Dipartimento di Informatica
Universita del Piemonte Orientale ” A. Avogadro”
Spalto Marengo 33, 15100 Alessandria
http://www.di.unipmn.it

universita
degli studi
del piemonte
orientale

TECHNICAL REPORT TR-INF-2004-01-01-UNIPMN
(January 2004)

Grid scheduling and Economic Models

Author: Massimo Canonico (canonico@mfn.unipmn.it)

Abstract

Computational Grids are becoming attractive and promising platforms for solving large-scale
(problem solving) applications of multi-institutional interest. However, the management of resources
and scheduling computations in the Grid environment is a complex undertaking as they are (geo-
graphically) distributed, heterogeneous in nature, owned by different individuals or organizations
with their own policies, different access and cost models, and have dynamically varying loads and
availability. This introduces a number of challenging issues such as site autonomy, heterogeneous
substrate, policy extensibility, resource allocation or co-allocation, online control, scalability, trans-
parency, and economy of computations . Resource allocation complexity due to decentralization and
heterogeneity is also present in human economies. In general, modern economies allocate resources
in systems whose complexity overwhelms any algorithm or technique developed for computer sys-
tems. In this paper, we describe and comment different approaches present in scientific literature
that use economic models to study the resource allocation problem in the Grid environment.

1 Introduction

As described in [1], more applications are turning to Grid computing to meet their computational
and data storage needs. Single sites are simply no longer efficient for meeting the resource needs of
high-end applications, and using distributed resources can give the application many benefits. Effec-
tive Grid computing is possible, however, only if the resources are well scheduled. Grid Scheduling
is defined as the process of making scheduling decisions involving resources over multiple adminis-
trative domains. This process can include searching multiple administrative domains to use a single
machine or scheduling a single job to use multiple resources at a single site or multiple sites. We
define a job to be anything that needs a resource and we use resource to mean anything that can
be scheduled: a machine, disk space, a QoS network, and so forth.

In managing such complex environment, traditional approaches to resources management that at-
tempt to optimize system-wide measure of performance cannot be employed. Traditional approaches
use centralized policies that need complete state information and a common fabric management pol-
icy, or decentralized consensus-based policy. Besides, these approaches do not take into account the
different scheduling and management preferences of users and resource owners. As discussed in [2],
many projects propose and explore the usage of economic-based paradigms for managing resource
allocation in Grid computing environments. The economic approach provided a fair basis in success-
fully managing decentralization and heterogeneity that is present in human economies. Competitive
economic model provide algorithms/policies and tools for resource sharing or allocation in Grid sys-
tems. The models can be based on bartering or prices. In the bartering-based model, all participants
need to own resources and trade resources by exchanges (i.e., storage space for CPU time). In the
price-based model, resources have a price, based on the demand, supply, value and the wealth in the
economic system.

In this paper, we illustrate and comment different approaches to make scheduling on Grid envi-
ronment using economic models presented in scientific literature. In section 2, we fix the objectives
and in the section 3 we present the different approaches. Finally, in section 4 discuss the state of
art.

2 DMotivations and goals

In designing resource allocation and control mechanisms in Grid environment several goals need to
be considered. Some of the important goals are outlined below, while in later sections, we present

different approaches that try
e to decentralized resource access, allocation and control mechanisms;
e to design reliable, fault-tolerance and robust allocation mechanisms;

e to provide guarantees to users and applications on performance criteria. Some of the perfor-
mance criteria in distributed systems include the following:

— response time

— throughput

application failure probability
network QoS

e to provide a unified framework in which users have transparent access to the services of a
distributed system, and services are provided in an efficient manner. This framework should
hide complexity of multiple resource suppliers and resource allocation policies.

Some of these goals could be realized using economic models that provide several interesting con-
tributions to resource sharing algorithms. The first is a set of tools for limiting the complexity by
decentralizing the control of resources. The second is a set of mathematical models that can yield
several new insights into resource sharing problems.

