Dipartimento di Informatica
Universita del Piemonte Orientale “A. Avogadro”
Via Bellini 25/G, 15100 Alessandria
http://www.di.unipmn.it

universita
degli studi
del piemonte
orientale

Achieving Self-Healing in Autonomic Software Systems: a

Case-Based Reasoning Approach
Cosimo Anglano, Stefania Montani
(cosimo.anglano,stefania. montani@unipmn.it)

TECHNICAL REPORT TR-INF-2005-09-03-UNIPMN
(October 2005)

The University of Piemonte Orientale Department of Computer Science Research
Technical Reports are available via WWW at URL http://www.di.mfn.unipmn.it/.

Plain-text abstracts organized by year are available in the directory

Recent Titles from the TR-INF-UNIPMN Technical

2005-02

2005-01

2004-08

2004-07
2004-06

2004-05

2004-04

2004-03

2004-01

2003-08

2003-07

2003-06

2003-05

2003-04

2003-03
2003-02

Report Series

DBNet, a tool to convert Dynamic Fault Trees to Dynamic Bayesian Networks,
Montani, S., Portinale, L., Bobbio, A., Varesio, M., Codetta-Raiteri, D., August
2005.

Bayesan Networks in Reliability, Langseth, H., Portinale, L., April 2005.

Modelling a Secure Agent with Team Automata, Egidi, L., Petrocchi, M., July
2004.

Making CORBA fault-tolerant, Codetta Raiteri D., April 2004.

Orthogonal operators for user-defined symbolic periodicities, Egidi, L., Teren-
ziani, P., April 2004.

RHENE: A Case Retrieval System for Hemodialysis Cases with Dynamically
Monitored Parameters, Montani, S., Portinale, L., Bellazzi, R., Leonardi, G.,
March 2004.

Dynamic Bayesian Networks for Modeling Advanced Fault Tree Features in De-
pendability Analysis, Montani, S., Portinale, L., Bobbio, A., March 2004.

Two space saving tricks for linear time LCP computation, Manzini, G., February
2004.

Grid Scheduling and Economic Models, Canonico, M., January 2004.

Multi-modal Diagnosis Combining Case-Based and Model Based Reasoning: a
Formal and Ezperimental Analisys, Portinale, L., Torasso, P., Magro, D., De-
cember 2003.

Faoult Tolerance in Grid Environment, Canonico, M., December 2003.

Development of a Dynamic Fault Tree Solver based on Coloured Petri Nets and
graphically interfaced with DrawNET, Codetta Raiteri, D.; October 2003.

Interactive Video Streaming Applications over IP Networks: An Adaptive Ap-
proach, Furini, M., Roccetti, M., July 2003.

Audio-Text Synchronization inside mp3 file: A new approach and its implemen-
tation, Furini, M., Alboresi, L., July 2003.

A simple and fast DNA compressor, Manzini, G., Rastero, M., April 2003.

Engineering a Lightweight Suffix Array Construction Algorithm, Manzini, G.,
Ferragina, P., February 2003.

Achieving Self-Healing in Autonomic
Software Systems: a Case-Based
Reasoning Approach

Cosimo Anglano, Stefania Montani
Dipartimento di Informatica
Universita del Piemonte Orientale
Via Bellini 25/g, Alessandria, Italy.
email: {cosimo.anglano, stefania.montani}@unipmn.it

Abstract

Self-healing, one of the four key properties characterizing Autonomic
Systems, can enable large-scale software systems delivering complex ser-
vices on a 24/7 basis to meet their goals without requiring any human
intervention. In this paper we present a self-healing methodology for
software systems based on Case-Based Reasoning, a reasoning paradigm
that exploits the unformalized knowledge embedded into already solved
instances of problems, able to take advantage from the fact that in soft-
ware systems most errors are just re-occurrences of known problems. We
demonstrate the practical applicability of our methodology by showing
how it can be used to obtain a self-healing software system delivering
large-scale Internet services.

1 Introduction

As pointed out by Ganek and Corbi [14], “the computer industry has spent
decades creating systems of marvelous and ever-increasing complexity, but to-
day complexity itself is the problem.” By looking at today’s large-scale net-
worked applications and services, whose growth has been quite substantial in
the recent years, we can indeed observe that their inherent complexity, hetero-
geneity, and dynamism makes inappropriate, if not impossible, the traditional
human-centered approach to system administration. As a result, the attention
of the industrial and academic communities has been driven towards novel so-
lutions allowing the design and the implementation of self-managing computer
systems. The Autonomic Computing paradigm [14, 21, 31, 44], inspired by the
human autonomic nervous system, has been recently proposed as an approach
for the development of computer and software systems and applications that
can manage themselves in accordance with high-level guidance from humans.

An Autonomic Computing Systems (ACS) is composed of managed elements,
whose behavior is controlled by autonomic managers that apply suitable policies
in order to automate the process of system management. Autonomic managers
behave according to the so-called autonomic cycle [21, 31, 44], schematically
depicted in Fig. 1, that encompasses four distinct steps. More specifically, an

4 . N
Autonomic Manager

Analyze

Monitor Execute

i v

Managed element

Figure 1: The architecture of an Autonomic Manager, illustrating the autonomic
cycle.

autonomic manager continuously monitors the corresponding managed element
(in the Monitoring step) in order to collect information concerning its state and
behavior, analyzes this information (in the Analysis step) to determine possi-
ble deviations from the correct or intended behavior, devises proper corrective
actions (in the Plan step) to bring the system back into normal behavior, and
implements these plans (in the Ezecution step) by exploiting suitable actuation
mechanisms that must be provided by the managed element.

