Dipartimento di Informatica
Universita del Piemonte Orientale “A. Avogadro”
Spalto Marengo 33, 15100 Alessandria
http://www.di.unipmn.it

universita
degli studi
del piemonte
orientale

Orthogonal operators for user-defined symbolic periodicities
Author: Lavinia Eqgidi (lavinia.egidi@unipmn.it),
Paolo Terenziani (paolo.terenziani@unipmn.it)

TECHNICAL REPORT TR-INF-2004-04-06-UNIPMN
(April 2004)

The University of Piemonte Orientale Department of Computer Science Research Technical Reports are available via

2004-05

2004-04

2004-03
2004-01
2003-08

2003-07
2003-06

2003-05

2003-04

2003-03
2003-02
2003-01
2002-06

2002-05

2002-04

2002-03

2002-02

WWW at URL http://www.di.mfn.unipmn.it/.
Plain-text abstracts organized by year are available in the directory

Recent Titles from the TR-INF-UNIPMN Technical Report Series

RHENE: A Case Retrieval System for Hemodialysis Cases with Dynamically Monitored Parameters, Montani,
S., Portinale, L., Bellazzi, R., Leonardi, G., March 2004.

Dynamic Bayesian Networks for Modeling Advanced Fault Tree Features in Dependability Analysis, Montani,
S., Portinale, L., Bobbio, A., March 2004.

Two space saving tricks for linear time LCP computation, Manzini, G., February 2004.
Grid Scheduling and Economic Models, Canonico, M., January 2004.

Multi-modal Diagnosis Combining Case-Based and Model Based Reasoning: a Formal and Experimental Anal-
isys, Portinale, L., Torasso, P., Magro, D., December 2003.

Fault Tolerance in Grid Environment, Canonico, M., December 2003.

Development of a Dynamic Fault Tree Solver based on Coloured Petri Nets and graphically interfaced with
DrawNET, Codetta Raiteri, D., October 2003.

Interactive Video Streaming Applications over IP Networks: An Adaptive Approach, Furini, M., Roccetti, M.,
July 2003.

Audio-Text Synchronization inside mp3 file: A new approach and its implementation, Furini, M., Alboresi, L.,
July 2003.

A simple and fast DNA compressor, Manzini, G., Rastero, M., April 2003.
Engineering a Lightweight Suffix Array Construction Algorithm, Manzini, G., Ferragina, P., February 2003.
Ad Hoc Networks: A Protocol for Supporting QoS Applications, Donatiello, L., Furini, M., January 2003.

Stochastic modeling, analysis techniques and tools for dependable reactive systems, Codetta Raiteri, D., Bobbio,
A, October 2002.

Stochastic modeling, analysis techniques and tool for dependable reactive systems, Bernardi, S., Gribaudo, M.,
Bobbio, A., October 2002.

Interactive MPEG video streaming over IP-Networks: a performance report, Furini, M., Roccetti, M., September
2002.

A fuzzy approach to case-based reasoning through fuzzy extension of SQL, Portinale, L., Montani, S., Bellazzi,
R., July 2002.

From FPN to NuSMV: The temperature control system of the ICARO cogenerative plant, Horvath, A., Grib-
audo, M., Bobbio, A., February 2002.

Orthogonal operators for user-defined symbolic periodicities

Lavinia Egidi Paolo Terenziani
Dipartimento di Informatica Dipartimento di Informatica
Universita del Piemonte Orientale Universita del Piemonte Orientale
Spalto Marengo, 33 Spalto Marengo, 33
15100 Alessandria Italy 15100 Alessandria Italy
Abstract

The treatment of user-defined calendars and periodicities is attracting an increasing attention within
the AI and the DB fields. In this paper, we identify a set of orthogonal properties characterizing period-
icities; based on these we define a lattice of classes (of periodicities). For each property, we introduce a
language operator and, this way, we propose a family of symbolic languages (each one corresponding to a
subset of operators), one for each point in the lattice. Therefore, the expressiveness and meaning of each
operator, and thus of each language in the family, are clearly defined, and a user can select the language
that ezactly covers the properties of her domain. To the best of our knowledge, our language covering the
top of the lattice (i.e., all of the properties) is more expressive than any other symbolic language in the
AT and DB literature.

