Dipartimento di Informatica
Universita del Piemonte Orientale ” A. Avogadro’
Spalto Marengo 33, 15100 Alessandria
http://www.di.unipmn.it

?

universita
degli studi
del piemonte
orientale

TECHNICAL REPORT
TR-INF-2004-03-04-UNIPMN
(March 2004)

Dynamic Bayesian Networks for Modeling Advanced Fault Tree
Features in Dependability Analysis

Author: S. Montani, L. Portinale, A. Bobbio
({ stefania,portinal,bobbio} Qunipmn.it)

Dynamic Bayesian Networks for Modeling Advanced
Fault Tree Features in Dependability Analysis

Stefania Montani, Luigi Portinale} Andrea Bobbio
Dipartimento di Informatica
Universita del Piemonte Orientale “A. Avogadro”

Alessandria (ITALY)
e-mail: {stefania,portinal,bobbio}@unipmn.it

March 22, 2004

Abstract

Fault Trees (F'T) are one of the most popular techniques for dependability anal-
ysis of large, safety critical systems. It has been shown [1] that F'T' can be directly
mapped into Bayesian Networks (BN) and that the basic inference techniques on
the latter may be used to obtain classical parameters computed from the former.
In this paper, we show how BN can provide a unified framework in which also Dy-
namic FT (DFT), a recent extensions able to treat complex types of dependencies,
can be represented. In particular, we propose to characterize dynamic gates within
the Dynamic Bayesian Network framework (DBN), by translating all the basic dy-
namic gates into the corresponding DBN model. The approach has been tested on
a complex example taken from the literature. Our experimental results testify how
DBN can be safely resorted to if a quantitative analysis of the system is required.
Moreover, they are able to enhance both the modeling and the analysis capabilities
of classical F'T approaches, by representing local dependencies and by performing
general inference on the resulting model.

1 Introduction

Fault Trees (FT) are one of the most popular techniques for dependability analysis of
large, safety critical systems. They allow one to represent the combination of elementary
causes that lead to the occurrence of an undesired catastrophic event named the Top
Fvent (TFE). By specifying failure probabilities on the basic components of the modeled
system (the elementary causes of the TE, also called basic events), then the whole system
unreliability (probability of the TE) at a given mission time can be computed.

* Corresponding author

A
56 bbb lobz

Figure 1: Dynamic Gates of a DF'T

In recent years, an effort has been documented in the literature, aimed at increasing
the modeling power of F'T' by including new primitive gates, able to accommodate complex
kinds dependencies. This augmented FT language is referred to by the authors as dynamic
FTI5,6,10]. Dynamic Fault Trees (DF'T) introduce four basic (dynamic) gates: the warm
spare (WSP), the sequence enforcing (SEQ), the probabilistic dependency (PDEP) and
the priority AND (PAND).

WSP are dynamic gates able to model one or more input principal components that
can be substituted by one or more backups (spares), which cover the same functionality
(figure 1(b)). The WSP gate fails when the number of operational powered spares and/or
principal components is less than the minimum required. In particular spares can fail
even while they are dormant, but the failure rate of an unpowered spare is lower than the
failure rate of the corresponding powered one. More precisely, being A the failure rate of
a powered spare, the failure rate of the unpowered spare is aA, with 0 < alpha < 1 called
the dormancy factor. Spares are more properly called “hot” if & = 1 and “cold” if a = 0.

A SEQ gate forces its inputs to fail in a particular order: when a SE(is found in
a DFT, it never happens that the failure sequence takes place in different orders. SEQ)
gates can be modeled as a special case of a cold spare [10], so they will not be considered
in the following®.

In the PDEP gate (figure 1(c)), one trigger event 7" causes other dependent components
to become unusable or inaccessible with probability pg,, < 1. In particular, when the
trigger event occurs, the dependent components are all immediately forced to fail (with
the specified probability). The separate failure of a dependent component, on the other
hand, has no effect on the trigger event. PDEP has also a non-dependent output, that
simply reflects the status of the trigger event.