In order to be able self-managing, an ACS should exhibit the so called Self-
* properties, that is it should be Self-Configuring (i.e., able to (re)configure
itself under varying and unpredictable conditions), Self-Optimizing (i.e., able to
detect suboptimal behavior and to optimize itself to improve its execution), Self-
Protecting (i.e., able to protect itself from both external and internal attacks),
and Self-Healing (i.e., able to detect and recover from problems and/or failures).
Obtaining these properties is the goal of autonomic managers, whose activity
is driven by both human-specified policies and knowledge that is acquired and
updated during the operation of the system.

The Autonomic Computing paradigm is particularly attractive for large-
scale software systems aimed at delivering on-line services on a 24/7 basis, as
for instance those described in [9, 29]. The very large size of these systems (that
may typically include from hundreds to thousands machines), and the adoption
of customized application software and middleware, makes at the same time ser-

vice failures relatively frequent and human-centered system administration very
hard, if not impossible. Consequently, self-managing capabilities, and especially
self-healing, represent a very attractive solution for the management problems
of these systems. In this paper we focus on the problem of achieving self-healing
in (large-scale) software systems, that can be defined as the ability of a system
to repair itself after the occurrence of a fault (in one or more of its constituent
components) that led to an error, that in turn caused a service failure (that is,
a deviation from the correct or intended behavior of a system delivering a ser-
vice) [1]. As prescribed by the autonomic cycle, a self-healing software system
must be able to monitor its own behavior, in order to identify service failures,
to analyze these failures with the aim of diagnosing the faults causing them,
to devise a suitable repair plan able to fix the faults, and to ezecute the above
plans by means of suitable mechanisms.

While monitoring [41, 42] and reconfiguration[12, 17, 26] are certainly im-
portant, the ability to correctly diagnose the faults causing a service disruption,
and to devise the corresponding repair strategy, is crucial to the achievement
of self-healing. As a matter of fact, if a service failure is ascribed to the wrong
cause, an ineffective (or even wrong) solution is proposed, with the consequence
that other undesired behavior may be introduced into the system. In this paper
we address the problem of devising fault diagnosis and remediation techniques
that can be used by an autonomic manager of an Autonomic Software System
to identify both the causes and the possible solutions of a service failure. More
specifically, we propose a methodology supporting autonomous service failure
diagnosis and remediation (as opposed to fault diagnosis and remediation pur-
sued in traditional approaches) that exploits Case-Based Reasoning (CBR), a
reasoning paradigm able to exploit the unformalized knowledge embedded into
already solved instances of problems [2, 23].

The rest of the paper is organized as follows. In Section 2 we present the
related work, while in Section 3 we briefly review the main features of CBR.
In Section 4 we discuss how CBR can be used for service failure diagnosis and
remediation in Autonomic Software Systems, and in Section 5 we demonstrate
our technique by using the failure and repair data of some real, large-scale
Internet Service systems reported in [28]. Finally, Section 6 concludes the paper
and outlines future research work.

2 Related Work

Various approaches to fault diagnosis and remediation have been proposed in the
literature. Sterrit [40] proposes an approach to fault diagnosis based on event
correlation, where various symptoms of system malfunctions (represented by
alarms triggered by the various system components that are collected during the
monitoring phase) are correlated in order to determine the (set of) fault(s) that
have occurred. An alternative approach is proposed by Garlan and Schmerl [15],
where fault diagnosis is performed by means of a suitable set of models. Brodie
et al. [10] propose a technique in which recurring software errors are identified

by means of the call stack generated by the faulty program, that are stored into
a database and are used for fault diagnosis. Littman et al. [24] propose cost-
sensitive fault remediation, a planning-based technique aimed at determining
the most cost-effective system reconfiguration able to bring the system back to
full functionality. Planning represents also the basis for the fault remediation
strategy proposed by Arshad et al. [5].

The main drawback of these approaches is that they require the availability
of formalized and widely recognized background knowledge (henceforth referred
to as structured knowledge) on the structure and/or the behavior of the system.
For instance, planning-based techniques require a description of the domain, the
states, and the correct configurations of the system, while event correlation re-
quires the availability of a model describing how the various system components
interact among them. Unfortunately, significant efforts are usually required to
build, maintain, and use structured knowledge, with the consequence that its ap-
plicability to large-size systems, exhibiting complex behaviors and interactions
among their components, may be problematic. Another drawback of these ap-
proaches is their “fault orientation”, that is they are triggered by individual
component faults. Consequently, they attempt to correct a fault as soon as
it is diagnosed, even if it is not (yet) causing any service disruption because
it is dormant fault [1], or a fault that has been masked by the fault-tolerance
techniques embedded into the system. Devising a repair plan for a fault that
can be masked by the system is a waste of resources, and the same holds true
for a dormant fault if, when it occurs, can be masked as well. Furthermore,
from the perspective of service delivery, a dormant or a masked fault has little
or no importance until it causes a service failure (i.e., it becomes active [1]).
However, while pro-active repair of dormant faults can be important in physical
systems, for software systems it is much less important, as an unnoticed bug
or a misconfiguration (that are, by definition, dormant faults) may never turn
into an active fault causing a service failure. For instance, an unnoticed bug
may be corrected as a side effect of a software update performed to fix another
problem. Moreover, the correction of dormant or masked faults (preventive
maintenance [1]) requires the availability of a model of the system, that brings
us back to the problem of structured knowledge mentioned before. Finally, the
proposals discussed before either address fault diagnosis or fault remediation,
but none of them addresses both issues at the same time.

