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Introduction

A large computer network (as Internet or a corporate Intranet) is typically
heterogeneous meaning that it connects workstations, servers or personal
computers with different hardware architectures or operating systems; at the
same time, such a net may be composed by several subnets with various
network protocols and the applications having to interact to compose a dis-
tributed system may be written in different (object-oriented) programming
languages.

Developing distributed systems on heterogeneous networks is a hard task;
the Object Management Group (OMG) was founded in 1989 and its purpose
is the creation of standards to achieve interoperability and portability of dis-
tributed object-oriented applications in a heterogeneous environment; OMG
produces specifications gathering the ideas of the OMG members respond-
ing to the Requests For Information (RFI) and the Request For Proposals
(RFP) issued by OMG.

Facilities for distributed object-oriented computing are defined by the
OMG Object Management Architecture (OMA); the core of the OMA is the
Object Request Broker (ORB) that provides transparency of objects location,
activation and communication: the ORB hides low-level details about plat-
forms and networks interfaces to the developers, so they can focus on the their
applications without dealing with distributed computing infrastructures.

The Common Object Request Broker Arhitecture (CORBA), published
for the first time in 1991 is a concrete description and specification of services
and interfaces that ORBs must provide; despite its original flexibility to
integrate several heterogeneous applications in a distributed system, CORBA
has had to evolve during the years introducing new features; fault tolerance is
one of the evolutive directions and Fault Tolerant CORBA (FT-CORBA) is
the standard resulting from the contributes of OMG members in that sense.

A distributed application is said to be fault tolerant if it can be properly
executed despite the occurence of faults; distributed applications such as e-
commerce or air traffic control need high reliability and therefore they require
fault tolerance; in CORBA version 2.6, fault tolerance is explicitly addressed
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for the first time.

This paper first describes the general architecture of CORBA standard
(Chapter 1); then it focuses on the ways to make CORBA fault tolerant
exploring FT-CORBA specifications (Chapter 2) and providing the case of
a real system (DOORS) (Chapter 3).



Chapter 1

The Object Management
Architecture

1.1 Introduction to OMA

In the OMA object model [1], objects provide services performed when clients
issue requests; the OMA is composed of:

e Object Model - it defines the way to describe the objects distributed
across a heterogeneous environment: the identity of an object is im-
mutable and the service it provides can be accessed only through a
specific interface whose definition must respect particular rules; the lo-
cation and the implementation of an object is transparent to the client
requesting the corresponding service.

e Reference Model - it defines how objects must interact: Fig. 1.1 [2]
shows the scheme of the OMA Reference Model where ORB is the key
component of such a structure; ORB allows the communications be-
tween clients and objects (servers) and four object interface categories
are available:

— Object Services - they are domain indipendent interfaces nec-
essary for services such as objects lifecycle management, security,
transactions, event notifications and discovery of other available
services; in the last case, the Object Services are:

x The Naming Service - it allows clients to search objects (servers)
by name;

* The Trading Service - it allows clients to search objects (servers)
by their properties.
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Figure 1.1: OMA Reference Model Interface Categories

— Common Facilities - they are interfaces for end users applica-
tions;

— Domain Interfaces - they are oriented towards specific applica-
tion domains; several separate application domains may be present
at the same time;

— Application Interfaces - they are application-specific interfaces
and for this reason OMG does not define any standard for them.

Fig. 1.2 [3] shows the Object Frameworks of the Reference Model;
they are groups of interacting objects; each group is domain-specific
and provides services for that domain; peer-to-peer communication is
estabilshed among the objects within a group: a component of a group
may be a server or a client.

Any other role, different from those mentioned above, are provided by
the ORB, the core of the OMA.

1.2 The Common Object Request Broker

The main component of the OMA is the ORB whose details are defined by
the CORBA [4] [5] [3] [6] specification; the ORB is composed by:

e ORB core
e OMG Interface Definition Language (OMG IDL)
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e Interface Repository (IR)
e Dynamic Invoaction and Dispatch
e Object Adapters (OA)

The following subsections describe each of the CORBA features. Fig. 1.3 [2]
shows the CORBA architecture.