In an economy, decentralization is provided by the fact that economic models consist of agents
which selfishly attempt to achieve their goals. There are two types of agents, suppliers and con-
sumers. A consumer attempts to optimize its individual performance criteria by obtaining the
resources it requires, and is not concerned with system-wide performance. A supplier allocates its
individual resources to consumers. A supplier’s sole goal is to optimize its individual satisfaction
(profit) derived from its choice of resource allocations to consumers.

Most economic models introduce money and pricing as the technique for coordinating the self-
ish behavior of agents. Each consumer is endowed with money that it used to purchase required
resources. Each producer owns a set of resources, and charges consumers for their use. The price
a producer charges for a resource could be determined by its supply and the demand of the agents
for resource. Several papers apply versions of this model to decentralized resource allocation in
computer systems.

3 Approaches

In this section, we present and comment different ways to combine economic models and compu-
tational Grid. In particular we are interested about three fundamentals aspects: (i) the scheduling
policy that specifies how to assign the jobs to resources (ii) the wutility function to quantify the
goodness of each assignment and (iii) the market model used and how the prices vary for each
resource.

Economic models for resource management and scheduling in Grid
computing

The Nimrod/G resource broker [3] is a global resource management and scheduling system (see
Figure 1) that supports deadline and economy-based computations in Grid computing environments

for parameter sweep applications. Parameter studies involve the execution of a large number of
(independent) tasks over a range of parameters. Scheduling of such applications appears simple,
but complexity arises when users place SOS constraints like execution time and cost limitations.
Such a guarantee of service is hard to provide in a Grid environment as its resources are shared,
heterogeneous, distributed in nature, and owned by different organizations having their policies
and charging load and at the same time meet cost constraints. In the Nimrod/G application level
resource broker (also called an application level scheduler) for the Grid, three adaptive algorithms
for scheduling are incorporated:

e time minimization, within time and budget constraints;
e cost minimization, within time and budget constraints;
e none minimization, within time and budget constraints.

The Time Minimization algorithm attempts to complete an experiment as quickly as possible,
within the available budget. The Cost Minimization algorithm attempts to complete an experiment
with the lowest cost as possible within the deadline. A final Algorithm (”None Minimization”)
attempts to complete the experiment within the deadline and cost constraints without minimizing
either.

Therefore, in this model, the utility functions are only two:

e time(R,J) that returns the execution time of job J in the resource R;

e cost(R,J) that returns the cost of the execution of job J in the resource R.

Grid Explorer rlf :
Joh

-]
Application Sy
L b Conmol L | gonedule Advisor A
Agent

A Lyl Trade saver Charging Alg, |

i i

Hesource
Reserﬂﬂl_m'

| Tradebanager |4

!

| Deployment Agent ki

¥ Resource Allocation | [TTTT M

Grid User Grid Resource Broker

GridMiddleware Grid Resource/Controt Domains

Figure 1: Nimrod/G resource broker

To evaluate the different algorithms for scheduling, two scheduling experiments have been carried
out for a given deadline of 4 hours (with 18 minutes of extension for the second experiment) and a
budget of 250 000 (G$ or tokens) with different optimization strategies (time minimization and cost
minimization).

In these scheduling experiments, the Nimrod-G resource broker employed the commodity market
model to establish a service access price. The access price varies from one consumer to another and
from time to time, as definite by the resource owners. Depending on the deadline and the specified

budget, the broker develops a plan for assigning jobs resources. The access price has been established
dynamically using GRACE (GRid Architecture for Computational Economy) [3] resource trading
protocols (commodity market model), but is based on an arbitrary assignment for demonstration
purposes only.

The resources are characterized only by the number of CPUs, this parameter is used to evaluate
the computational time of the jobs (the computation time is considered a parameter easy to calculate
and set to a constant value). In the experiments described, the resource price has been assigned
arbitrarily and it’s constant (it doesn’t respect the commodity market model). Besides, the results
have not been compared with any classical scheduling approach (i.e., Round-Robin), thus it’s difficult
evaluate the results obtained. Finally, the algorithms used to calculate the utility functions could
require long time to be completed. For example, in time minimization the first step consists on
calculating the next completion time for an assigned job for all resources. In Grid environment
the number of the resources could be high, and calculate the computational time of a job for each
possible resources could require long time.

