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Abstract

XML is fast becoming the standard format to store, exchange and publish over the web, and is getting

embedded in applications. Two challenges in handling XML are its size (the XML representation of a

document is significantly larger than its native state) and the complexity of its search (XML search involves

path and content searches on labeled tree structures). We address the basic problems of compression,

navigation and searching of XML documents. In particular, we adopt recently proposed theoretical

algorithms [11] for succinct tree representations to design and implement a compressed index for XML

called XBzipIndex in which the XML document is maintained in a highly compressed format; both

navigation and searching can be done uncompressing only a tiny fraction of the data. This solution relies

on compressing two arrays derived from the XML data. With detailed experiments we compare this with

other compressed XML indexing and searching engines to show that XBzipIndex has compression ratio

up to 35% better than the ones achievable by those other tools, and its time performance on SubPathSearch

and ContentSearch search operations is order of magnitudes faster: few milliseconds over hundreds of MBs

of XML files versus tens of seconds, on standard XML data sources. Our library of XML compression

and searching routines is downloadable from http://roquefort.di.unipi.it/~ferrax/xbzipLib.tgz.

1 Introduction

In 1996 the W3C started to work on XML as a way to enable data interoperability over the internet; today,

XML is the standard for information representation, exchange and publishing over the Web. In 2003 about

3% of global network traffic was encoded in XML; this is expected to rise to 24% by 2006, and to at least

40% by 2008 [15]. XML is also seeping into many applications [1].

XML is popular because it encodes a considerable amount of metadata in its plain-text format; as a



result, applications can be more savvy about the semantics of the items in the data source. This comes at a

cost. At the core, the challenge in XML processing is three-fold. First, XML documents have a natural tree-

structure, and many of the basic tasks that are quite easy on arrays and lists—such as indexing, searching

and navigation—become more involved. Second, by design, XML documents are wordy since they nearly

repeat the entire schema description for each data item. Therefore, data collections become more massive

in their XML representations, and present problems of scale. As a result, XML can be “inefficient and can

burden a company’s network, processor, and storage infrastructures” [15]. Finally, XML documents have

mixed elements with both text and numerical or categorical attributes. As a result, XML queries are richer

than commonly used SQL queries; they, for example, include path queries on the tree structure and substring

queries on contents.

In this paper we address these basic challenges. In particular, we address the problems of how to compress

XML data, how to provide access to its contents, how to navigate up and down the XML tree structure (cfr.

DOM tree), and how to search for simple path expressions and substrings. The crux is, we focus on doing all

of these tasks while keeping the data still in its compressed form and uncompressing only a tiny fraction of

the data for each operation.

Problems and the Background

As the relationships between elements in an XML document are defined by nested structures, XML documents

are often modeled as trees whose nodes are labeled with strings of arbitrary length drawn from a usually

large alphabet Σ. These strings are called tag or attribute names for the internal nodes, and content data for

the leaves (shortly Pcdata). See Fig. 1 for an example. Managing XML documents (cfr. their DOM tree)

therefore needs efficient support of navigation and path expression search operations over their tree structure.

With navigation operations we mean:

• find the parent of a given node u, find the ith child of u, or find the ith child of u with some label.

With path expressions, we mean two basic search operations that involve structure and content of the XML

document tree:

• Given a labeled subpath Π and a string γ, find either the set of nodes N descending from Π in d (Π

may be anchored to any internal node, not necessarily tree’s root), or the occurrences of string γ as a

substring of the Pcdata contents of N ’s nodes.

The first search operation, called SubPathSearch, corresponds to an XPath query having the form //Π,

where Π is a fully-specified path consisting of tag/attribute names. The second search operation, called

ContentSearch, corresponds to an XPath query of the form //Π[contains(.,γ)], where Π is a fully-specified

path and γ is an arbitrary string of characters.
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The text book solution to represent the XML document tree for navigation—finding parents and children

of nodes in the tree—uses a mixture of pointers and hash arrays. Unfortunately, this representation is space

consuming and practical only for small XML documents. Furthermore, while tree navigation takes constant

time per operation, SubPathSearch and ContentSearch need the whole scan of the document tree which is

expensive. In theory, there are certain sophisticated solutions (see [5, 14] and references therein) for tree

navigation in succinct space but they do not support the search operations above. If SubPathSearch is a key

concern, we may use any summary index data structure [6] that represents all paths of the tree document in

an index (two famous examples are Dataguide[16] and 1- or 2-indexes [22]). This significantly increases the

space needed by the index, and yet, it does not support ContentSearch queries efficiently. If ContentSearch

queries are the prime concern, we need to resort more sophisticated approaches— like XML-native search

engines, see e.g. XQuec [4], F&B-index [29], etc.; all of these engines need space several times the size of

the XML representation.

