Dipartimento di Informatica
Universita del Piemonte Orientale “A. Avogadro’
Spalto Marengo 33, 15100 Alessandria
http://www.di.unipmn.it

i

universita
degli studi
del piemonte
orientale

Modelling a Secure Agent with Team Automata
Authors: Lavinia Egidi (lavinia.egidi@mfn.unipmn.it),
Marinella Petrocchi (marinella.petrocchi@iit.cnr.it),

TECHNICAL REPORT TR-INF-2004-07-08-UNIPMN
(July 2004)

The University of Piemonte Orientale Department of Computer Science Research
Technical Reports are available via WWW at URL http://wuw.di.mfn.unipmn.it/.

Plain-text abstracts organized by year are available in the directory

Recent Titles from the TR-INF-UNIPMN Technical

2004-07
2004-06

2004-05

2004-04

2004-03

2004-01

2003-08

2003-07

2003-06

2003-05

2003-04

2003-03
2003-02

2003-01

2002-06

2002-05

2002-04

Report Series

Making CORBA fault-tolerant, Codetta Raiteri D., April 2004.

Orthogonal operators for user-defined symbolic periodicities, Egidi, L., Teren-
ziani, P., April 2004.

RHENE: A Case Retrieval System for Hemodialysis Cases with Dynamically
Monitored Parameters, Montani, S., Portinale, L., Bellazzi, R., Leonardi, G.,
March 2004.

Dynamic Bayesian Networks for Modeling Advanced Fault Tree Features in De-
pendability Analysis, Montani, S., Portinale, L., Bobbio, A., March 2004.

Two space saving tricks for linear time LCP computation, Manzini, G., February
2004.

Grid Scheduling and Economic Models, Canonico, M., January 2004.

Multi-modal Diagnosis Combining Case-Based and Model Based Reasoning: a
Formal and Experimental Analisys, Portinale, L., Torasso, P., Magro, D., De-
cember 2003.

Fault Tolerance in Grid Environment, Canonico, M., December 2003.

Development of a Dynamic Fault Tree Solver based on Coloured Petri Nets and
graphically interfaced with DrawNET, Codetta Raiteri, D., October 2003.

Interactive Video Streaming Applications over IP Networks: An Adaptive Ap-
proach, Furini, M., Roccetti, M., July 2003.

Audio-Text Synchronization inside mp3 file: A new approach and its implemen-
tation, Furini, M., Alboresi, L., July 2003.

A simple and fast DNA compressor, Manzini, G., Rastero, M., April 2003.

Engineering a Lightweight Suffix Array Construction Algorithm, Manzini, G.,
Ferragina, P., February 2003.

Ad Hoc Networks: A Protocol for Supporting QoS Applications, Donatiello, L.,
Furini, M., January 2003.

Stochastic modeling, analysis techniques and tools for dependable reactive sys-
tems, Codetta Raiteri, D., Bobbio, A., October 2002.

Stochastic modeling, analysis techniques and tool for dependable reactive sys-
tems, Bernardi, S., Gribaudo, M., Bobbio, A., October 2002.

Interactive MPEG video streaming over IP-Networks: a performance report,
Furini, M., Roccetti, M., September 2002.

Modelling a Secure Agent
with Team Automata

Lavinia Egidi
Dipartimento di Informatica
Universita degli Studi del Piemonte Orientale
Spalto Marengo 33, Alessandria, Italy
lavinia@mfn.unipmn.it

Marinella Petrocchi
Istituto di Informatica e Telematica, CNR
Area della Ricerca di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy
marinella.petrocchi@iit.cnr.it

July 9, 2004

Abstract

We use Team Automata in order to model a protocol [9] for securing
agents in a hostile environment. Our study focuses on privacy proper-
ties of the agents. We use the framework to prove a result from [9]. As a
by-product, our analysis gives some initial insight on the limits of the pro-
tocol. From a different perspective, this study continues a line of research
on the expressive power and modelling capabilities of Team Automata. To
the best of our knowledge, this is the first attempt to use Team Automata
for the analysis of privacy properties.