Finally, the PAND gate (figure 1(a)) reaches a failure state iff all of its input compo-
nents have failed in a preassigned order (from left to right in graphical notation). While
the SE(Q) gate allows the events to occur only in a preassigned order and states that a
different failure sequence can never take place, the PAND does not model such a strong
assumption: it simply detects the failure order and fails just in one case (in figure 1(a) a

!The conceptual difference between the two kind of gates is that the inputs to a SEQ do not need to
be a component and its set of spares, but can be components covering any kind of function in the FT.

failure occurs iff A fails before B, but B may fail before A without producing a failure in
G).

DFT are typically solved by automatic conversion to the equivalent Markov model
[5]. Through a process known as modularization [8, 2, 7] it is possible to identify the
independent subtrees with dynamic gates and use a different Markov model (much smaller
than the model corresponding to the entire F'T) for each of them. Nevertheless, there still
exists the problem of state explosion, since the set of states can be significantly large.

In order to overcome these limitations, we propose to characterize dynamic gates
within the Dynamic Bayesian Networks (DBN) framework. Static BN have been shown
suitable to model and analyze systems in place of standard FT [15, 1], so we aim at
exploiting BN features also when dinamic gates behavior has to be modeled. The paper
provides a translation of dynamic gates into DBN by comparing the approach to standard
Markov chain representation of the gates. We also present the reliability analysis of a real-
world system (a cardiac assist device presented in [13]); results demonstrate how DBN
can be safely exploited for quantitative analysis, as well as for enhancing modeling and
analysis of the given system.

2 DFT gates and DBN modeling

The standard DBN representation model adopts a discrete time approach, where several
time slices are explicited, togheter with information about transitions from a time slice
to the next ones. In particular, each time slice contains a set of (time-indexed) random
variables, some of which are typically not observable [4, 14, 12].

When the Markov assumption holds (and in particular when we are dealing with a
first order Markov process) the future slice at time ¢ + 1 is conditionally independent of
the past ones given the present slice at time ¢ [9]. In this case, it is sufficient to represent
two consecutive time slices and the network is fully specified if it is provided with: (1)
the prior probabilities for root variables at time ¢ = 0; (2) the intra-slice conditional
dependency model, together with the corresponding conditional probability tables; (3)
the inter-slice conditional dependency model and probability tables (i.e. the transition
model), which explicit the temporal probabilistic dependencies between variables. In
particular, a variable at time ¢ + 1 may depend not only on its “historical” copy (i.e. on
the same variable at time ¢), but also on the values of other variables in the previous time
slice.

The above model of a DBN is usually called 2TBN (two time-slice Temporal Bayesian
Network)[12, 3]. In the following, we will consider a particular representation for 2TBNs,
called the canonical form [3]. Let X be a net variable and X; its copy at time ¢: the
canonical set of net variables is the set
{X : X; € UpParents(X*;,1)}; i.e., a canonical variable is a variable having childrens
at the next time slice. A 2TBN is in canonical form if only the canonical variables are
represented at time t.

The motivation for adopting a DBN instead of the corresponding Markov chain (as

it is done in classical approaches to dependability) is that, by decomposing the state of
a complex system in its constituent variables, the network is able to take advantage of
sparsness in the temporal probability model [12]. As a matter of fact, the conditional
independence assumptions enables a compact representation of the probabilistic model,
allowing the system designer or analyst to avoid the complexity of specifying and using
a global-state model (like a standard Markov Chain) when the dynamic module of the
considered F'T is significantly large.

