
Università del Piemonte Orientale. Dipartimento di Informatica. • http://www.di.unipmn.it 1

Technical Report TR-INF-2004-02-03-UNIPMN

Two space saving tricks
for linear time LCP computation

Giovanni Manzini∗

February 10, 2004

Abstract

In this paper we consider the linear time algorithm of Kasai et al. [10] for the computation
of the LCP array given the text and the suffix array. We show that this algorithm can be
implemented without any auxiliary array in addition to the ones required for the input (the
text and the suffix array) and the output (the LCP array). Thus, for a text of length n, we
reduce the space occupancy of this algorithm from 13n bytes to 9n bytes.

We also consider the problem of computing the LCP array “overwriting” the suffix array.
For this problem we propose an algorithm whose space occupancy depends on the regularity
of the text. Experiments show that for linguistic texts our algorithm uses roughly 7n bytes.
Our algorithm makes use of the Burrows-Wheeler Transform even if it does not represent
any data in compressed form. To our knowledge this is the first application of the Burrows-
Wheeler Transform outside the domain of data compression.

1 Introduction

The suffix array [14] is a simple and elegant data structure used for several fundamental string
matching problems involving both linguistic texts and biological data. Another important applica-
tion of the suffix array is the computation of the Burrows-Wheeler Transform [3] which is a powerful
tool used for data compression and for the construction of compressed indexes [4, 5, 7, 18]. The
vitality of this data structure is proven by the large number of suffix array construction algorithms
developed in the last two years [2, 9, 11, 12, 16].

The suffix array of a text t[1, n] is the lexicographically sorted list of all its suffixes. The suffix
array is often used together with the LCP array which contains the length of the longest common
prefix between every pair of lexicographically consecutive suffixes. The LCP information can be
used to speed up suffix array algorithms and to simulate the more powerful, but more resource
consuming, suffix tree data structure [1, 10, 14].

∗Dipartimento di Informatica, Università del Piemonte Orientale, Italy. Email: manzini@mfn.unipmn.it. Par-
tially supported by the Italian MIUR projects “Algorithmics for Internet and the Web (ALINWEB)” and “Tech-
nologies and Services for Enhanced Content Delivery (ECD)”.



In [10] Kasai et al. describe a simple (13 lines of C code) and elegant linear time algorithm
for computing the LCP array given the text and the suffix array. This was an important result
for several reasons. First, although many suffix array construction algorithms can be modified
to return the LCP array as well, this is not true for every algorithm. Having decoupled the two
problems allows one to choose the suffix array construction algorithm which better suits his/her
needs without the constraint of considering only those algorithms which also provide the LCP
array. Moreover, in some applications one may need the LCP array later than the suffix array:
if one has to compute them simultaneously some temporary storage must be used for the LCP
array. Another advantage of the separate construction of these arrays is that it leads to simpler
algorithms with (possibly) an improved locality of reference.

The only drawback of the algorithm of Kasai et al. is its large space occupancy. Assuming a
“real world” model in which each text symbol takes one byte and each suffix array or LCP array
entry takes 4 bytes, the algorithm of Kasai et al. uses 13n bytes, where n is the length of the
input text. Considering that the output of the computation (text, suffix array, and LCP array)
takes 9n bytes, we have a 4n bytes overhead which is a serious issue since it is nowadays common
to work with files hundreds of megabytes long. Indeed, space occupancy is currently the main
bottleneck for this and other string matching data structures: a prototypical example is the suffix
tree data structure [17] which provides an optimal solution for many string matching problems
but it is seldom used in practice because of its huge space occupancy and because of the even
larger amount of space required for its construction.

In this paper we present a modified version of the algorithm of Kasai et al. which only uses 9n
bytes of storage. Our algorithm, called Lcp9, runs in linear time and has the same simplicity and
elegance of the original algorithm. Experiments with several files of different size and structure
show that Lcp9 is only 5%–10% slower than the algorithm of Kasai et al..

In our “real world” model, a space occupancy of 9n bytes is optimal if we assume that at the
end of the computation we need the text, the suffix array, and the LCP array. However, this is
no longer true if one is interested only in the LCP array, that is, if at the end of the computation
we no longer need the suffix array. In this case, the space initially used for storing the suffix array
can be reused during the computation and for the storage of the LCP array. In this scenario we
can aim to a space occupancy as low as 5n bytes. The problem of computing the LCP array
discarding the suffix array has applications in the fields of string matching, data compression and
text analysis. For example, using the algorithm described in [10, Sect. 5] with a single pass over the
LCP array we can simulate a post order visit of the suffix tree of the text t. In some applications,
for example for the construction of the compression booster described in [6], such visit does not
need the information stored in the suffix array.