1 Introduction

Agent technology is assuming a central role in various areas of computer science.
Mobile agents are indeed a powerful tool for limiting data traffic or managing
remote service provision. But since mobile agents are software meant to run
on foreign hosts, various security issues arise in their respect. On the one side,
hosts must be protected from non trusted agents that might carry malicious
code. This is the easy side of the question, and is addressed with computer
security techniques. In contrast, it is much harder to protect a mobile agent
from a hostile environment. While an agent executes on a host, its code must be
in the clear; if it needs to use sensitive data that it carries along, this data must
be in the clear as well. If it is stored in an encrypted form, it must be decrypted
prior to use, and therefore the appropriate decryption key must be available to

the agent. This suggests that usual cryptographic tools cannot protect an agent
from being robbed or spied upon.

But, although some vulnerabilities cannot be eliminated (the agent can be
killed or bogus data can be supplied to it), it would be very appealing to provide
data privacy and integrity mechanisms to mobile agents. Enhancing them with
security features can result in a very powerful and effective way of handling
services on potentially hostile resources.

Because of the wide range of applications that can be imagined for a secure
agent, the issue is currently a hot topic in research. Recent approaches look for
a solution by carrying the idea of encryption to an unusual level; briefly stated,
although the agent code itself remains in the clear, the function computed by
the agent is transformed so that the agent’s behaviour is incomprehensible to
an observer that doesn’t have a key for interpretation. The first proposal in
this direction is due to Sander and Tschudin [14]. Their technique has been
generalized by Cachin et al. [9] who use the idea of garbled circuits by Yao [15].
It must be noted that these approaches are still pioneer solutions to the security
problem posed above, in that the security goals achieved are still very restrictive
and the agent model to which they apply is somewhat awkward.

As a first step towards a comprehension of the potentialities of these meth-
ods, and of intrinsic limitations of software agents from the point of view of
security, we formalize the protocol of Cachin et al. [9] using Team Automata
(TA).

TA are inspired by—and form an extension of—Input/Output automata
(IOA) [12]. TA form a flexible framework for modelling communication be-
tween system components. A TA is composed of component automata (CA),
which are ordinary automata without final states and with a distinction of their
sets of actions into input, output and internal actions. TA model the logical
architecture of a system by describing it solely in terms of an automaton, the
role of actions, and synchronizations between these actions. The crux of com-
posing a TA is to define the way in which its constituting CA communicate by
synchronizations. In particular, given a set of CA, there is no such thing as
the unique TA composed over that set of CA. Rather, a whole range of TA,
distinguishable only by their synchronizations, can be composed over this set of
CA.

The rigorous setup of the TA framework allows one to formulate and verify
general and specific logical properties of complex (distributed, reactive) systems
in a mathematically precise way. In realistically large computer systems, secu-
rity is a big issue, and these frameworks allow formal proofs of correctness of its
design. Moreover, such a formal approach forces one to unambiguously describe
one’s design and it may suggest new approaches not seen otherwise.

In particular, TA have been proved to cover the specification of several ac-
cess control strategies of [3], as well as the ongoing work on developing a TA
framework for the analysis of security properties—which was initiated in [5] and
further developed in [6]. In [7], it is presented a survey of the use of TA in the
field of security. We continue this line of research, by exploiting their flexibility
and intuitive modelling of a multi-host environment.

The protocol of Cachin et al. [9] is based on the idea of entrusting data to
an agent in the form of a circuit that evaluates to a single output. The circuit is
obtained as a cascade of components each one constructed by one of the hosts
visited by the agent. In [9], it is proven that the protocol preserves the privacy
of all actors’ inputs.

We contribute a TA based analysis of this privacy property. To the best of
our knowledge, TA have not been used before in the study of privacy.

Our analysis also has the merit of providing a high level model of the actors’
behaviour and interaction, abstracting out from cryptographic details, giving a
clearer insight of the protocol. Our model, interestingly, naturally represents
the agent as a set of actions as opposed to an entity per se. This suggests that
the protocol does not respect the object oriented spirit of agents. On the other
hand, taking the perspective of the agent’s source, it models the source’s view
of the system according to the intuition that the source delegates tasks fully to
the agent.

In the following section we give a high level description of the protocol and
recall the relevant results about garbled circuits and the protocol itself. In
Section 3 we overview the basic facts about TA. Section 4 is devoted to the
model and to the formal analysis of privacy features. We conclude with some
remarks.

