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Abstract

In this paper, we present a case-based retrieval system called RHENE (Retrieval
of HEmodialysis in NEphrological disorders) working in the domain of patients
affected by nephropatologies and treated with hemodialysis. Defining a dialysis
session as a case, retrieval of past similar cases has to operate both on static and
on dynamic features, since most of the monitoring variables of a dialysis session are
time series. In RHENE, retrieval relies upon a multi-step procedure. In particular, a
preliminary classification step, based on static features, reduces the retrieval search
space. Intra-class retrieval then takes place by considering dynamic features, and is
articulated as follows: (1) “locally” similar cases (considering one feature at a time)
are extracted and the intersection of the retrieved sets is computed; (2) “global”
similarity is computed - as a weighted average of local distances - and the best
cases are listed. The main goal of the paper is to present an approach for efficiently
implementing step (2), by taking into account specific information regarding the final
application. We concentrate on a classical dimensionality reduction technique for
time series allowing for efficient indexing, namely Discrete Fourier Transform (DFT).
Thanks to specific index structures (i.e. k-d trees) range queries (on local feature
similarity) can be efficiently performed on our case base; as mentioned above results
of such local queries are then suitably combined, allowing the physician to exhamine
the most similar stored dialysis sessions with respect to the current one. The system
can be seen as a support for patient examination and therapy evaluation, but could
also be adopted as a means for assessing the quality of the overall hemodialysis
service, providing a useful input from the knowledge management perspective.

1 Introduction

Health Care Organizations (HCO) have nowadays evolved into complex enterprises, in
which the management of knowledge and information resources is a key success factor in



order to improve their efficacy and efficiency. Unfortunately, although HCO are data-rich
organizations, their capability of managing implicit (i.e. operative) knowledge is still very
poor: the day-by-day collection of patients’ clinical data, of health care provider actions
(e.g. exams, drug deliveries, surgeries) and of health care processes data (admissions,
discharge, exams request) is not often followed by a thorough analysis of such kind of
information. Thanks to the Knowledge Management (KM) perspective [5], on the other
hand, it is now clear that implicit knowledge may be effectively used to change organi-
zational settings and to maintain and retrieve unstructured situation-action information
[12]. In recent years, Case-Based Reasoning (CBR) has become widely accepted as a
useful computational instrument for KM; the retrieval and reuse of past data and the
possibility of retaining new information fit the KM objectives of keeping, increasing and
reusing knowledge with particular attention to decision making support [5].

In medical applications, in particular, analogical reasoning is typically applied for deci-
sion making: physicians use to reason by recalling past situations, afforded by themselves
or by some colleague and this kind of process is often biased by the tendency of recalling
only the most recent cases. The CBR methodology could be of great help, since it enables
an automatic retrieval of all relevant past situation-action patterns (including the oldest
ones), as well as the retrieval of the other physicians’ expertise, embedded into concrete
examples [11].

Despite CBR appears to be an appropriate technique to support medical decisions,
its exploitation in this field has not been as successful as in other domains; probably
the weakness resides in the difficulties of implementing the adaptation step of the CBR
cycle [1], being adaptation strongly application-dependent. As a matter of fact, the
definition of a (possibly general) framework for performing adaptation in medical problems
is a challenging task. Moreover, physicians would not easily accept a therapy/diagnosis
automatically produced by a decision support system. On the other hand, a pure retrieval
system, able to extract relevant knowledge, but that leaves the user the responsibility of
providing an interpretation of the current case and of proposing a solution, seems much
more suitable in this context.

The goal of this paper is to present RHENE! (Retrieval of HEmodialysis in NEphrological
disorders) a case-based system, developed in order to investigate the application of re-
trieval techniques in a time-dependent clinical domain: the management of End Stage
Renal Disease (ESRD) patients treated with hemodialysis. Even though the system con-
centrates only on case retrieval, its architecture is non-trivial.