The CBR-based methodology we present in this paper does not suffer from
the problems mentioned above. It is indeed particularly suited to those do-
mains in which a formalized and widely recognized background knowledge is
not available. This is often the case when designing an Autonomic Computing
System for which structured knowledge is too hard to collect and maintain, or
when “retrofitting” self-healing capabilities into existing legacy applications [19].
Moreover, CBR seems particularly appropriate to failure diagnosis and reme-
diation in software systems, as in this domain most errors are re-occurrence of
known problems [5, 10, 20, 28, 39, 46], and provides a unique framework in
which failure diagnosis and remediation are performed jointly. Nevertheless,
rather interestingly, very few proposals of adoption of CBR in this field can be

found. To the best of our knowledge, the only proposal resembling ours has
been published in [10], where a Case-Based retrieval system for discovering soft-
ware problems without requiring human intervention is presented. Despite this
contribution represents a first concrete step in the direction of relying on CBR
for Autonomic Computing, the approach is still quite limited, as it consists in
a pure retrieval systems, in which the other steps of the CBR cycle (see section
3) are ignored, and the problem solution is not provided.

3 Case-Based Reasoning

Case-Based Reasoning is a reasoning paradigm able to exploit the unformalized
knowledge embedded into already solved instances of problems [2, 23], called
cases. In some sense, CBR is able to mimic human experts’ analogical reason-
ing, by remembering solutions to similar problems adopted in the past, and by
adapting them to the current situation. The problem solving experience gained
in the past is explicitly taken into account by storing past cases in a library (the
case base), and by suitably retrieving them when a new problem has to be dealt
with. A case consists of the following information:

o the problem description, i.e. a collection of {feature,value) pairs able to
summarize the problem at hand;

e the case solution, describing the solution adopted for solving the corre-
sponding problem;

e the case outcome, describing the (positive or negative) result obtained by
applying the solution itself.

Two basic possibilities exist for exploiting CBR for complex problems solving,
namely:

e Precedent Case-Based Reasoning, where the emphasis is on retrieving past
cases, and on using past solutions as a justification for the solution of the
current problem, with almost no adaptation (e.g. legal reasoning);

e (Case-Based Problem Solving, where retrieved solutions to previous similar
cases need to be adapted to fit the current situation (e.g. planning, design,
diagnosis, etc.).

Case-Based Problem Solving is the most general approach, and can be summa-
rized by the following four basic steps, known as the CBR cycle [2]:

1. Retrieve the most similar case(s) from the case library;

2. Reuse them, and more precisely their solutions, to solve the new problem;

w

. Revise the proposed new solution;

W~

. Retain the current case for future problem solving.

In the above cycle some steps may be missing or may be collapsed. For instance,
it is quite common to view the reuse and revise steps as a single one, or to avoid
the retain step if the current case is in some sense “covered” by other cases
already stored in the library. These steps may be fully automated, although
usually some user intervention is needed to perform adaptation and reuse.

A critical aspect affecting the efficiency of CBR is case retrieval, whose com-
putational cost strongly depends on the organization of the case base. Various
solutions have been proposed in the literature, ranging from flat memories, in
which cases are stored sequentially as lists or feature vectors, to more structured
organizations (like shared features nets and discrimination nets [23]). While flat
memories are simple to update, but require clever strategies to avoid exhaustive
search [32, 36], more complex organizations are harder to organize and maintain,
but allow for a faster search.

As anticipated in Section 2, CBR is particularly appealing in situations where
the domain knowledge is poor and difficult to explicit (e.g., when a model of
the system is not available), since the bottleneck of knowledge acquisition and
representation is reduced, as new (unformalized) knowledge is automatically
stored in the case base during the normal working process: no additional effort
is required to the user and/or to the domain expert. As the case library grows,
more and more representative examples can be retrieved, and it will become
easier to find a proper solution to the problem at hand. CBR has been applied
in several fields, mainly dealing with diagnostic problem solving [4, 22] or plan-
ning, and has successfully been exploited also for industrial applications [34, 33].
Moreover, CBR can be easily integrated with other knowledge sources (if avail-
able) and with other reasoning paradigms, making the methodology suitable also
for of applications with a partially available background knowledge, or with a
known problem-diagnosis model. The interest in multi modal approaches in-
volving CBR is recently increasing through different application areas [3, 13],
from planning [7] to classification [43] and to diagnosis [25], and from legal
[8, 35] to medical decision support [6, 27, 37, 47]. Different reasoning methods
can be combined in the same application, or it can be possible to switch among
alternative reasoning paradigms. CBR is particularly well suited for integration
with Rule Based or Model Based systems[16].

