentium II. Therefore, if a diagnostic problem C belonging to the test
set 153, 154 or CE has consumed a CPU time larger that 60 seconds and ADAPtER has not
provided a solution for C, the problem is considered unsolved by ADAPtER. The same criterion
is applied for MBR. It is apparent that the lower is T1, the lower is the competence level, however
it will be shown that the competence of ADAPtER and MBR are significantly different by using
the same threshold.

Table 3 reports the results on the average computation time needed for solving (or trying
to solve) the problems in the test sets 153, IS4 and CE. It is worth noting that as regards
computation time ADAPtER outperforms a pure MBR approach. This is not only true for test
sets in domain D1, but also for test set C'E whose problems are taken from the much simpler
domain D2.

A very positive result for ADAPtER concerns its competence. Despite the fact that MBR
should have a perfect competence (if infinite resources are available), it turns out that ADAPtER,
is able to solve much more cases than MBR is. The experiments show that several times in
domain D1 MBR takes too long time for searching for a solution (i.e. the time out of 60 sec. is
reached without finding a solution). On the contrary ADAPtER exploits cases already solved
for solving most of the cases submitted to it. It is also worth noting that these results are
obtained starting from an empty case memory and the learning module of ADAPtER is able to
learn suitable cases so that the competence is very high.

The value for the timeout threshold (here set to 60 seconds) strongly depends on the time
requirements the system must fulfil. Figure 3 depicts the competence of the two architec-
tures corresponding to different timeout thresholds less than 60 seconds. The figure shows that
ADAPtER always outperforms MBR. In particular, the advantage of ADAPtER over MBR ap-

"' More precisely S = 30 for domain D1 and S = 12 for domain D2.
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1S3 154 CE
MBR 4269.7 | 6468.8 | 1789.3
£516.8 | £=580.6 | £304.1
ADAPtER | 1525.8 | 1258.7 | 241.3
£321.7 | £260.6 | £131.6

Table 3: Comparison between ADAPtER and MBR: 95% confidence intervals for the average
CPU time.

153 154 CE
MBR 95.32% | 92.90% | 99.10%
ADAPtER | 98.32% | 98.73% | 99.80%

Table 4: Comparison between ADAPtER and MBR: percentage of solved problems (compe-
tence).

pears greater with small timeout thresholds. For instance, with the timeout threshold set to 500
msecs., ADAPtER is able to solve 92.84% of 153 problems, 91.13% of 154 problems and 98.55%
of CFE problems. With the same timeout threshold, MBR is able to solve 67.12%, 60.47% and
66.40% of 153, 154 and C'E problems, respectively.

Table 5 reports data about the quality of the solutions provided by ADAPtER. It is worth
noting that we have adopted the very restrictive definition of Section 5.1. For example, in 154
57.3% of the cases solved by both ADAPtER and MBR, the solutions provided by ADAPtER
are exactly the same of the (minimal) ones provide by MBR. It is worth noting that the main
difference does not concerns the minimality, but the fact that MBR provides all minimal diag-
noses whereas ADAPtER solves the case by adapting one (or few) solutions. A more realistic
evaluation of the quality could be obtained in restricting the comparison to cases where MBR
provides just a single solution. In [35] we have analyzed such a situation and the experimental
results show that the quality of the solutions of ADAPtER is rather good.

6 Using a Cost Model as Analytical Tool

The set of experiments we have performed is quite large and in the previous paragraph we have
reported some of the most relevant results. In particular, we have shown that the integration of
CBR and MBR provides very significant advantages both in term of saving of computation cost
and in terms of competence (not an obvious result and formerly noticed by Veloso [50]).

153 154 CE
ADAPtER | 0.675 | 0.573 | 0.426

Table 5: the quality parameter for ADAPtER
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Figure 3: Comparison between ADAPtER and MBR: the competence as a function of the
timeout threshold

The set of experiments we have performed has allowed an empirical evaluation of the most
critical architectural choices. However, an empirical approach may result very data intensive
and extremely expensive from a computational point of view. For this reason we aim at sup-
plementing the empirical approach with an analytical one. A useful approach is based on the
development of a cost model, in order to analyze the “global” performance of a system from
performance characteristics of its components. The cost model is based on work by van Harme-
len [47] and Straatman and Beys [44]. Their model was designed for rule-based and ”dynamic”
logical languages that include control structures like ”sequence” and ”while loop”. In [48] it has
been shown that the cost model can be usefully adopted for evaluating the integration of CBR
and MBR components.

A cost model is derived from the control structure of the problem solving architecture and
the expected cost of a compound control expression is expressed in terms of its components by
considering branches in the control flow. For example, a compound procedure of the form:

IF Procl THEN Proc2 ELSE Proc3

branches after executing Procl. After Procl, either Proc2 or Proc3 is executed, depending on
the outcome of Proc1: success or failure. These occur with a certain probability. This gives the
following expression for the expected cost of the compound procedure (Ps refers to probability
of success and Pf to probability of failure):
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cost (IF Procl THEN Proc2 ELSE Proc3) =
cost(Procl) + (Ps(Procl)* cost(Proc2)) + (Pf(Procl) * cost(Proc3))

Analogous formulae can be derived for other control structures.
Given the above description it is easy to derive the cost model of ADAPtER by taking into
consideration the overall architecture reported in Section 4

cost (ADAPtER) =
cost (RETRIEVE) +
Pf (RETRIEVE) * cost(MBR_1) +
Ps(RETRIEVE) * [cost(OK-SOLUTION) +
Pf (OK-SOLUTION) * (cost(ADAPTATION) +
Pf (ADAPTATION) * cost(MBR_2))]

Before addressing the problem how to estimate the parameters appearing in the cost model,
it is worth noting that the notion of model can be applied also to ”competence” and not only to
”computational cost”. In particular, we could derive formulas similar to the ones for cost also
for competence. For example, given a compound procedure of the form

IF Procl THEN Proc2 ELSE Proc3
the competence can be expressed as

competence (IF Procl THEN Proc2 ELSE Proc3) =
(Ps(Procl)* competence(Proc2)) + (Pf(Procl) * competence(Proc3))

where the competence of a basic problem solving method is the probability that the method is
able to solve the problem. In case of the ADAPtER architecture, the competence model can be
specified as follows

competence (ADAPtER) =
Pf(RETRIEVE) * Ps(MBR_1) +
Ps(RETRIEVE) * [Ps(OK-SOLUTION) +
Pf (OK-SOLUTION) * (Ps(ADAPTATION) +
Pf (ADAPTATION) * Ps(MBR_2))]

It is worth noting that the Ps(proc) (and Pf(proc)) has to be considered in the context
where proc appears in a program. In the above formula we have denoted with MBR_1 and
MBR_2 the invocation of the same component (i.e. MBR) in two different contexts. The first
one (MBR_1) refers to the invocation of MBR because of the failure of RETRIEVE and the
second one (MBR_2) to the execution of MBR because of the failure of ADAPTATION; we
have to consider them as different components as concerns the cost (and Ps), since the average
computational time can be potentially different because the set of cases they operate on are
different. For this reason, Ps (MBR_1) is actually the probability that MBR succeeds given that
RETRIEVE has not been able to retrieve a case. More formally we can interpret

Ps(MBR_1) = Prob(MBR = Success | RETRIEV E = fail).