Market-Based Proportional Resource Sharing for Clusters

Also the researchers of the University of California at Berkeley propose a market-based approach [4]
to cluster resource management based on the notion of a computational economy which optimizes
for user value. The architecture of the system provides a proportional-share schedulers as the re-
source managers for all basic computational resources (CPU, memory, network, I/O). The reasons
are: (i) proportional-share schedulers provide an intuitive model of resource allocation, (ii) there
exist efficient algorithms for implementing them, and (iii) they provide flexibility in exposing differ
entities to which to assign value (i.e., in addition to assigning value simply based on shares, given
a CPU stride schedulers, reasonable user estimate of CPU time needed, and admission control one
could potentially build a market-based system based on deadlines). In this model, resource rights
for a shared resource are encapsulated as tickets. A resource is represented by a total of T tickets.
An application holding t tickets competing for use of that resource obtain a share of ¢/T" of the
resource. For example, with CPU stride scheduling, an application holding ¢ tickets would obtain
an accurate ¢t/T allocation of the CPU over time. The model used is a intuitive policy based on
opportunity-cost charging; in this scheme, n jobs are competing for some shared resource r (in this
case CPUs on node). Job i has a stated value b;, which may or may not be the same as true value v;
(i.e., suppose a user is trying to undervalue the value of an application to save credits or perhaps the
user does not realize how important a particular run is). The system allocates shares and charges
as follows. If n = 1, there is only one user demanding the resources. Thus, that user is imposing
no burden on the system and not denying anyone else an opportunity since there is no competition
for r. In this case, that user is charged nothing and is given all for r. If n > 1, multiple jobs are
competing for r and jobs receive shares as they would if the b;’s were tickets. That is, job ¢ with
stated value b; obtains b;/ 2?21 b; of r over time. When n > 1, job i is charged b; credits per minute.
If multiple jobs are competing, each with b; = 0, each job receives fair share and is not charged. The
computing of shares and charging is computed dynamically as jobs join and leave system. Another
nice property of this policy is that it is computationally simple to implement. The overhead required
to compute allocations and charging are straightforward and are even simpler than those needed to
implement stride scheduling. Furthermore, because we do not anticipate users using the cluster to
run large numbers of very short jobs (i.e., less than a second), the dynamic updating of allocations,
which require system calls, should incur fairly minimal overhead.

The main contribution of this article is the discussion about the systems that implements market-
based ideas to cluster resource management. The models studied (Ferguson, Spawn, Popcorn,
Mariposa, SC centers) applies different interpretation of tokens distribution and what resources
share, but the main observation regards that most of the work so far has focused mainly on the
economic front-end and layer. Very little attention has been paid to the end-to-end problem: how
real users and applications use marked-based systems in practice, and implementations real usage
has on other layers of the system (i.e., Popcorn requires each program to be written with the
economy in mind using a special API). Besides, Spawn and Popcorn assume dedicated use of the
system. Most of all systems considered use only CPU speed to make decision in scheduling process.
They don’t consider Usually the resource to other parameter (i.e., disk space, network bandwidth,
etc.).

Marked-based Resource Allocation for Grid Computing: A Model
and Simulation

O 2) process task query

EMP

6) update resource
information

Events

Task arrival event

1) send Resource update event

8 ale o :
) mitiale #yaqle query lask price adjustment event
payment -
3} return
query result
Client i 4y send task Server |
Endowment M o | Speed lfactor P peed 5)execute
Task generation ~ Polsson No. res. units N g ol task
oo Availability Ny il
omp. size Sc Price per task unit pagp,
Deadline . l
e sire S 7) return result ,
Input file size 8y ;,; Background load ~Poissen
2 T -~ 2 o .
Output file size Sp 5, Comp. s17¢ 8¢ g
Task price bid pg, Res. units alloc Ny e