1 Introduction

Calendars and periodicity play a fundamental role in human modeling of the world, and are extremely
relevant in many applications, spanning from financial trading to scheduling, from manufacturing and
process control to office automation and data broadcasting. In most practical application, supporting a
“standard” calendar (i.e., the Gregorian calendric system) does not suffice, since user-defined periodicities
need to be used (see, e.g., [13]). Thus, many different AI and DB approaches have been devised to deal
with periodicity and its related notions of granularity and calendric systems [2, 13] (see, e.g., the survey in
[15]). Besides logical approaches ([4] and approaches in classical temporal logics) and mathematical ones
(e.g., Kabanza’s linear repeating points [9]), symbolic approaches to user-defined periodicities are gaining
an increasing relevance (consider, e.g., [11, 12, 3, 14]). The latter provide a set of operators which can be
combined in order to define complex periodicities in an incremental and compositional way. For instance,
in [11], “the first day of each month” can be modeled by first applying a basic operator in order to define
“day” and “month”, then applying a dicing operators, to split months into sets of days, and finally a
slicing operator, to select the first day in each set.

In this paper, we propose a family of new symbolic languages, that we designed according to the
following intuitions:

1. the expressiveness of (symbolic) languages for periodicities can be charaterized on the basis of a set
of orthogonal properties;

2. the less the operators are interdependent, the clearer is the underlying semantics of (symbolic)
language operators: operators should correspond as much as possible to specific properties, without
affecting each other;

3. there is no “best language” per se: the goodness of a language depends on the domain of application;
the most suitable language is the one that meets more precisely the expressiveness requirements.

With this in mind,

e we identified (Section 2) five orthogonal properties that characterize user-defined periodicity. The
definitional process was driven by considerations on the significance and usefulness of the structures
that must be allowed, on homogeneity arguments and on orthogonality requirements (cf. Item 1 and
2 above);

e we defined, for any subset of these properties, a class of periodicities. The classes, ordered by
set inclusion, form a lattice (Section 2). In [6] this lattice was used in order to classify different
(symbolic) languages in the literature;

e we defined two basic (symbolic language) operators to express periodicities for which none of the
five properties hold; and five additional operators, one for each property (Section 3). Any subset
of the five operators, together with the basic ones, defines a language. Languages, ordered by set
inclusion, define a lattice;

e we proved that the lattice of languages matches the lattice of periodicities, in that each node of
the former has enough expressive power in order to define ezactly the omologous node in the latter
(Section 4).

From the point of view of end-users, our symbolic approach makes, on the one hand, the task of
choosing a priori a language easier, since the choice only depends on the properties of interest in her
domain /application (see Issue 3 above). On the other hand, at a later stage, when the user needs to define
a new periodicity, the choice of the operators required is easier because it depends on the properties of
that periodicity.

To the best of our knowledge, our top language (i.e., the one that can deal with all of the properties)
is more expressive than any other symbolic language in the AI and DB literature.

Moreover, the modularity of our approach can be exploited by language designers and implementers,
since in order to operate on the whole family of languages, one can simply focus on the seven operators.
For instance:

o the semantics of all the languages in the family can be provided on the basis of the semantics of the
seven operators. In [7], a semantics in terms of Presburger Arithmetic is given;

e interpreters/compilers for each one of the languages can be built in a modular way.

In Section 5 we briefly compare our approach to others in the literature.

2 Properties

Intuitively, periodicities are events that repeat in a regular way in time. As in many approaches in the
literature, we choose to focus only on the temporal extent of periodic events, disregarding other properties
(e.g., agent, location). We adopt discrete, linearly ordered and unbounded time; time points are the basic
temporal primitives. The basic structures on time points are time intervals i.e., non empty sets of points.
A conver time interval is the set of all points between two endpoints.

We take calendars as the basis of our construction, as in most symbolic approaches in the literature
(e.g., [11, 12, 3, 14]). Calendars model the discrete time axis, partitioning it into a regularly repeating
pattern of adjacent intervals. In particular, a basic calendar (also called basic granularity, or chronon)
defines the tick of the given (temporal) system. Examples of calendars are “minutes”, “days”, “months”.
We call Cal the set of all calendars.

Approaches in the literature witness that the need for more complex structures has been felt. An
analysis of the various proposals led us to identify five crucial properties. We propose here definitions
filtered through our intuition and our demand for orthogonality.