4 A CBR-based Approach to Self-Healing

As discussed in the Introduction, a complete self-healing solution requires that
all the steps of the autonomic cycle are carried out. Roughly speaking, there are
two possible ways of doing so, namely (a) integrating the autonomic cycle into
the system, thus in a certain sense embedding the autonomic manager into the
managed system, and (b) “surrounding” the managed system by an external
closed control loop (an approach named ezternalization in [15], where it has
been proposed for the first time). While the former approach is undoubtedly
more general, it requires innovative design and implementation techniques that,
at the moment, are not mature enough. Furthermore, it cannot be used with

existing applications whose size, complexity, and unavailability of source code
may prevent any required modification. For these reasons, an externalization
approach appears more appropriate.

Our proposal, schematically illustrated in Fig. 2, uses externalization, as
done in Garlan and Schmerl’s work [15], but relies on CBR, rather than re-
sorting to a model of the system, so that the need of acquiring and maintaining
structured knowledge about the system is avoided. The basic idea of externaliza-

e , ™
Autonomic Manager

CBR Analysis
Module
observed
case

problem
solution Bystem-agnostic
part
______________ _| CasePreparation | _ _{ _________
Module
T symptoms .
Repai ISystem-specific
Mepallr Monitoring part
odule Module

repair
plan

Running System
(managed element)

| |
/

Figure 2: CBR-based Self-Healing

tion [15] is to treat the system as a “black box” surrounded by a set of external
modules that form a “closed-loop” controlling the “health” of the system and
performing proper repair actions in case of service failures. In our approach this
closed loop includes, in addition to the Running System (corresponding to the
managed element in the autonomic computing terminology), four external mod-
ules, that jointly act in such a way that self-healing is obtained. In particular,
when the Monitoring module detects a service failure, it passes the set of symp-
toms of this misbehavior to the Case Preparation module, whose purpose is
to assemble a case with the proper structure and passes it to the CBR Analysis
module. The CBR Analysis module (which is the core of our architecture),
upon receiving an observed case from the Case Preparation module, finds the
solution to the case at hand (or, more precisely, the best solution among those
available in the case base), and passes it to the Repair Module that, by using
suitable system-specific mechanisms, executes the corresponding repair plan.
Note that during the repair a new case, describing the new solution derived
from a previously-stored one, can be generated and stored into the case base.

As shown in Fig. 2, the external modules can be classified either into System-
specific (i.e., that must be tailored to the specific characteristics of the running
system) or System-agnostic. While the monitoring and repair activities require
the availability and usage either of mechanisms provided by the running system
or of adapted third-party components [18] (hence their classification as system-
specific), the problem resolution activity (performed by the CBR Analysis mod-
ule) does not rely upon any particular system feature (hence it classification as
system-agnostic, although an adaptation strategy would require specific domain
knowledge). The Case Preparationmodule has been instead drawn as crossing
the dotted line separating system-specific from system-agnostic modules, as it
interfaces the system-specific part of the system with the system-agnostic one.

As can be observed by comparing Fig. 2 with Fig. 1 (illustrating the au-
tonomic cycle), our architecture closely matches the behavior of a self-healing
autonomic manager. This is the consequence of the fact that the CBR cycle fits
very well into the autonomic cycle, since it naturally covers the Analysis and
Planning phases, while the other two phases (i.e., Monitoring and Ezecution)
are covered by the Monitoring and Repair modules of our architecture. In
particular, the Retrieve step of the CBR cycle corresponds to the Analysis step
of the autonomic cycle, the Reuse-Revise steps of CBR, where past retrieved
solutions are evaluated (and, if necessary, adapted) correspond to the Planning
step, and the Knowledge used by the Autonomic Manager is contained in the
Case Base.

In order to behave as a really self-healing system, our infrastructure must
be able to work as much as possible in an autonomous way, i.e. without human
intervention. However, this can happen only if a case base containing enough
instances of solved cases is available, but in general it is not available when the
system is initially put into operation. We therefore envision a bootstrap phase,
enabling the collection of the initial cases, during which problem solution is per-
formed by humans. However, as the system experiences failures that are solved
by human operators, the case base grows to include the information concerning
solved problems, so after a relatively limited amount of time problems solution
can be performed autonomously. An obvious question that may arise is con-
cerned with the size of the case base, that may potentially become very large if
the number of stored cases keeps increasing. However, in these situations it is
possible to keep the case base size within reasonable limits by resorting to tech-
nique already published in the literature [38], like for instance the definition of
suitable “prototypes” able to summarize the information carried by the ground
cases they represent, that are stored in place of the cases.

As a final consideration, we note that some aspects of the CBR implementa-
tion are strongly domain dependent; typically, the possibility of simply reusing
a case solution vs. the need for adaptation and, in this situation, the details of
the adaptation strategy, cannot be provided in a general fashion, but need to
be tailored to the application under consideration. Nevertheless, the mapping
of the CBR steps to the self-healing cycle appears to be general enough to be
shared across different contexts.