2 The protocol

The soundness and privacy properties of the protocol of [9] follow from mathe-
matical results based on standard cryptographic assumptions. We abstract out
from the details and are interested in the behaviour of the actors (the agent, the
agent’s source and the hosts that are visited by the agent) at a higher level. Our
description of the protocol focuses on the interactions between the actors. We
give as much insight on the cryptographic bases on which the protocol relies, as
is sufficient for our arguments. We refer to [9] for a detailed description.

We confine ourselves to the simpler case of the “honest but curious model,”
in which actors are supposed to follow the protocol correctly, but they might
try to learn the private inputs of the other parties.

The goal of the design is a secure agent that travels through many hosts
collecting sensitive information and then back to its source; back home, it will
be able to deliver the result of a computation on inputs collected at the various
hosts together with the source’s input. The security feature that the protocol
aims at is privacy of all the inputs, that is no party learns the inputs of any
other party.

The idea is to combine in a cascade Yao style garbled circuits [15]. The
software agent travels from host to host collecting private information in the
form of a (portion of) garbled circuit. The circuit (potentially software) is
actually data, since it can only be evaluated to a single value once it has been
brought back to the agent’s source.

2.1 Garbled circuits

A garbled circuit is a generalization of a circuit, with the following properties:

e each wire can carry one of two specified random strings (not just bits 0/1),
the random strings changing from wire to wire (the pair of strings on each
wire have semantical interpretation 0 and 1);

e for each gate a specific computational rule is given, that defines how the
random strings in input are to be combined to produce the output, which is
again a random string (the semantical interpretation of a gate is a NAND
or a XOR, for instance).

The garbled inputs are the random strings of each input wire whose seman-
tical value is the value of the corresponding input bit. The decoding of the
output is a translation of the random strings on the output wires to their se-
mantical meanings. The garbled circuit is a description of the structure of the
circuit together with computational rules for each node but no information on
the random strings carried by each wire.

The following holds (see [13]):

Lemma 1 (Indistinguishability) For any two actors C and D knowing the
garbled circuit, if C only knows the garbled version of D’s input (and not the
other random strings carried by D’s input wires) garbled circuit evaluation will
not disclose more information than if C ran the protocol assuming any random
input for D.

2.2 The Wannabe Traveller

For a lighter exposition, and without loss of generality, we present the protocol
in the specific setting of an actor W (the Wannabe Traveller) who dispatches
an agent in quest of the best offer for a holiday on a tropical island.

The agent visits travel agencies Ag;, chosen according to some policy that
we do not specify here. At each agency, it browses the catalogue and requests
the best offer for a holiday matching conditions on the destination, the period,
the services, etc., that W requires.

We assume that travel agencies want the privilege of tailoring their offers
to the specific client, and therefore prefer that the offer be known only if it is
highly likely to be accepted. Moreover each agency does not want that its offer
be known to competitors. On the other hand, W does not want to disclose
in advance her budget, to avoid that travel agents use it as an information to
adjust their offer. Assuming correctness, this leads us to the following definition
of the privacy goals we aim at:

Definition 1 (Privacy) W'’s agent respects privacy if

1. W cannot determine any other offer but the lowest one less than or equal
to her budget, if it exists;

2. each agency cannot learn W’s budget, nor the offer of any other agency.

2.3 The Wannabe-Traveller Protocol

Our analysis is focused on the privacy aspects. Therefore we only consider
the agent’s functionality related to privately (in the sense described above)
conveying to W the best offer. Also, we will not model the agent itself as a
separate entity. Rather, the agent is represented by a sequence of actions which
it repeats identically at each host visited: the collection of sensitive data.

For simplicity, we first consider the case of an agent that visits a single host.
W is the source of the agent, and Ag is the host that the agent visits.

In our setting, Ag constructs a garbled circuit that on input (id,), (ids, y),
outputs computes (idpin, min(x,y)), where idy;, = id; if £ = min(z,y) and
is id2 otherwise. We call this function tagged minimum. (The description and
analysis that follow are absolutely independent of the specific function computed
by the garbled circuit.)

Let inputw (resp. inputay) be W’s (resp. Ag’s) private input.

In order to evaluate the circuit on (idw,inputw) and (idag,inputag), W
must learn the garbled circuit, the decoding information of the output and the
values of her and Ag’s garbled inputs. Ag must not learn W’s input. In order
to transfer to W the garbled inputs corresponding to W’s input (idw ,inputw),
without Ag’s learning the value of the input itself, the two parties use an obliv-
ious transfer (OT) protocol [8]. (Also see [9] for the implementation of a one-
round oblivious transfer; we assume that W and Ag share a pseudorandom
generator and a seed.)