Operators to select some portions of the time line, dropping others, have been provided in, e.g.,
[11, 12, 3, 14]. The resulting periodicities have the non-adjacency property. We give a preliminary
definition of the property, that captures the above:

NA - (prelim) A periodicity P has the non-adjacency property, if it has no interval I, that is not P’s
rightmost interval, such that for no J € P, Meet(I,J), where Meet([s1,e1],[s2,€2]) <> s2 = e1 +1 (see
[1]).

For instance, “Mondays” has the non-adjacency property, as well as (ex.1) “Mondays from 8 to 18”.

In some cases, one may want to capture the fact that a periodic event occurs over time intervals with
gaps (i.e., holes) in them (see, e.g. [3]). For instance, (ex.2) “Working hours on Mondays, from 8 to 12
and from 14 to 18”, may be represented using a gap interval for each Monday.

G - A periodicity P has Gaps if it contains gap intervals.

Notice that the property of having gaps is orthogonal with respect to non-adjacency, since the former
is about inner holes in intervals, and the latter about outer gaps between intervals. For instance, (ex.2)
has both the NA and the G property, while (ex.1) has only NA, and “each day, with the lunch-break gap
(from 12 to 14)” has only G.

Intervals may overlap [5] (exact overlaps, i.e., multiple occurrences of the same interval, are special
cases of overlaps). For instance, (ex.3) “Tom’s and Mary’s working hours on Mondays” may be a case of
(exact) overlap—consider e.g., the same periodicity (ex.2) for both Tom and Mary.

In order to disambiguate the relationship between gaps and overlaps, we introduce the notion of time
span. We define the time span of an interval (or sets thereof) as the interval whose endpoints are the
minimum and maximum points belonging to the interval (or sets thereof).

O - A periodicity P has Overlaps if the time-spans of some of the intervals have non-empty intersection.

So, O is a property of interval time spans, and therefore totally independent from G.

In order to preserve our intuition of non-adjacency, and to keep O and NA orthogonal, we settle on a
more articulate version of NA-(prelim):

NA - A periodicity has the non-adjacency property if it can’t be split in a finite number of periodicities
that don’t satisfy NA-(prelim).

Other approaches pointed out the importance of dealing with bounded periodicities (consider, e.g.,
[2]) or with periodicities consisting of a finite aperiodic set of intervals plus a periodic part [10]. We
introduce the property of being eventually periodic (terminology taken from [8]) to model both (notice
that a bounded periodicity can be seen as a degenerate eventually periodic one with an empty periodic
part).

EP - A periodicity P is Eventually Periodic if it can’t be expressed giving a repeating pattern and a positive
period.

Consider, e.g., (ex.4) “Tuesday January 13, 2004 plus Tom’s and Mary’s working hours on Mondays
(defined as in ex.3), starting from January 14, 2004”.

EP does not interact with G and N A, since EP is a property of the sequence of intervals as a whole,
whereas the other two are local properties. Also, EP and O are orthogonal, since the periodic and/or
aperiodic parts may have overlaps or not.

Finally, Leban et al. [11] pointed out the importance of grouping intervals into structured sets. For
instance, the periodicity in (ex.4) may be structured by grouping intervals into sets, one for each month.
Nested groupings (e.g., into months and years) are also allowed.

To cope with structure, order—n collections are introduced by Leban et al:

Definition 1 (Order-n collections) For each n > 0, an order-n collection is a multiset of order-(n—1)
collections. A time interval is an order-0 collection.

It is customary to use the set notation (with braces) for order-n collections with n > 0, whereas intervals
are represented using square brackets even though the time axis is discrete.
S - A periodicity P has Structure if it is an order-n collection, with n > 1.

Thus, the extent of non-structured periodicities is an order-1 collection, while order-n collections are
needed for structured periodicities. S is trivially orthogonal to NA, G, O and EP, since it operates at a
different level.

So far, we defined five orthogonal properties of periodicities. Even though the definitions are tailored
in order to meet user needs, and obtain only meaningful structures, we must place further constraints on
the combinations of the five properties that we wish to allow, based on homogeneity observations.

Remark (Homogeneity) In order-n collections, braces are not annotated, i.e. no semantics can be
attached to them.

Therefore, to preserve a clean semantics, we only admit homogeneous structures, i.e. structures in
which all data has been grouped according to the same calendars.