1.2.1 The ORB core

In the OMA model, objects provide services; the purpose of the ORB core
is the delivery of the requests (issued by the clients) to the objects (servers)
and returning the corresponding output results to the clients; the way the
ORB accomplish this purpose must be completely transparent to the clients:
they do not have to know about the following objects features:
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e Object location - the client does not know about the object location;
it may be anywhere: on the same machine of the client process or on
another machine in the network;

e Object implementation - the client does not know about the pro-
gramming language the object has been implemented, on which oper-
ating system and hardware the object is running;

e Object execution state - when the client make a request to the
target object (the object providing the service needed by the client),
it does not know about the object state: the object may be activated
or not; if the target object is not ready to receive requests, the ORB
must activate it in a transparent way before delivering to it the request
issued by the client;

e Object communication mechanisms - the client does not know
about the communication mechanisms the ORB uses to deliver the
request to the target object and to return the output results to the
client.

When a CORBA object is created, an object reference is specifically
created for it; an object reference is immutable meaning that it always refer
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to the same object and opaque meaning that a client can access to an object
reference to identify the target object, but it can not modify the object
reference. An object reference is about a single object and exists as long as
the object exists: in this sense, we can distinguish between:

e persistent objects - they live beyond the process in which they are
created or activated;

e transient objects - they live as long as they are necessary; they are
useful in situations requiring temporary services.

When a client has to make a request, the client specifies the target object
by means of the object reference: how can the client get the object reference
for the service it requires? That is possible by means of the Directory Service
(DS): it consists of storing existing objects information and references; when
a client has to obtain the object reference for the service it needs, the client
invokes the DS to perform a lookup by name or by properties of the target
object and the DS returns to the client the reference to the target object, if
found.

To avoid several invocations of the DS (supplied by an object) for the
same service by the same client, an application can ask the ORB to convert
an object reference to a string; the client can store the string into a file or
database; when the client needs the object referencence for that service, the
client asks the ORB to turn the string back to a reference. This capability
allows to keep persistent links between objects and clients.

In this way also the ORB can supply object references allowing clients
to get them directly from the ORB without accessing to the DS. The ORB
works as a DS even when a client needs the reference of the object performing
the DS: when a client needs an object reference for a service for the first time
in its life, it does not know neither the reference of the required service nor
the reference of DS. In this case, the client first gets the object reference of
the DS from the ORB, then the client makes a request to the DS in order to
obtain the object reference of the required service.

Anyway the key role of the ORB is the communication between clients and
objects: the CORBA standard tries to keep the ORB as simple as possible
assigning most of the functionalities to the other OMA components.

1.2.2 OMG Interface Definition Language (OMG IDL)

A client must know the types of operations an object supports; for this
reason, an object interface is defined for each object to inform about the
the operations the object can perform, the arguments it needs and their
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types, the returned values and their types. Object interfaces are defined
using the OMG Interface Definition Language (OMG IDL) and are similar
to C++ classes and Java interfaces.

Object interfaces are defined separately from object implementations: in
this way, object can be implemented using several programming languages
while they can communicate with each other using a unique declarative lan-
guage, the OMG IDL. We can say that the OMG IDL is language indipendent.

OMG IDL provides several data types we can find in other programming
languages such as long, double and boolean; it provides structured types too,
such as struct and union; another feature of OMG IDL are the exceptions,
useful to deal with exceptional conditions during the execution of applica-
tions.

Another important feature of the OMG IDL is the Interface Inheri-
tance: an interface can inherite parameters and methods from one or more
interfaces; in this way, existing interfaces can be reused or extended when
defining new services.

1.2.3 Language Mapping

The OMG IDL is not a programming language, but a declarative language;
the way to map the OMG IDL features to a given programming language
is provided by the language mappings; the OMG has standardized lan-
guage mappings for several programming language such as C++, Java and
Smalltalk.

The language mappings are the ”point of contact” between CORBA object
interfaces and the ”real world” of implementation, so a language mapping
must be complete to allow programmers to be able to respect the CORBA
standard using that programming language. For this reason, the language
mappings are periodically improved to face the evolution of the programming
language and the requirements of new features.