At the other extreme, XML-conscious compressors such as [21, 3, 8]—do compress XML data into small

space, but any navigation or search operation needs the decompression of the entire file. Even XML-queryable

compressors like [27, 23, 10], that support more efficient path search operations, incur scan of the whole

compressed XML file and need decompression of large parts of it in the worst case. This is expensive at query

time.

Recently, there has been some progress in resolving the dichotomy of time-efficient vs.space-efficient solu-

tions [11]. The contribution in [11] is the XBW transform that represents a labeled tree using two arrays: the

first contains the tree labels arranged in an appropriate order, while the second is a binary array encoding

the structure of the tree. The XBW transform can be computed and inverted in (optimal) linear time with

respect to the number of tree nodes, and is as succinct as the information contained in the tree would allow.

Also, [11] shows that navigation and search operations over the labeled tree can be implemented over the

XBW transform by means of two standard query operations on arrays: rankα(A, k) computes the number of

occurrences of a symbol α in the array prefix A[1, k]; selectα(A, h) computes the position in A of the hth

occurrence of α. Since the algorithmic literature offers several efficient solutions for rank and select queries

(see [5, 17] and references therein), the XBW transform is a powerful tool for compressing and searching

labeled trees.

Our Contribution

The result in [11] is theoretical and relies on a number of sophisticated data structures for supporting rank

and select queries. In this paper, we show how to adapt XBW transform to derive a compressed searching tool

for XML, and present a detailed experimental study comparing our tools with existing ones. More precisely,
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our contribution is as follows.

1. We present an implementation of the XBW transform as a compressor (hereafter called XBzip).

This is an attractively simple compressor, that relies on standard compression methods to handle

the two arrays in the XBW transform. Our experimental studies show that this is comparable in its

compression ratio to the state-of-the-art XML-conscious compressors (which tend to be significantly

more sophisticated in employing a number of heuristics to mine some structure from the document in

order to compress “similar contexts”). In contrast, the XBW transform automatically groups contexts

together by a simple sorting step involved in constructing the two arrays. In addition, XBzip is a

principled method with provably near-optimal compression [11].

2. We present an implementation of the XBW transform as a compressed index (hereafter called XBzipIn-

dex).

This supports navigation and search queries very fast uncompressing only a tiny fraction of the docu-

ment. Compared to the similar tools like XGrind [27], XPress [23] and Xqzip [10], the compression

ratio of XBzipIndex is up to 35% better, its time performance on SubPathSearch and ContentSearch

search operations is order of magnitudes faster: few milliseconds over hundreds of MBs of XML files

versus tens of seconds (because of the scan of the compressed data inherent in these comparable tools).

This implementation is more challenging since in addition to the XBW transform, like in [11] we need

data structures to support rank and select operations over the two arrays forming XBW. Departing

from [11] which uses sophisticated methods for supporting these operations on compressed arrays, we

introduce the new approach of treating the arrays as strings and employing the state-of-the-art string

indexing tool (the FM-index [13]) to support structure+content search operations over the document

tree. This new approach of XBzipIndex has many benefits since string indexing is a well-understood

area; in addition, we retain the benefits of [11] in being principled, with concrete performance bounds

on the compression ratio as well as time to support navigation and search operations.

Both the set of results above are obtained by suitably modifying the original definition of XBW given

in [11] that works for labeled trees to better exploit the features of XML documents. The final result is a

library of XML compression and indexing functions, consisting of about 4000 lines of C code and running

under Linux and Windows. The library can be either included in another software, or it can be directly used

at the command-line with a full set of options for compressing, indexing and searching XML documents.

XBzipIndex has additional features and may find other applications besides compressed searching. For

example, it supports tree navigation (forward and backward) in constant time, allows the random access of

the tree structure in constant time, and can explore or traverse any subtree in time proportional to their
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<biblio>

<book id=1>

<author>J. Austin</author>

<title>Emma</title>

</book>

<book id=2>

<author>C. Bronte</author>

<title>Jane Eyre</title>

</article>

</biblio>

Figure 1: An XML document d (left) and its corresponding ordered labeled tree T (right).

size. This could be used within an XML visualizer or within native-XML search engines such as XQuec [4]

and F&B-index [29]. There are more general XML queries like twig or XPath or XQuery; XBzipIndex

can be used as a core to improve the performance of known solutions. Another such example is that of

structural joins which are key in optimizing XML queries. Previous work involving summary indexes [7, 19],

or node-numbering such as Vist [28] or Prüfer [25] might be improved using XBzipIndex.