A consequence of this choice is that overlaps between order-n collections (n > 0) are not possible.

3 Orthogonal operators

We define two basic operators, that can be applied only initially and never after the other operators:

e Basic_Granularity:
No wnput;
Output: an order-1 collection right and left infinite, containing adjacent one-element no-gap intervals.

e Cal Def:
Input: a calendar C in Cal, an ‘anchor’ time point p which is the start point of an interval in C, and
a list of positive natural numbers nq, ... ng;
Output: a calendar, built by grouping cyclically ni,...ny intervals of C starting from p (both
directions), i.e. the union over IV of the intervals I defined as:

Jj—1 J
U {Is|l(h)+2ni<s§l(h)+2m},
i=1,...,k =t =t
se N

where {I,} is the set of intervals in C, ordered according to the natural ordering, I(h) = ap + h -
Zle n; and ap is the index of the interval starting at the anchoring point.

In the following we need two relational operators:

Definition 2 (Strictly During, Non-Strictly During) Let I (resp. I') be the time span of interval
J (resp. J'). I is strictly during I’ (I SDur I') if I' contains I and the endpoints of I are both different
from the endpoints of I'; I is non strictly during I’ (I NSDur I') if I' contains I.

Then we can introduce the five operators, paired with the five orthogonal properties. We place
constraints on the inputs that they can take, based on the following remarks: (a) in the cases of Select and
Drop, the structure of the second argument is explicitly disregarded, therefore we prescribe an unstructured
input; (b) for homogeneity reasons (see Sect. 2) unions make sense only over order-1 collections, which
reflects on the definitions of Union and Replace; (c) operators must either modify intervals or treat them
as black boxes, for orthogonality (this reflect on the definitions of Replace and Group_by); (d) intuition
suggests that a user first collects raw data and then organizes it logically, therefore Group_by can only be
applied last (all other operators have unstructured inputs).

e Select (for non adjacency)
Input: N = {n1,....,nt}, n; € IN, order-1 collections C; and Cbs;
Output: An order-1 collection (or the empty set):

U {»"({ie i NSDur j},ni)}

n;EN,jECs
where nt"(C, i) selects the i-th interval in the collection C, if it exists, it is the empty set otherwise.

(See Remarks (a) and (b), above.)

e Drop (for gaps)
Input: N ={n1,.....,n}, n; € IN, order-1 collections C1 and Cs;
Output: An order-1 collection:

U{z’\ U nfh({je02|jSDuri},m)}
1€Cq n;EN,je€Cq

where \ is set minus, and n‘*(C,) selects the i-th interval in the collection C, if it exists, it is the
empty set otherwise. (See Remarks (a) and (b) above.)

e Union (for overlaps)
Input: two order-1 collections Ci and Cb;

Output: the order-1 collection
U v Y Gk

1€Cy jE€C2
(U and |J denote multiset union. For the constraints on the arguments, see Remark (b) above.)

e Replace (for eventual periodicity)
Input: Order-1 collections Ci, C2 and Cs, two of which can be the empty set, and time points pi, p2
such that p; < p»> and if p; belongs to some intervals of C; or Cb, it is their right endpoint, and
similarly for p» relative to Co and Cs;
Output: An order-1 collection:

{i € C1|i NSDur(—o0,p1]} U
|Jti € Culi NSDurlps +1,p13 | J
(J{i € Cali NSDurlpz +1,00)}.

(This operator corresponds to the intuition that a complex periodicity consists of bounded portions
of basic periodicities. It is defined on order-1 collections—see Remark (b). For the constraints on
pi, see Remark (c).)

e Group-by (for structure)
Input: An order-n collection C' and a calendar C’, such that for each interval i € C there is an
interval j € C’ such that ¢ NSDurj;
Output: An order-(n + 1) collection:

U { Utiec NSDurTS(j)}c} ,

jec' liec

where T'S(j) is the time span of interval j and the subscript C indicates that the structure of C is
preserved.
(The constraint on the second input stem from orthogonality—Remark (c) above. See also Remark
(d).)
We show how to define with our operators the periodicities in the examples from Section 2 (we choose
hours as the basic granularity, and the first hour of Jan first, 2004, as the origin):

e (ex.1) Mon8-18 = Select(2,C,days)
where C = Cal_Def(Basic_-Granularity(), 0, (8, 10, 6))
and days = Cal_Def(Basic-Granularity(), 0, (24))

) WH = Drop ({4,5), Mon8-18, Basic_Granularity())
(ex.3) M+T = Union(WH,WH)
(ex.4) P = Replace(D, 288, days, 312, M+T),

)

(ex.5) Group_by(P,months), where (ignoring leap years)
months = Cal_Def(days,0, (31, 28,31, 30, ..., 31)).