If we only need the LCP array, even the 9n bytes space occupancy of algorithm Lcp9 becomes
the space bottleneck of the whole computation since for the construction of the suffix array there
are “lightweight” algorithms [2, 16] which only use (5 + ε)n bytes with ε � 1. In this paper we
address this issue proposing a simple linear time algorithm, called Lcp6, which computes the LCP
array “overwriting” the suffix array. The space used by Lcp6 depends on the regularity of the
input text t[1, n]. If t is highly compressible the space occupancy of Lcp6 can be as small as 6n
bytes. Vice versa, if t is a “random” string the space required by our algorithm can be as large
as 10n bytes. Note however that in the first step of Lcp6 we can evaluate exactly how much space
it will need: if such space turns out to be larger than 9n bytes we can quit Lcp6 and compute
the LCP array using Lcp9. Thus, combining Lcp6 and Lcp9 we get an algorithm with a space
occupancy between 6n and 9n bytes. The experimental results show that for linguistic texts,

2



source code, and xml/html documents Lcp6 always uses less than 8n bytes and for the largest files
it often uses less than 7n bytes. For DNA sequences Lcp6 uses between 8n and 9n bytes, and—not
surprisingly—for compressed files it uses close to 10n bytes. The experimental results also show
that Lcp6 is roughly two times slower than the algorithm of Kasai et al..

One of the crucial ingredients of algorithm Lcp6 is the Burrows-Wheeler Transform. However,
Lcp6 does not represent any data in compressed form. Instead, it makes use of a structural property
of the transformed text to reduce the amount of auxiliary information needed for computing the
LCP array. To our knowledge this is the first use of the Burrows-Wheeler Transform outside the
domain of data compression.

Finally, we point out that both our algorithms only have a “practical” interest: from the
theoretical point of view their working space of Θ(n log n) bits is not optimal. Indeed, the opti-
mal space/time tradeoff can be obtained combining the results in [8] and [18] which allow one to
build the suffix array and LCP array in linear time using O(n) bits of auxiliary storage. Unfortu-
nately the algorithms in [8, 18] are quite complex and it is still unclear whether they will lead to
competitive practical algorithms.

2 Background and notation

Let Σ denote a finite ordered alphabet. Without loss of generality, in the following we assume
that Σ consists of the integers 1, 2, . . . , |Σ|. Let t[1, n] denote a text over Σ. For i = 1, . . . , n we
write t[i, n] to denote the suffix of t of length n− i + 1 that is t[i, n] = t[i]t[i + 1] · · · t[n].

The suffix array [14] for t is the array Sa[1, n] such that t[Sa[1], n], t[Sa[2], n], . . . , t[Sa[n], n]
is the list of suffixes of t sorted in lexicographic order. To define unambiguously the lexicographic
order of the suffixes it is customary to logically append at the end of t a special end-of-string
symbol # which is smaller than any symbol in Σ. For example, for t = baaba, Sa = [5, 2, 3, 4, 1]
since t[5, 5] = a is the suffix with the lowest lexicographic rank, followed by t[2, 5] = aaba, followed
by t[3, 5] = aba and so on.

The rank array Rank[1, n] of t is the inverse of the suffix array. That is, Rank[i] = j if and
only if Sa[j] = i. Note that Rank[i] is the rank of the suffix t[i, n] in the lexicographic order of
the suffixes. The LCP array Lcp[1, n] of t is an array such that Lcp[i] contains the length of the
longest common prefix between the suffix t[Sa[i], n] and its predecessor in the lexicographic order
(which is t[Sa[i − 1], n]). Note that Lcp[1] is undefined since t[Sa[1], n] is the lexicographically
smallest suffix and therefore it has no predecessor.

Finally, we define the RankNext map such that:

RankNext(i) = Rank[Sa[i] + 1], for i = 1, . . . , n, i 6= Rank[n]. (1)

RankNext(i) is the rank of the suffix t[Sa[i] + 1, n], that is, the rank of the suffix obtained
removing the first character from the suffix of rank i. Note that RankNext(·) is not defined for
i = Rank[n] because in this case t[Sa[i] + 1, n] is the empty string.

2.1 The Burrows-Wheeler Transform

In 1994, Burrows and Wheeler [3] introduced a transform that turns out to be very elegant in itself
and extremely useful for data compression. Given a string t, the transform consists of three basic
steps (see Fig. 1): (1) append to the end of t a special symbol # smaller than any other symbol

3



mississippi#
ississippi#m
ssissippi#mi
sissippi#mis
issippi#miss
ssippi#missi
sippi#missis
ippi#mississ
ppi#mississi
pi#mississip
i#mississipp
#mississippi

=⇒

# mississipp i
i #mississip p
i ppi#missis s
i ssippi#mis s
i ssissippi# m
m ississippi #
p i#mississi p
p pi#mississ i
s ippi#missi s
s issippi#mi s
s sippi#miss i
s sissippi#m i

Figure 1: The Burrows-Wheeler Transform for the string t = mississippi. The matrix on the right has the rows
sorted in lexicographic order. The output of the Burrows-Wheeler Transform is the last column of the matrix, i.e.,
bwt = ipssm#pissii.

in Σ; (2) form a conceptual matrix M whose rows are the cyclic shifts of the string t#, sorted
in lexicographic order; (3) construct the transformed text bwt by taking the last column of M.
Notice that every column of M, hence also the transformed text bwt, is a permutation of t#.

If the input string t has length n, the transformed string bwt has length n + 1 because of the
presence of the # symbol. In the following we assume that the transformed string is stored in an
array indexed from 0 to n. For example, in Fig. 1 we have bwt[0] = i, bwt[5] = #, bwt[11] = i.
Using this notation and observing that the rows of the matrix M are precisely the suffixes of t in
lexicographic order, the computation of bwt given t and the suffix array can be easily accomplished
with the code of Fig. 2 (procedure Sa2Bwt).