1.2.4 Stubs and Skeletons

The conversion of object interfaces from IDL to a specific programming lan-
guage generates client-side stubs and server-side skeletons: a stub is a
mechanism to create and issue requests, while a skeleton is a mechanism to
deliver requests to the objects; stubs and skeletons are interface specific since
they are directly built in the client and server implementation, so they need
a complete knowledge of the object interface they are associated to.

The request of services by means of stubs and skeletons is called static
invocation: the stub converts the client request from its representation in
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the programming language to one suitable to be trasmitted; the request in
this form is passed to the ORB which delivers it to the target object; on the
server-side, the skeleton converts the request from the transmitting form to
the target object programming language representation.

At this point the target object can work on the request and when the
response is ready, it is converted in a transmitting form by the skeleton, it
is passed to the ORB which moves the response to the client whose stub
performs another conversion of the response, from the transmitting form to
the client programming language representation. Fig. X shows this scheme.

1.2.5 Interface Repository (IR)

A client must know the interface of the object providing the desired service;
a direct way to get that information consists of compiling or translating the
object interface into the code of the client application respecting the mapping
rules for that programming language defined by a specific language mapping.

This approach is not convenient when some changes to the distributed
system are applied in a way that object interfaces have to be modified; in
this case, the client application must be partially rebuilt and recompiled. To
avoid this problem, the CORBA Interface Repository (IR) has been specified
in the CORBA architecture with the purpose of allowing the access and the
update of IDL system at runtime.

The IR is an object that can be invoked by clients to obtain the inter-
face of other objects; the IR provides the interface for the requested object
by traversing the hierarchy of IDL information that IR stores. This role
is fundamental for another feature of CORBA called Dynamic Information
Interface (DII) (section 1.2.6).

1.2.6 Dynamic Invocation and Dispatch

Stubs and skeletons allow to invoke operations on known objects (static invo-
cation), but some applications may need the invocation of operations supplied
by some objects without having compile-time knowledge of their interfaces
(dynamic invocation).

CORBA supports dynamic invocation too, introducing the Dynamic In-
vocation Interface (DII) for the dynamic client request invocation and the
Dynamic Skeleton Interface (DSI) for the dynamic dispatch to the object.
The DII and the DSI replace stubs and skeletons in the dynamic invoca-
tion; we can consider the DII and the DSI as a generic client-side stub and a
generic server-side skeleton respectively: they are able to invoke and dispatch
any request to any object without knowing a priori its interface.
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When a client has to make a request for a service using DII, these are
the steps to follow: the client has to obtain the target object interface by
using the IR; from the interface, the client obtains the information about
operations supported by the object and the relative arguments; then, the
client has to create a Request Object containing the arguments for the
desired operation respecting the target object interface; at this point the
Request Object is passed to the ORB for the delivery to the target object.

Comparing static invocation with DII, we can say that the invocation of a
DII request could require several remote invocations (to the ORB and the IR),
making a DII request more expensive than its equivalent static invocation
which does not suffer of the overhead of accessing to the IR.

While the DII allows clients to make invocations without having a stub, on
the server-side, the Dynamic Skeleton Interface (DSI) allows object providing
services to receive requests without an interface-specific skeleton; the DSI is
provided by the server application POA (section 1.2.7) and translates the
Request Object to the programming language format before passing it to
the object implementation; as the DII, DSI can access to the IR to get the
information about target object IDL interface.

1.2.7 Object Adapters (OA)

Object Adapters (OA) mediate between the CORBA object environment
and the implementations (servants) in a specific programming language; a
servant is said to “incarnate” a CORBA object, meaning that a servant is the
implementation of the CORBA object in a given programming language; for
instance, in C++ or Java, servants are instances of classes.