2 Compact representation of DOM trees

Given an arbitrary XML document d, we now show how to build an ordered labeled tree T which is equivalent

to the DOM representation of d. Tree T consists of four types of nodes defined as follows:

1. Each occurrence of an opening tag <t> originates a tag node labeled with the string <t.

2. Each occurrence of an attribute name a originates an attribute node labeled with the string @a.

3. Each occurrence of an attribute value or textual content of a tag, say ρ, originates two nodes: a text-

skip node labeled with the character =, and a content node labeled with the string ∅ρ, where ∅ is a

special character not occurring elsewhere in d.

The structure of the tree T is defined as follows (see Figure 1). An XML well-formed substring of d, say

σ = <t a1="ρ1" . . . ak="ρ1"> τ </t>, generates a subtree of T rooted at a node labeled <t. This node has

k children (subtrees) originating from t’s attribute names and values (i.e. @ai → =→ ρi), plus other children

(subtrees) originating by the recursive parsing of the string τ . Note that attribute nodes and text-skip nodes

have only one child. Tag nodes may have an arbitrary number of children. Content nodes have no children

and thus form the leaves of T .1

1Document d may contain tags not including anything, the so called empty tags (i.e. <t/> or <t></t>). These tags are

managed by transforming them to <t>λ</t>, where λ is a special symbol not occurring elsewhere in d.
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2.1 The XBW Transform: from labeled trees to strings

We show how to compactly represent the tree T by adapting the XBW transform introduced in [11]. The

XBW transform uses path-sorting and grouping to linearize the labeled tree T into two arrays. As shown

in [11], this “linearized” representation is usually highly compressible and efficiently supports navigation and

search operations over T . Note that we can easily distinguish between internal-node labels vs leaf labels

because the former are prefixed by either <, or @, or =, whereas the latter are prefixed by the special symbol

∅.

Let n denote the number of internal nodes of T and let ℓ denote the number of leaves, so that the total

size of T is t = n + ℓ nodes. For each node u ∈ T , let α[u] denote the label of u, last[u] be a binary flag set

to 1 if and only if u is the last (rightmost) child of its parent in T , and π[u] denote the string obtained by

concatenating the labels on the upward path from u’s parent to the root of T .

To compute the XBW transform we build a sorted multi-set S consisting of t triplets, one for each tree

node (see Fig. 2). Hereafter we will use Slast[i] (resp. Sα[i], Sπ [i]) to refer to the last (resp. α, π) component

of the i-th triplet of S. To build S and compute the XBW transform we proceed as follows:

1. Visit T in pre-order; for each visited node u insert the triplet s[u] = 〈last[u], α[u], π[u]〉 in S;

2. Stably sort S according to the π-component of its triplets;

3. Form XBW(d) = 〈Ŝlast, Ŝα, Ŝpcdata〉, where Ŝlast = Slast[1, n], Ŝα = Sα[1, n], and Ŝpcdata = Sα[n + 1, t].

Since sibling nodes may be labeled with the same symbol, several nodes in T may have the same π-

component (see Fig. 1). The stability of sorting at Step 2 is thus needed to preserve the identity of triplets

after the sorting. The sorted set S[1, t] has the following properties: (i) Slast has n bits set to 1 (one for each

internal node), the other t − n bits are set to 0; (ii) Sα contains all the labels of the nodes of T ; (iii) Sπ

contains all the upward labeled paths of T . Each path is repeated a number of times equal to the number

of its offsprings. Thus, Sα is a lossless linearization of the labels of T , whereas Slast provides information on

the grouping of the children of T ’s nodes.