In particular, a multi-step procedure is implemented, where retrieval itself is antici-
pated by a classification phase. Classification provides a reduction of the retrieval search
space, by identifying relevant subparts of the case base. In particular, the procedure can
be automatic (the system implements a k-Nearest Neighbour (k-NN) approach on a sub-
set of the case features), or user driven (the physician explicitly selects on which subparts
of the library s/he wants to concentrate the attention).

Intra-class retrieval is then performed. Retrieval is in turn structured in a multi-step

'RENE in Italian means kidney.



fashion: local similarity is first taken into account, by allowing the selection of a subset
of very relevant features, on which a range query (one in each feature’s direction) is
executed. The intersection of the locally similar cases is then computed, thus extracting
the cases that satisfy the request of being within all the specified ranges of similarity
contemporaneously. Clearly this is a strong requirement, but results can be finely tuned
by varying the range parameters. Global similarity is then computed, as a weighted
average of local similarities in the space of all the case features (including classification
ones). In this way, the best cases are identified and ranked.

In particular, since in the hemodialysis domain most of the case features are in the
form of time series, the (local) retrieval step requires a pre-processing phase, in which
dimensionality reduction techniques are resorted to, in order to speed up the retrieval
process itself, while maintaining sufficient information about the series and avoiding false
dismissals.

Finally, retrieval takes advantage of an index structure, built on the series coefficients,
that allows to avoid exhaustive search. A range query algorithm directly operating on the
index has been implemented [13].

The paper is organized as follows: section 2 provides some details about the application
domain, while section 3 addresses the technical aspects of our approach, by describing
the basic RHENE architecture with some examples of useful retrieval of dialysis sessions;
conclusions are discussed in section 4.

2 Hemodialysis treatment for ESRD

ESRD is a severe chronic condition that corresponds to the final stage of kidney failure.
Without medical intervention, ESRD leads to death. Hemodialysis is the most widely used
treatment method for ESRD; it relies on an electromechanical device, called hemodialyzer,
which, thanks to an extracorporal blood circuit, is able to clear the patient’s blood from
metabolites, to re-establish acid-base equilibrium and to remove water in excess. On
average, hemodialysis patients are treated for four hours three times a week. Each single
treatment is called a hemodialysis (or simply a dialysis) session. Hemodialyzers typically
allow to collect several variables during a session, most of which are in the form of time
series (see Table 1); a few are recorded in the form of single data points (see Table 2 for
some of them). As regards time series, in the current technical settings the sampling time
ranges from 1 min to 15 min.

The most important analysis is to evaluate the agreement of the dialysis session to
the prescribed therapy plan; in fact, sessions are classified as: type 1, positive session
that agree to the therapy plan without external (from hospital attendants) intervention;
type 2, positive session after attendants’ intervention; type 3, negative session that fail
to adhere to the therapy plan. In this context, the application of case-based retrieval
techniques seems particularly suitable for hemodialysis efficiency assessment. In partic-
ular, defining a dialysis session as a case, it is possible to retrieve cases with the same
outcome, or, more in detail, to look for similar situations - typically patterns correspond-



Table 2:
session).

Variable name Abbreviation
Venous Pressure VP
Blood Bulk Flow QB
Arterial Pressure AP
Systolic Pressure SP
Diastolic Pressure DP
Cardiac Frequency CF
Hemoglobin Hb
Hematic Volume HV
Output Pressure of dialyzer | OP
Dialysate Conductivity DC

Table 1: Monitoring variables for hemodialysis, collected as time series.

Variable name Abbreviation
Weight Before Session | WB

Weight Loss WL

Dry Weight DwW

Vascular Access VA

Dialysis Time duration | T

Monitoring variables for hemodialysis, collected as single data points (one per
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Figure 1: Case structuring in RHENE

ing to persistent failures over time. It is then possible to highlight if these patterns are
repeated over the same patient or over different ones and what solutions have been pro-
vided in those cases, in terms of dialysis prescription (i.e. the prescribed flow rates at the
beginning of dialysis).