5 Case Study: Self-Healing in Large-Scale In-
ternet Services

In this Section we illustrate how our approach can be practically used to obtain
self-healing in a computing system conceived to deliver large-scale Internet ser-
vices. In order to make our discussion as realistic as possible, we use as a case
study one of the systems described in [28, 29], for which the data concerning
some representative service failures and the corresponding repair actions are
available.

The system chosen for our discussion is the one named Online in [28, 29],
whose purpose is to deliver an online service/Internet portal on a 24/7 fashion.
The system is spread across two data centers, and includes about 500 machines
altogether. Each data center hosts a subsystem using a three-tier architecture, in
which a load-balancing tier distributes the load across a set of front-end servers,
that in turn rely on a set of back-end servers to carry out their operation. The
Online computing system uses both Sparc and x86 machines running the Solaris
operating system, while the software and the middleware used to provide the
service is customized, and is updated very frequently (typically every week).

The sheer size of the system makes the fault frequency relatively high, so
proper fault-tolerant techniques and strategies have been incorporated into its
design. As shown in [28], these techniques work reasonably well and are able
to mask a large fraction of those faults that can be ascribed to node hard-
ware/software problems (although some of them turn into service failures that
must be properly handled), but are very often unable to mask those faults that
are caused by operators’ errors (typically software misconfigurations), that con-
sequently turn into service failures.

In order to illustrate how our self-healing approach works, we consider three
service failures (and the corresponding solutions), two of which have been taken
from [28], while the third one has not been observed in the actual system, but
is very plausible in practice. Starting from these failures, we describe a possible
case structure, and we show how a service failure can be autonomously repaired
by our self-healing infrastructure. The service failures we consider for our case
study are the following:

e Failure 1 (from [28]): the system was not delivering the email messages
to its users. The failure was found to be caused by a software upgrade
of the front-end daemon that handles username and alias lookup, that
inadvertently changed the format of the string used by that daemon to
query the back-end database server that stores usernames and aliases. The
daemon continually retried all lookups because they were failing, eventu-
ally overloading the back database, causing also the risk of bringing down
other services using it. The problem was finally fixed by rolling back the
software upgrade and rebooting the database and front-end nodes.

e Failure 2 (fictitious): the system was, again, not delivering the email
messages to its users, but this time no increase in the username/alias

lookup frequency occurred. The inspection of the logs of the email server
however revealed a significant fraction of discarded messages. The failure
was found to be caused by a misconfiguration of the email servers, that
set an internal buffer to a too small value. The problem was fixed by
increasing the buffer size and by restarting the email service on front-end
nodes.

Failure 3 (from [28]): users’ posting were (sometimes) not showing up
on the service’s newsgroup. The failure was due to an operator miscon-
figuration that had caused the newsgroup posting server not to run the
daemon performing username/alias lookups. This server requires indeed
that the message sender is a valid Online user, otherwise the message is
silently dropped. The posted messages were being silently dropped since
all the user authentication requests were failing because the username
lookup daemon was not running. The failure was fixed by correcting the
configuration file, and by restarting the newsgroup service on front-end

nodes.

Let us now discuss a possible structure for the cases based on the information
concerning the failures and their symptoms. As discussed in Section 3, a case
consists in the problem description (i.e., a collection of <feature,value> pairs),
the case solution (i.e., a description of the solution adopted to solve the cor-
responding problem) and the case outcome (describing the positive or negative
result obtained by applying the solution). Let us start with problem description
by giving the list of features used for problem description, reported in Table 1,
that correspond to the symptoms of the failures. This list is derived from the

Table 1: Features used to describe cases

Feature Possible Values | Description

email Yes/No indicates whether email messages are
deliv. received (Yes) or not (No)

lookup None/Low/ indicates the number of username/alias
number Normal / High lookups per unit of time

disc. Yes/No indicates whether any service log reports
msg. discarded messages (Yes) or not (No)
news msg Yes/No indicates whether all posted messages appear
appear in the newsgroup (Yes) or not (No)
lookup daemon Yes/No indicates whether the username/alias
running look daemon is running (Yes) or not (No)

three service failures discussed above and has been chosen in order to suit the
example (of course, in general the cases may have a more complex structure).
Each case will contain all the features listed above, although some of them may

10

have not been observed for a specific case, plus two fields corresponding to its
solution and outcome. Table 2 reports the case base for our example.

Table 2: The case base corresponding to the three service failures. The NULL
value is used to indicate that the corresponding feature has not been observed.

Case | email | lookup | disc. | news msg | lookup | problem case
desc. | deliv. | number | msg. | appear daemon | solution outcome
running

case 1 | No High No NULL NULL rollback to previous positive
software version and
reboot front-end nodes

case 2 | No Normal Yes NULL NULL resize buffer and positive
restart email service

case 3 | NULL | None Yes No No start lookup daemon and | positive
restart news service

Let us now describe how our self-healing methodology would solve a new
service failure, after it has been observed by the Monitoring module. We as-
sume that the Case Preparation module (not described here because of its
simplicity) formats the new case according to the structure described before,
and passes it to the CBR Analysis module. For our example, let us assume
that the new case has the structure reported in Fig. 3, that corresponds to an

email | lookup disc. | news msg | lookup daemon
deliv. | number | msg. appear running
No NULL Yes NULL Yes

Figure 3: Case corresponding to the new service failure that is being observed

email messages delivery failure, for which message discards are reported into
the servers logs, and the lookup daemon is observed to be running.