In [3] Burrows and Wheeler proved that from bwt we can always recover t. The inverse
transform is based on the following remarkable property. Let F [0, n] and L[0, n] denote respectively
the first and last column of the matrix M (hence, L ≡ bwt). Then, for any σ ∈ Σ we have that
the k-th occurrence of σ in F corresponds to the k-th occurrence of σ in L. For example, in Fig. 1
we have that the second i in F (that is, F [2]) corresponds to the second i in L (that is, L[7]) since
they both are the eighth symbol of mississippi. Similarly, the third s in F (F [10]) corresponds
to the third s in L (L[8]) since they both are the sixth symbol of mississippi.

Assume now that the character F [j] corresponds to L[i]. This means that row i of M consists
of a (rightward) cyclic shift of row j. Because of the relationship between rows of M and suffixes
of t this is equivalent to stating that the i-th suffix in the lexicographic order is equal to the
j-th suffix with the first symbol removed. In terms of the map RankNext defined by (1) we
have RankNext(j) = i. From this latter relationship it follows that from bwt we can obtain the
RankNext map. Indeed, we only need to scan the array bwt (which coincides with column L)
finding, for i = 1, . . . , n the character F [j] corresponding to bwt[i] ≡ L[i]. The resulting code is
given in Fig. 2 (procedure Bwt2RankNext). Note that column F is not represented explicitly (since
it would take O(n) space). Instead we use the array count[1, |Σ|]: at the beginning of the i-th
iteration count[k] contains the number of occurrences in t of the characters 1, 2, . . . , k−1 plus the
number of occurrences of character k in bwt[0] · · · bwt[i− 1].

Given the RankNext map and the array bwt, we can recover t as follows. The position of
the end-of-string symbol # in bwt gives us Rank(1), that is, the position of t[1, n] in the suffix
array. By (1), setting i = Rank(j) we get

RankNext(Rank(j)) = Rank(Sa[Rank(j)] + 1) = Rank(j + 1). (2)

4



Procedure Sa2Bwt

1. bwt[0]=t[n];

2. for(i=1;i<=n;i++) {

3. if(sa[i] == 1)

4. bwt[i]=’#’;

5. else

6. bwt[i]=t[sa[i]-1];

7. }

Procedure Bwt2RankNext

1. for(i=0;i<=n;i++) {

2. c = bwt[i];

3. if(c == ’#’)

4. eos_pos = i;

5. else {

6. j = count[c]++;

7. rank_next[j]=i;

8. }

9. }

10. return eos_pos;

Procedure RankNext2Text

1. k = eos_pos; i=1;

2. do {

3. k = rank_next[k];

4. t[i++] = bwt[k];

5. } while(k!=0);

Procedure RankNext2SuffixArray

1. k = eos_pos; i=1;

2. while(k!=0) {

3. nextk = rank_next[k];

4. sa[k] = i++;

5. k = nextk;

6. }

Figure 2: Algorithms related to the Burrows-Wheeler Transform. Procedure Sa2Bwt computes the array bwt given
the text t and the suffix array sa. Procedure Bwt2RankNext stores in rank next the RankNext map and returns
the value Rank(1). The procedure uses the auxiliary array count[1, |Σ|] which initially contains in count[i] the
number of occurrences in bwt (and therefore in t) of the characters 1, . . . , i− 1. Procedure RankNext2Text recovers
the text t given the arrays bwt and rank next and the value Rank(1) stored in eos pos. Procedure RankNext2Sa
computes the suffix array given rank next and the value Rank(1) stored in eos pos.

Hence, given RankNext and Rank(1) we can generate the sequence of values
Rank(2),Rank(3), . . . ,Rank(n) using the recurrence

Rank(2) = RankNext(Rank(1)), Rank(3) = RankNext(Rank(2)), . . . . (3)

From the sequence Rank(1),Rank(2), . . . ,Rank(n) we recover t using the relationship t[i] =
bwt[Rank(i + 1)]. The corresponding code is shown in Fig. 2 (procedure RankNext2Text).

We conclude this section observing that from the sequence Rank(1),Rank(2), . . . ,Rank(n)
we can also recover the suffix array since k = Rank(i) implies Sa[k] = i. The corresponding code
is shown in Fig. 2 (procedure RankNext2SuffixArray). Note that in RankNext2SuffixArray as soon
as we have read rank next[k] in Line 3 that entry is no longer needed. Therefore, if we replace
Line 4 of RankNext2SuffixArray with the instruction rank next[k] = i++; we get a procedure
which stores the suffix array entries in the array rank next overwriting the old content of the
array (the RankNext map). This property will be used in Section 4.