3 RHENE: a Case Retrieval Stystem for ESRD

3.1 Basic Architecture

As previously observed, in our application, a dialysis session is interpreted as a case. The
case structure involves two categories of features:

e static features, representing: (i) general information about the patient such as age
class, sex, type of the disease that caused ESRD; (ii) long-term varying data about
the patient, that can be approximately considered as static within an interval of a
few weeks/months (e.g. several laboratory exams); finally (iii) general information
about the dialysis session and the dialysis targets such as the dry weight - i.e. the
desired weight at the end of a dialysis session, the vascular access, the dialysis
duration and the additional pharmacological treatments (see Table 2);

e dynamic features which are the information automatically recorded within a dialysis
session in the form of time series with different sampling times (see Table 1).

Moreover, each case records the outcome of the session, following the classification outlined
above (type 1,2 and 3).

Case structure is described by the Entity-Relationship diagram of figure 1; time in-
variant information about each patient and the whole dialysis session are mantained in
the PATIENT and SESSION_STATIC entities respectively, while time series information are



maintained in the SESSION_DYNAMIC; entities corresponding to session dynamic feetures.
Note that the case outcome is a static information and it is therefore stored in the SES-
SION_STATIC entity.

Since static features provide both a general characterization of the patient and of the
dialysis session as a whole, they provide the context under which to evaluate the results
of the dialysis, based on the interpretation of all the relevant measured parameters (both
static and dynamic). Following some classical CBR literature [7], defining the context for
retrieval corresponds to the so-called situation assessment step of CBR. Therefore, it is
quite natural to structure case retrieval as a two-step procedure, articulated as follows:

1. Classification. Produces the relevant context under which to base retrieval; a
classification step can be important if the physician needs to restrict attention only
to particular subsets of the whole case base.

2. Retrieval. Takes place on the restricted case base possibly produced by the classi-
fication step (intra-class retrieval); in our system, it is in turn a two-step procedure:
first a local retrieval in the space of each single dynamic feature is performed, by
exploiting a range query on the corresponding index, finally local retrievals are suit-
ably combined, in order to produce the set of most similar cases to the current
one.

In the following, we will motivate and detail our approach, with particular emphasis on
intra-class retrieval.

3.2 Classification

The classification step is implemented relying on static features alone. Target classes can
be both implicit or explicit. In the first situation, there is no need to explicitly identify
a set of predefined classes, but a k-NN step is used, in order to restrict the case library.
This makes sense for example when a classification is required at the PATIENT entity level;
static features of the patient are used in order to obtain (through k-NN retrieval) the set
of most similar patient: only cases related to such patients are then used in intra-class
retrieval.

This approach can be in principle adopted also when considering both patient and
session static features (or session static features alone); however, in this case it is more
reasonable to exploit a set of predefined explicit classes®. The explicit target classes can
be identified in the different diseases patients are affected with or in particular charac-
terizations of patients concerning age, sex, weight, life style or in characterization of ses-
sions concering duration, drug treatments, hemodialysis treatment modality, etc... Cases
belonging to the same class as the input case are identified this time through k-NN clas-
sification and they will be used as the search space for the subsequent retrieval step.

2Indeed, if we perform k-NN retrieval on session static feature, too few cases will be kept as search
space, unless to consider large values for k.



Finally, the classification step can also be realized manually by the physician if s/he
wants to directly restrict her/his attention to particular cases; for instance s/he can be
interested only in cases belonging to the same patient in the latest month, or only in cases
of patients following a given diet, etc...

In order to implement this step, in RHENE we resort to the standard Heterogeneous
Euclidean-Overlap Metric (HEOM) [14], with the use of distance tables in case of nominal
features.

3.3 Intra-class retrieval

Intra-class retrieval is the core of our methodology. At the beginning of the consultation,
the physician has the possibility of choosing a set of dynamic features (that are in the
form of time series) on which to ground the retrieval; this allows her/him to focus the
attention on a subset of features that s/he considers relevant for the analysis s/he’s going
to perform. The requirement implemented by the system is that the retrieved cases must
have a required level of similarity for every selected feature. For each one of the selected
dynamic features (a subset of those listed in Table 1), we work on local similarity, i.e. we
look for the most similar cases to the input case relatively to the direction represented
by the feature at hand. Local results are then combined and a set of complete cases is
returned, ranked by global similarity with respect to the target one (see below).