An OA is a "link” between CORBA object interface to the real object
interface specified in the programming language implementation; CORBA
version 2.2 introduced the Portable Object Adapter (POA) providing the
complete specifications for OAs and replacing the OMG Basic Object Adapter
(OMG BOA) which suffered of several ambiguities, missing features and
problems of portability. Fig. 1.4 [3] shows the role of the POA consisting of
the following facilities:

e Object Creation and Reference Generation - a programming lan-
guage entity can be registered in the CORBA environment as a CORBA
object by means of the POA: the server application asks the POA to
create a new object and the POA returns an object reference which
uniquely indentifies that object in the CORBA environment; when the
object has been created, its interface is passed to the IR to be stored.
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e Object Upcalls - POA allows the dispatch of the requests for a ser-
vice to the servant implementing that service; let’s consider a request
flowing from the client to the server as in Fig. 1.5 [6]: the client in-
vokes a request using the target object reference; the target object will
be contained in a server application. Since a server application may
be composed by several modules implemented in serveral programming
languages, the server application may have several POAs associated to
it: the ORB receives the request from the client and by means of the
object key contained inside the target object reference, dispatches the
request to the correct POA; at this point the selected POA converts the
invocation arguments to the format of the relative programming lan-
guage and by means of the object ID contained inside the object key,
dispatches the request to the correct servant implementing that service;
then, when the output result is ready, it is delivered back to the POA,
to the ORB and finally to the client. To summarize, POA connects the
world of CORBA object with the "real world” of programming language
implementations.

e Object Activation - POA can activate single objects when a request
for them has arrived and they are not active; this is necessary when an
application with many CORBA objects may only want to activate those
objects that actually receive requests, minimizing the resources usage;
the associations between object IDs and servants are stored inside the
POA by the Active Object Map: a single servant may “incarnate”
one or more CORBA objects; this is useful when an application hosts
a large number of objects and it would be difficult to deal with a large
number of servants; if instead, the application hosts a small number of
objects with the same IDL interface type, there may be a unique servant
(default servant) implementing every object hosted by that application.

1.3 CORBA messaging

Clients can invoke operations on target objects in three different synchronous
ways:

e Synchronous Invocation - the client invokes the request, then it
gets blocked waiting for the response; this approach is equivalent to a
Remote Procedure Call (RPC);

e Deferred Synchronous Invocation - the client invokes the request,
then it goes on with its own processing, collecting the response later,
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when it arrives; this approach is useful when the client has to invoke
several services requiring a long time running; in this way the client
can make the invocations parallelly and collect the responses as they
are ready;

e Oneway Invocation - the client invokes the request, continues its
processing and does not wait for the response; the ORB only guarantees
that the request will be delivered to the target object, but it does not
guarantee the delivery of the response back to the client; the target
object might invoke a callback on the client to advertise that the request
has been completed successfully; this approach was introduced in order
to allow a safe delivery of requests using unreliable transport protocols
such as User Datagram Protocol (UDP).

Synchronous messaging assume that the communication is performed on a
reliable connection, but in the "real world” disconnections may occur in a
large-scale distributed system; for this reason, OMG issued the CORBA
Messaging Specification [7] introducing asynchronous messaging tech-
niques, time-indipendent invocation and specifications for messaging Quality
of Service (QoS); 3.0 is the first version of CORBA to respect the CORBA
Messaging Specification which defines two asynchronous request techniques:

e Callback - the client supplies in the Request Object its own reference
and when the response is ready , the ORB uses the client reference to
deliver the responce to the client;

e Polling - when the client invokes an operation, a valuetype (section
1.4) is immediately returned; the valuetype can be used by the client
to poll or wait for the response indipendently.

1.4 Objects by value

In CORBA, the arguments passed as arguments to operations may be data
types such as integers, structs or array; CORBA version 3.0 introduced the
possibility to pass references to objects as arguments: a new contruct called
valuetype [8] has been added to OMG IDL; it is a cross between a struct
and a interface (similar to C++ and Java class definitions) supporting data
members, methods and single inheritance from another valuetype.

When a valuetype is passed as an argument to a remote operation (per-
formed by another object), the receiver creates a copy of the object in its
addressing space; any operation performed on such a copy does not modify
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the original object on the client-side: all operations invoked on valuetypes
are always performed locally to the process.

1.5 Inter-ORB protocols

Before CORBA version 2.0, different ORB systems could not interoper-
ate because CORBA did not specify any rule for the communication be-
tween two ORBs; CORBA version 2.0 introduced direct interoperability
and bridge-based interoperability: we have direct interoperability when
ORBs reside on in the same domain meaning that they understand the same
object references and the same OMG IDL type system; if ORBs reside on dif-
ferent domains, bridge-based interoperability is necessary; the role of bridges
is the mapping of information from an ORB domain to another.