In general Ps(proc) can be viewed as conditional probabilities with respect to the modules
governing the activation of proc. Therefore,
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Parameter Estimator

Ps(RETRIEVE) Ni/Ni

Pf(RETRIEVE) (Ng-Ng)/Nx

Ps(OK-SOLUTION) | Ne¢/Ng

Pf(OK-SOLUTION) | (Na-N¢)/Nr

Ps(ADAPTATION) | Nu/(Ng-Nc)

P{(ADAPTATION) | (Np-No-N4)/(Ng-Nc)

PS(MBR_I) NMI/(NK'NR)

Ps(MBR.2) Nura/(Np-No-N.a)

Cost(RETRIEVE) average(RETRIEV E _time(case;))case; € Sk
Cost(MBR._1) average(M BR_time(case;)) case; € Sk — Sg

( (
Cost(OK-SOLUTION) | average(OK — SOLUTION _time(case;)) case; € Sg
Cost(ADAPTATION) | average(ADAPTATION _time(case;)) case; € (Sg-Sc)
Cost(MBR_2) average(M BR_time(case;)) case; € (Sr-Sc-Sa)

Table 6: Estimators of parameters of the cost model

Pf (ADAPTATION)
= Prob(ADAPTATION = Fail| RETRIEV E = success, OK — SOLUTION = fail).

The probabilities and costs of the basic components in the ADAPtER architecture have to
be obtained empirically by running the system on a suitable test set.

Let us consider a test set Sk composed of N cases and let us assume that Sg is the set
of Ng cases from Sk that were successfully retrieved. Let us also assume that S¢ is the set of
N¢ cases from Sp that are solved by OK-SOLUTION and S4 (containing N4 cases) is the set
from Si - Sc that were solved by adaptation. Let also assume that the set Sjs; contains Njsq
cases out of Sk - Sk that can be solved by the MBR module within the prescribed time limits,
whereas Sjs2 is the set of Nyso cases out of Sp - S¢ - S4 that can be solved by invoking the
MBR module (more specifically, MBR_2 since it is invoked just when the cases cannot be solved
neither by solution replay nor adaptation). The parameters can then be estimated as reported
in Table 6.

The (expected) costs are interpreted as an average time of performing the given task. For
example, the expected cost of RETRIEVE is the average time spent by RETRIEVE in trying to
retrieve the Ng cases of the test set Sk from the case memory. It is worth noting that both cost
and probability of a given component (e.g. RETRIEVE) depends on a number of parameters
characterizing that component (e.g. the S threshold on adaptability effort used in RETRIEVE).

In order to evaluate the contribution of the different modules constituting ADAPtER, let us
examine the values of parameters estimated on test sets 153, IS4 and C'E reported in Table 7.
It is worth noting that for many parameters, the results are quite similar for test sets 153 and
IS, (both of them concern diagnostic problems from the domain D1), whilst the results for the
test set CE are different (as expected, in particular for the computational cost).

In the three test sets the RETRIEVE module is quite effective since its computational cost
is low, thanks to the retrieval strategies described in [36] and to the ability of the learning
component to control the size of the case memory, by taking the swamping problem under
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Parameter Value

ISs IS, CE
Ps(RETRIEVE) 0.971 0.986 0.980
Pf(RETRIEVE) 0.029 0.014 0.020
Ps(OK-SOLUTION) 0.23 0.317 0.759
Pf(OK-SOLUTION) 0.77 0.683 0.241
Ps(ADAPTATION) 0.89 0.876 0.888
Pf(ADAPTATION) 0.11 0.124 0.112
Ps(MBR-1) 0.583 0.605 0.902
Ps(MBR_2) 0.941 0.916 1.000
Cost(MBR_1) 31339.0 msec. | 30104.0 msec. | 7630.7 msec.
Cost(MBR_2) 5766.0 msec. | 7874.0 msec. | 1778.7 msec.
Cost(RETRIEVE) 83.6 msec. 92.1 msec. 24.6 msec.
Cost(OK-SOLUTION) | 18.8 msec. 16.3 msec. 6.8 msec.
Cost(ADAPTATION) | 53.9 msec. 61.6 msec. 15.6 msec.

Table 7: Values of parameters of the cost model of ADAPtER for test sets 1S3, IS4 and CE

control. We can notice that the probability of success for RETRIEVE is quite high, by taking
into consideration that the system starts from an empty case memory.

As predicted by the theoretical results, the OK-SOLUTION module is inexpensive from
the computational point of view (in fact, it essentially implements DIAGCHECK) and it is able
to directly solve the input problem in some situations in the domain D1 (test sets 1.53 and 1.5y).
Moreover, OK-SOLUTION is useful since it focus the work of ADAPTATION by singling
out the discrepancies between the replayed solution and the actual case to be solved. In the car
fault domain (test set CE) OK-SOLUTION is really effective and in most cases there is no
need for invoking the adaptation module since the re-play of the retrieved solution is sufficient
to solve the new diagnostic problem.

ADAPTATION is quite effective since it is able to adapt a large majority of the cases
submitted to this module. More important, the computational cost is quite low and the the-
oretical prediction that ADAPTATION is a costly process (see previous section) does not
occur in practice. This excellent result is reached via the adoption of an approach for retrieving
cases that is based on the estimation of the adaptation effort rather than on surface similarities
between case. Moreover, the use of a suitable threshold S in RETRIEVE guarantees that the
retrieved cases are not too difficult to be adapted.

As expected by theoretical results, the computational cost of invoking the MBR, component
is high, in particular as concerns MBR _1. The set of cases for which RETRIEVE fails to
find a suitable easily adaptable case are hard to solve. In fact, in average MBR_1 spends a
significant amount of time in trying to solve them and the probability that the MBR reaches
the time threshold without solving it is not negligible at all in the domain D1 (test sets 1.S3 and
1Sy).

The adoption of a cost model allows one to reason on the relative merits of the different
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modules on the total performance on a multi-modal system '2. Depending on the particular as-
pect of performance one is interest in, one could design alternative problem-solving architectures

which combine basic problem solving modules in a different way or eliminate some of them.

If one puts a lot of emphasis in reducing the computational cost as much as possible, the
cost model can single out that the module which has most impact on this parameter is the
MBR module; as we have already seen in Table 7, both M BR; and M BRy have an average
computational cost much larger that the other modules. So one could conceive an alternative
architecture derived by ADAPtER where the MBR module is never activated. The resulting
architecture (let us call it CBR for reasons discussed below) is the following

CBR(new-case,Case-Memory,Behavioral-Model,S,T1) :

IF NOT RETRIEVE(input: new-case, Case-Memory, S, T1
output: retrieve-solutions, T2)
THEN return("failure")
ELSE
IF OK-SOLUTION(input: new-case, retrieve-solutions, Behavioral-Model, T2
output: replayed-solutions, T3)
THEN return(replayed-solutions)
ELSE
IF ADAPTATION(input: new-case, replayed-solutions, Behavioral-Model, T3
output: adaptation-solutions, T4))
THEN return(adaptation-solutions)
ELSE return("failure")

It is easy to see that the new architecture contains only problem solving methods typical of
the CBR approach (retrieval, replay solution, adaptation) and assumes that a problem cannot
be solved if retrieval fails or adaptation fails, since the MBR component is not invoked as a
backup problem solving method. In this way it would be possible to optimize computational
time but the competence can be severely affected, since Table 7 shows that Pf(ADAPTATION)
is not negligible and Ps(MBR_2) is relatively large in all the three test sets. More important,
the CBR architecture has no mechanism for filling its gap of competence. In ADAPtER each
time a problem is solved via MBR, there is an opportunity for learning, since the solved case
is a candidate for learning; in this way, ADAPtER can start from an empty case memory and
progressively developing and enhancing its competence via learning suitable cases solved via
MBR. CBR cannot start from an empty case memory and therefore requires a training phase
where suitable cases with their solutions are provided. The solution of a priori training phase is
far from optimum, because it works just when there is a high probability that the characteristics
of the diagnostic problems the system has to solve are steady over time.