However, we must pay attention to the fact that, by modeling a dynamic F'7'module
with a DBN we are considering the factorized representation of a Discrete Time Markov
Chain (DTMC). This differs from the model adopted in the reliability analysis of a DFT
which is usually a Continuous Time Markov Chain (CTMC). The results provided by a
CTMC are in fact slightly different. As a matter of fact, the two models are not exactly
equivalent, since in a CTMC transitions occur in a continuous fashion. As a consequence,
while in a discrete time model we can consider the event given by two components failing
at the same time, the same is no longer true in a continuous time model. This could
force us to make some assumptions as in the case of the PAND gate [10]; in particular,
if we observe the contemporary failure of two inputs, having lost the sequence of failure
information, we do not know if the PAND is forced to fail or not, and we have to make
some hypothesis. Usually a contemporary fault implies a fault in the gate.

In the next subsections, we detail how dynamic gates introduced above can be con-
verted into a DBN. Section 3 applies our models to an example, taken from the literature,
that shows a DFT including different gate types.

2.1 Warm spare gate

In a DFT, different configurations of warm spares can be designed. As an example, let
us consider a situation where a single component A can be substituted by a spare S1. If
also S1 fails, it can be substituted by a second spare S2 (which may be identical to S1).
If every component (either principal or spare) is failed, the gate produces a fault.

The DBN corresponding to this gate is shown in figure 2, together with the correspond-
ing Markov chain. Component failure rates are shown as A-values, while state names are
triples X; X5 X3 corresponding to A, S1, 52 respectively and with X; = 0 if the component
is working, X; = 1 otherwise; e.g., 001 means A and S1 working, S2 failed. As for every
DBN we will consider in the following, the net of figure 2 is a 2TBN in canonical form. It
can be observed that each component node at time ¢+ 1 depends on its copy at time ¢ (we
consider persistence of faults). Moreover, S1 depends on A because, if A was working at
time ¢, then S1’s failure rate at time ¢ + 1 is still a\; on the other hand, if A has failed,
S1’s failure rate becomes A. The situation of S2 is analogous, but it depends on both
the principal component and on the first spare (since it will be powered only when both
nodes have failed). The WSP gate is modeled as a deterministic AN D node among its
three inputs A, S1 and S2.

We consider a constant failure rate for components and an exponentially distributed
failure time; the probability that component C (with failure rate A\¢) fails in At time

instances is then 1 — e *¢A. The probabilities of failure in the network are assigned as

below?, where we consider a discretization step of At =1 (in all not reported cases, the
probability of failure is 0);

PriA(t+1) =1JA{t) =1} =1

PriA(t+1)=1]At) =0} =1—¢e ™
Pr{S1(t+1) = 1|A(t) = 0,51(t) =0} =1 — ¢~As1
Pr{S1(t+1) =1|A(t) =1,51(t) =0} =1 — e~ ?s!

Pr{S1(t+1)=1|S1(t) =1} =1
Pr{S2(t +1) = 1|S1(t) = 0,52(t) = 0, A(t) = 0} = 1 — e~®}s2
Pr{S2(t+1) =1|S1(t) = 1,52(t) = 0,A(t) =0} = 1 — e~ **s2
Pr{S2(t +1) = 1|S1(t) = 0,52(¢) = 0, A(t) =1} = 1 — e @}s2
Pr{S2(t+1) = 1|S1(t) = 1,52(t) = 0, A(t) = 1} = 1 — e *s2
Pr{S2(t+1)=1|S2(t) =1} =1

Hot and cold spares can be modeled analogously, by setting o to 1 or to 0 respectively.

As an extension to classical DFT approaches, resorting to DBN we can also model the
presence of repair mechanisms in the system. In particular, if a component has failed at
time t, if repair is allowed it will recover from failure with probability r < 1.

More complex configurations can be taken into account as well. For example, suppose
repair is required only after the overall WSP gate failure. In this case, we can model the
WSP as in figure 3. Note that A (as well as S1 ans S2) at time ¢ + 1 depends on WSP
at time t. Actually, if WSP (and therefore also all the input components) have failed
at time ¢, the repair of A at time ¢t + 1 will be tented with success probability r4; i.e.,
Pr{A(t+1) =1|A(t) = 1} = 1 — r4. Similar considerations hold for S1 and S2.