ORB interoperability is generally defined as a protocol by the General
Inter-ORB Protocol (GIOP), while the Internet Inter-ORB Protocol (IIOP)
provides the specifications about the GIOP implementation using TCP /IP:
ITOP establishes that hosts must be connected by a common network based
on a point-to-point protocol.

In a ORB interoperability context, CORBA defines an object reference
format called Interoperable Object Reference (IOR) which stores the infor-
mation needed to locate an object in such a context and communicate with
it.



Chapter 2

Fault Tolerant CORBA

2.1 Introduction to FT-CORBA

A distributed application is said to be fault-tolerant if it can be properly exe-
cuted despite the occurence of faults; the main way to obtain fault-tolerance
is by server replication: if a service is supplied by several server replicas,
instead of one, the fault of one of them does not compromize the distributed
system because that service can be supplied by another replica.

In its first versions, CORBA did not provide any strategy to achieve
reliability of applications in a distributed object-oriented environment; for
this reason, developers added replication in their CORBA systems (DOORS
[9], Eternal [10], AQuA [11], etc.) to cope with object failures and in 1998,
OMG issued a RFP producing in 2000 the Fault Tolerant CORBA (FT-
CORBA) [12] [13] |14] specification which embeds many ideas implemented
in the systems mentioned above. In CORBA version 2.6, fault tolerance is
explicitly addressed for the first time.

Mechanisms allowing CORBA to be fault-tolerant are built on top of
standard CORBA with minimal modification to existing ORBs preserving
OMA Object Model and Object Reference Model (section 1.1).

2.2 Replication Logic

Replication Logic is a set of protocols to rule the way distributed systems
have to handle server replication; two replication techniques are defined:

e active replication - the client requires a service to a set of deter-
ministic replicas waiting for a certain number of identical replies; this
number depends on the type of fault a replica may suffer of, and by

17
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the consistency [15] criterion which must be verified on the returned
results; for instance, the majority of replies must be identical;

e passive replication (or primary-backup approach) - the client requires
a service to a particular replica, the primary replica, while every other
replica is considered as a backup replica; if the primary replica fails, the
backups elect a new primary replica to process the requests.

Both techniques require mechanisms to work properly such as a reliable
multicast protocol, a failure detection system and an agreement protocol;
these mechanisms allow to implement the notion of group abstraction (a
set of members working as a single entity) with the relative services such
as membership, state transfer, etc. The multicast protocol is used for the
communication among group members, the failure detector discovers the
failures inside the group and the agreement protocol allows the election of a
new primary, if necessary.

2.2.1 Intrusiveness

Depending on the degree of intrusiveness (Fig. 2.1 [14]) of the replication
logic with respect to the standard ORB, the FT-CORBA system design can
be classified as:

e Intrusive design - it requires to embed a part (or all) of the replication
logic inside the ORB; the intrusiveness may be deep or shallow depend-
ing on the number of replication logic component embedded inside the
ORB;

e Non-intrusive design - the replication logic is separate from the ORB
and may be "above” (Fig. 2.2 |14]) or "below” (Fig. 2.3 [14]) the ORB:
in the first case, the replication logic exploits only ORB features, in the
second case, at least one mechanisms used by the replication logic is
not provided by the ORB and requests pass through an Interception
Layer whose role is adapting the requests to the format required by
the adopted replication logic.

2.2.2 Interoperability

Interoperability (Fig. 2.4 [14]) means the possibility of run-time interactions
of objects deployed on top of distinct ORBs; the replication logic may be
able to guarantee interoperability or not; a CORBA system is interoperable
only if it uses the remote method invocations offered by the ORB via IIOP
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(section 1.5); to allow interactions between already existing ORBs, they may
need some modifications or not; for instance, if the desing is non-intrusive
and developed above the ORB, the system is interoperable without any mo-
dification on the ORB.

In other system configurations, the system may not be interoperable; for
instance, in a system it may be necessary to provide the same ORB to all
computing resources.

2.3 FT-CORBA architecture

2.3.1 Object groups

In the FT-CORBA architecture (Fig. 2.5), fault tolerance is achieved by
object replication, fault detection and recovery; all the components
in the CORBA architecture are implemented as CORBA objects using IDL
interfaces, servants, etc. (Chapter 1).