In conclusion, the CBR architecture has been suggested as a result of cost analysis performed
via the use of a cost model. However, its potential inadequacy as a general problem solver method
has been singled out by considering the competence aspect (not only the static competence, but
also the dynamics of competence via learning).

120bviously, the utility of an analytical model depends on the accuracy of the prediction than can be made by
using the model itself. The reader can easily verify that a very good correspondence exists between the measured
cost of the ADAPtER architecture with the predicted value obtained by using cost model. For example, the
measured average value of computational cost of ADAPtER on the test 1S3 set is 1525.8 (and the confidence
interval at 95% is +£322) whereas the analytical cost model provides an estimate of 1527.1 (by using the data
reported in Table 7).
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In the following we will make a further step in the multi-modal approach. Instead of analyzing
different architectures (with different form of integration between CBR and MBR) in order to
single out the most suitable architecture for a given domain, we will discuss how to select one of
different architectures depending on the characteristics of the diagnostic problem to be solved,
in order to select the most appropriate method for each single problem to be solved.

7 An Opportunistic Strategy for a Flexible Integration of CBR
and MBR

The results discussed in the previous sections show the advantages (both in terms of competence
and computational cost) of adopting a multi-modal approach instead of a pure MBR approach.
However, the architecture of ADAPtER does not fully exploit the potential for improving the
performance over MBR, since it does not take into account the characteristics of the cases
included in the test set. The performance of ADAPtER are much better than the one of MBR
in average, but it could be the case that in a number of cases MBR is better than ADAPtER. not
only in quality, but also in computational cost as already pointed in out in the very preliminary
experiments reported in [33].

By analyzing the data reported in Table 2 it is quite clear that the amount of time consumed
by MBR for solving a diagnostic problem can vary at a large extent also for cases which are
apparently quite similar. The very large dispersion of computational cost is one of the main
reasons why competence of MBR is not very high: there is a significant fraction of the diagnostic
problems which are hard to solve (in our experiment they require more than 60 seconds of CPU
time). The results presented so far show that the re-use of past experience is very useful, since
many of the problems unsolvable by MBR (within the given time threshold) can be solved by
re-playing or adapting solutions of the retrieved case. These diagnostic problems can be labeled
as "hard” (at least from the MBR point of view) and for such kind of problems the control
strategy of the CBR architecture should be more suitable than the one of ADAPtER, since no
computational effort is spent for the MBR component, which would fail to solve the ”hard”
problem within the time limit.

However, the distribution of CPU time for test set I.S; (see Table 2) shows very clearly
that there is a significant amount of cases which can be solved by MBR with very limited
computational resources. This kind of distribution is not peculiar of this test set or of this
domain, since results obtained in other domains are consistent with this observation [33, 34].

This means that a significant amount of diagnostic problems are ”easy” (from the MBR
perspective) and the benefit of solving "easy” cases by means of CBR rather than MBR is
highly questionable. In fact, there is a high chance that the CBR component does not save any
time in solving the problem; on the contrary, there is the potential drawback that the diagnostic
solutions provided by CBR are not exactly the ones given by MBR and therefore the quality of
the solutions is lower.

The different merits of different problem solving architectures clearly depend on the typology
of diagnostic cases which have to be solved. This suggests an alternative approach, where the
particular form of integration of CBR and MBR is specific for the each type of diagnostic problem
that has to be solved.

In the following we present a flexible architecture where an oracle is invoked to predict
the difficulty of the problem at hand and a different problem solving architecture is invoked
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according to the prediction of the oracle. In particular, we are interested in improving as much
as possible the average computational cost, without loosing too much in competence and in
quality (possibly improving also these parameters). For this reason we have identified three
different classes of diagnostic problems (i.e. easy, medium and hard classes) depending on the
actual effort needed by the MBR in solving them. The three classes are defined as:

easy if MBR_time(DP) <1y
Class(DP) = ¢ medium if 11 < MBR_time(DP) < 1
hard if MBR_time(DP) > 1

The threshold values in such a classification are somewhat arbitrary, depending on the com-
putational power of the computer used for running the diagnostic system as well as the time
requirements for the specific domain of application. In our experiments the thresholds for the
classification are set to 7, = 1 sec. and 75 = 1 min 3.

The above characterization of the classes is based on the actual computation effort (i.e.
M BR_time(DP)) needed for solving the case. If we want to exploit a classification for decid-
ing which problem solver architecture has to be invoked for solving the problem at hand, it is
obvious that we need a classification mechanism able to classify the problems without actually
solving them (or attempting to solve them). For this reason, we have to resort to an oracle able
to estimate the class of computational effort of each problem by just inspecting the diagnostic
problem description. While the actual definition of the oracle is reported in Section 7.1, the
control strategy of the SUPERVISOR in the flexible architecture can be captured by the following
rules:

IF oracle(DP)
IF oracle(DP)
IF oracle(DP)

easy THEN MBR(DP,T1)
medium THEN ADAPtER(DP,Case-Memory,Behavioral-Model,S,T1)
hard THEN CBR(new-case,Case-Memory,Behavioral-Model,S,T1)

The SUPERVISOR is not only responsible for selecting the problem solving method, but also
for deciding under which conditions learning occurs. In particular, the solution of a diagnostic
problem is learnt just in two cases:

IF oracle(DP) = medium and MBR(DP, Behavioral-Model, T1, mbr-solutions)
THEN LEARN(mbr-solution, Case-memory)

IF oracle(DP) = easy and MBR(DP, Behavioral-Model, T1, mbr-solutions)
and MBR-time > 7; THEN LEARN(mbr-solutions, Case-memory)

It is worth noting that the new flexible multi-modal architecture assumes that easy cases are
better to solve via MBR only. More important, we assume that there is a little computational
advantage to cache solutions of the easy cases, so easy cases are not learnt, unless the supervisor

131t is worth noting that these thresholds partition the set of cases into not empty classes. For example, if we
refer to Table 2 in the test set .52 we have that 81.65% of the problems are easy (that is MBR is able to solve
them in less than 1 sec of CPU time); even if we would adopt a more restrictive definition of easy, for example
that easy problems are just the ones that can be solved within 200 msec., we can see that the class easy still
contains 54% of the problems in I52. It is worth noting that the class of hard problem is not empty in any of the
training set reported in Table 2. Depending on the complexity of the domain and on the number of faults, the
number of hard problems could be large (for example 12.9% in IS1) since all the cases that leaded to a memory
overflow within the 1 hour time out required more than 1 min. of CPU time as well.).
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discovers that the time taken by the MBR to solve them exceeds the time limit'*. In this way,
if the oracle has made a wrong prediction and the case is not actually a easy one, the learning
mechanism is activated in order to include the solved case into the case memory and to fill a
gap in its competence.

If a problem is classified as medium, there is reason to believe that MBR will take a significant
amount of time for solving it, so it would be preferable to attempt to solve it via CBR and to
resort to MBR only in case CBR fails. The cases classified as medium that cannot be solved via
OK-SOLUTION or ADAPTATION, but have been solved by the MBR, are interesting cases
to learn. One the meta-rule governing the behavior of the SUPERVISOR activates the learning
mechanism when this situation occurs. In this way the case memory incrementally learns cases
that are not straightforward to be solved by the MBR, and therefore the system has the potential
of saving computational time when a new cases similar to the learnt ones will be encountered.

The diagnostic problems classified by the oracle as hard are submitted just to the CBR
component and no attempt is done for solving them via MBR even when CBR fails to solve them.
More important, the solution of hard cases depend on the ability of adapting the solutions of
medium cases (the only ones that are learnt by the flexible architecture) to become the solutions
of hard cases.