2.2 The algorithm of Kasai et al.

The algorithm of Kasai et al. (algorithm Lcp13 from now on) takes as input the text t[1, n] and
the corresponding suffix array Sa[1, n] and returns the LCP array. For i = 1, . . . , n let `i denote
the LCP between t[i, n] and the suffix immediately preceding it in the lexicographic order (`i is

5



Procedure Lcp13

1. for(i=1;i<=n;i++) rank[sa[i]] = i;

2. h=0;

3. for(i=1;i<=n;i++) {

4. k = rank[i];

5. if(k==1) lcp[k]=-1;

6. else {

7. j = sa[k-1];

8. while(i+h<=n && j+h<=n && t[i+h]==t[j+h]):

9. h++;:

10. lcp[k] = h;

11. }

12. if(h>0) h--;

13. }

Figure 3: Algorithm of Kasai et al. for the linear time computation of the LCP array. The algorithm takes as
input the text t and the suffix array sa and stores in lcp the LCP array. The algorithm uses an auxiliary array
rank to store the rank array (which is the inverse of the suffix array).

undefined when t[i, n] is the lexicographically smallest suffix). The algorithm Lcp13 computes the
LCP values in the order `1, `2, . . . , `n.

The code of Lcp13 is shown in Fig. 3. As a first step (Line 1) the algorithm computes the rank
array Rank[1, n]. Then, at the i-th iteration of the main loop (Lines 3–13) Lcp13 computes `i

as follows. At Line 4 the value Rank[i] is stored in the variable k. If Rank[i] = 1 then t[i, n] is
the smallest suffix in the lexicographic order and `i is undefined (we set it to −1 at Line 5). If
Rank[i] > 1, we compute j = Sa[Rank[i]− 1] (Line 7). t[j, n] is the suffix preceding t[i, n] in the
lexicographic order, hence `i is the longest common prefix between t[i, n] and t[j, n].

The crucial observation, which ensures that Lcp13 runs in O(n) time, is that whenever `i and
`i−1 are both defined we have `i ≥ `i−1 − 1 (Theorem 1 in [10]). To use this property Lcp13
maintains the invariant that at the beginning of the i-th iteration the variable h contains the value
`i−1 − 1. Hence, `i is computed comparing t[i, n] and t[j, n] starting from position h (Lines 8–9).
Note that at Line 10 Lcp13 stores `i in Lcp[Rank[i]] since the definition of LCP array states that
Lcp[t] contains the LCP between t[Sa[t], n] and t[Sa[t− 1], n].

In our “real world” model, algorithm Lcp13 requires n bytes for the array t and 4n bytes for
each one of the arrays Sa, Rank, and Lcp. Therefore its peak space occupancy is 13n bytes.

3 LCP computation in 9n bytes of storage

In this section we show how to modify the algorithm of Kasai et al. for computing the LCP array
in linear time without using any auxiliary array. As a result get an algorithm which only uses
9n bytes of storage. This amount is the minimum possible if we assume that at the end of the
computation we want an explicit representation of the text, the suffix array, and the LCP array.
Our approach consists in using the array lcp for storing both “rank information” and “LCP
information”. Initially the array contains only “rank information”. Then, at each iteration of the
main loop one item of rank information is used and replaced by one item of LCP information. At
the end of the computation the array lcp only contains LCP information.

6



Procedure Lcp9

1. k = Sa2RankNext(lcp);

2. h=0;

3. for(i=1;i<=n;i++) {

4. nextk = lcp[k];

5. if(k==1) lcp[k]=-1;

6. else {

7. j = sa[k-1];

8. while(i+h<=n && j+h<=n && t[i+h]==t[j+h])

9. h++;

10. lcp[k] = h;

11. }

12. if(h>0) h--;

13. k=nextk;

14. }

Procedure Sa2RankNext(rank next)

1. j = count[t[n]]++;

2. rank_next[j]=0;

3. for(i=1;i<=n;i++) {

4. if(sa[i]==1)

5. eos_pos = i;

6. else {

7. c = t[sa[i]-1];

8. j = count[c]++;

9. rank_next[j]=i;

10. }

11. }

12. return eos_pos;

Figure 4: Algorithm Lcp9 for linear time computation of the LCP array using 9n bytes of storage. The algorithm
takes as input the text t and the suffix array sa and stores in lcp the LCP array. The procedure Sa2RankNext
computes the RankNext map given t and sa. After the procedure call at Line 1 of Lcp9 the RankNext map is
stored in the array lcp and the value Rank(1) is stored in the variable k.

Our starting point is the observation that algorithm Lcp13 (Fig. 3) uses the rank information
only in Line 4 where, during the i-th iteration of the main loop, the algorithm retrieves the value
Rank(i). Therefore, Lcp13 uses the sequence of rank values Rank(1),Rank(2), . . . ,Rank(n)
exactly in this order. Moreover, after the i-th iteration of the main loop the value Rank(i) is no
longer needed.

In Section 2.1 we have shown that using the recurrence (2) we can generate the sequence
Rank(1),Rank(2), . . . ,Rank(n) given the RankNext map and the value Rank(1). The above
observations suggest the algorithm Lcp9 whose code is shown in Fig. 4. In first step of Lcp9 (Line 1)
we call the procedure Sa2RankNext which, for j = 1, . . . , n, stores the value RankNext(j) in
Lcp[j], and returns the value Rank(1). Then, in the i-th iteration of the main loop (Lines 3–14)
given Rank(i) we retrieve Rank(i + 1) from entry Lcp[Rank(i)]. Note that as soon as we have
retrieved Rank(i + 1) we can use the entry Lcp[Rank(i)] for storing the LCP relative to t[i, n].