Figure 2: Model of the marketplace

This model represents an electronic marketplace for distributed computational resources [5].
As shown in Figure 2, there are three main actors in the model, which are assumed to be over
Internet: the Clients, the Servers and the Electronic Marketplace (EMP). Clients generate tasks
which required computational resources for their execution. The Servers provide these resources:
they advertise and sell them at the EMP. More in detail:

e a task which is created by a Client is characterized by the size of its computation S¢ (in task
units), the size of the input and output files, its price bid and a deadline;

e cach Server has a resource consisting of one or more resource units (RU). This allows to model
either time-shared resources (where a resource unit corresponds to a time share of a resource)

or space-shared resources (where a unit corresponds to a CPU).

About scheduling policy, there are different ways of scheduling resource units to tasks which have
been allocated by the EMP. In this model has been considered the following two cases:

e allocate all available resource units of the Server to the task;

e allocate a fraction of the currently available resource which is proportional to the task’s price
bid prask,i, in relation to the sum of all price bids Y- prqsk,; on the Server (including the bid
of the task itself).

The EMP provides facilities for the Servers to advertise their resource. The parameters to be
published include the number of resource units, the price per task unit and the resource’s speed.
For the Clients (or their agents) it provides means to search for a suitable resource and negotiate the
price. Currently, the processing delays of the Clients and the Servers requests are neglected (until
results from ’real-world’ experiments are available).

Three different resource allocation protocols are discussed: the Round-Robin Protocols (RR),
Continuous Double Auction Protocol (CDA), and Proportional Share Protocol(PSP). In the RR no
pricing is used. The incoming task queries are matched with the 'next’ available resource offer which
meets the task’s constraints but which is usually not the ’best’. For this purpose an iterator is used
which cycles through the list of Server resource offers.

The aim of CDA, instead, is to allocate the best possible resource to an arriving task and to
priorities tasks according to their price bid. Finally, in the PSP every time a task or background
task (the tasks which are outside the control of the EMP, i.e. the private tasks of the resource
owner) starts or completes execution on the Server, the other tasks need to be rescheduled. The
tasks’ resource shares change, and so do their execution speed (the effective execution speed depends
on the load at the Server).

It is often assumed that market-mechanisms are better than conventional round-robin approach.
Exploring different scenarios, it’s possible to assert that, for a cluster of homogeneous resources, the
CDA will perform best. However, if the load is low, the differences between the three protocol are
small, and using the computationally less expensive RR might be sufficient. For a situation where
there is a choice of resources with different quality or load, as it is the case in a computational Grid,
the results of RR will be worse for the two market-based protocols. This is due to their allocation of
the fastest possible resources and the prioritizing of tasks with high weights. The CDA will perform
best in most cases. However, for a high number of resources the performance of the PSP will be
comparable.

Also in this case a fundamental parameter for scheduling decision is the computation time for
each job. Correctly for a distribute environment, the model consider the link bandwidth of the
resource as a parameter to use during scheduling process. The reschedule operation (stop the job
and assign it to another resource) is considered a priceless operation (in time and money). In this
models, the resources are characterized by CPU speed, bandwidth link and price (no disk space,
physical memory or reliability).

Bootstrapping Distributed Computational Economy with Peer-to-
Peer Bartering

In this article [6], it presents a baseline architecture for bootstrapping economies based on peer-to-
peer bartering, with an eye to its support in the PlanetLab network testbed [8]. The architecture

consists of three pieces: (i) resource discovery, (ii) secure resource peering, and (iii) bartering. For
our interest, we describe only the bartering piece.

Bartering strategies specify how peers negotiate exchange rates for peering and how peers execute
the peering protocol. Negotiating exchange rates involves determining what amount of resources a
peer X exchanges with a peer Y as part of the peering and how many such exchanges will occur.

One simple strategy based on reciprocity that has proven to be remarkably robust and effective
against a wide range of competing strategies is TIT FOR TAT [7]. TIT FOR TAT is the strategy
of beginning with cooperation and, thereafter, doing whatever the other peer did in the previous
round. It is simple, encourages cooperation, punishes defection (but is forgiving), and in practice
outperforms virtually all competing strategies in a number of situations. Given this, one natural
strategy for bootstrapping a computational economy is to start with P2P TIT FOR TAT, where
resource exchange in a round is rewarded with resource exchange in the next round and reneging in
a given round is punished by reneging in the next round.