We prove that each operator affects a single property:

(ex.2

Theorem 1 (Orthogonality) {Select, Drop, Union, Replace, Group-by} is an orthogonal set of opera-
tors.

Proof (sketch) We defined an operator introducing each property. We now show, for each property,
that no other operator can introduce it.

NA. The definition of NA itself is tailored so that Union can’t introduce it. The use of SDur ensures that
Drop doesn’t introduce it. The same holds for Replace, because of the constraints on p;. The constraints

on the definition of Group-by guarantee that the latter doesn’t affect the underlying sequence of intervals.
G. The only operators that affect intervals are Cal_Def and Drop. Only Drop can introduce gaps, since
Cal_Def compounds adjacent intervals.

0. Select and Drop can’t introduce overlaps by their nature. Replace can’t because disjoint portions of
periodicities are used to obtain the new one. Group-by, as noticed, doesn’t affect the underlying sequence
of intervals.

EP. Select, Drop and Group-by work periodically, and the period of their output is the least common
multiple (lem) of the periods of the inputs, if those were unbounded and with no aperiodic part. Similarly,
Union doesn’t add EP, since if periodicities Ci1 and C> are not bounded and have no aperiodic part,
C = Union(C1,C») is a pure unbounded periodicity with period p = lem(p1,p2) and repeating pattern
the multiset union of lem(p1, p2)/p2 adjacent occurrences of RP> and lem(p1,p2)/p1 repetitions of RP;
over the same time span—where p; (resp. RP;) is the period (resp. repeating pattern) of C;.

S. By definition, Union and Replace output an order-1 collection, Select and Drop preserve the structure
of one of the arguments. Therefore, only Group-by can add structure. m|

4 Expressiveness

The operators we defined can be combined to obtain a family of languages. Let £ be the basic language
{Basic_Granularity, Cal_Def}. We prove that it defines exactly the class Cal. Adding any combination
of the other operators to it, we define a lattice of languages, ordered by set inclusion. We prove that
the lattice of languages matches exactly the lattice of classes of periodicities, in the sense that language
L UA{Ox,,...,0x,} defines all and only the periodicities in Cal™ "% (where O, is the operator that
introduces property ;).

The first part of this result is proven by Theorem 1. The converse (that the languages are expressive
enough to define the corresponding classes) is proven by induction. In order to simplify the proof, it is
convenient to fix an order in which operators are applied. This is not restrictive for our goals: in the
lattice, all classes corresponing to all the combinations of properties are present, and therefore it is not
relevant in which order the properties are added or removed.

A few technical lemmata prove the induction steps.

In the following, let £ = {Basic_Granularity, Cal_Def}, let RP(C) be the repeating pattern of C
and p(C) its period.

Lemma 1 The language L defines at least Cal.

Proof. Let C be a generic calendar, whose repeating pattern consists of intervals of widths wi,...,wp.
Let ap be the starting point of one occurrence of the repeating pattern. Then
C = Cal_Def(ap, Basic.Granularity(),{wi, ..., wn)). O

Lemma 2 The language £ U {Select} defines at least Cal™4.

Proof. Let C € Cal™“. If C € Cal, then the thesis follows from Lemma 1.

Otherwse, define C; so that RP(C1) is obtained adding to RP(C) all convex intervals necessary to
have adjacent intervals, and adjacent occurrences of the repeating pattern; C: is a calendar. Let C2 be
a periodicity with RP(C) the time span of RP(C1), and p(C2) = p(C1); C: is a calendar. Both C; and
C> belong to Cal and are definable in L.

Let N = {ni....,nk} be the positions of the intervals of C in RP(C;). Then, C = Select(N, C1,C>),
as required. O

Lemma 3 If the language LU{O1, ..., O} defines at least Cal (resp. CalNA), then LU{O1, ..., Ok, Drop}
defines at least Cal® (resp. Cal™*C).