Let 8 be W’s committal data for OT, referred to (idw,inputw). Let GC =
gc((idag, input a4), OT (B)) be the garbled circuit computed by Ag, with Ag’s
input hardwired into it, and information OT'(83) attached to it, for obliviously
transferring to W her garbled input. We denote by decode the decoding infor-
mation for the output.

Then the protocol is as follows:

W—Ag: B
Ag—W : (GC, decode)

W computes the single value tagged_min({idag, input ag), (idw , inputw)).
Assuming correctness, the protocol guarantees privacy in the sense of Defi-
nition 1:

Lemma 2 (Privacy—two parties) In the honest but curious model, assuming
correctness of the protocol, the two party protocol above guarantees privacy in
the sense of Definition 1.

See [9] for a proof.

In the general case, the agent visits many hosts. We assume, without loss
of generality, that the agent travels from W to Ag; to Ags and so on, and then
back from Ag, to W.

We generalize and complete the notation that we used for the two-party
case. Let inputw be the private input of W, and input; be the private input of
Agj. As above, let # be W’s commitment to (idw , inputw).

Agr computes a garbled circuit GC1 = ge({idy,input,), OT(B)) as in the
two-party protocol above. It then forwards (GC1,decode;) to Ags. (The OT
data for Alice attached to GC; will be forwarded to Alice along with the garbled
circuit.)

All other agencies will compute garbled circuits for the tagged minimum
function and combine it in cascade one after the other.

For j > 1, let gc; = gc((id;,input;), transl(decode;_1)) be the garbled cir-
cuit computed by Ag;, with input (id;, input;) hardwired to it, and translation
information transl(decode;_1) for translating the garbled output of the cascade
of circuits GC;_; computed by agencies Ag; through Ag;_; to a garbled in-
put for gc;. Then, GC; is gc; concatenated to GC;_1. Let decode; be the
instructions for decoding its output.

Ag; forwards to Agj11 (GCj,decode;).

W receives the output of AG,, as if she were an AG,,41, and evaluates it.

The protocol is summarized below (W —# describes W’s output of the final
value).

W—Ag : B

Agi—rAgjt : (GCj,decode;) j=1,...,n—-1
Agn—W : (GC,,, decode,,)

W—x: eval (GCp, decode,,, B)

Lemma 3 (Cascade of garbled circuits) Forallj=1,...,n,

1. a polynomially bounded actor cannot infer the private inputs of W and
Agi,...,Ag; from the garbled circuit (GC;,decode;);

2. moreover, with knowledge of W’s (garbled) input, a polynomially bounded
actor cannot infer the private inputs of Agi, ..., Ag;.

Sketch For j = 1, the thesis follows from Lemma, 2. For j > 1, it can be proven
inductively, based on Lemma 1.

We use TA to prove the following privacy property:

Theorem 1 (Privacy—many parties) In the honest but curious model, as-
suming correctness of the protocol, the multi-party protocol above guarantees
privacy in the sense of Definition 1.

The proof of the theorem is given in the sequel as it follows from our TA analysis.

3 Team Automata

In this section, we describe the main characteristic of TA. In particular, we
introduce some technical details that will be useful throughout the paper. For
more information on TA the reader is referred to [1, 2, 10]. Further, we assume
some familiarity with automata theory.

A TA T consists of component automata (CA)—ordinary automata without
final states and with a distinction of their sets of actions into input, output, and
internal actions—combined in a coordinated way such that they can perform
shared actions. Internal actions have strictly local visibility and cannot be used
for communication with other CA, while input and output actions together
form the external actions that are observable by other CA and that are used for
communication between CA. Thus, when composing TA over a set of CA, the
internal actions of the CA in the set must be private. In particular, each action
that is output (resp. internal) for one or more of the CA constituting a TA
becomes an output (resp. internal) action of the TA. The input actions of the
CA that do not occur at all as output actions of any of the CA, become the input
actions of the TA. Hereafter, we let EiTnp, 27T e Ez;bt denote the pairwise disjoint
sets of input, output and internal actions of 7. Moreover, 7, = E;Clp usl,
denotes the set of external actions of 7. Finally, ©7 denotes the set of output
actions of 7 involved in actual communications between CA in a TA.