7.1 Defining the Oracle

As stated above, the task of the oracle is to qualitatively estimate, for each diagnostic problem
(and without attempting to solve it), the computational effort that would be needed to solve
that problem by MBR. This estimation is performed by predicting (by means of a heuristic
function hyspr(DP)) the class (easy, medium or hard) to which the problem belongs.

Different heuristic functions could be defined by trying to correlate the MBR time with some
parameters that can be easily evaluated by inspecting the specific problem to be solved.

In [28] we showed that in an abductive approach to diagnostic problem solving, the computa-
tional effort of solving a diagnostic problem is strongly correlated with the number of assignments
Cov; C HY P, containing only ground atoms representing abnormal behavioral modes, such that
BM UCXT U Cov; = ¥ for the diagnostic problem DP = (BM,HY P,CXT,{(¥*, ¥U~)).

In appendix B a particular heuristic function is introduced and discussed which tries to
estimate the number of different global coverings Cov;. Given such a heuristic hypr(DP)
function (provided that its values have a good correlation with the MBR time) the oracle can
be defined in the following way:

easy if hyypr(DP) < 51
Oracle(DP) =< medium if S; < hyrpr(DP) < S
hard if hyrpr(DP) > So

where the thresholds S; and S have to be learnt from experimental data (see appendix B.1 for
details).

In order to test the accuracy of the Oracle(DP) function, we have performed the following
set of experiments. The training sets [S1 and 52 have been used for learning the thresholds
for domain D1. Similarly, CE has been used as training set for domain D2. In particular, for
domain D1 we got S; = 400 and S = 12000, while for domain D2 we got S; = 1200 and

4The time limit is represented by threshold 71, equal to 1 sec. in our experimental setting.
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easy medium | hard
easy 82.52% | 17.48% | 0.0%
1583 | medium | 4.06% | 95.54% | 0.40%
hard 0.0% 0.84% 99.16%
easy 83.14% | 16.86% | 0.0%
154 | medium | 6.45% | 89.34% | 4.21%
hard 0.0% 1.42% 98.58%
easy 97.88% | 2.12% 0.0%
CE | medium | 5.28% | 92.61% | 2.11%
hard 0.0% 0.0% 100%

Table 8: Classification results

Sy = 70000. We have made use of the learnt thresholds on the test sets 153 and 154 for domain
D1 (note that 153 and 154 have different characteristics with respect to the training sets .51
and I152) and CFE itself for domain D2. Table 8 reports the classification results obtained by
comparing the actual classes are (in the rows), with the estimated ones (in the columns). For
each test set, the entry (X,Y’) represents the percentage, over the set of problems of type X, of
problems of type X classified as Y.

For example, in the test set 153, 4.06% of the medium problems (according to the definition
of Class) have been classified by oracle(DP) as easy, whereas 95.54% have been correctly
classified as medium and only 0.40% have been misclassified as hard.

The results reported in Table 8 show that the misclassification error is small and, more im-
portant, no easy problem is classified as hard and vice versa. So, we can claim that hyrpr(DP)
is sufficiently precise to be actually used for predicting the type of problem (the experimental
results reported in the next section support this claim).

Furthermore, by pre-compiling some pieces of knowledge, the time spent in the computation
of hyrpr(DP) can be kept fairly small (see appendix B.).

7.2 Experimental Results

The effectiveness of the flexible integration can be fully appreciated by comparing its performance
with the performance of the MBR problem solver and of the ADAPtER. Table 9 reports the
results concerning computational cost, in particular the mean CPU time (in msec.) for solving
diagnostic problems of different test sets together with its 95% confidence interval. It is easy
to see that the flexible architecture presents a gain of about one order of magnitude over the
MBR problem solver for diagnostic problems of domain D1 (test sets 1S3 and 154). There is
also a quite significant saving in computational time of the flexible architecture with respect to
ADAPtER. Most of the gain is obtained in the way hard problems are dealt with: only CBR is
invoked for solving them and no attempt to resort to MBR in case of failure is foreseen. This
strategy is very effective since not only allows one to save significant amount of computational
resources but has almost no impact on the competence level with respect to ADAPtER (see
Table 10), whilst there is a significant gain with respect to the practical competence of MBR.
This result is not obvious at all, since it shows that a limited number of cases of medium
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153 154 CE

MBR 4269.7 | 6468.8 | 1789.3
+516.8 | £580.6 | £304.1
ADAPtER | 1525.8 | 1258.7 | 241.3
+321.7 | £260.6 | £131.6
Flex. arch. | 440.8 466.8 229.0
+81.9 | £79.6 | +42.2

Table 9: Comparison among the architectures: 95% confidence intervals for the average CPU
time.

153 154 CE

MBR 95.32% | 92.90% | 99.10%
ADAPtER 98.32% | 98.73% | 99.80%
Flexible arch. | 99.28% | 98.23% | 99.50%

Table 10: Comparison among the architectures: percentage of solved problems (competence).

complexity is able to solve a significant portion of the hard diagnostic problems. In fact, it
is worth remembering that the only cases that are learnt are the ones that are classified as
medium and whose solution is provided by the MBR (after the failure of CBR). If we take into
consideration that we start from an empty case memory and that the control strategy of the
learning component decides to forget cases when they are considered no more useful (see [35]
for details), the adequacy of the learning strategies and of the ADAPTATION mechanisms
are evident.

A more detailed analysis of the competence of the different modules composing the flexible
architecture confirms the claim. Let us consider the test set 154. The oracle classified 1772 out
of the 3000 cases composing 154 (59.07%) as easy. All of them are solved by the MBR and
only for 46 cases (2.6%) the prediction of oracle was too optimistic. In these 46 cases the MBR
architecture was able to solve the diagnostic problems, but the CPU time needed for solving each
of them exceeded the time threshold of 1 sec. According to the meta-rules governing the learning
process these 46 cases were learnt and added to the case memory. Oracle classified 990 cases
as medium; all of them were solved within the time threshold of 1 minute by ADAPtER. More
precisely, 843 cases out of the 990 (85.15%) were solved by means of OK-SOLUTION and
ADAPTATION and for 147 cases out of the 990 (14.85%)the MBR was successfully invoked
to solve the problems after the failure of the adaptation (or retrieval). It is worth noting that
the 147 cases were learnt and added to the case memory. The oracle classified 238 cases of the
154 test set as hard (7.93% of the cases in 154). By using just the CBR architecture 185 out
of the 238 have been solved, whilst in 53 case either the retrieval or the adaptation mechanism
failed. This has to be compared with the result of the pure MBR architecture where 213 out
the 3000 cases in 154 were not been solved.

As regards 153, Table 10 shows that the competence of the flexible architecture is greater
than the competence of ADAPtER. This could be a bit surprising, since ADAPtER always
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153 154 CE
ADAPtER 0.675 | 0.573 | 0.426
Flexible arch. | 0.882 | 0.804 | 0.888

Table 11: Comparison among the architectures: the quality parameter.

has access to both reasoning methods (CBR and MBR). However, this result is explained by
the different learning process in the two architectures (and therefore by the possibly different
content of the two case memories after the same set of input cases have been submitted to the
two diagnostic systems). Indeed, the problems in 1S3 that either ADAPtER or the flexible
arcitecture was not able to solve were all hard problems; however, the set of cases learnt by the
flexible architecture allowed it to solve by CBR some hard problems that ADAPtER was not
able to solve. In particular, even if the flexible architecture did not solve 4 hard problems of 153
that ADAPtER did solve, it solved (by CBR) 28 hard problems that ADAPtER was unable to
solve.