Starting from this case, the CBR Analysis module retrieves the most similar
past case chosen among those stored into the case base. In order to do so, it
must have a way of measuring the similarity between cases, that in turn requires
the definition of a measure of distance among cases. Generally speaking, the
distance d(c;, ¢;) between cases ¢; and ¢; can be computed as weighted average
of the normalized distances among their various features, that is:

N
Zwk ~d(c;i(k), cj(k))
d(eiy) = = &)

where d(c;(k),c;j(k)) and w; denote the normalized distance between feature
k of cases ¢; and c;, and the weight associated with this feature, respectively.

11

The features of the cases used in our example may take only either boolean or
categorical values, for which two different measures of distance can be used. For
boolean features we use to so-called overlap distance [45], that is defined as:

. oy = [0 if ci(k) = ¢;(k)
d(ci(k), cj (k) _{ 1 otherwise
For categorical features (only lookup number, in our case) we use a similarity

table that explicitly lists the distance among all the pairs of possible values,
defined as follows: !

0 if ci(k) =cj(k)

0.5 if ¢i(k) = None A ¢j(k) = Low or viceversa

0.5 if ¢i(k) = Low A ¢;j(k) = Normal or viceversa
d(ci(k),cj(k)) =< 0.5 if ¢;(k) = Normal A c;(k) = High or viceversa

0.75 if ¢;(k) = None A ¢j(k) = Normal or viceversa
0.75 if ¢i(k) = Low A cj(k) = High or viceversa
1 otherwise

By using the above distance measures, and by defining as ’1’ the distance
between the value NULL and any other value, the distances between the new
case (Fig. 3) and each case included in the case base (Table 2) are those reported
in Table 3, from which we can conclude that the closest match to the new case
is case 2.

Table 3: Distances between the new service failure and the cases in the case
base

distance w.r.t. | email | lookup | disc. | news msg | lookup overall
deliv. | number | msg. appear daemon | distance
case 1 0 1 1 1 1 %
case 2 0 1 0 1 1 %
case 3 1 1 0 1 1 %

Once the most similar case has been determined, the corresponding solution
can be used to solve the problem corresponding to the new case. As already
mentioned in Section 3, sometimes this solution may be readily used to solve
the new problem (as in the example discussed in this section), while in other
cases it may have to be adapted if it does not solve directly the new problem.
Solution adaptation, however, cannot be always automated in a simple way, so
in these cases some form of human intervention may be required. A similar
consideration applies to the execution of the devised repair plan, that requires
the availability of suitable reconfiguration/repair mechanisms, that sometimes
may be hard to develop in a completely autonomous manner. In spite of that,

1Of course, other distance values are possible, but for our purposes this simple definition
is sufficient.

12

we believe that our system represents a step towards the achievement of a full
self-healing behavior. More precisely, we believe that our system fits between
Level 8 (Predictive) and Level 4 (Adaptive) of the Ganek and Corbi’s scale of
autonomicity [14], depending on the amount of human intervention required to
carry out the tasks mentioned above. As a final consideration, it is worth to
point out that, although the example presented in this section is relatively sim-
ple, at the same time it is representative of a large class of real-world situations.
Moreover, since the CBR methodology can handle exactly in the same way more
complex cases, we believe that our approach can be practically used to achieve
self-healing in real-world, large-scale software systems.

6 Conclusions

In this paper we have presented a CBR-based approach for the achievement
of self-healing in software systems that, unlike alternative solutions, directly
addresses service failures rather than individual component faults, so that un-
necessary repair actions are avoided. Moreover, it does not require the avail-
ability of structured knowledge like, for instance, models of the behavior of the
system, thus easing its applicability to large-scale, complex software systems.
The suitability of this approach to real world applications has been exemplified
by showing how it can be used to make a large-scale Internet service system
able to self-heal. The relative simplicity of the case study chosen to illustrate
our methodology is in no way a requirement for the applicability of CBR, that
can handle exactly in the same way more complex cases. Therefore, we be-
lieve that our methodology represent a concrete step towards the achievement
of self-healing for complex, large-scale software systems.

As future work, we plan to apply our methodology in practice by using it
to provide self-healing in real-world large-scale systems, like PlanetLab [11] and
OurGrid [30]. In order to do this, an implementation of both the system-agnostic
and system-specific modules of our infrastructure need to be implemented and
integrated.

References

[1] A. Avizienis and J. Laprie and B. Randell and C. Landwehr. Basic Concepts
and Taxonomy of Dependable and Secure Computing. IEEE Transactions
on Dependable and Secure Computing, 1(1), January-March 2004.

[2] A. Aamodt and E. Plaza. Case-Based Reasoning: foundational issues,
methodological variations and systems approaches. AI Communications,
7(1):39-59, 1994.

[3] D. Aha and J. Daniels, editors. Proc. AAAI Workshop on CBR Integra-
tions. AAAT Press, 1998.