During each clock tick, the CA within a TA can simultaneously participate
in one instantaneous action, i.e., synchronize on this action, or remain idle.
CA can thus be combined in a loose or more tight fashion depending on which
actions are to be synchronized, and when. For each external action separately,
a decision is made as to how and when the components should synchronize on
this action. Each choice of synchronizations thus defines a TA. Every TA is
again a CA, which, in turn, can be used in an iteratively composed TA.

Sometimes it can be useful to internalize certain external actions of a TA
before using this TA as a building block, in order to prohibit the use of these
actions on a higher level of the construction. To this aim, we introduce here
the hide operator: hider(7) is the TA in which the subset I’ of external actions
of the TA 7 have become unobservable for other TA, having been turned into
internal actions.

It may sometimes be useful to construct unique TA of a specified type. In [4]
several fixed strategies for choosing the synchronizations of a TA were defined,
each leading to a uniquely defined TA. From those, we use here a maximality
principle that will be used in the rest of the paper. Informally, the so called max-
ai TA is the TA in which the synchronization is defined on all and only those
transitions in which, for each action, all CA featuring that action participate
to the transition. The maz-ai TA over a set {T;,...,Tp} of CA is denoted as
[N AY

Let ¥ and I' be two sets of symbols. Then, the morphism presy : ¥ — I',
defined by presy, r(a) = a if a € " and presy, p(a) = A otherwise, preserves the
symbols from I' and erases all other symbols. We discard ¥ when no confusion
can arise.

Let 7 be a TA over a set of CA. Then, the I'-behaviour of T, denoted as
Bg-, is defined as usual in automata theory, BI:r = presp(C7), with set C7 of
computations of T consisting of all the sequences a = goaiqi - .. angn, where
n > 0 and o is an initial state, ¢;, are states, a; are actions and (g;—1, a;, q;)
are transitions.

Along with this general notion of behaviour, other notions can be defined.
When T' = X7 ., then B?—‘”‘* is the output behaviour of 7. By opportunely
choosing T, also the input and the internal behaviour of 7 can be defined.

4 The Wannabe-Traveller Protocol Modelled by
TA

We now show how TA can be used to model the Wannabe Traveller protocol.
We model the Wannabe Traveller W by a CA Ty, the set {Ag; | 1 < j <n} of
travel agencies by CA Tag,,---, Tag,-

Let Input denote the set of pairs {(id;,input;) | 1 < j < n}U{(ido, inputw)}
where input; (resp. inputw) is a string that is private to Ag; (resp. to W).

Let Computed denote the set of garbled circuits.

Let 8 be W’s OT commitment data. Let Decode denote the set {decode; |
0 < j < n}U{B} where decode; (j =1,...,n) is the decoding information for
the output of circuit GCj.

Then Ty, uses the function gc : Input x Decode — Computed to compute
the garbled circuit gc; and the function || : Computed x Computed — Computed
to build up the circuit GC; consisting of the cascade of garbled circuits gcq
through gc;.

Let Result = Input. Then, Ty evaluates the final result using the function
eval : Computed x Decode x Input — Result.

For each j = 1,...,n, define P; = (GCj,decode;) and Py = (. Then,
Messages denotes the set {P; | 0 < j <n} U Result.

We specify TA in the way IOA are commonly defined [11, 12]. The states of
a TA are thus defined by the current values of the variables listed under States,
while its transitions are defined, per action a, as preconditions (Pre) and effect
(Eff), i.e., (g,a,q’) is a transition of a TA if the precondition of a is satisfied by
g, while ¢’ is the transformation of ¢ defined by the effect of a.

In all the specifications, we explicitly prohibit loops, i.e., we allow each
action to be performed only once. See, for example, the specification of T4, .
As soon as T4, has received Py, then precondition Py ¢ received prevents this
action to be executed again.

Tag; — Travel Agencies, j=1,...,n

Actions
Inp: {Pj-1}
Out: {P;}
Int: {Compute,}

States
received, sent C Messages, computed C Computed, all initially &

Transitions

P; 1
Pre: Pj_1 ¢ received
Eff: received := received U {P;_1}

Compute;
Pre: Pj_; € received A GC; ¢ computed
Eff: computed := computed U {GCj;}

P;
Pre: GC; € computed A P; ¢ sent
Eff: sent :=sentU{P;}

The input behaviour B%:;’ of Tag, (j = 1,...,n) consists of P;_;. When
’7'Agj receives message P;_1, then 7',49J. is able to perform an internal computation
leading to an internal behaviour B%:]f consisting of Compute;. Finally, the

output behaviour B%’;j* of Tag,, (j =1,...,n) consists of P;.