2.2 Probabilistic dependency gate

Since the trigger event of a PDEP gate determines an immediate failure (with probability
Pdep) Of its dependent components, a subsystem including a PDEP can be completely
characterized resorting to intra-slice (i.e. static) conditional dependencies. Nevertheless,
exploting a dynamic network allows us to resort to a common framework for dynamic
gates representation.

Figure 4 shows the DBN and the corresponding Markov chain for a PDEP gate in
a configuration in which the trigger event T' (with failure rate Ar) has two dependent
components A and B (with failure rate A4 and Ap respectively). States of the Markov
chain follow the notational convention illustrated for figure 2 for the triple 7, A, B.

As usual, each component at time ¢ + 1 depends on the component itself at time t.
Moreover, the dependent components will fail with probability pge, if the trigger has failed

2For the sake of brevity, we just report basic probabilistic information on which to build actual CPT
for the net.

Fig

t t+1

Figure 3: DBN for the WSP gate in the example when a repair mechanism is allowed

Figure 4: DBN and CTMC for the PDEP gate in the example

in the same time slice. The probabilities of failure of A can be summarized as follows
(again in all not reported cases the probability of failure is 0 and a discretization step
At =1 is assumed):
PriTt+1)=1Tt)=1}=1
1—e 7

Pr{T(t+1) =1|T(t) =0} =
Pr{A(t+1)=1JA(t) =1} =1
Pr{A(t+1) =1|A(t) =0,T(t +1) =0} =1 — e~
Pr{A(t+1) =1|A@t) = 0,T(t + 1) = 1} = paep

Similarly to A we can set failure probabilities for the dependent component B (using
Ag). The PDEP gate simply mirrors the trigger status and is not reported in the network.

A largely exploited special case of PDEP is the functional dependency gate (FDEP);
in the latter the trigger event leads to a definite failure of dependent components. This
can obviously be modeled as discussed in this section, by just setting pge, = 1.

2.3 Priority AND gate

PAND gates model situations where a control component may prevent the system to
crash (with ruinous consequences) because of the failure of a standard component. In
such cases, a failure of the control component before the failure of the standard one
prevents the recovery action of the control component, leading to a (sub)-system failure.
Consider the gate of figure 1(a): we can model the failure sequence by considering two
different failure modes for component B, mode £f (failed by first) and mode fs (failed
by second). We can then decide if B fails with mode ff or with mode fs by considering
transition of component A from time ¢ to ¢ + 1. Figure 5 shows the resulting DBN and

8

t t+1

PAND

Bt Bt+1

10 1 1fail

Figure 5: DBN and CTMC for PAND gate

the corresponding CTMC; Nodes B; and By,; (modeling component B) have 3 different
values namely O=working, 1=ff, 2=fs. Node PAND is a deterministic node with the
following functional rules

PAND =1 if A(t+1)=1 and B(t+1)=2

PAND = 0 otherwise
Conditional probabilities for the faulty values of the component are set as below (as usual
not reported probabilities are assumed to be 0):

Pr{A(t+1) =1|A(t) =1} =1

PriA(t+1) = 1/A(t) =0} = 1 - ¢ ™

Pr{B(t+1) =1|A(t) =0,A(t + 1) = 0,B(t) =0} =1 — e *2
Pr{B(t+1) =2|A(t) =0,A(t+1)=1,B(t) =0} =1 —e *?
Pr{B(t+1) =2/A(t) =1,A(t+1)=1,B(t) =0} =1 — ¢ 2

Pr{B(t+1)=1B{#) =1} =1
Pr{B(t+1) =2/B(t) =2} =1

We can notice that, given that we assume persistence of faults, the parent configuration
{A(t) =1,A(t+1) =0, B(t) = 0} is not possible; this means that we can put any value in
the CPT of B(t+1) in correspondence to the above configuration. It is also worth noting

Figure 6: The Fault Tree for the cardiac assist device [13]

the choice made for parent configuration {A(¢) = 0, A(t + 1) = 1, B(t) = 0} corresponds
to assume that a contemporary fault of both A and B will result in a fault of the whole
gate. If the opposite would have been modeled, then the given row had to be substituted
with the following one

Pr{B(t+1) =1]A(t) =0,A(t +1) =1,B(t) =0} =1 — ™2

modeling the fact that if both A and B fail at the next time instant, then a failure mode
not leading to a global fault (e.g. ££f) will be set for B.