If we analyze the results for test set CE (diagnostic cases from domain D2 - car faults),
we see a significant gain of the flexible architecture with respect the pure MBR architecture.
However, there is no big difference in computational cost (and competence) if we compare the
flexible architecture and ADAPtER. This result is not surprising because domain D2 is not as
complex as domain D1. In fact, the number of hard cases in test set CE is relatively small and
therefore the saving that can be obtained via adopting the flexible architecture (which does not
invokes MBR in case of failure of the CBR for hard cases) concerns just a small fraction of the
whole test set. However, the adoption of the flexible architecture is quite beneficial for another
performance parameter: the quality. By inspecting Table 11 it is easy to see that in all test
sets the quality improves significantly with respect to ADAPtER. This is not surprising since
the flexible architecture has been designed with such a goal in mind: the decision that easy
problems have to be solved by MBR guarantee that all minimal diagnostic solutions are got and
therefore the quality is optimum. The amount of increase in the quality is really significant and
allows to conclude that the flexible architecture provides a real improvement over the ADAPtER
architecture in all the test sets that have been analyzed.

8 Discussion and Related Works

The integration of different reasoning modes has been extensively investigated by several re-
searchers and, as already mentioned in the introduction, the use of the CBR paradigm has
received particular attention, because of the availability of solved (often by human experts)
cases in several problem solving tasks. The interest in understanding how far one can go with
the CBR approach in problem solving also arises because of the basic assumptions the CBR
approach is based on. In fact, a pure case-based problem solver may suffer from the same
drawbacks of a pure “shallow” reasoning mode like rule-based reasoning, since the competence
of a CBR problem solver depends on the content of the case base; the case base must be suf-
ficiently complete in order to avoid knowledge gaps. Moreover, adaptation often require to
devise a restricted rule-based reasoner for that task [23]. On the contrary, CBR can be seen as
complementary to the use of a “deep” reasoning mode like model-based or constraint-based rea-
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soning where background knowledge is always used from scratch and no learning by experience
is usually provided.

The integration of CBR with other reasoning modes can be exploited in two different ways: at
the domain level for providing alternative way of solving a given problem, possibly by choosing
the best mode or by using one mode to refine the others; at the internal reasoning level, by
providing a way of using one mode for guiding the internal reasoning process provided by another
mode. Several examples are present in both categories; in the first class we can find systems that
use CBR for guiding the application of ill-defined or very general rules in legal domains [10, 39]
or in medical ones [8, 9], for breaking decisions where rules conflict [4], for selective selection of
reasoning modes in path planning [21], for integrating schema-based and model-based design in
very complex tasks [7], for helping decision making in a Bayesian framework [11] or for trying
to solve problems that are exceptions to rules [45] or prototypes [46] in classification tasks.

The approaches mentioned above are mainly concerned with the improvement of competence
and quality of solutions, since multiple reasoning paradigms are used to compensate lack of
knowledge of single ones. However, the integration of CBR at the domain level can be also
triggered by computational complexity issues as in CASEY [24] where model-based results are
captured into cases in order to speed-up problem solving.

The second class of approaches refers to the use of CBR as an internal resource of the inference
engine of the system, since CBR is integrated at the reasoning level; relevant examples are the
PRODIGY-ANALOGY planner [50] where the reasoning process is cached for exploiting similar
reasoning traces and the DIAL planning system [25] where transformational CBR generates a
new plan by adapting prior plans. Plan adaptation is initially provided by rule-based reasoning,
but internal derivational CBR captures the adaptation process, in order to supplant rule-based
adaptation and similarity assessment.

Our approach exhibits features of both categories: it provides a flexible, opportunistic and
adaptive integration of CBR and MBR at the domain level, by addressing every aspect of per-
formance namely computational complexity, competence and solution quality; moreover it also
provides integration at the reasoning level both “internal” and “external” to the problem solv-
ing cycle: internal, since adaptation is performed as a focused step of model-based reasoning
exploiting the derivational trace of the retrieved solution, external since the oracle is able to
suggest the best reasoning style for each proposed case to be solved. In particular, the use of
a “solution-replay” mechanism seems to provide significant advantages in practical terms, to
the classical REUSE step of the CBR cycle. This is not peculiar to the diagnostic task, since
important complexity results have also been obtained in planning systems exploiting Deriva-
tional Analogy whose fundamental step is indeed the solution-replay. In [5], the authors present
DerUCP, a general model for plan adaptation using Derivational Analogy. They show that the
general complexity of case-based planners ([31]) can be significantly mitigated if a Derivational
Analogy framework is adopted. Their results seem then to furtherly confirm the performance
results practically obtained by our multi-modal architecture. Indeed, ADAPtER presents some
similarities with DerUCP; the replay step in DerUCP is conceptually equivalent to the replay of
the retrieved solutions performed by the SOLUTION RE-PLAYER in ADAPtER, the backtracking
of nodes in the replay path in DerUCP corresponds to Inconsistency Remowal Step in ADAPtER,
furthermore, both DerUCP (in what is called Eztension step) and ADAPtER (in its Explanation
Construction step) make use of first principle reasoning to complete their task.

However, despite these similarities there are also two important differences. First of all, each
case in ADAPtER stores the solutions of a past problem. Differently, in DerUCP, “the cases
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contain the sequence of decisions made to obtain a plan rather than the plan itself” [5]; however,
this difference is lowered by the fact that both such objects are used as derivational traces for
the solution-replay.

A second difference concerns the fact that in DerUCP, solving a planning problem by adapt-
ing an old plan never requires a computational effort greater than the computational effort that
would be needed to solve the problem from scratch, if the adaptation is performed via Deriva-
tional Analogy. It is worth pointing out that ADAPtER, in general, does not guarantee such a
property. Indeed, it may happen that ADAPtER solves a problem from scratch (i.e. by MBR)
after having failed in the attempt of adapting a solution. In such a case, ADAPtER actually
performs the work needed to solve the problem from scratch plus the work needed to adapt a
solution (and therefore it performs an unfruitful search in the Explanation Construction step).
Nevertheless, we have to notice that whenever OK-SOLUTION succeeds the problem is solved
with no search at all in the behavioral model. Moreover, in those cases in which ADAPTA-
TION succeeds, search is performed only by the Explanation Construction step which does not
explore a portion of the search space larger than the portion that would be explored by MBR.
Experimental results (and the analogies with DerUCP) lead to argument that in many cases,
the portion of the state space that is explored is significanlty smaller than the one that would
have been explored from scratch.

It should be clear that the capability of retrieving cases whose solutions have a good chance
of being immediately re-usable or successfully adapted to the new problem plays an important
role in our architecture. As mentioned above, the function of match used by RETRIEVE does
not simply measure the surface similarity between cases. Instead, it estimates the computational
effort that would be needed to adapt a solution to a stored case, in order to solve the input
one. This retrieval mechanism proved to be rather effective in retrieving solutions with a high
probability of being successfully (and efficiently) adapted (see Section 5).

Finally, one important contribution of the paper concerns the definition of the oracle of Sec-
tion 7. In fact, its adoption is not only useful for improving the different aspects of performance
as shown in Section 7.2, but changes the way the integration between different problem solving
methods is conceived. In fact, without the oracle a fixed straight-line integration like the mas-
ter/slave one of ADAPtER may result adequate for a given mix of problems, but inadequate
for a different mix. Let us suppose that for some reason the diagnostic system has to deal just
with very hard cases: MBR could result inappropriate because its practical competence could
be very low (as shown in the experiments, many hard cases are not solvable within a reasonable
time limit). On the contrary, if the diagnostic system has to deal with simple problems (such as
single fault diagnostic problems) CBR may not be the most appropriate approach, since there is
no improvement in computation time and a degradation in the quality of solution with respect
to the solutions provided by MBR.