Summing up, the main loop of algorithm Lcp9 (Lines 3–14) works as follows. At the beginning
of the i-th iteration the variable k contains the value Rank(i). In the body of the loop we store
in nextk the value lcp[k] which is Rank(i + 1); then we compute `i (the LCP between t[i, n]
and the suffix preceding it) and we store it in lcp[k], which is the right place since k = Rank(i).
Finally, we update k (Line 13) and we start the next iteration. Note that the actual computation
of `i is done as in the Lcp13 algorithm; indeed, lines 5–12 are identical in both algorithms. The
only difference between our algorithm and the one of Kasai et al. is the computation of the rank
information using the RankNext map rather than the rank array.

We conclude observing that the correctness of the procedure Sa2RankNext follows from the
correctness of Bwt2RankNext in Fig. 2 and by the relationship between the suffix array and the
Burrows-Wheeler Transform (see the procedure Sa2Bwt in Fig. 2). Indeed, Sa2RankNext is a
transposition of Bwt2RankNext in which bwt[i] has been replaced by t[sa[i]-1] when i > 1
(Line 7) and by t[n] when i = 0 (Line 1), and the test bwt[i]==’#’ has been replaced by the
test sa[i]==1 (Line 4).

7



4 LCP computation in (6 + δ)n bytes of storage

In this section we describe the algorithm Lcp6 which computes the LCP array “overwriting” the
suffix array in the sense that the LCP array is stored in the same array which initially contains
the suffix array entries.

For i = 1, . . . , n let `i denote the LCP between t[i, n] and the suffix preceding it in the lexico-
graphic order (`i is undefined when t[i, n] is the lexicographically smallest suffix). The correctness
of the algorithm of Kasai et al. follows from the observation that whenever `i and `i−1 are both
defined we have `i ≥ `i−1 − 1 (see Section 2.2). We now show that using the Burrows-Wheeler
Transform of t we can say something more on the relationship between `i and `i−1.

Lemma 1 Let bwt denote the Burrows-Wheeler Transform of t, and let k = Rank(i). If k > 1
and bwt[k] = bwt[k − 1] then `i = `i−1 − 1.

Proof: Let t[j, n] (resp. t[j′, n]) denote the suffix immediately preceding t[i, n] (resp. t[i − 1, n])
in the lexicographic order. Since k = Rank(i) we know that the suffixes t[j, n] and t[i, n] are in
the rows k − 1 and k of the Burrows-Wheeler matrix M. By hypothesis these rows end with the
same character α = bwt[k − 1] = bwt[k]. Since there is only one occurrence of # in bwt we have
that α ∈ Σ. Hence, the strings αt[j, n] and αt[i, n] are both suffixes of t.

By construction αt[i, n] is equal to t[i − 1, n]. Since t[j, n] immediately precedes t[i, n] in the
lexicographic order, αt[j, n] must be the suffix immediately preceding αt[i, n] ≡ t[i− 1, n]. Hence,
j′ = j − 1. This means that the longest common prefix between t[i, n] and t[j, n] is equal to the
longest common prefix between t[i− 1, n] and t[j − 1, n] with the first character removed. Thus,
`i = `i−1 − 1 as claimed.

Assume now that the array bwt is available, and consider the main loop of Lcp9 (Lines 3–14 in
Fig. 4). At the beginning of the i-th iteration the variable k contains the value k = Rank(i). By
Lemma 1, if bwt[k] = bwt[k − 1] we know that `i = `i−1 − 1. Since `i−1 is stored in the variable
h, we conclude that, if bwt[k] = bwt[k − 1], we can skip Lines 8–9 and proceed with the next
iteration. This means that for computing the LCP array we only need the values Sa[k − 1]’s for
all k’s such that bwt[k] 6= bwt[k − 1]. This observation is the starting point of our algorithm.

Let z′ denote the number of consecutive equal characters in bwt and let z = n − z′. In the
algorithm Lcp6 (see Figure 5) we evaluate z with a scan of bwt and we allocate an array sa aux of
size z for storing those suffix array entries that are needed for computing the LCP array (Lines 2–
4). Although we already know which suffix array entries must be stored in sa aux, to retrieve
these entries efficiently we must store them in the proper order (recall that we are trying to use as
small space as possible). Let k1, k2, . . . , kz, with k1 < k2 < · · · < kz denote the indexes such that
bwt[ki] 6= bwt[ki − 1]. By the above discussion we know that we must store in sa aux the values
Sa[k1− 1],Sa[k2− 1], . . . ,Sa[kz − 1]. Note, however, that the value Sa[ki − 1] is needed when we
process the suffix t[Sa[ki], n]. Since the main loop of the LCP algorithm considers the suffixes in
the order t[1, n], t[2, n], . . . , t[n, n] in Lcp6 we store in sa aux[i] the value Sa[kπ(i)− 1] where π is
a permutation of 1, . . . , z such that

Sa[kπ(1)] < Sa[kπ(2)] < · · · < Sa[kπ(z)]. (4)

In other words, we store in sa aux the suffix array entries in the order in which they will be used
by the LCP algorithm. This will make the retrieval a very simple task.