3 Dependability analysis of a cardiac assist device

In [13], a real-world example of the use of DFT is presented, by considering the reliability
modeling and analysis of a cardiac assist device. The system consists of an external part
and of a patient-implanted one. The external part includes a TEDTS (Transcutaneous
Energy and Data Transmission Systems), able to transmit power and information to the
implanted portion. The internal device is governed by a primary CPU, provided with a
(warm) spare. It also includes an electronic supervisor, a crossbar switch, a mechanical
blood pump and a motor. Some pace leads are attached to the heart and connected to
the electronic supervisor for monitoring. The failure of either the crossbar switch or of
the system supervisor fails both the primary and backup CPU.

Figure 6 (taken from [13]) shows the corresponding F'T. At the highest level, the
system can be divided into three subtrees, whose root nodes will be referred to as Pump-
Motor-Leads, Power-TEDTS and CPU.

10

Component Subtree Failure Rate
Motor Pump-Motor-Leads | 0.00002
Motor Cable Pump-Motor-Leads | 0.000014
Motor Amplifier Pump-Motor-Leads | 0.000028
Pump Pump-Motor-Leads | 0.000009
Pace Leads Pump-Motor-Leads | 0.00001
TEDTS Controller | Power-TEDTS 0.00004
TEDTS Coil Power-TEDTS 0.000018
Battery Power-TEDTS 0.000008
Power Supply Power-TEDTS 0.00009
Crossbar Switch CPU 0.00002
System Supervisor | CPU 0.00009
Primary CPU CPU 0.00006
Backup CPU CPU 0.00006

Table 1: Failure Rates for the Cardiac Assist Device

In particular, the CPU subtree includes two dynamic gates; i.e. a FDEP gate with
two dependent components, that act as the principal and the spare components of a WSP
gate. The trigger event of the FDEP is the logical OR of the failure of the crossbar switch
and of the system supervisor; the dependent components are the two CPUs. We have set
the dormancy factor for the backup CPU to o = 0.5.

Table 1 lists the values of the failure rates we have applied in the example. To test the
correcteness of our modeling proposal, we have first solved the system relying to classical
methodologies; in particular, a Markov chain was used to model the dynamic subtree CPU
as shown in figure 7. Figure 7 also shows the corresponding DBN. Notice that the DBN
is obtained by composing the subnets corresponding to the dynamic gates of the subtree
(as well as the subnet for the logical OR of the root of the CPU subtree). CPTs of nodes
belonging to different subtrees are obtained by exploiting the semantics of each gate; for
example the presence of the trigger will determine a failure on both CPUs, independently
from other events. This differs from the way how the CTMC is generated, since in that
case a simulation of the possible state transitions, starting from the initial state where all
the components of the subtree are working, is needed [10].

We have performed standard reliability analysis on the whole DFT using the SHARPE
tool® [16]. The probability of the TE from 100 to 1000 hours has been computed and it
is reported in Table 2, column 2.

We have then converted the DFT into the corresponding DBN along the lines of
previous section for the dynamic part and as illustrated in some previous works for the
static part (see [15, 1]). The whole network is shown in figure 8.

3 Actually, SHARPE does not allow the direct analysis of a DFT, so we have appended the results
computed by the tool for the CTMC of fig. 7, to the standard (static) F'T resulting from the original one,
by removing the dynamic module CPU.