Proof. Let C € Cal® (resp. Cal™*¢). If it doesn’t have property G, then the thesis follows from
Lemma 1 (resp. 2).

So, let us assume that it has gap intervals. Then let C2 be the interval closure of C, i.e. the
periodicity consisting of the time spans of all intervals in C. Of course, the interval closure has the same
properties as the original periodicity, except for gaps. Thus Ca € Cal (resp. Cal™*) and can be defined
in LU {Ox,...,O}, by hypothesis.

We add gaps appropriately one interval at a time in the repeating pattern of C,, using suitable
periodicities Cy. C) is identical to C> except for the interval I that we need to modify. That one is
replaced in Cy by the subintervals that must be removed, and all the other, adjacent ones, to make sure
that if C has adjacent intervals, so has Ci. N is set to {n1,n2...,nk} to identify the intervals in Cy that
must be removed from I. Then Drop(NV, Ci,C2) yields a new periodicity with the same gaps as C in all
occurrences of I. The other intervals are unchanged.

With a finite number of applications of Drop as above, C is obtained. Notice that after the first
application, C; will have (legitimately) gaps. O

Lemma 4 If the language LU{O1,...,Or} defines at least Cal™ ™ with {w1,... 7} C {NA,G}, then
LU{Ox,...,0%, Union} defines at least Cal™~™©

Proof. Let C be any periodicity in Cal™> ™ © . Ifit has no overlaps, it can be defined in LU{O1, ..., Ok}
by hypothesis.

Otherwise, it can be split in a finite number of periodicities with no overlaps. This introduces no gaps
and no structure. It doesn’t need introduce EP since if C is purely periodic, then overlaps must repeat
periodically. It doesn’t need to introduce NA either, by the definition of NA. Therefore we obtain a finite
number of periodicities belonging to Cal™ ™ by hypothesis definable in LU {Ox,...,0Ox}. By a finite
number of applications of Union we obtain C' as required. O

Lemma 5 If the language LU {Os,...,Or} defines at least Cal™ "% with {m1,...m} C {NA,G, O},
then LU {01, ..., Ok, Replace} defines at least Cal™ 2P,

Proof. Let C € Cal™ " 1If it doesn’t have the property EP, it can be defined in LU {Oy, ..., O}
by hypothesis.

Otherwise, in the most general case, split it in the obvious two infinite periodicities and the finite one.
Define C1 by removing the right bound to the left infinite periodicity obtained (call that bound p1), and
Cs similarly (defining ps as the left bound that has been removed); define C> by extending the aperiodic
part A to a periodicity with RP(C2) = A and p(C:) the time span of A. (If one of the three parts is
empty, so is the resulting C;.) This extensions don’t introduce G, nor NA, nor O, but simply reproduce
them periodically if they appear in C.

Therefore C; € Cal™ " and by hypothesis are definable in LU {O,...,Ox}.

And C = Replace(C1, n1, Ca, n2, C3). a

Lemma 6 If the language LU{O1, ..., O} defines at least Cal™ "% with {m,...m} C {NA,G, O, EP},
then LU {01, ..., O, Group-by} defines at least Cal™ ™S,

Proof. Let C € Cal™ ™5 If it has no structure, it can be defined in LU {01, ..., Ox} by hypothesis.

So, let C have structure. First assume that it is an order-2 collection. Remove its order-1 braces (i.e.
the inner braces), transforming it to an order-1 collection Ci. Define C2 as a periodicity whose intervals
are the time spans of the order-1 subcollections of C. Notice that C> has no EP, by the definition of S.
It has no gaps, no overlaps, and no structure by definition, and has NA only if C' has the NA. Therefore
C1,Co € Cal™ ™ and can be defined in LU {Os,...,0Or}. Moreover, C = Group-by(C1, C2).

If C is an order-n collection, the same construction can be applied n — 1 times, adding braces from
the inside out, to the order-1 collection obtained removing all structure from C. m|

Let O, the operator introducing property np (thus Ona=Select, Og=Drop, etc.). The lemmata
above, together with Theorem 1 prove that
Theorem 2 The language LU {Ox,,...,Ox, } defines exactly the class Cal™ ™.