The ability of defining an accurate oracle paves the way for having an efficient and competent
problem solver independently from the particular characteristics of the set of problems submit-
ted for solution. It is up to the oracle to select the most appropriate sequence of invocation of
problem solvers for the particular problem at hand, transforming a rigid master/slave architec-
ture in a more inter-wined one (a more collaborative integration using the terminology of [29]).
Obviously, this kind of adaptive behavior has to be coupled with the adaptive capabilities of the
case memory management system; in fact, the content itself of the case memory should change
over time for adapting its competence to the cases the system has to deal with. Fortunately
such kind of case memory management systems exist (see [26]) and we have developed learning
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and forgetting techniques that are resulted very effective [35])

The paper has investigated the multi-modal reasoning approach in the framework of diag-
nostic problem solving. The results (both on the theoretical side and the experimental one)
hold for such a task. However, the methodology we have devised for the analysis of multi-modal
reasoning is suitable for many other tasks. In particular, a theoretical analysis can show whether
the re-use of past solutions is always more efficient than solving the problem from scratch. If
not, there is the need for singling out what kinds of integration between CBR. approach and
"first-principles” problem solving are possible and convenient. It is worth noting that the ”util-
ity problem” has be dealt with, so it is not possible to conceive an integrated system where the
case memory continues just to grow and all cases that are solved are learnt. Strategies based
on models of competence and/or of usefulness have to guide the learning process. We have
shown that the use of analytic methods (such as cost models) provides significant insight in
understanding the pros and cons of the different problem solving methods and may suggest new
strategies for multi-modal reasoning.

As reported in [29], the main open issue in CBR integrations (but we can say in multi-
modal reasoning in general) is to evaluate advantages and disadvantages of different architectures
through a deep experimental and analytical evaluation: we believe that our work is a step in
this direction.
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A Proofs of Theorems

A.1 Proof of theorem 3.1

First we prove that DIAGSAT is NP-hard by means of a reduction from SAT (the problem of
deciding the satisfiability of a boolean formula in CNF) that is known to be NP-complete [6]. Let
¢ be a boolean formula in CNF with variables V' = {v, v9, ... v,} and clauses C = {c1, ca,...cn }-
An assignment of truth values to every variable in V is called a variable assignment. We will
construct a diagnostic problem DP = (BM, HY P,CXT, (¥*,¥~)) such that DP has a solution
if and only if ¢ is satisfiable!®. Without restriction, let us consider a propositional model BM
using the following propositional letters:

* T; (1 <i < n) meaning that v;=true has been selected,
* F; (1 <i < n) meaning that v;=false has been selected,
* S; (1 <14 < n) meaning that a truth value for v; has been selected,

* O (1 <j < m) meaning that c; is satisfied.

* U (1 £j < m) meaning that c; is not satisfied.

15We use the approach proposed for the proof of Theorem 4 in [31] as a guideline.
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The model BM is composed by the following clauses:
*T, =8 (1<i<n)

*F,—> 8 (1<i<n)

*TiNSIN... S, — Cjifv; ey

* NSNS, = Cif 15 € ¢

*Ty AN Ty, ANFjyN...Fj, NS1A...S, = Cj
iij:vjlv...vjh\/m\/...W

We also have the following meta-level constraints:
T,ANF,— 1 C;jAC;— L
We further assume HY P = {T;} U{F;}, CXT =0, ¥* = {Cy,...Cp} and ¥~ = {C},...Cp,}

Notice that the last three clauses of the model BM are mutually exclusive; they model the
fact that C; is satisfied (third and fourth clause) or not satisfied (fifth clause). Indeed, every
assignment H C HY P such that BMUCXTUH + C; (1 <j < m)issuch that BMUCXTUH V/
C; (1 < j < m). Moreover, every assignment H C HY P and such that P(H) = P(HY P)
corresponds to a variable assignment and vice versa.

If ¢ is satisfiable, the set H C HY P corresponding to the satisfying variable assignment is a
diagnosis for DP; indeed, since every c; is satisfied, then every C; will be derived from H and
consequently no C; will be derived from H. Conversely, if DP has a solution, let H be a total

diagnosis for DP, then the variable assignment in V' correspondent to H clearly satisfies ¢.

Finally, DIAGSAT is in NP since the following is a non deterministic algorithm running in
polynomial time (see proposition 3.1):

- guess a solution H to DP;

- DIAGCHECK on H and DP.

A.2 Proof of Theorem 3.2

Dim. To prove that DASAT is NP-complete, we must prove the following properties:
1. DASAT is in NP;
2. DASAT is NP-hard.

1. The first property can be easily proved. Let’s consider a diagnostic problem DP;, =
(BM,HY P,CXTy, (¥, ¥7)), a diagnosis H for DP = (BM,HY P,CXT,(¥*,¥")) an
integer £ < |H| and an assignment H; (representing the guess) such that P(H;) =
P(HY P). To verify if H; is a diagnosis for DP; containing a sub-assignment of H of
cardinality at least & we have to verify:

(a) if Hy contains at least k atoms occurring in H; this operation has complexity O(r?),
where r = card(P(HY P));
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(b) if H; is a diagnosis for DP;. This is the DIAGCHECK problem which is in P
(proposition 3.1).

2. To prove the NP-hardness of DASAT we make a reduction from DIAGSAT which is NP-
complete (theorem 3.1)

Let’s consider the following instance of the problem DIAGSAT:
DP = (BM,HY P,CXT,(U+ ¥)).

DP can be reduced to an instance of DASAT as follows:

DP = (BM,HYP,CXT,(T",T")), where:

BM = BM U

{Amwycws m(a) = mlnew(new?),
(Ama )E\I,+ m(a)) = m2_new(newl),
(Apep(my p) P(new)) — ml new(newl)} U
(UpeP(HYP {p(new) — m2_new(new?2)});
(

HYP = HYPU/{p(new)/ pe P(HY P)};
U= {ml_new(newl)};

U = {mlnew(new2)} U¥,

where the predicate symbols m1_new, m2_new and the constants new, newl and new?2 do
not belong to the language of BM.

It is easy to see that H = {pl(new),...,pr(new)} is a diagnosis for DP. Indeed, H is an
assignment for P(HY P) such that

BM UCXT U H + ml_new(newl)
BM UCXT U H I/ ml_new(new2)
Vn(a) € V=, BMUCXT UH ¥/ n(a).

Furthermore, no atom can be derived from BM alone, since neither BM nor BM — BM
contain facts (i.e. definite clauses with an empty body; see definition 2.1). Moreover, the
body B of each clause in BM does not contain any p(new) € H and every ¢(X) € CXT
can occur in B only in conjunction with some other atom s(y) € CXT (see definition 2.1),
therefore the set of facts CXT U H does not satisfy the body of any clause in BM. All
clauses in BM whose body is satisfied by CXT U H are in BM — BM, but the head of
these clauses are atoms not belonging to the language of BM, therefore they are different
from each n(a) € ¥~ and from each atom occurring in the clauses of BM. It follows that

Vn(a) € ¥~, BMUCXT U H t/ n(a).

Let DP, = (BM,HYP,CXT, (¥, ,¥,)), where
T =T"u {m2_new(newl)} and

U, =¥ U{m2.new(new2)}

and let’s consider the instance of DASAT consisting in determining whether there exists
a diagnosis H " for DP, containing a sub-assignment of H of cardinality at least k = 0.
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It should be clear that this instance of DASAT has been defined by means of a polynomial
transformation of the instance of DIAGSAT relevant to DP.

To prove that DASAT is NP-complete we need only to prove that H is a diagnosis for
DP iff H'isa diagnosis for DP (having chosen k = 0, a diagnosis for DP; is a solution
to the considered instance of DASAT and vice versa).

Hp. Hisa diagnosis for DP;.

Ts. H is a diagnosis for DP.