11

CrossharSwilhc(lI CrossbarSwithc(t+1

visor({t visor(t+1)

P_CPU(t)

B_CPU(Y) B_CPU(T=1)

0.00002 -

.5%0.00006

0.00006

0.00002

Figure 7: DBN and CTMC for subtree CPU. In the CTMC C=CrossbarSwitch,
S=Supervisor, P=Primary CPU, B=Backup CPU; X means that componente X is work-
ing, while X' means that component X is failed.

12

Time (hours) | FTA Dynamic BN
100 0.03413101 | 0.03442142
200 0.06714543 | 0.06770761
300 0.09907735 | 0.09989352
400 0.12995997 | 0.13101314
500 0.15982557 | 0.16109957
600 0.18870556 | 0.19018496
700 0.21663050 | 0.21830059
800 0.24363008 | 0.24547687
900 0.26973319 | 0.27174334
1000 0.29496789 | 0.29712873

Table 2: TE computation using standard DFT analysis (SHARPE) and DBN inference
(BK algorithm).

Computation of the TFE probability is a simple matter of standard inference on the
DBN; in particular it corresponds to a prediction inference task over a changing hori-
zon (the time points at which system reliability is required)[12]; this is in turn a special
case of filtering (or monitoring) given that we have empty evidence for every analysis
point. We have performed the analysis by resorting to the BK algorithm for approximate
monitoring [3]; the approach is based on a factored decomposition into independent sub-
processes (identified with “clusters” of nodes) and it performs exact inference if clusters
are suitably arranged. In our case the only non-trivial cluster is the one comprising nodes
for components CrossbarSwitch, Supervisor, Primary and BackupC PU; every other
cluster is just a singleton containing only one component node. Computation has been
performed by relying on the implementation of Kevin Murphy’s BN ToolBox for MAT-
LAB [11]; the probabilities of the TE from 100 to 1000 hours are shown in Table 2, column
3. We have also performed some experiments using the BAYESIALAB software package
(www.bayesia.com), by exploiting stochastic simulations with results comparable to those
shown in table 2*.

As it can be observed the results are basically identical to the ones provided by classical
solution methodologies. Differences can be interpreted as an effect of discretization (see
section 1); experiments we have performed on several other examples showed that results
obtained by DBN inference are equivalent to those obtained by solving the corresponding
DTMC. This allows us to conclude that DBN can be safely resorted to, if a quantitative
analysis of the system is required. Moreover, they have the advantage of providing a
unified framework, in which both static and dynamic components can be analysed.

4Notice that the nets reported in the figures of this paper are screenshots taken from BAYESIALAB.

13

t+1

SystémFailure

o
o
o

owerTEDTS
PumpMotorLead

TEDTS
@
PowerSuppy(t+1)
otorSection

1)

(t+1)

(T:

b
P_CPU
B_CPU
Battery(t+1)
Motor(t+1)
Pump(t+1)

| TEDTSCoil(t+1)
MotorCable(t+1)

()
® |

..>

P_CPU
B_CPU

TEDTSControl(t) I TEDTSControl(t+1)

®
Battery(t)
@
TEDTSCoil(t)
@
@
PowerSuppy(t)
®
MotorAmp(t)
@
MotorCable(t)
@
Motor(t)
@
Pump(t)

Figure 8: The dynamic Bayesian Network for the Fault Tree in the example

4 Discussion and conclusion

Bayesian Networks provide a robust probabilistic method for reasoning under uncertainty
and are becoming widely used in several real world applications. In previous works, we
have analyzed the possibility of translating FT, a very popular technique for hardware
dependability analysis, into the framework of BN.

In this paper, we have examined how to translate also special purpose F'T gates, called
dynamic gates, introduced to represent complex dependencies in the F'T.

FT with dynamic gates are typically solved by conversion to the equivalent Markov
model. Through modularization it is possible to identify the independent sub-trees with
dynamic gates and to use a different Markov model for each of them. Nevertheless, there
still exists the problem of state explosion.

This difficulty can be overcome by modeling the DFT as a DBN, thus taking advantage
of the sparsness in the temporal probability model. The modeling methodology we pro-
pose has been quantitatively tested on some examples, one of which has been presented
in this paper: the results obtained using the DBN were basically identical to the ones
obtained using other analysis techniques described in the literature; the only source of
approximation was due to the need for discretization.