We continue with the specification of Ty . It is capable to output a com-
mitment 8 to inputy . Then, it is capable of receiving as input behaviour the
last circuit and the last decoding instructions to evaluate the final result min
by starting from what she has received and from inputy,, by means of function
eval. Finally, Ty outputs the final result min.

Tw — Wannabe Traveller

Actions
Inp: {P,}

Out: {Po} U {min}
Int: {Evalec, }

States
received, sent C Messages, result C Result, all initially @

Transitions
P,
Pre: P, ¢ received
Eff: received := received U {P,}

Py
Pre: Py ¢ sent
Eff: sent :=sentU {Fo}

Evalgc,
Pre: P, € received A min ¢ result

Eff: result := result U {min}

min

Pre: min € result A min ¢ sent
Eff: sent := sent U {min}

The input behaviour B%;” of Tw is clearly represented by P,. When Ty

receives message Py, then Ty is able to perform an internal computation leading
to an internal behaviour B%’;i = FEwvalgc, . Finally, the output behaviour B%’;i
is {Pymin, minPp}.

Now, we enforce maximal synchronization between the traveller and the
agencies. Thus, the max-ai TA over {Tw,Tay; | 1 < j < n}, denoted by Twr,
is defined as

Twr = |[[{Tw, Tag | 1 < j < n},

which formalizes the Wannabe Traveller protocol. From the way CA are
composed, the resulting team has no input actions, while it has the union of the
output (internal) actions of Ty and the Ty,,’s as its output (internal) actions.

4.1 Privacy

In this section, we show, through the use of TA, that W’s agent respects privacy,
in the sense of Definition 1, in the multiparty case (n > 1).

We abstract from the syntax details concerning the operations according to
which messages can be manipulated, but we assume the presence of an inference
system (defined by a derivation operator) that implements these operations.
By applying operations from this system to a set M of messages, a new set
D(M) = {m | M F m} of messages (usually called the deduction set) can be
obtained.

We restrict the initial knowledge of an automaton A to be bound to a spec-
ified set of messages ¢4. This informally means that the automaton should be
able to produce, by means of only its internal functioning, at most the mes-
sages contained in D(¢4). More specifically, when considered as a stand-alone
component, the automaton can only execute output actions belonging to D(¢4).

The initial knowledge can be increased to the set ¢y during the execution
of the protocol by the messages the automaton receives. Accordingly, the au-
tomaton knowledge becomes at most D(¢).

We use this notion of knowledge to model privacy. (In order to restrict
in a realistic way the inference power of an automaton, we assume, as usual,
polynomial boundedness.)

Throughout the analysis, we abstract from the internal computations of the
single automata. This is justified by the following: since we are interested in
privacy properties, we care about the information flow between the principals,
rather than about their internal computations. Thus, in the following we restrict
our survey to analyze external actions of our system.

First, we show that W cannot determine any other offer but the lowest one
less than or equal to her budget, if it exists (Definition 1(i)).

10

We must analyze how the knowledge of W is altered in the course of protocol
execution. We want to highlight the interactions of W with the rest of the
system. Therefore, since we choose to take W’s standpoint, communications
between agencies, and any distinction among them, are of no interest. So, we
combine agencies into a unique block that interacts with W in a way that is
indistinguishable from the original system.

We obtain this by defining 75 as the max-ai TA over {7y, | 1 < j < n}
that is obtained after hiding the actions

n—1
— J
Ecom - U Ecom)
Jj=1

i.e., all messages that the travel agencies exchange with each other:

Ty = hides,_,,,, ([{Tag;s- > Tag,})

Thus, T3 appears as a black box, with some input and output actions it
will use to interact with the environment. In our setting W plays the role of
the environment. Intuitively, this reflects the nature of the protocol itself: W
delegates to its agent the choice of the agencies to visit, and does not need to
(and cannot) know details of the agent’s transactions with them.

Proposition 1
Yout _ RTou
BTWi - Bng: :
Proof The equality follows from the construction of 7.