In environments where the set of peers is fairly static and peers tend to interact with large
numbers of other peers, P2P TIT FOR TAT is an appropriate strategy. In environments where the
set of peers is large and dynamic, the probability that any two peers interacts decreases. In such
environments, more sophisticated strategies will need to be employed.

The article does not present simulation part to evaluate the bartering model.

Grid environment is quite unpredictable, and if the bartering works well in a high cooperative
environment we can not do this assumption for Grid. This could be a ulterior aspect to drive the
further studies the using of economic model with price.

Economic Models for Allocation Resources in Computer Systems

This paper [9] presents an economic approach price-based to resource allocation in computer systems
using the case studies of load balancing and data management in systems, flow control, QoS provi-
sioning in management in Integrated Services Networks, and Multiple Access Protocols in Broadcast
Packet Networks. For our purpose, we are interested only in the Load Balancing Economy. In Load
Balancing Economy there are N processor connected via point-to-point network. A link e;; is a
connection between P; and P;. Each link has a delay variable which is d;;. The service rate of each
processor P; is r;. The resources are processor time (CPU time) and the communication bandwidth.
Jobs enter the distributed system and request resources based on the prices. Job 7 has a service
time of p;, and it purchases p;/r time units on Py. Jobs are various preferences on the services
they wish receive. The preferences are the following;:

e Price Preference(PP): Jobs prefer service to be done as cheaply as possible, the cost Cj is
composed of the cost of accessing service at processor at processor Pj.

minyy,[Cy]
e Service Time preference(ST): Jobs prefer the element of the budget set which gives the least
response time. Job j located on P; computes the service time at processor P, from the
following;:

miny[STy, = p;/ri + InputByte * dy, + Output Byte * dj;]

where InputByte and OutputByte are respectively the size in bytes of input and output data.

e Service and price preference (SVTP): jobs place a relative preferences of service time over cost
at a processor:

miHVk[Ck + A * STk]

where A is a weight giving relative importance to ST.

The paper considers four types of auctions considered by this economy. The first is an English
auction where the price of the resource is gradually increase with the bidding. The highest bidder
obtains the resource. The second is the Dutch auction, where prices are gradually decreased if no
bid is submitted. The third is the Hybrid auction, where the asking price of a resource is increased
if a bid is submitted, and decrease if no bid is submitted. The fourth is the Sealed Bid auction,
where sealed bids are submitted by the agents and the highest bid is given access to the resource.
In this auction model, agents are not aware of the amounts bid by the other consumers. Jobs (when
they arrive) perform three operations to purchase resources which are: compute the budget set,
find the most preferred elements (demand set) of the budget set, and generate a bid for demand
set. The processors auction resources (link and CPU time) to the jobs, advertise resource prices in
local bulletin boards and neighboring processors, and update prices based on auctioning results and
arriving price updates from neighboring processors.

The load balancing problem is to design algorithms that minimize the mean job waiting time
by migrating the jobs to balance the workloads of the processor nodes. Each job independently
computes the best place (node) to be served based on its preferences and wealth, and the resource
prices. The main goal of each processor (node) in the economy is to maximize revenue.

Performance Comparison

80—

80 /

70- /
@ ¥ Hop 1 ;
Eso- /
E == Hybrid Auc. y"

/

= 50 -~ Sealed Bid /
o V4
S404 [T M/M/S 4
o >
= gt
* 20 #6= SJF
o
-

20+

104

O = + B —— | | |
8] 10 20 30 40 50 58] 740 80 S0

UtlTzatlon

Figure 3: Market economy scheduling architecture

Figure 3 plots the mean job waiting times as a function of the system utilization. The figure
shows that Hybrid and Sealed-Bid actioning based economies perform better than the HOP 1 algo-

rithm which is a non economic algorithm, and the Hybrid-auction economy performed the best at
all utilizations. At low utilizations the Sealed-Bid economy is as good as HOP 1, and better at high
utilizations. The SJF (shortest job first on an M/M/1 system) algorithm performed the worst.The
M/M/9 case is depicted for comparison purposes only. The M/M/9 is a queuing system where 9
processors serve one queue, and there is no communication delay, and all the informations is globally
available and exact.