We can also notice that, resorting to a BN formalism (both static or dynamic) has the

14

I PaceLeads(t+1)

PacelLeads(t)

well-known advanteges of exploiting all the modeling capabilities of graphical probabilis-
tic models: multi-valued variables (instead of binary events as in F'T), local dependencies
among components (instead of classical s-independence assumption in F'T), noisy inter-
action among component behavior (instead of deterministic interaction as in FT). In
addition, general inference mechanism (combining prediction as well as diagnosis) can
be naturally performed on a BN, while they are not easily implemented in standard FT
analysis, especially if evidence is gathered during analysis. These aspects have already
been noticed in our previous works concentrating on static BN [15, 1], but naturally apply
to the DBN framework discussed here as well.

In conclusion, we believe that DBN represent a quite general framework through which
DFT can be properly characterized and that could be relied upon in dependability appli-
cations.

References

[1] A. Bobbio, L. Portinale, M. Minichino, and E. Ciancamerla. Improving the analysis
of dependable systems by mapping fault trees into bayesian networks. Reliability
Engineering and System Safety, 71:249-260, 2001.

[2] A. Bobbio and D. Codetta Raiteri. Parametric fault-trees with dynamic gates and

repair boxes. In Proceedings Reliability and Maintainability Symposium RAMS2004,
2004.

[3] X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In
Proceedings UAI’8S, pages 33-42, 1998.

[4] T. Dean and K. Kanazawa. A model for reasoning about persistence and causation.
Computational Intelligence, 5(3):142-150, 1989.

[5] J. Bechta Dugan, S.J. Bavuso, and M.A. Boyd. Dynamic fault-tree models for fault-
tolerant computer systems. IEFEE Transactions on Reliability, 41:363-377, 1992.

[6] J. Bechta Dugan, S.J. Bavuso, and M.A. Boyd. Fault-trees and Markov models
for reliability analysis of fault-tolerant digital systems. Reliability Engineering and
System Safety, 39:291-307, 1993.

[7] J. Bechta Dugan, K.J. Sullivan, and D. Coppit. Developing a low-cost high-quality
software tool for dynamic fault-tree analysis. IEEE Transactions on Reliability,
49(1):49-59, 2000.

[8] Y. Dutuit and A. Rauzy. A linear-time algorithm to find modules of fault tree. IEEE
Transactions on Reliability, 45:422-425, 1996.

[9] U. Kjaerulff. dhugin: a computational system for dynamic time-sliced bayesian net-
works. International Journal of Forecasting, 11:89-101, 1995.

[10] R. Manian, D.W. Coppit, K.J. Sullivan, and J.B. Dugan. Bridging the gap between

systems and dynamic fault tree models. In Proceedings IEEE Annual Reliability and
Maintainability Symposium, pages 105-111, 1999.

15

[11] K. Murphy. The bayes net toolbox for matlab. Computing Science and Statistics,
33, 2001.

[12] K. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning.
PhD Thesis, UC Berkley, 2002.

[13] Y. Ou and J. B. Dugan. Sensitivity analysis of modular dynamic fault trees. In Pro-
ceedings International Computer Performance and Dependability Symposium, pages
35—45, Chicago, 2000. IEEE Computer Society Press.

[14] P.Dagum, A. Galper, and E. Horwitz. Dynamic network models for forecasting. In
Proc. UAI’92, pages 41-48, 1992.

[15] L. Portinale and A. Bobbio. Bayesian networks for dependability analysis: an ap-
plication to digital control reliability. In 15-th Conference Uncertainty in Artificial
Intelligence, UAI-99, pages 551-558, 1999.

[16] R. Sahner and K.S. Trivedi. Reliability modeling using SHARPE. IEEE Transactions
on Reliability, R-36:186—-193, 1987.

16