13

[4]

[5]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

K.-D. Althoff and S. Wess. Case-Based Knowledge Acquisition, Learning,
and Problem Solving in Diagnostic Real World Tasks. In Proc. of Fifth
European Knowledge Acquisition for Knowledge-Based Systems Workshop
(EKAW ’91), Crieff, Scotland, UK, Jun. 1991.

N. Arshad, D. Heimbigner, and A. Wolf. A Planning Based Approach to
Failure Recovery in Distributed Systems. In Proc. of 2"* ACM Workshop
on Self-Healing Systems (WOSS ’04), Newport Beach, CA, USA, October
2004. ACM Press.

I. Bichindaritz, E. Kansu, and K. Sullivan. Case-based reasoning in
care-partner: Gathering evidence for evidence-based medical practice. In
B. Smyth and P. Cunningham, editors, Proc. 4th Furopean Workshop on
Case-Based Reasoning, volume 1488 of Lecture Notes in Computer Science,
pages 334-345, Dublin, Ireland, September 1998. Springer.

P.P. Bonissone and S. Dutta. Integrating case-based and rule-based reason-
ing: the possibilistic connection. In Proc. of 6th Conference on Uncertainty
in Artificial Intelligence, Cambridge, MA, USA, July 1990.

L.K. Branting and B.W. Porter. Rules and precedents as complementary
warrants. In Proc. of 9th National Conference on Artificial Intelligence,
Anaheim, CA, USA, July 1991. AAAT Press.

E. Brewer. Lessons from giant-scale services. IEEE Internet Computing,
5(4), 2001.

M. Brodie, S. Ma, G. Lohman, T. Syeda-Mahmood, L. Mignet, N. Modani,
J. Champlin, and P. Sohn. Quickly finding known software problems via au-
tomated symptom matching. In Proc. of the 2nd International Conference
on Autonomic Computing, Seattle, WA, USA, June 2005.

B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and
M. Bowman. PlanetLab: An Overlay Testbed for Broad-Coverage Services.
ACM SIGCOMM Computer Communications Review, 33(3), July 2003.

E. Dashofy, A. van der Hoek, and R. Taylor. Towards Architecture-based
Self-Healing Systems. In Proc. of 18 ACM Workshop on Self-Healing Sys-
tems (WOSS ’02), Charleston, SC, USA, November 2002. ACM Press.

E. Freuder, editor. Proc. AAAI Spring Symposium on Multi-modal Rea-
soning. AAAT Press, 1998.

A.G. Ganek and T.A. Corbi. The dawning of the autonomic computing
era. IBM Systems Journal, 42(1):5-18, 2003.

D. Garlan and B. Schmerl. Model-based Adaptation for Self-Healing Sys-
tems. In Proc. of 15t ACM Workshop on Self-Healing Systems (WOSS '02),
Charleston, SC, USA, November 2002. ACM Press.

14

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

K.J. Hammond. Case-Based Planning: viewing planning as a memory task.
Academic Press, 1989.

M. Hawthorne and D. Perry. Architectural Styles for Adaptable Self-
Healing Dependable Systems. In Proc. of 2005 ACM International Con-
ference on Software Engineering (ICSE ’05). ACM Press, May 2005.

G. Kaiser, J. Parekh, P. Gross, and G. Valetto. Kenesthetics eXtreme:
An External Infrastructure for Monitoring Distributed Legacy Systems.
In Proc. of 5th IEEE International Active Middleware Workshop, Seattle,
WA, USA, June 2003. IEEE CS Press.

G. Kaiser, J. Parekh, P. Gross, and G. Valetto. Retrofitting Autonomic
Capabilities onto Legacy Systems. Technical Report TR CUCS-026-03,
Department of Computer Science, Columbia University, 2003.

M. Kalyanakrishnam, Z. Kalbarczyk, and R. Iyer. Failure Data Analysis
of a LAN of Windows NT Based Computers. In Proc. of 18" IEEE Sym-
posium on Reliable Distributed Systems, Lausanne, Switzerland, October
1999. IEEE CS Press.

J.0. Kephart and D.M. Chess. The vision of autonomic computing. IEEE
Computer, January 2003.

J. Kolodner and R. Kolodner. Using experience in clinical problem solving:
introduction and framework. IEEE Transactions on Systems, Man and
Cybernetics, 17:420-431, 1987.

J.L. Kolodner. Case-Based Reasoning. Morgan Kaufmann, 1993.

M. Littman, T. Nguyen, and H. Hirsh. Cost-Sensitive Fault Remediation for
Autonomic Computing. In Proc. of IJCAI Workshop on AI and Autonomic
Computing: Developing a Research Agenda for Self-Managing Computer
Systems, Acapulco, Mexico, August 2003.

D. Macchion and D. Vo. A hybrid knowledge-based system for technical
diagnosis learning and assistance. In S. Wess, K. Althoff, and M. Richter,
editors, Proc. 1st FEuropean Workshop on Case-Based Reasoning, volume
837 of Lecture Notes in Computer Science, pages 301-312, Kaiserslautern,
Germany, November 1993. Springer.