H' is a diagnosis for DPy, thus (def. 2.2) P(H') = P(HY P), therefore

(1) P(H) = P(HY P)

(Indeed, given the definition of HY P, P(HY P) = P(HY P)). Moreover, given

Tf = {ml_new(newl),m2_new(newl)}, we have

(a) BMUCXT UH + ml_new(newl) and

(b) BMUCXT UH' + m2.new(newl)

and given

U, = {ml_new(new2), m2_-new(new2)} U {n(a)/ n(a) € ¥},
(¢c) BMUCXT UH t ml new(new?)

(d) BMUCXT UH t m2new(new?)

(e) Vn(a) € W BMUCXTUH tn(a) .

We remark that H does not contain any pi(new) € H (ie. the only sub-assignment of
H contained in H has cardinality k& = 0). Indeed, if it was pi(new) € H , we would
have BM UCXT UH F m2.-new(new?), since BM contains the implication pi(new) —
m2_new(new2). But this fact would contradict the statement d. So, it follows,

(2) H C HY P;
Furthermore, in BM only two implications have m1_new(newl) in their head, namely
(Am(a)cw+ m(a)) = mlnew(newl) and

(/\pep(Hyp)p(new)) — ml_new(newl); since

BMUCXTUH' + ml_new(newl) (statement @) and, as said above, for all p € P(HY P),
p(new) ¢ Hl, therefore only the first implication can be used to derive ml_new(newl).
This means that

VYm(a) € W*BM UCXT UH + m(a), but no implication added to BM in order to build
BM has any m(a) € ¥ in its head, thus

(3) Vm(a) € ¥t BM UCXT UH F m(a).

BM C BM, therefore, from statement e, we have

(4) Vn(a) € U BM UCXT UH ¥ n(a).

From (1)-(4) it follows that H is a diagnosis for DP.

We still have to prove that each diagnosis for DP is a diagnosis for DP;.
Hp. Hisa diagnosis for DP;
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Ts. H isa diagnosis for DP;.

H' is a diagnosis for DP, thus P(H') = P(HY P), so
(5) P(H') = P(HY P) and

(6) H CHYP C HYP.

VYm(a) € U+ BMUCXTUH + m(a), therefore Vm(a) € ¥ BMUCXTUH + m(a) (since
BM C BM), thus BMUCXTUH ' + ml_new(newl) e BMUCXTUH' + m2_new(newl),
ie.

(7) Vo € U BMUCXTUH + x.

Furthermore, Vn(a) € ¥~ BM UCXT UH V/ n(a); the head of each clause added to BM
in order to build BM contains only symbols that do not belong to the language of BM,
thus Vn(a) € ¥~ BM UCXT UH ¥ n(a). In other words,

(f) for those n(a) € ¥, that belong to ¥, we have BM UCXT UH t n(a).
Moreover, no clause in BM has m1_new(new2) in its head, thus
() BMUCXT UH t/ ml_new(new?).

The only clauses in BM having m2_new(new?2) in their head are p(new) — m2_new(new?2),
for each p € P(HY P), but no clause in BM has any p(new) (with p € P(HY P)) in their
head and p(new) ¢ H (since H C HY P and p(new) ¢ HY P), therefore

(h) BMUCXT UH' ¥/ m2_new(new?).

From (f)-(h) it follows

(8) Ve € ¥, BMUCXTUH Wz

From (5)-(8) it follows that H' is a diagnosis for DP;.

This proves that DASAT is NP-hard. Since DASAT has also been proved to be in NP, it
follows that DASAT is NP-complete.

B Heuristic Function

In Section 7.1 an oracle has been defined which classifies each diagnostic problem DP into three
classes (i.e. easy, medium and hard classes) depending on the estimated computational effort
needed to solve DP by MBR. Such an oracle makes use of a heuristic function hy;pr(DP) that
we describe in this appendix.

Let DP be the set of all diagnostic problems. The function hy;gr : DP — N associates a
natural number to each diagnostic problem DP inDP. In order to be effective, hprpr(DP) has
to be correlated with the actual time M B Ry, (D P) that would be needed to solve the problem
DP by MBR: i.e. the greater hypr(DP), the greater M BRyjme(DP); the smaller hyspr(DP),
the smaller M BRyjme(DP).

To understand how such a function can be defined, it is necessary to understand how the
MODEL-BASED REASONER works.

Let’s recall that in the framework that we considered for the experiments each diagnostic
problem DP = (BM,HY P,CXT,(¥",¥ ")) is such that BM describes the faulty behavior
of the system to be diagnosed (i.e. the clauses in BM describe the consequences, both direct
and indirect, of the presence of faults in the components). The set OBS of observations are
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partitioned into two sets OBS = OBSAUOBSY of abnormality (OBS*) and normality (OBS™)
observations (to actually have a diagnostic problem, it must be OBS4 # ). Since we are
interested in diagnoses that cover (i.e. that explain abductively) all the abnormal observations,
we put Ut = OBSA. ¥~ is computed on the basis of all the observations, therefore ¥~ =
{m(y)/y is an admissible value for the observable parameter m A (Im(zx))(m(z) € OBSA U
OBSN ANz #y)}.

Moreover, we impose a minimality criterion on diagnoses: given two diagnoses H; and Ha
for a diagnostic problem D P, if the set of faulty behavioral modes occurring in H; is a subset of
those occurring in Ho, then Hj is preferred w.r.t. Ho. Each diagnosis H such that no preferred
diagnosis w.r.t. H exists is called a minimal diagnosis.

A MODEL-BASED REASONER that computes the set of the minimal diagnoses for each given
diagnostic problem DP can achieve its task in the following basic steps:

1. Find Coverings: compute the set MIN_COV Spp(OBS#) of the sub-assignments Cov C
HYP to P(HY P) such that BM U CXT U Cov = Apypycopsa m(z) and each Cov €
MIN_COV Spp(OBS#) is minimal w.r.t. set inclusion (i.e. there is no
Cov' € MIN_COV Spp(OBS#) such that Cov* C Cov); Cov is called a minimal covering
for OBS4.

2. Filter Consistent: discard all the coverings Cov € MIN_COV Spp(OBS#) for which
there is m(y) € ¥~ such that BMUCXTUCov + m(y). Let CONS_MIN_COV Spp(OBS4)
be set of the remaining coverings (i.e. those ones that are consistent with all the observed
parameters).

3. Complete: for each Cov € CONS_MIN_COV Spp(OBS#), build a diagnosis Diag(Cov) =
Cov U (UpEP(HYP)—P(Cov) p(normal)

The first step computes the set of the abductive explanations for the observed abnormal
parameters (first condition in definition 2.2) and it retains only those explanations that are
minimal w.r.t. set inclusion, whereas the second step discards all those explanations entailing
some inconsistency w.r.t. the whole set of observations (second condition in definition 2.2).
The third step simply completes each minimal covering Cov computed in the previous steps by
stating the normal behavioral mode for each predicate symbol in P(HY P) and not occurring in
P(Cov).

The find coverings step can be refined into four sub-steps. For the sake of clarity, we first
describe these sub-steps without considering any mechanism aimed at focusing the reasoning
process, as follows:

1.1 For each m(a) € OBS* = {m1(a1),..., mg(ax)}, compute the set MIN_COV Spp({m(a)})
of the minimal coverings for the singleton set of observations {m(a)} (i.e. MIN_COV Spp({m(a)})
is the set of the abductive explanations for the observation m(a), minimal w.r.t. set in-
clusion);

1.2 compute the set
Spp(OBSA) = {UF_, Cov;/Covy € MIN_COV Spp({my(a1)}), ...,

Cov, € MIN_COVSpp({mi(ax)})} by taking each element (Covy,...,Couvg) in the
Cartesian product
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MIN_COVSpp({mi(a1)})x,...,xMIN_COV Spp({my(ax)}) and computing the union
Covi U...U Couy;

1.3 compute the set COVSpp(OBSA) = {C € Spp(OBS*)/C is an assignment to P(C)},
containing all the set of atoms C € Spp(OBSA) such that C does not contain two
different ground instances p(a) and p(b) for a same predicate p € P(C) (each Cov €
COV Spp(OBSA) represents an abductive explanation for all the observations in OBS4
and it is called a covering for OBS%);

1.4 restrict COVSpp(OBS™A) to the set MIN_COV Spp(OBS#) of the coverings for OBS*4

minimal w.r.t. set inclusion.