We can now use Proposition 1 to prove the part of Theorem 1 relative to
Definition 1(i):

Proof of Theorem 1 (part 1):

By construction, the initial knowledge of Ty is bound to ¢w = {B,inputw}.
By definition of the automaton knowledge, the only way in which 7y can sig-
nificantly increase its knowledge is by performing input actions. To correctly
model the protocol we must impose:

BEinp — BEout

Tw TAﬂn ’
and therefore, by Proposition 1
Yin You
BTWP = BTWi . (1)

From the way 74,4, is composed, it follows that zﬂjg" = {(GC,,decodey,)}.
From Section 4, it follows that (GC,, decode,) will be executed, and it will be
executed only once. Thus, B%;‘: = (GC,,decodey,,).

The latter, Proposition 1 and Equation (1) imply that the knowledge of

Tw becomes at most D(¢y,), with ¢y, = {8, inputw, (GCy, decode,,)}. Then,

11

by Lemma 3, and since we are assuming correctness (i.e., GC, is exactly
the garbled circuit computing the (tagged) minimum among all of the private
inputs), we conclude that, if W is polynomially bounded, the privacy property
of Definition 1(i) holds. m|

The proof of the second privacy property (Definition 1(ii)) is very similar.

This time we take the standpoint of Ag;, for any fixed j € {1,...,n}. Again
we view the rest of the system as a unique block that interacts with Ag; in
a way that is undistinguishable from the way that the collection of the single
actors interact with it. To this end we build the following TA:

TTW = hideC(||| {TWa’]j‘lgza' . '7nyj—17ngj+1a' . '7ngn})
where

Jj—2 n
C=UE" UUE" usv yxz¥
=1

com com com out"
i=j+1

We prove for TA—g]_ a result analogous to Proposition 1:

Proposition 2
Lour — TaZou Y
BTAgj‘ = BTAgJ-t_I’ ifj > 1,

B?:_;f =BY, ifj=1
Proof The equalities follow from the construction of Tng-

We can now complete the proof of Theorem 1:

Proof of Theorem 1 (part 2):

By construction, the initial knowledge of T4, is bound to ¢4y, = {input;}.
By definition of the automaton knowledge, the only way in which 74, can
significantly increase its knowledge is by performing input actions. To correctly
model the protocol we must impose:

Ei’"l’ —_ Eo'u,t 1 y
BTij - BTij_j’ lfj > 1,

and .
inp _ RTout if 5 _
BTA_f,J- =By, ifj=1.
Therefore, by Proposition 2
Yinp _ ma¥out
BTAgj = BTT' (2)

95

TAg]— —1

From the way 74,,_, is composed, it follows that ¥,,/~" = {(GC_1,decode;_1)}.
From Section 4, it follows that (GC_1, decode;_1) will be executed, and it will

be executed only once. Thus, B%”‘ = (GCj_1,decodej_1). From similar
gj—1

arguments, it follows that B%’;‘* =pf.

12

The latter, Proposition 2 and Equation (2) imply that the knowledge of 74,
becomes at most D(¢f49j), with

&, = {inputay,;,{GCj_1,decode; 1)} if j>1
A9i 7 {inputay,, B} if j = 1.

Then, by Lemma 3 (if j > 1) or Lemma 2 (if j = 1) and since we are assuming
correctness, we conclude that, if all actors are polynomially bounded, the privacy
property of Definition 1(ii) holds.

This concludes the proof of Theorem 1. a

5 Conclusions and Future Work

We propose a way of modelling the secure agents of [9], in the framework of
Team Automata. We investigate a possible way of analyzing privacy properties
with Team Automata.

This research is a preliminary step towards the understanding and possibly
generalization of techniques for securing mobile autonomous agents. In our
analysis we targeted a specific privacy property, which is the core of the proposal
of [9], but we aimed at a broader study of the potentials of such an approach.
The insight we gain clearly underlines a weakness of the current results in the
area. Indeed, it emerges in a natural way, that the protocol we study is not
agent oriented in spirit, but it rather offers a means of adding a security layer
over agent technologies. Our impression is that such an approach cannot carry
very far. In related ongoing research, we are exposing the computational cost
of this methodology.

References

[1] The TA webpage: http://fmt.isti.cnr.it/ mtbeek/TA.html. The TA
bibliography: http://liinwww.ira.uka.de/bibliography/Theory/TA.html.