A wide literature exists about similarity-based retrieval of time series. Several differ-
ent approaches have been proposed (see the survey in [6]), but most are based on the
common premise of dimensionality reduction. The reduction of the time series dimen-
sionality should adopt a transform that preserves the distance between two time series
or understimates it. In the latter case a post-processing step is required to filter out the
so-called “false alarms”; the requirement is never to overstimate the distance, so that no
“false dismissals” can exist [6]. A widely used transform is the Discrete Fourier Transform
(DFT) [2].

DFT maps time series to the frequency domain. DFT application for dimensionality
reduction stems from the observation that, for the majority of real-world time series, the
first (1-3) Fourier coefficients carry the most meaningful information, and the remaining
ones can be safely discarded. Moreover, Parseval’s theorem [10] guarantees that the
distance in the frequency domain is the same as in the time domain, when resorting to
any similarity measure that can be expressed as the Euclidean distance between feature
vectors in the feature space. In particular, resorting only to the first Fourier coefficients
can understimate the real distance, but never overestimates it.

In our system, we are currently implementing DFT as a means for dimensionality
reduction, exploiting the Euclidean distance as a similarity measure (in particular, in
presence of missing data, we set the distance equal to its maximum value, i.e. to the
feature range). The choice of DFT is motivated by the observation that DFT is a standard
technique. Moreover, DFT offers the possibility of relying on well known index structures,
without studying ad hoc solutions and avoiding exhaustive search. In particular, we have
implemented an index belonging to the family of k-d trees and a range query algorithm



directly operating on k-d trees themselves [13].

Note that, if every distance is in the range [0,1] independently of the considered
feature f, it becomes more natural to characterize a range query, and we can exploit a
set, of parameters 0 < s; < 1 as the distance thresholds for the various range queries
concerning the dynamic features of our cases.

In order to make the distance scale independent with respect to the series values,
we operate as follows. Given two time series X = {z1,...2,} and Y = {y1,...y,}, a
parametric distance measure can be defined by considering an integer parameter p (if
p = 2 we get the standard Euclidean distance):
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with m = min(r, q).

In details, given a query case Cp, intra-class retrieval starts by considering each single
dynamic feature f that the physician has selected for her/his analysis; let 7; be the k-d
tree index for feature f, Qs the query series (i.e. the time series relative to feature f in
case Cp) and s the distance threshold for the range query (obviously, for a non-selected
feature it is sufficient to apply the same mechanism and to perform the range query with
s = 1). The following steps are then implemented: since the dialysis device has starting
and ending phases during which monitored data are meaningless, the query series Q) is
first validated by removing head and tail data corresponding to noisy values; in this way
all the considered time series are aligned to the first valid point. After that, () is reduced
through DFT by considering a predefined number of coefficients® (usually from 3 to 6).
We are then able to perform a range query on 77 using )y and the threshold s; this
returns a set of time series (relative to feature f) having a distance from @); that may be
less than s (due to Parseval’s theorem we are only guaranteed that no indexed time series
whose distance is actually less than s has been missed). We then need a post-processing
of the results, where actual distance with respect to Qs is computed.

The whole process is performed for every dynamic feature that has been selected for
local retrieval and finally only cases that have been retrieved in every feature direction
are returned (case intersection). Figure 2 depicts this mechanism. As a matter of fact,
the case intersection step first extracts from the case library the whole case to which the
series belongs and then perform the intersection of the obtained set of cases. In this way
we are guaranteed that returned cases have a distance less than the threshold for every
considered dynamic feature (as mentioned above).