Proof. By Theorem 1, LU {Ox,,...,Ox,} defines at most the class Cal™"*,

The converse is proven by induction on k. For k = 0, the basis of the induction is Lemma 1. For positive
k, the inductive step is proven as follows: if S € {m1 ... 7}, by Lemma 6; otherwise, if EP € {m ... 7}
(but not S), by Lemma 5; otherwise, if S and EP are not in {7 ... 7}, but O is, by Lemma 4; otherwise,
if G € {m1 ... 7}, by Lemma 3; if only NA holds, by Lemma 2. m|

Theorem 2 can be rephrased as follows:

Corollary 1 Cal™ ™ 4s the minimal closure of Cal, with respect to {Oxy,...,0x}-

5 Conclusions

We presented a family of symbolic languages for user-defined periodicity, that has significant features and
solves some drawbacks of languages in the literature.

We briefly notice again that the modularity of our approach allows for a clear management of properties
characterizing periodicities. We explicitly avoid side-effects, that impair the clarity of semantics elsewhere.
Counsider, for instance, in the language of [11], the definition of “the first Monday of each month”: group
Mondays into months, using Dice, then select the first Monday in each group, with the Slice operator
“[1]\”. Counterintuitively, this defines a collection of collections each containing a Monday.

Moreover, modularity allows to obtain the desired expressiveness for an application without the burden
of unnecessary features. This is not obvious. For intance, consider [3], in which it is explicitly stated that
all the structure carried over from [11] is of no use, but is there as an unavoidable heritage. The effort to
get rid of the structure was then done in [14], and results in rather complex operators.

Our top language is more expressive than any other symbolic language in the literature, to the best
of our knowledge, since it allows to deal with all the five properties we defined, including the special case
of exact overlaps, not treated by any other symbolic approach.

But the expressiveness is enhanced not only in a quantitative way, but also qualitatively, so to speak.
Indeed, our design of the languages is based on an analysis of the structures that it makes sense to define,
based on usage, homogeneity constraints and our aim at modularity. Overlaps are a notable example—for
instance, in [11] overlaps of a more general kind are possible, resulting in structures of no clear meaning.

References

[1] J.F. Allen, Maintaining Knowledge about Temporal Intervals, Communications of the ACM
26(11):832843, 1983.

[2] C. Bettini, C. Dyreson, W. Evans, R. Snodgrass, X. Wang, A Glossary of Time Granularity Concepts,
in Temporal Databases: Research and Practice, Springer Verlag, 1998.
[3] C. Bettini, R. De Sibi, Symbolic Representation of User-defined Time Granularities, Proc. TIME’99,
IEEE Computer Society, 17-28, 1999.
[4] J. Chomicki, and T. Imielinsky, Finite Representation of Infinite Query Answers, ACM ToDS 18(2),
181-223, 1993.
[6] D. Cukierman, and J. Delgrande, Expressing Time Intervals and Repetition within a Formalization
of Calendars, Computational Intelligence 14(4), 563-597, 1998.
[6] L. Egidi and P. Terenziani, A lattice of classes of user-defined symbolic periodicities, TIME’04, 2004.
[7] L. Egidi and P. Terenziani, A mathematical framework for the semantics of symbolic languages
representing periodic time, TIME’04, 2004.
[8] Enderton, A Mathematical Introduction to Logic, Academic Press, New York, 1972.
[9] F. Kabanza, J.-M. Stevenne, and P. Wolper, Handling Infinite Temporal Data, Journal of Computer
and System Sciences 51, 3-17, 1995.
[10] A. Kurt, M. Ozsoyoglu, Modelling and Querying Periodic Temporal Databases, Procs. DEXA’95,
124-133, 1995.
[11] B. Leban, D.D. McDonald, and D.R. Forster, A representation for collections of temporal intervals,
AAAI’86, 367-371, 1986.
[12] M. Niezette, and J.-M. Stevenne, An Efficient Symbolic Representation of Periodic Time, Proc. first
Int’l Conf. Information and Knowledge Management, 1992.
[13] M. Soo, and R. Snodgrass, Multiple Calendar Support for Conventional Database Management
Systems, Proc. Int’l Workshop on an Infrastructure for Temporal Databases, 1993.
[14] P. Terenziani, Symbolic User-defined Periodicity in Temporal Relational Databases, IEEE TKDE
15(2), 489-509, 2003.

[15] A. Tuzhilin and J. Clifford, On Periodicity in Temporal Databases, Information Systems 20(8), 619-
639, 1995.