[2] M.H. ter Beek. Team automata—a formal approach to the modeling of
collaboration between system components. Ph.D. thesis, Leiden Institute
of Advanced Computer Science, Leiden University, 2003.

[3] M.H. ter Beek, C.A. Ellis, J. Kleijn, and G. Rozenberg. Team Automata
for Spatial Access Control. In Proc. ECSCW’01, pages 59-77. Kluwer
Academic, 2001.

[4] M.H. ter Beek, C.A. Ellis, J. Kleijn, and G. Rozenberg. Synchronizations in
Team Automata for Groupware Systems. Computer Supported Cooperative
Work—The Journal of Collaborative Computing, 12(1):21-69, 2003.

[5] M.H. ter Beek, G. Lenzini, and M. Petrocchi. Team Automata for Security
Analysis of Multicast/Broadcast Communication. Technical Report 2003-
TR-13, ISTI-CNR, 2003. Presented at WISP’03.

13

[6] M.H. ter Beek, G. Lenzini, and M. Petrocchi. A framework for security
analysis with team automata. Technical Report TR-CTIT-04-13, Univer-
sity of Twente, 2004. Presented at the DIMACS Workshop on Security
Analysis of Protocols 2004.

[7] M.H. ter Beek, G. Lenzini, and M. Petrocchi. Team automata for security
—a survey— Technical Report IIT TR-06/2004, Istituto di Informatica e
Telematica - CNR, 2004.

[8] M. Bellare and S. Micali. Non-interactive oblivious transfer and applica-
tions. In Proc. CRYPTO’89, LNCS 435, pages 547-557. Springer-Verlag,
1989.

[9] C. Cachin, J. Camenisch, J. Kilian, and J. Miiller. One-round secure
computation and secure autonomous mobile agents. In Proc. ICALP’00,
LNCS 1853, pages 512-523. Springer-Verlag, 2000.

[10] J. Kleijn. Team Automata for CSCW — A Survey —. In Petri Net Technology
for Communication-Based Systems—Advances in Petri Nets, LNCS 2472,
pages 295-320. Springer-Verlag, 2003.

[11] N. Lynch. I/O Automaton Models and Proofs for Shared-Key Communi-
cation Systems. In Proc. CSFW-12, pages 14-31. IEEE, 1999.

[12] N. Lynch and M.R. Tuttle. An Introduction to Input/Output Automata.
CWI Quarterly, 2(3):219-246, 1989.

[13] P. Rogaway. The round complezity of secure protocols. PhD thesis, MIT,
Cambridge, Massachusetts, 1991.

[14] T. Sander and C.F. Tschudin. Protecting mobile agents against malicious
hosts. In Proc. Mobile Agents and Security, LNCS 1419, pages 44-60.
Springer-Verlag, 1998.

[15] A.C. Yao. How to generate and exchange secrets. In Proc. 27th FOCS,
pages 162-167. IEEE, 1986.

Notation

For convenience of the reader, we summarize the notation that we used to
describe the protocol.

o tagged-min({t1, 1), (tz, 22)) = {tmin, min(x1,zs)), where

P tl if Iy = min(xl,x2)
R I 2 otherwise;

e inputy is the private input of W;

e input 4, is the private input of Ag in the two-party protocol;

14

input; is the private input of Ag; in the multi-party protocol;
B is W’s committal data for OT, referred to (idw ,inputy).

GC = gc((idag, input ag), OT(B)) is the garbled circuit computed by Ag,
with Ag’s input hardwired into it, and information OT'(3) attached to it,
for obliviously transferring to W her garbled input, in the two-party case;

decode is the decoding information for the output of GC;

GCy = ge({idy,input,), OT(B)) is the garbled circuit analogous to GC
above, computed by AG; in the multi-party protocol;

decode; is the decoding information for the output of garbled circuit GCj;

for j > 1, gc; = gc((id;, input;), transl(decode;_1)) is the garbled circuit
computed by Ag;, with input (id;, input;) hardwired to it, and translation
information transl(decodej_1) for translating the garbled output of the
cascade of circuits computed by agencies Ag; through Ag;_; to a garbled
input for gcj;

GCj is gc; concatenated to GCj_1;

eval(GC,, decode,,, B) denotes evaluation of circuit GC,, with decoding
information decode,, to interpret the output and additional input £ to
complete the OT.

15