3The number of DFT coefficients to consider is a tunable parameter of the system.
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Since we are finally interested in obtaining the best cases in terms of global distance
with respect to Cg, we compute such a global measure as a weighted average of feature
(local) distances for every returned case:

Z?:l wZsz (XCa YQa p)

n
i=1 Wi

D(C,Cq) =

where C is a retrieved case, C the query case, X and Yy are the time series (values)
of the feature f; in case C' and Cg respectively and w; is the weight representing the
importance of feature f;; the latter is another tunable parameter of the system available
to the physician for biasing the order of presentation with more emphasis on a particular
set, of features (usually those selected for local retrieval, since they represent the features
on which to base the analysis of the results).

3.4 Some retrieval examples

We tested the retrieval system on a set of data coming from the Nephrology and Dialysis
Unit of the Vigevano Hospital. The data set comprises 45 different patients with more
that 200 dialysis sessions for each patient and with 10 different monitored signals (the
time series features of Table 1) for each session.

As a first example, we have considered a case (patient #5, dialysis #72) in which,
even though the outcome is classified as succesfull (i.e. type 1), a more subtle analysis
reveals some sub-optimal behaviors in the monitored parameters.

In particular, the patient suffers from hypertension. Hypertension, in turn, may cause
alterations in the hematic volume (HV) reduction. In a good session HV fits a model
where, after a short period of exponential decrease, a linear decrease follows; hypertension
may inhibite the exponential pattern, and lead to a slower reduction of the HV, that fits
a linear model since the beginning of the session. As a matter of fact, in the case at hand
this situation holds. Figure 3 shows on the left (first two columns) all the signals of the
query case (patient #b5, dialysis #72). Figure 4 (always on the left) highlights on the
diastolic pressure (DP) and systolic pressure (SP) as well as on the HV.

Retrieval was performed by asking for a high similarity (distance threshold equal to
0.15) with respect to DP, SP, blood bulk flow (QB) and HV; QB is the first shown signal
of the cases in figure 3 and has been considered as an important contextual factor of
the retrieval. In correspondence to these very relevant features, we also set the highest
weights to be used for global similarity calculation.

The right part of figure 3 shows an overview of the first retrieved case (patient #5,
dialysis #36), while figure 4 (on the right) details the situation of the DP, SP and HV
features.

These time series behaviors look very similar in the two cases (see figure 4): in partic-
ular, hypertension is present in both situations; moreover, even though less data points
are available for the query case with respect to the retrieved one, it is clear that the HV
decreases linearly, missing the initial exponential pattern.

11



Figure 3: Example of retrieval of signals of a dialysis session: query case (on the left),
best retrieved case (on the right). Numbers on the ordinate of each graphic represent
maximum or minimum value of the time series.

Observe that also the retrieved case was labeled as successful by the physician. Actu-
ally, it seems that the outcome definition is based just on a macroscopic observation of (a
subset of) the features. On the other hand, our system allows to obtain a deeper insight
of the situation, highlighting types of anomalies which, if they don’t lead to an immediate
dialysis failure, could produce poor therapeutic results in the long run.

As a second example, we have considered a case (patient #10, dialysis #71) in which
some alterations in the extra-corporeal blood circuit took place. This kind of problems
(typically due to an occlusion of the patient’s fistulae) are indicated by a sudden increase
of the arterious pressure (AP) around the end of the session, and by a corresponding
decrease of the venous pressure (VP). Retrieval has been conducted by requiring a high
similarity for AP and VP, and by assigning them the highest weights. Figure 5 details
the values of AP and VP for the query case and for the best retrieved one; the overview
is not provided due to lack of space.

Observe that, while the query case was labeled as succesfull (type 1 outcome), the
retrieved case has a type 2 outcome (i.e. succesfull after nurse intervention). In particular,
the nurse provided the patient with a diuretic drug, to compensate hypotension.

This result has led us to consider the values of DP and SP (see figure 6): as a matter
of fact, the values are low in both cases (in particular, the final increase in the retrieved

12
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Figure 4: Diastolic, systolic pressure and hematic volume retrieval (cfr. fig. 3).
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Figure 5: Arterious and venous pressure retrieval in the second example.

case corresponds to the drug effect). The information provided by the retrieval procedure
can thus warn the physician to pay particular attention to hypotension for this patient,
since in the past a medical intervention was required, in a situation that is extremely
similar to the current one.