8



Algorithm Lcp6

1. // ----- count how many suffix array entries we need -----

2. for(z=0,i=2;i<=n;i++)

3. if(bwt[i-1]!=bwt[i]) z++;

4. sa_aux=malloc(z*sizeof(int)); // allocate sa_aux[0,z-1]

5. // ----- determine order in which suffix array entries are needed -----

6. k = Bwt2RankNext(sa); // store RankNext in sa[]

7. for(v=0,i=2;i<=n;i++) {

8. if(bwt[k-1]!=bwt[k]) sa_aux[v++]=k-1;

9. k=lcp[k];

10. }

11. // ----- store needed suffix array entries in sa_aux -----

12. RankNext2Sa(sa); // store Suffix Array in sa[]

13. for(v=0;v<z;v++)

14. sa_aux[v] = sa[sa_aux[v]];

15. // ----- compute the lcp array as usual -----

16. k = Bwt2RankNext(sa); // store RankNext in sa[]

17. v=h=0;

18. for(i=1;i<=n;i++) {

19. nextk = sa[k];

20. if(k==1) sa[k]=-1;

21. else if(bwt[k-1]==bwt[k]) sa[k]=h;

22. else {

23. j = sa_aux[v++]; // retrieve sa[k-1]

24. while(i+h<=n && j+h<=n && t[i+h]==t[j+h])

25. h++;

26. sa[k] = h;

27. }

28. if(h>0) h--;

29. k=nextk;

30. }

Figure 5: Algorithm Lcp6 for linear time computation of the LCP array using (6 + δ)n bytes of storage. The
algorithm takes as input the text t, the Burrows-Wheeler Transform bwt, and the suffix array sa and stores the
LCP values in sa (thus overwriting the suffix array entries). The algorithm uses an auxiliary array sa aux whose
size depends on the structure of the input text. Note that after the procedure call at Lines 6 and 16 the RankNext
map is stored in the array sa and the value Rank(1) is stored in the variable k. The procedure call at Line 12 has
the effect of storing the suffix array information in the array sa overwriting the RankNext map (see comment at
the end of Sect. 2.1).

9



To obtain such a convenient arrangement of the suffix array entries within sa aux, the al-
gorithm Lcp6 uses the following two-step procedure. In the first step (Lines 6–10) the algo-
rithm computes the RankNext map storing it in the array sa. Then, it generates the se-
quence Rank(1),Rank(2), . . . ,Rank(n) thus traversing the suffix array entries in the order in
which they will be considered by the LCP computation. When Lcp6 finds an index k such that
bwt[k − 1] 6= bwt[k] it stores k − 1 in the next empty position of sa aux (Line 8). Hence, at the
end of this first step, for i = 1, . . . , z, the entry sa aux[i] contains the value kπ(i) − 1, where π is
the permutation defined by (4). In the second step (Lines 12–14) the algorithm recomputes the
suffix array and, with a simple scan over sa aux, stores in sa aux[i] the value Sa[kπ(i)− 1]. Note
that we use this elaborate two step procedure simply because we do not want to store at the same
time both the suffix array and the RankNext map.

Once the array sa aux is properly initialized, the computation of the LCP array proceeds as
in algorithm Lcp9. First, we store the RankNext map in the array sa (Line 16). Then, at
each iteration of the main loop (Lines 18–30) a RankNext value in sa is replaced by a LCP
value so that at the end of the loop sa contains the LCP array. The computation of the value `i

makes use of Lemma 1. At the beginning of the i-th iteration the variable k contains Rank(i); if
bwt[k-1]==bwt[k] then `i is equal to `i−1 − 1 (which is readily available since it is stored in the
variable h); otherwise we retrieve from sa aux the value Sa[k − 1] (Line 23) and we compute `i

with the while loop of Lines 24–25.
In our “real world” model the total space occupancy of the above algorithm is 6n + 4z bytes:

we use 2n bytes for the arrays t and bwt, 4n bytes for the array sa (which is used for storing
the suffix array, the RankNext map, and the LCP array), and 4z bytes for sa aux. This latter
amount depends on the structure of the input. It is well known that for linguistic texts and
other “structured” texts the Burrows-Wheeler Transform usually contains many repetitions and
consequently z is relatively small. For example, if z ≈ n/2 (which is not an unusual value) the
total space occupancy of Lcp6 is ≈ 8n bytes. On the other hand, in the worst case we have z = n
and our algorithm uses 10n bytes. However, if at Line 4 we find that z > 3n/4—which would
yield a space occupancy larger than 9n bytes—we can quit Lcp6 and use Lcp9 instead.

We conclude observing that the entries of sa aux are always accessed in sequential order.
Hence, is one is really tight on space, such array could be stored in secondary memory with only
a “reasonable” slowdown. Note that such option is not available for Lcp9 which accesses the three
arrays t, sa, and lcp in random order.

5 Experimental results

In this section we report the results of an experimental comparison between the algorithms Lcp13,
Lcp9, and Lcp6. We ran these algorithms on a collection of files with different lengths and structures
(see Table 1). For all tests we used a 1700 Mhz Pentium 4 running GNU/Linux with 1.25Gb main
memory and 256Kb L2 cache. The compiler was gcc ver. 3.2 with options -O3 -fomit-frame-pointer
-march=pentium4.