Using object replication, consistency [15] among replicas is achieved ma-
naging replicated objects as an object group: a set of replicas of the object
providing the service, accessed by clients as a single entity; an object group
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is transparent to the client with two levels:

e replication transparency - clients are not aware of object replication:
the object group offers the same interface as the replicas it contains and
the client code used to bind an object group is the same as for binding
a single object; the client sends a single request and receives a single

reply;

e failure transparency - clients are not aware of object failures and of
the reliability protocols.

Object replication is applied to the application objects and also to the
components of the FT-CORBA infrastructure providing fault tolerance; the
mechanisms defined by FT-CORBA to handle object groups are the follow-
ing:

e Interoperable Object Group Reference (IOGR) - while an IOR
(section 1.5) identifies an object and contains the information (profile)
allowing the ORB to establish a network connection with the object, an
IOGR identifies an object group and contains the IORs for all the object
group members. ORB uses IOGR to establish a network connection
with the object group, transparently to the client. Fig. 2.6 shows the
structure of a generic IOGR: for every object group member, a IIOP
profile is present; each profile contains the host, the port and the object
key to reach the target object, and one TAG GROUP component
which is composed by four fields allowing to uniquely identify an object
group:

— tag_ group_version - it indicates the version of this tagged com-
ponent;

— ft_domain_id - it is the identifier of the Fault Tolerance Domain
(explained in this section) the IOGR belongs to;

— object_group_d - it is the identifier of the object group and it
is assigned by the Replication Manager (section 2.3.2) when an
object group is created;

— object_group_wversion - it indicates the version of the object group
membership which may change during the time; this field is useful
when the IOGR used by the client must be updated.

The TAG FT PRIMARY component informs the ORB about the
primary member of the object group in the case of passive replication;
the Multiple Component Profiles contains information about the
object group such as the number of members.
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Figure 2.6: IOGR structure

e Transparent client reinvocation and redirection - when a client
needs a service, it connects the ORB passing the IOGR of the corre-
sponding object group; then, the ORB passes the request to one of the
members of the group; if the invocation of the target object fails, the
request will be redirected to another object of the same group by the
ORB; in any case, the client requires the service only once. The client
may receive an exception from the ORB if every object group member
has failed. The membership of a group may change during the time, so
in the IOGR passed by the client to the ORB, the version of the object
group is included; if the ORB detects that the object group version is
obsolete, it provides the client with the updated IOGR and the client
will request the service to the correct object group reference. An ORB
must consider an invocation to a replica as concluded when:

— the ORB has received the reply;
— the request expiration time has elapsed;

— the ORB has received an exception from the object.

Only in the first case, the ORB does not redirect the request to another
object group member. If the client and the target object refer to distinct
ORBs, two ORBs participate to the mechanism (section 1.5); in this
case, the client passes the request to its ORB (client ORB) which
delivers the request to the target object reading IOGR information;
when the reply is ready, the target object passes the reply to its ORB
(server ORB) which delivers the reply back to the client.
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e Fault Tolerance Domain (FTD) - FT-CORBA introduces FTD
(Fig. 2.7 [9]) to allow application scalability [15]: a FTD is a set of
interconnected hosts where object groups reside; all the object groups
within a FTD are managed by a single Replication Manager (section
2.8.2); a host may belong to one or more domains, while members of
the same group may reside on different hosts. For instance, in Fig.
2.7, Hostj belongs to the Los Angeles FT Domain and to the Wide
Area Domain; the group A is composed by A1, A2 and A& residing on
different hosts.

e Object Group Fault Tolerance Properties (FTP) - FTP contain
the specifications about the behaviour of an object group, concerning
aspects such as:

— Object Replication Technique
— Group Composition and Deployment
— Group Consistency

— Replicas fault-monitoring

FTP are set by the Replication Manager (section 2.5.2).