As stated above, these four sub-steps describe an algorithm that does not make use of any
mechanism to focus the search for the coverings COV Spp(OBS#). Actually, the MODEL-
BASED REASONER which we have taken into consideration in the present paper does make use
of a focusing mechanism in order to avoid the computation of some inconsistent coverings. Such
a mechanism is based on a set of necessary conditions that are pre-compiled from the behavioral
model BM and thus they hold for each diagnostic problem relevant to BM. We refer to [15, 13]
for the details about the pre-compilation techniques of such necessary conditions and their use
in focusing the abductive reasoning. To understand the heuristic function hygr(DP), it is
sufficient to know that a set of necessary conditions Nec(Cov) can be associated with each
minimal covering Cov € MIN_COV Spp({m(a)}), for each m(a), where m is an observable
parameter and « is an admissible abnormal value for m. Nec(Cov) = {ni(v1),...,nn(vy)} is a
set of ground atoms such that each n; is an observable parameter and each v; is an admissible
abnormal value for n; (: = 1,...,h). For each Cov € MIN_COV Spp({m(a)}) and each
n(v) € Nec(Cov), it holds that BM U Cov - n(v).

If there are m(a) € OBS“ and Cov € MIN _COV Spp({m(a)}) such that Nec(Cov) "W~ #
0, then every Cov' € MIN_COV Spp(OBS4) such that Cov C Cov’ would be discarded in
the filter consistent step. By taking into account this fact, the MODEL-BASED REASONER
can use these necessary conditions in sub-step 1.1 in order to avoid the computation of some
inconsistent coverings that would be discarded in the filter consistent step. Indeed, the sub-
step 1.1 actually computes, for each m(a) € OBS*, the subset MIN_COV Spp({m(a)}, ¥ ™) of
MIN_COVSpp({m(a)}) containing all and only the minimal coverings Cov for m(a) such that
Nec(Cov) N ¥~ = . The computation of COVSpp(OBSA) (sub-steps 1.2 and 1.3) is actually
based on these MIN _COV Spp({m(a)}, ¥ ) sets instead of MIN_COV Spp({m(a)}) (for each
m(a) € OBSH).

In [28] it is shown experimentally that the computational effort of solving a diagnostic prob-
lem by MBR is correlated with the number of coverings for the setOBS* of abnormality obser-
vations: the grater the cardinality of
COV Spp(OBS#), the greater the CPU time needed to solve DP by MBR.

It follows that each function hy; g (DP) that is able to estimate the cardinality of COV Spp(OBS4)
for each diagnostic problem DP can be used to estimate the computational effort required to
solve DP by MBR.

In order to be effectively used in the flexible architecture described in Section 7, the com-
putation of such a function should require little time. However, the oracle which the flexible
architecture is based on does not need a precise estimation of the CPU time and the heuris-
tic function needs only to be accurate enough to allow a good classification of each diagnostic
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problem into one of the three classes: the classes of problems whose resolution by MBR is easy,
medium or hard. This fact gives us enough space for a finding a good trade-off between the
accuracy of the heuristic function in estimating the cardinality of the set COV Spp(OBS*) and
the time required to compute it. In particular, the oracle in the flexible architecture makes use
of the following heuristic function:

Definition B.1 Given a diagnostic problem DP = (BM,HY P,CXT, (OBS*,¥™)),
hvisr(DP) = [Ina)copsa card(MIN_COVSpp({m(a)}, ¥ ™)), where
card(MIN_COV Spp({m(a)}, ¥ ")) denotes the cardinality of the set MIN _COV Spp({m(a)}, ¥ ).

It is easy to see that such a heuristic function over-estimates the cardinality of the set
COV Spp(OBS#). Indeed, hyspr(DP) actually estimates the cardinality of the set Spp(OBS4)
computed in the sub-step 1.2 which is a superset of COV Spp(OBS#). It is worth noting that the
above-defined hp;pr(DP) function considers the sets {MIN_COV Spp({m(a)}, ¥ )/ m(a) €
OBS*4) and not the sets
{MIN_COVSpp({m(a)})/ m(a) € OBS*)}, since it takes into account the necessary condi-
tions used by the MODEL-BASED REASONER to focus the search.

The time for computing the heuristic function hy/pr(DP) is very limited since the set of
minimal coverings M IN_COV S({m(a)}) for each abnormal value a and each observable param-
eter m depends only on BM (thus we can omit the subscript D P, since these sets of coverings
hold for every diagnostic problem relevant to BM) and it can be computed off-line; moreover,
for every Cov € MIN_COV S({m(a)}) the set Nec(Cov) of the necessary conditions associated
with Cov are pre-compiled. Therefore, the computation of hy;pr(DP) requires just to count,
for each MIN_COV S({m(a)}) (m(a) € OBS#), how many Cov € MIN_COV S({m(a)}) are
such that Nec(Cov) N ¥~ = () and to compute the product of these numbers. These operations
are all inexpensive and in fact, the experimental results show that the evaluation of hy;pr(DP)
is performed in at most 5 msec. which is an almost negligible fraction of time with respect to
the whole time needed for solving each diagnostic problem.

Despite the simplicity of the above-defined heuristic function, their values still have a satis-
factory correlation with the CPU times required by the MODEL-BASED REASONER to solve the
problems (see [28]); moreover, the oracle defined in Section 7.1 (that makes use of this function
in order to predict the class for each diagnostic problem) is quite effective (see Table 8).

B.1 Learning Oracle Thresholds

The function Oracle(DP) that predicts the class for each diagnostic problem DP makes use of
two thresholds S and Sy (Section 7.1): if hpypr(DP) < Sy or hyrpr(DP) > Sy the problem
DP is classified as easy or hard, respectively; otherwise DP is classified as medium. The
two thresholds are automatically learnt on the basis of a test set T'S. T'S is a set of pairs
(Class(DP),hppr(DP)), where Class(DP) is the actual class which the diagnostic problem
DP belongs to and hygr(DP) is the value for DP of the heuristic function defined in the
previous section.

The learning algorithm considers the following error function !

d(miscly (z,
error(z,y) = E[E{E,M,H} %W

6.

'We assume that in the training set there is at least one problem for each class; i.e. for each I € {E, M, H}
card(I) > 0.
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where FE indicates the set of pairs (easy, hypr(DP)) € TS (M and H stay for medium and
hard, respectively) and miscl;(z,y) is the set of problems in I that are misclassified by the
function Oracle(DP) using the thresholds S1 = z and S2 = y. The learning mechanism
searches the following domain Dom for a pair (S1,S2) of thresholds that minimizes the error
function:
Dom = {(z,y)/{(z,y) € Ds1 X Dga Nz < y},
where

Ds1 ={hmpr(DP)/{easy, harpr(DP)) € T'S}
and

Dgy = {hMBR(DP)/<haTd, hMBR(DP)> S TS}

If Dom = (), the thresholds cannot be learnt. In practice, given the good correlation between
the CPU time and the value of the heuristic function hp;pr(DP) each test set containing a
representative sample of cases prevents this situation to occur.
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