For each file we built the suffix array using the ds algorithm [15, 16] which is currently one of
the fastest suffix array construction algorithm (at least for non-pathological inputs). Then, the
text and the suffix array were given as input to the algorithms Lcp13, Lcp9, and Lcp6 and their
running times were measured considering (user+system) time averaged over five runs.

In Table 2 we report, for each file and for each algorithm, running time over file length. In
other words the table shows the average time (in microseconds) per input byte spent by each

10



File Size (Kb) Ave. LCP Description

calgary.zip 1,043 2.00 Zip archive containing the files of the Calgary corpus
war&peace 3,142 9.45 “War and Peace” novel from Project Gutemberg
texbook 1,351 10.87 TEX source of Knuth’s TEXbook
bible 3,952 13.97 The King James version of the Bible
ecoli 4,529 17.38 Complete genome of the E.Coli bacterium
world192 2,415 23.01 The 1992 CIA world fact book
pic 501 2,353.32 Black and white bitmap of an image in the CCITT test set.

File Size (Kb) Ave. LCP Description

etext99.gz 38,747 2.65 The file etext99 (see below) in gzipped format
sprot 107,048 89.08 Swiss prot database (original file name sprot34.dat)
rfc 113,693 93.02 Concatenation of RFC text files
howto 38,498 267.56 Concatenation of Linux Howto text files
reuters 112,022 282.07 Reuters news in XML format
linux 113,530 479.00 Tar archive containing the Linux kernel 2.4.5 source files
jdk13 68,094 678.94 Concatenation of html and java files from the JDK 1.3 doc.
etext99 102,809 1,108.63 Concatenation of Project Gutemberg etext99/*.txt files
chr22 33,743 1,979.25 Genome assembly of human chromosome 22
gcc 84,600 8,603.21 Tar archive containing the gcc 3.0 source files
w3c 101,759 42,299.75 Concatenation of html files from www.w3c.org

Table 1: Collection of small files (top) and large files (bottom) used in our experiments. Files are sorted in order
of increasing average LCP.

algorithm. For Lcp6 we also report the space occupancy expressed as total space occupancy
over file length. The files in Table 2 are ordered by increasing average LCP: a large average LCP
indicates that the input file contains many long repeated substrings. Note that the files calgary.zip
and etext99.gz have a very small average LCP: the reason is that these are compressed files and
therefore their content has very little regularity and essentially consists of a “random” sequence
over the alphabet {0, 1, . . . , 255}. The files ecoli and chr22 are DNA sequences and consist of
apparently random strings over the alphabet {a, c, g, t}: their relatively high average LCP is due
to the small cardinality of the underlying alphabet. Another file with an unusual structure is pic
which is the bitmap of a black and white image and contains long runs of zeroes.

Our first observation is that Lcp9 is roughly 10% slower than Lcp13. We also notice that for
most files both LCP algorithms are faster than the suffix array construction algorithm. Thus, if we
consider the combined time required to compute the suffix array and the LCP array, the overhead
for using Lcp9 is usually less than 5% of the total running time. We stress once more that the 13n
space occupancy of algorithm Lcp13 is the space bottleneck of the combined—suffix array + LCP
array—computation since there are many efficient suffix array construction algorithms which use
9n bytes or less (see for example [2, 13, 16]).

For the algorithm Lcp6 we observe that it is roughly two times slower that Lcp13. However,
we also notice that for most files Lcp6 uses less than 8n bytes. The exceptions are, as expected,
the compressed files (calgary.zip and etext99.gz) and the DNA sequences (ecoli and chr22). We
conclude that, although Lcp6 is slower than Lcp13 and Lcp9, for most files it yields a significant
saving in the peak space occupancy. When working with very large files the combination of Lcp6
with a “lightweight” suffix sorter [2, 16] can be the only way to avoid the (deleterious) use of
secondary memory.

11



File Size (Kb) Ave. LCP SA time Lcp13 time Lcp9 time Lcp6 time Lcp6 space

calgary.zip 1,043 2.00 0.69 0.75 0.84 1.50 9.98
war&peace 3,142 9.45 0.72 0.62 0.71 1.32 7.71
texbook 1,351 10.87 0.51 0.55 0.58 1.07 7.51
bible 3,952 13.97 0.71 0.59 0.67 1.22 7.31
ecoli 4,529 17.38 0.73 0.70 0.81 1.47 8.83
world192 2,415 23.01 0.60 0.57 0.64 1.19 6.99
pic 501 2,353.32 0.18 0.28 0.27 0.45 6.50