2.3.2 Replication Management

Replication Management consists of the creation or removal of object
groups, of object group members and FTP assignement and modification; in
each FTD a Replication Manager is present and is responsible for such
activities. FT-CORBA replication styles are:
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e Cold passive replication - clients send their requests to the primary
member; when the operation has been completed, the state of this
object is recorded in a log.

e Warm passive replication (or Primary-Backup replication) - clients
send their requests to the primary member; when the operation ends,
the primary member sends update messages to the backup members;
they apply the changes produced by the invocation execution at the
primary member; in order to maintain consistency, the communication
between the primary and the backups must be reliable and updates
must be processed by all the backups in the same order (FIFO consis-
tency).

e Active replication - all the members of the object group receive and
process indipendently the request sent by the client; consistency is guar-
anteed by the fact that replicas will produce the same output if the
inputs are provided in the same order: no coordination mechanisms is
necessary; a reliable multicast group communication system must be
provided; the client must receive only the fastest reply: to avoid client
to receive multiple replies, the ORB must pass to the client only one
reply relative to a request and discard all the others.

The Replication Manager services are distributed among the following
modules:

e Property Manager - it sets FTDs and FTP;

e Object Group Manager - it is able to add or remove single members
of an object group;

e Generic Factory - it is able to create or destroy an object group.

2.3.3 Fault Management

The main role of the Fault Management is the detection of object failures;
it can also create fault reports and notify their analysis; fault management
consists of (Fig. 2.8):

e Fault Detectors - they are FTD specific; two mechanisms are avail-
able to detect failures:

— pull-based monitoring (polling) - the Fault Detector invokes peri-
odically the #s_ alive method on each replicated object which must



Making CORBA fault-tolerant 26

pusle_evenii)

push fanle)

Application
Oibject

L 4

Figure 2.8: Fault detection and notification

return its alive state within a given time, else the Fault Detector
assume that object as crashed and passes a fault report to the
Fault Notifier;

— push-based monitoring (heartbeat) - objects periodically send to
the Fault Detector a special message to say that they are alive; if
the Fault Detector does not receive such a message from an object
after a certain time, it considers that object as failed.

e Fault Notifier - it is FTD specific and forwards the received fault
reports to the Replication Manager and to other subscribed clients
such as the Fault Analyzer;

e Fault Analyzer - it receives the fault reports from the Fault Notifier
and performs some kinds of analysis on it.

2.3.4 Recovery Management

Recovery Management consists of two mechanisms:

e [ogging - it stores in a log file the information about the objects such
as state, incoming requests and replies after each operation has been
completed (Fig. 2.9 [9]);
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e recovery - it sets the state of a member retrieving the information from
the log file (Fig. 2.10 [9]); recovery is applied when either after a fault,
a backup member of an object group has been promoted to the primary
member, or when a new member is introduced in the object group; the
recovery processes the log messages to set the correct current state of
that object. The recovery steps in the case of fault, change depending
on the adopted replication logic:

— Cold passive replication - if the primary fails, the new elected
primary state must be updated to state of the failed primary; since
using this kind of replication logic, backups do not receive any
information about primary member operations, all the messages
recorded in the log file are played back to the new primary; in this
way the state of the new primary is consistent with the state of
the old primary before the failure;

— Warm passive replication - since backups receive information
about primary member’s activity and state, the recovery mecha-
nism applies to the new primary only the recent state updates,
those after the last complete operation;

— Active replication - if an object group member fails, the requests
are still processed by the other group members producing replies.

Using passive replication, after a fault, when all the replicas are con-
sistent, the recovery mechanism re-invokes the operation requested by
the client on the new primary replica.

2.4 FT-CORBA limitations

The limitations of FT-CORBA depends on allowing developers to extend
FT-CORBA specifications in their system implementations to meet their
application specific reliability requirements; the main limitations are:

e Lack of interoperability - FT-CORBA specifies that inside a FTD, all
the hosts must use the same ORB and the same fault tolerant policy;

e Fault tolerance limited to crash failures - in the FT-CORBA standard,
only object crashes are considered as faults to be tolerant to; fault
tolerant for other kinds of fault is not guaranteed, such as objects giv-
ing uncorrect results, networking faults or problems due to network
partitioning;
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e Deterministic behaviour - object replication consistency may be com-
promised by non-determinism, meaning that consistency is maintained
assuming that all object replicas produce exactly the same results with
identical inputs.