M. Mikic-Rakic, N. Mehta, and N. Medvidovic. Architectural Style Re-
quirements for Self-Healing Systems. In Proc. of 1°¢ ACM Workshop on
Self-Healing Systems (WOSS ’02), Charleston, SC, USA, November 2002.
ACM Press.

S. Montani, L. Portinale, G. Leonardi, and R. Bellazzi. Case-based retrieval
to support the treatment of end stage renal failure patients. in press.

15

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do Internet ser-
vices fail, and what can be done about it? In Proc. of 4t* Useniz Sym-
posium on Internet Technologies and Systems (USITS ’03), Seattle, WA,
USA, March 2003.

D. Oppenheimer and D. Patterson. Architecture and Dependability of
Large-Scale Internet Services. IFEE Internet Computing, September-
October 2002.

The ourgrid home page. http://www.ourgrid.org. Accessed on August 2nd,
2005.

M. Parashar and S. Hariri. Autonomic Computing: An Overview. In Proc.
of 2004 Workshop on Unconventional Programming Paradigms, volume
3566 of Lecture Notes in Computer Science, Mont Saint-Michel, France,
September 2004. Springer.

L. Portinale, P. Torasso, and D. Magro. Selecting most adaptable diagnos-
tic solutions through pivoting-based retrieval. In D. Leake and E. Plaza,
editors, Proc. of 2nd International Conference on Case-Based Reasoning,
volume 1266 of Lecture Notes in Computer Science, pages 393-402, Provi-
dence, RI, USA, July 1997. Springer.

R. Bergmann. FEzperience Management: Foundations, Development
Methodology, and Internet-Based Applications, volume 2432 of Lecture
Notes in Computer Science. Springer, Berlin, 2002.

R. Bergmann and K.-D. Althoff and S. Breen and M. Goker and M. Manago
and R. Traphoner and S. Wess. Developing Industrial Case-Based Reason-
ing Applications. The INRECA Methodology, volume 1612 of Lecture Notes
in Artificial Intelligence. Springer, Berlin, 2003.

E. Rissland and D. Skalak. Combining case-based and rule-based reasoning:
A heuristic approach. In N. S. Sridharan, editor, Proc. of 11th International
Joint Conference on Artificial Intelligence, pages 524-530, 1989.

J.W. Schaaf. Fish and shrink. a next step towards efficient case retrieval
in large-scale case bases. In I. F. C. Smith and B. Faltings, editors, Proc.
3rd European Workshop on Case-Based ReasoningEWCBR, volume 1168 of
Lecture Notes in Computer Science, pages 362-376, Lausanne, Switzerland,
November 1996. Springer.

R. Schmidt, S. Montani, R. Bellazzi, L. Portinale, and L. Gierl. Case-based
reasoning for medical knowledge-based systems. International Journal of
Medical Informatics, 64(2-3):355-367, 2001.

R. Schmidt, S. Montani, R. Bellazzi, L. Portinale, and L. Gierl. Case-based
reasoning for medical knowledge-based systems. International Journal of
Medical Informatics, 2-3, 2001.

16

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

C. Simache, M. Kaaniche, and A. Saidane. Event Log based Depend-
ability Analysis of Windows NT and 2K Systems. In Proc. of the 2002
Pacific Rim International Symposium on Dependable Computing (PRDC
’02), Tsukuba, Japan, December 2002. IEEE CS Press.

R. Sterrit. Autonomic networks: engineering the self-healing property. En-
gineering Applications of Artificial Intelligence, 17:727-739, October 2004.

R. Sterrit and S. Chung. Personal Autonomic Computing Self-Healing Tool.
In Proc. of 11t" International Conference and Workshop on the Engineering
of Computer-Based Systems (ECBS ’04), Brno, Czech Republic, May 2004.
IEEE CS Press.

R. Sterrit, D. Gunning, A. Meban, and P. Henning. Exploring Autonomic
Options in an Unified Fault Management Architecture through Reflex Re-
actions via Pulse Monitoring. In Proc. of 11t International Conference
and Workshop on the Engineering of Computer-Based Systems (ECBS "04),
Brno, Czech Republic, May 2004. IEEE CS Press.

J. Surma and K. Vanhoof. Integration rules and cases for the classification
task. In M. Veloso and A. Aamodt, editors, Proc. 1st Int. Conference on
Case-Based Reasoning, volume 1010 of Lecture Notes in Computer Science,
pages 325-334, Sesimbra, Portugal, October 1995. Springer.

H. Tianfield and R. Unland. Towards autonomic computing systems. FEn-
gineering Applications of Artificial Intelligence, 17:689-699, 2004.

D.R. Wilson and T.R. Martinez. Improved Heterogeneous Distance Func-
tions. Journal of Artificial Intelligence Research, 6, 1997.

J. Xu, Z. Kalbarczyk, and R. Iyer. Networked Windows NT System Field
Failure Data Analysis. In Proc. of the 1999 Pacific Rim International
Symposium on Dependable Computing (PRDC ’99), Hong Kong, China,
December 1999. IEEE CS Press.

L.D. Xu. An integrated rule- and case-based approach to AIDS initial
assessment. International Journal of Biomedical Computing, 40:197-207,
1996.

17