An interesting phenomena in the load balancing economy is that jobs migrate in search of
suppliers based on the job preference model. Numerical studies on this phenomena indicated that
jobs with response time preference migrated less compared to the jobs that have price preference.
Jobs which had a combination of service time and price preferences migrated based on the weights
given to service time or price.

This case study shows that for the load balancing problem, competitive economic concepts can
achieve better levels of performance when compared to non-economic algorithms. In Ferguson’s
model, multiple sequential jobs compete for dedicated slices of CPU time on a collection of hetero-
geneous (only in speed) machines interconnected by point-to-point links. With this heterogeneity,
jobs may be submitted on any machine, migrate to different machines for execution. In Grid Environ-
ment the machine are highly heterogeneous (not only in speed), a job could not be migrate/execute
in any resources available. Also in this case, the utility function is used only for cost minimization
or computational time minimization.

The models presented use concepts of mathematical economics were used to develop effective
market based control mechanisms. However, there are drawbacks to this form of modeling where
several agents have to use market mechanisms to decide where to obtain the service (which supplier?).
If the demand for a resource varies substantially over short period of time, then the actual prices
of resources will also vary causing several side effects such as indefinite migration of jobs between
suppliers, and price guarantees over shorter periods of time.

Applying Economic Scheduling Methods to Grid Environments

In comparison with other economic systems, in paper [10], the model uses individual utility functions
for the different Grid participants. Resources in a domain are locally controlled by a Meta M anager
that acts as a broker or trade with MetaManagers from other domains (see figure 4). Each domain
can act independently and may have different objective policies. Also, each job request can include
an individual objective function. This function can be defined using a description language that is
then evaluated to scalar value at run time. The scheduling system combines the different objective
functions to find the equilibrium between supply and demand (more information about equilibrium
can be find at [11]).

All users submit their jobs to their local MetaManager. This MetaManager is responsible for the
whole equilibrium process. During job submission, the user may specify requirements for the job
execution (i.e., estimate run time, earliest start time, and a latest completion time). Most current
job scheduling systems already require the specification of a maximum run time by the user, since
this information is required for some scheduling strategies, for example backfilling. If the job finishes
earlier than estimated, the idle resources can be used by other submitted jobs.

After the local MetaManager has received a new job, the local domain scheduler first analyze
the requirements of the job. Next, local offers are generated if the local resources match the job
specifications. Only the best local offers are kept for further processing. The job is forwarded to
other connected domains. To prevent the system for permanently forwarding job request, a user can
restrict the number of hops made or specify a time-to-live for the request forwarding. The remote

3) MetaManager generates
local offers or queries
other Domains.

The query is limited and
directed by search
parameters

Request

Request

Offar

Offer s
Attributes

ObjectiveFunction
=

- -

2) Scheduler asks
other MetaManagers

Remote Domains ==
-

-
-
-

-
-
-

Local Domain 4) Allocation is done

for maximizing the
objective for the
whole schedule,

Request
1) User or client Requirements
sends a Job Attributes

Schadule

request ObjectiveFuncticn which is the
:”“i‘_‘)" ; combined objective
ocation
ppilication Allocation 3 of all allocations

i

6) The client gets
feedback on the
resource allocation

5} The MetaManager
can reallocate the
schedule to optimize
the objective or to
recover from system
changes

7) Execution of a
job can be

initiated by the
MetaManager Resource Resource Resource
Manager Manager Manager
g

Figure 4: Market economy scheduling architecture

domains create new offers and send their best offers back to the original domain. Finally, the best
of all incoming and all locally generated offers is selected as the final offer.