FT-CORBA specification has been intentionally left open leaving several
issues to be solved with proprietary solutions by the system developers.



Chapter 3

A real case study: DOORS

3.1 Introduction to DOORS

The Distributed Object-Oriented Reliable Service (DOORS) [9] was devel-
oped before OMG issued the FT-CORBA standard, as an experimental fault
tolerant CORBA middleware; some of the concepts and the implementing
solutions introduced in DOORS are present in FT-CORBA specification.
Explaining the DOORS functionalities, we can understand how DOORS in-
fluenced the FT-CORBA standard.

3.2 DOORS components

Fig. 3.1 |9] shows the components of the DOORS architecture; DOORS has
a Replication Manager providing most of the property management and
group management specified in FT-CORBA (section 2.3.2); the Fault De-
tector and the Super Fault Detector provide hierarchical fault detection
and notification: the Fault Detector is responsible to detect faults at ob-
ject level, while the Super Fault Detector at host level. They have another
role: they act as Faoult Notifiers propagating fault reports directly to the
Replication Manager.

Fault Detectors supports both pull-based and push-based monitoring (sec-
tion 2.3.8); the Fault Detectors and the Replication Manager are monitored
by a Super Fault Detector in a push-based way; since FT-CORBA does not
allow single points of failures, the Super Fault Detector itself is replicated
and the replicas monitor each-other by push-based monitoring; among Super
Fault Detector replicas, there is a primary; if it fails, backups elect a new
primary.

DOORS defines a way to dinamically set the number of missing "heart-

30
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Figure 3.1: DOORS architecure

beats” necessary to consider a replica as failed using the pushed-based mon-
itoring; this is useful to prevent unnecessary fault detection and recovery.

Fig. 3.2 [9] shows the components interaction when a replica group is
established using warm passive replication (section 2.5.2):

1. an application manager requests the Replication Manager to create an
object group with specific Fault Tolerant Properties (FTP) (section
2.3.1);

2. the Replication Manager delegates this work to its Factory (section
2.3.2) objects; they return, when the replicas are created, the corre-
sponding object references;

3. the Replication Manager orders the Fault Detectors to monitor the new
objects;
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4. the Replication Manager collects all the IORs of the new objects, gener-
ating the IOGR (section 2.3.1) of the object group with the indication
of the primary replica;

5. the Replication Manager registers the IOGR at the Naming Service;
in this way, the IOGR is available for other CORBA applications;

6. the Replication Manager checkpoints the IOGR,;

7. a client needing the service corresponding to the new object group,
contacts the Naming Service to obtain the relative IOGR;

8. the Naming Service passes to the client the relative IOGR;

9. the client make the request and the client ORB delivers the request to
the primary object inside the group.

3.3 Enhanced IOGR

DOORS provides several extensions that are not specified in FT-CORBA
standard; one of them is the Enhanced IOGR: if an object group is com-
posed by n members, the DOORS Replication Manager creates an IOGR
with n+1 profiles; the added profile is a reference to the Replication Man-
ager; when an object of the group fails, the Fault Detector inform the Repli-
cation Manager about the object failure; now the IOGR needs to be updated
because the group membership has changed; in FT-CORBA, the IOGR held
by client is updated when the client makes a request using that IOGR; in
DOORS, the client continues to use the same IOGR to invoke an operation;
after all replicas in the IOGR held by the client, have been tried, the ORB
uses the last reference to invoke the Replication Manager which passes to the
client the new IOGR.

In this way, the client uses the same IOGR until at least one of the
references is valid and obtains a new IOGR only when all the objects corre-
sponding to the reference inside the IOGR held by the client, are failed. The
overhead due to IOGR updates to the clients is significantly reduced.

3.4 Unimplemented FT-CORBA features
in DOORS

These FT-CORBA features are not present in DOORS:
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e Active replication - DOORS is able to create object group using
active replication , but it does not support yet a group communication
protocol for this replication style;

e Logging and recovery - DOORS supports application-controlled log-
ging and recovery system, but it does not support infrustructure-controlled
logging and recovery;

e Fault Notifier - a Fault Notifier is not present in DOORS; fault de-
tection and notification are both provided by the Fault Detectors.
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