File Size (Kb) Ave. LCP SA time Lcp13 time Lcp9 time Lcp6 time Lcp6 space

etext99.gz 38,747 2.65 0.97 1.07 1.18 2.08 9.97
sprot 107,048 89.08 1.49 1.00 1.03 1.90 7.01
rfc 113,693 93.02 1.18 0.89 0.92 1.66 6.86
howto 38,498 267.56 0.99 0.77 0.84 1.48 7.29
reuters 112,022 282.07 2.65 0.91 0.96 1.77 6.58
linux 113,530 479.00 1.04 0.76 0.76 1.35 6.88
jdk13 68,094 678.94 2.67 0.69 0.75 1.33 6.26
etext99 102,809 1,108.63 1.55 1.07 1.10 2.02 7.57
chr22 33,743 1,979.25 0.96 0.92 1.01 1.76 8.34
gcc 84,600 8,603.21 1.87 0.69 0.73 1.30 6.75
w3c 101,759 42,299.75 2.11 0.72 0.79 1.40 6.31

Table 2: Experimental results for small files (top) and large files (bottom). The second and third column show the
file size and average LCP. The fourth column reports the time (microseconds per input byte) for the construction
of the suffix array. The next three columns report the time (microseconds per input byte) for the computation of
the LCP array using the algorithms Lcp13, Lcp9, and Lcp6 respectively. The last column shows the space used by
Lcp6 expressed as total space occupancy over file length. The running times were measured considering (user +
system) time averaged over five runs. The running times do not include the time spent for reading the input files.
The test files are ordered by increasing average LCP.

12



6 Conclusions

In this paper we have addressed the problem of devising a “lightweight” algorithm for computing
the LCP array given the text and the suffix array. We have considered the algorithm of Kasai
et al. [10] and we have shown how to significantly reduce the space occupancy of this algorithm
maintaining its simplicity and robustness.

Although we do not represent any data in compressed form, one of our space saving tricks makes
use of the Burrows-Wheeler Transform. To our knowledge this is the first use of the Burrows-
Wheeler Transform outside the domain of data compression. Our results show that we are still
far from understanding all the potential applications of this fascinating mathematical tool.

References

[1] M. I. Abouelhoda, E. Ohlebusch, and S. Kurtz. Optimal exact string matching based on
suffix arrays. In Proc. 9th International Symposium on String Processing and Information
Retrieval (SPIRE ’02), pages 31–43. Springer-Verlag LNCS n. 2476, 2002.

[2] S. Burkhardt and J. Kärkkäinen. Fast lightweight suffix array construction and checking. In
Proc. 14th Symposium on Combinatorial Pattern Matching (CPM ’03), pages 55–69. Springer-
Verlag LNCS n. 2676, 2003.

[3] M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm. Technical
Report 124, Digital Equipment Corporation, 1994.

[4] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proc. of
the 41st IEEE Symposium on Foundations of Computer Science, pages 390–398, 2000.

[5] P. Ferragina and G. Manzini. An experimental study of an opportunistic index. In Proc. 12th
ACM-SIAM Symposium on Discrete Algorithms, pages 269–278, 2001.

[6] P. Ferragina and G. Manzini. Compression boosting in optimal linear time using the Burrows-
Wheeler transform. In Proc. 15th ACM-SIAM Symposium on Discrete Algorithms (SODA
’04), 2004.

[7] R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes. In Proc.
14th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA ’03), pages 841–850, 2003.

[8] W. Hon, K. Sadakane, and W. Sung. Breaking a time-and-space barrier in constructing full-
text indices. In Proc. of the 44th IEEE Symposium on Foundations of Computer Science,
pages 251–260, 2003.

[9] J. Kärkkäinen and P. Sanders. Simple linear work suffix array construction. In Proc. 30th
International Colloquium on Automata, Languages and Programming (ICALP ’03), pages
943–955. Springer-Verlag LNCS n. 2719, 2003.

[10] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-common-prefix
computation in suffix arrays and its applications. In Proc. 12th Symposium on Combinatorial
Pattern Matching (CPM ’01), pages 181–192. Springer-Verlag LNCS n. 2089, 2001.

13



[11] D. K. Kim, J. S. Sim, H. Park, and K. Park. Linear-time construction of suffix arrays.
In Proc. 14th Symposium on Combinatorial Pattern Matching (CPM ’03), pages 186–199.
Springer-Verlag LNCS n. 2676, 2003.

[12] P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. In Proc. 14th
Symposium on Combinatorial Pattern Matching (CPM ’03), pages 200–210. Springer-Verlag
LNCS n. 2676, 2003.

[13] N. J. Larsson and K. Sadakane. Faster suffix sorting. Technical Report LU-CS-TR:99-214,
LUNDFD6/(NFCS-3140)/1-43/(1999), Department of Computer Science, Lund University,
Sweden, 1999.

[14] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches. SIAM
Journal on Computing, 22(5):935–948, 1993.

[15] G. Manzini and P. Ferragina. Lightweight suffix sorting home page.
http://www.mfn.unipmn.it/~manzini/lightweight.

[16] G. Manzini and P. Ferragina. Engineering a lightweight suffix array construction algorithm.
In Proc. of the 10th European Symposium on Algorithms (ESA ’02), pages 698–710. Springer
Verlag LNCS n. 2461, 2002.

[17] E. M. McCreight. A space-economical suffix tree construction algorithm. Journal of the ACM,
23(2):262–272, 1976.

[18] K. Sadakane. Succinct representations of LCP information and improvements in the com-
pressed suffix arrays. In Proc. 13th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA
’02), pages 225–232, 2002.

14