A basic component of an economically driven approach is a description language that is used
to specify requests, resources and offers. An important feature of this language is the ability to
describe resources, request, and offers, as well as individual objective functions, with the same basic
statements. The description language is not limited to a certain resource type, so new resource
classes can be added easily. The list of parameters that are available for the request formulation is
presented in figure 5.

Figure 6 illustrates a request formulation. This example request includes assignments for a set
of keys (Hops, MazOfferNumber,..,JobBudget) and a utility function. The utility value depends on
two conditions: the operating system and the number of available processors. The system try to
maximize the UtilityV alue, which for our example means that the job should be started as soon as
possible and that the job costs are minimized.

The results of the simulations for different workload sets, different resource, configurations, and
several different parameter settings for the objective functions show that the economic scheduling
system is competitive with the conventional scheduling systems in term of the average weighted
response time.

The economic approach provides several additional advantages over conventional approaches,
such as allowing for site autonomy and the ability to use heterogeneous resources. The util-
ity /objective functions for each Grid user and resource owner can be defined separately for each
job request.

The most important aspect of this model regards the presence of MetaManagers: this is the first
paper that proposes a scalable and modular solution about the scheduling process. In this model,
the user could specify the computational time of job but also the start time (within the job should
be start to execute) and the deadline (the time within the job must be finished). These parameters
are useful to manage the backfilling of processes on resources, but they could not be easy to specify.
Besides, the model does not describe how manage the case which the job is still running after the

10

Parameter Description

Hops This attribute limits the query depth to remote domains.
RequestID This is a unique number that denotes the current request.
MaxOfferNumber This 1s the maximum number of offers a user wants to receive. A

value of 0 specifies that the MetaManager should automatically
select the best offer according to the UtlityValue.

OfferBudget This specifies the budget that is available for offer generation.

ReservationTime This 1s the time until which the available resources should be re-
served.

StartTime A job must not be started before this date.

EndTime A job must not end after this date.

SearchTime The scheduling system can search for effers until this time in-
stance.

JobBudget This parameter specifics the maximum execution cost.

ReservationBudget This parameter specifies the maximum reservation cost.

RunTime This parameter specifies the execution time of a job.

UserName This parameter specifies uniquely the submitting user.

Memory This 1s the memory requirement per processor (in kBytes).

NumberOfProcessors | This is the number of requested resources.

UnlityValue This value denotes the marginal gam from the user’s point of view.

Figure 5: Simulation Topology

REQUEST "Reg001" {
KEY "Hope" {VALUE "HOPS" {2}}
KEY "MaxOfferNumber® [VALUE "MaxOfferNumber" {5]})
KEY "StartTime" {VALUE "EtartTime" {900000}]
FEY "EndTime" [VALUE "EndTime" {900028}}
KEY "SearchTime" {VALUE "SearchTims" [899956}}
KEY "JobBudget" {VALUE "JobBudget" {900.89}]
KEY "Utility" |
ELEMENT 1 {
CONDITION{ (OperatingSystem EQ "Linux")
&& ([(NumberOfProceasora >= B)
&& (NumberOfProcessors <= 32))}
VALUE "UtilityValus" {-StartTime}
VALUE "RunTime" {43*NumberOfProcessors]
}
ELEMENT 2 {
CONDITION{ (CperatingSystem EQ "AIX")
&& ((NumberOfProceasora == 8)
&& (NumberOf Procegsaors == 64))}
VALUE "UtilityValue" {-JobCost]
VALUE "RunTime" {86+*NumberOfProcessors)

}

Figure 6: Simulation Topology

11

deadline specified. Also in this model, the prices of the resources and how they vary to reach the
equilibrium is not clearly specified. The resource are characterized by CPU speed, and memory
space.