In conclusion, our tool provides results that allow to better assess the dialisys efficiency,
and that can indicate directions for further analyses and considerations.

4 Conclusions and Future Works

In this paper, we have described an application of case-based retrieval in a time-dependent
clinical domain: the treatment of ESRD patients. Despite only the first phase of the CBR
cycle is implemented, the system architecture is non-trivial, as retrieval is articulated as
a multi-step procedure. Moreover, since most of the case features are in the form of time
series, dimensionality reduction (based on DFT) and indexing techniques (based on k-d
trees) have been relied upon.

The system is provided with a user-friendly graphical interface, which allows the physi-
cian to tune the retrieval parameters (e.g. ranges and importance of the features), in order
to focus her/his attention on different aspects of the dialysis sessions. Moreover, s/he can
choose whether to visualize the overall case structure, or to concentrate the retrieval on
a single feature. In this way, the tool proves to be a flexible means for realizing an ex-
plorative analysis of the patient’s data: it allows to look for similar situations (typically
patterns corresponding to persistent failures over time), understanding if these patterns
are repeated over the same patient or over different ones, and retrieving what solutions
have been provided in those cases, in terms of dialysis prescription (i.e. the prescribed
flow rates at the beginning of dialysis). This information can be adopted by the physician

14
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Figure 6: Diastolic and systolic pressure retrieval in the second example.

to characterize the current patient and to identify the best therapy adjustments to be
implemented.

Moreover, the system could be relied upon for quality assessment, i.e. to assess the
performance of the overall hemodialysis service at hand and to isolate the reasons of
failures. Technically speaking, quality assessment requires to fulfil two tasks: (1) retrieve
similar time series within the process data, in order to assess the frequency of particular
patterns, (2) discover relationships between the time patterns of the process data and the
performance outcomes. Clearly, our tool would be suitable for task (1), but it could also
be embedded within a more complex tool, able to summarize the dialysis sessions from a
clinical quality viewpoint (see e.g. [3]).

The system version described in this paper is still a prototype, that retrieves the data
from ad hoc files. From the technical viewpoint, in the future we plan to interface it with
a commercial DBMS. In this way, the DBMS into which dialysis variables are stored by
the hemodialyzer would directly be used as the case repository, making the system easy
to be integrated into clinical practice.

At present, we have implemented dimensionality reduction through DFT and we resort
to a k-d tree as an index structure where range queries can be directly performed. We
are currently studying the possibility of adopting alternative methods such as Discrete
Wavelets Transform (DWT) [4] or Piecewise Constant Approximation (PCA) [8, 9].

Moreover, we are also evaluating the option of substituting the k-d tree index structure
with TV-trees [13], an organization able to efficiently access data in very large dimensional
spaces (this would allow us to resort to a larger number of coefficients to represent a time
series, thus speeding up retrieval®).

TV-trees are based on the idea that, if lots of elements all agree on certain attributes,

4Postprocessing time may be significantly reduced.
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then the index has to be organized by branching on those attributes themselves. An
efficient algorithm for k-NN queries on TV-trees is described in [13].

Note that performing a k-NN query (and thus providing only the parameter k) is
more intuitive for a physician with respect to working with range queries. As a matter
of fact, in this case a range (a number between 0 and 1) has to be specified for each
feature, and range values don’t have an immediate mapping to the physical interpretation
of the features themselves. The request to specify the ranges from one side allows a fine
tuning of the retrieval results, but on the other hand sometimes forces the physician to
make several tests before finding a really suitable value, that guarantees a non empty
intersection of the different query results.

Finally, we plan to make an extensive testing of our approach, working on new real
patients’ data coming from the Nephrology and Dialysis Unit of the Vigevano Hospital in
Italy. The retrieval system will also be integrated as a data inspection facility within a
commercial tool currently deployed at Vigevano, that supports physicians in the on-line
management of dialysis sessions.
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