4 Discussion

In this paper, we have described some models published in scientific literature to manage scheduling
in the Grid environment using economics models. The first consideration regards the characteriza-
tion of the resources, the aspect upon which depends the complexity of the models. Usually, we have
observed that the CPU speed is the main characteristic considered to make scheduling decisions and
only fews models consider other parameters (i.e., memory (speed and space), link bandwidth or
reliability). Using fews characteristics to describe the resources, consequently the demand can’t be
detailed enough to satisfy the user requirements. For instance, a user should formulate his require-
ments considering different hardware characteristics (CPU speed, bandwidth, reliability, memory)
with different weights for each characteristic. A user request with high bandwidth weight means that
the user consider it very important for his job. The combination of each weight with the hardware
characteristic could be a useful utility function. In the models proposed, the utility functions regard
only computational time and computational cost. In this survey, we can observe that the execution
time of job on a resource seems to be a indispensable parameter for the scheduling process. To
calculate it, usually the model propose to associate at each resource a ”service rate” parameter and
at each job a ”service time” parameter. The first indicates how much fast the resource could execute
a job and the second indicates how long is the computational time of the job. The quotation of this
two parameter indicates the time units of the job. There are different articles that describe how it
is difficult to specify this parameter [12].

Another parameter difficult to calculate is the price of the resources. Many papers cite the
”commodity market model” as the solution of the problem to evaluate the cost of each resource.
This model indicates that the price depends on supplies and demands, but it does not provide a
specific algorithm to calculate the price.

Some papers consider the Computational Grid as a ”large-cluster” where each node are quite
similar (not heterogeneous resources), the links between nodes are fast and reliable (migration of
processes from node to another node is easy and quick) and scheduling decision process could
be execute to only one resource (as the front-end of a cluster). Unfortunately, Grid could not
be compared to a ”large-cluster” because the resources could be highly heterogeneous, distributed
around the world and could be increase to large number. Only the last paper has proposed a scalable
and modular solution for the scheduling process using a hierarchical organization of MetaManagers.

Reliability of the resources is one important characteristic in any environment where it’s possible
specify the QoS. In the papers read, there isn’t any reference to this problem.

12

References

[1]

2]

J.M. Schopf Ten actions when grid scheduling, Chapter 2 in Grid Resource Management for Grid
Computing, 2003.

R.Buyya, D.Abramson, J.Giddy and H.Stockinger Economic models for resource management
and scheduling in Grid computing. The Journal of Concurrency and Computation: Practice and
Experience (CCPE), Wiley Press, May 2002.

R.Buyya, D.Abramson and J.Giddy An FEwvaluation of Economic-based Resource Trading and
Scheduling on Computational Power Grids for Parameter Sweep Applications. In 2nd Interna-
tional Workshop on Active Middleware Services (AMS ’00), Aug. 2000.

B.Chun and D.Culler Market-Based Proportional Resource Sharing for Clusters. Technical Re-
port CSD1092, University of California at Berkeley, January 2000.

J.Gomoluch and M.Schroeder Market-based Resource Allocation for Grid Computing: A Model
and Simulation. 1st International Workshop on Middleware for Grid Computing (MGC2003),
Rio de Janeiro, Brazil, June 2003.

B.Chun, Y.Fu, A.Vahdat Bootstrapping a Distributed Computational Economy with Peer-to-Peer
Bartering. Workshop on Economics of Peer-to-Peer Systems, 2003.

R.Axelrod The Evolution of Cooperation, Basic Books, 1984.
www.planet-lab.org.

D.F.Ferguson, C.Nikolaou, J.Sairamesh, Y.Yemini Economic Models for Allocating Resources in
Computer Systems. World Scientific Press, 1996.

[10] C.Ernemann and R.Yahyapour Applyin Economic Scheduling Methods to Grid Environments.

State of the Art and Future Trends, pp. 491 - 506, Kluwer Academic Publishers, 2003.

[11] F. Ygge Market-Oriented Programming and Its Application to Power Load Management, PhD

thesis, Department of Computer Science, Lund University, 1998.

[12] Rich Wolski, Lawrence J. Miller, Graziano Obertelli, and Martin Swany Performance In-

formation Services For Computational Grids. In Resource Management for Grid Computing,
Nabrzyski, J., Schopf, J., and Weglarz, J., editors, Kluwer Publishers, Fall, 2003.

13