We notice that the XBW transform defined in Step 3 is slightly different from the one introduced in [11]

where XBW is defined as the pair 〈Slast,Sα〉. The reason is that here the tree T is not arbitrary but derives

from an XML document d. Indeed we have that Sα[1, n] contains the labels of the internal nodes, whereas

Sα[n + 1, t] contains the labels of the leaves, that is, the Pcdata. This is because if u is a leaf the first

character of its upward path π[u] is = which we assume is lexicographically larger than the characters < and

@ that prefix the upward path of internal nodes (see again Fig. 2). Since leaves have no children, we have

that Slast[i] = 1 for i = n + 1, . . . , t. Avoiding the wasteful representation of Slast[n + 1, t] is the reason for

which in Step 3 we split Sα and Slast into 〈Ŝlast, Ŝα, Ŝpcdata〉.
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Slast Sα Sπ

1 <biblio empty string

0 <book <biblio

0 @id <book<biblio

1 = @id<book<biblio

1 ∅1 =@id<book<biblio

0 <author <book<biblio

1 = <author<book<biblio

1 ∅J. Austin =<author<book<biblio

1 <title <book<biblio

1 = <title<book<biblio

1 ∅Emma =<title<book<biblio

1 <book <biblio

0 @id <book<biblio

1 = @id<book<biblio

1 ∅2 =@id<book<biblio

0 <author <book<biblio

1 = <author<book<biblio

1 ∅C. Bronte =<author<book<biblio

1 <title <book<biblio

1 = <title<book<biblio

1 ∅Jane Eyre =<title<book<biblio

Stable sort
-

Rk Slast Sα Sπ

1 1 <biblio empty string

2 1 = <author<book<biblio

3 1 = <author<book<biblio

4 0 <book <biblio

5 1 <book <biblio

6 0 @id <book<biblio

7 0 <author <book<biblio

8 1 <title <book<biblio

9 0 @id <book<biblio

10 0 <author <book<biblio

11 1 <title <book<biblio

12 1 = <title<book<biblio

13 1 = <title<book<biblio

14 1 = @id<book<biblio

15 1 = @id<book<biblio

16 1 ∅J. Austin =<author<book<biblio

17 1 ∅C. Bronte =<author<book<biblio

18 1 ∅Emma =<title<book<biblio

19 1 ∅Jane Eyre =<title<book<biblio

20 1 ∅1 =@id<book<biblio

21 1 ∅2 =@id<book<biblio

Ŝlast = 111010010011111

Ŝα = <biblio==<book<book@id<author<title@id<author<title====

Ŝpcdata = ∅J. Austin∅C. Bronte∅Emma∅Jane Eyre∅1∅2

Figure 2: The set S after the pre-order visit of T (left). The set S after the stable sort (right). The three

arrays Ŝlast, Ŝα, Ŝpcdata, output of the XBW transform (bottom).

In [11] the authors describe a linear time algorithm for retrieving T given 〈Slast,Sα〉. Since it is trivial to

get the document d from XBW(d) we have that XBW(d) is a lossless encoding of the document d. It is easy

to prove that XBW(d) takes at most (17/8)n + ℓ bytes in excess to the document length (details in the full

version). However, this is an unlikely worst-case scenario since many characters of d are implicitly encoded in

the tree structure (i.e., spaces between the attribute names and values, closing tags, etc). In our experiments

XBW(d) was usually about 90% the original document size. Moreover, the arrays Ŝlast, Ŝα, and Ŝpcdata are

only an intermediate representation since we will work with a compressed image of these three arrays (see

below).

Finally, we point out that it is possible to build the tree T without the text-skip nodes (the nodes with label

=). However, if we omit these nodes Pcdata will appear in Sα intermixed with the labels of internal nodes.

Separating the tree structure (i.e. 〈Ŝlast, Ŝα〉) from the textual content of the document (i.e. Ŝpcdata) has a
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twofold advantage: (i) the two strings Ŝα and Ŝpcdata are strongly homogeneous hence highly compressible

(see Sect. 2.2), (ii) search and navigation operations over T are greatly simplified (see Sect. 2.3).

2.2 Why XBW(d) compresses well

Suppose the XML fragment of Fig. 1 is a part of a large bibliographic database for which we have computed

the XBW transform. Consider the string =<author. The properties of the XBW transform ensure that the

labels of the nodes whose upward path is prefixed by =<author are consecutive in Sα. In other words, there

is a substring of Sα consisting of all the data (immediately) enclosed in an <author> tag. Similarly, another

section of Sα contains the labels of all nodes whose upward path is prefixed by, say, =@id<book and will

therefore likely consists of id numbers. This means that Sα, and therefore Ŝα and Ŝpcdata, will likely have a

strong local homogeneity property.2

We point out that most XML-conscious compressors are designed to “compress together” the data enclosed

in the same tag since such data usually have similar statistics. The above discussion shows that the XBW

transform provides a simple mechanism to take advantage of this kind of regularity. In addition, XML

compressors (e.g. Xmill, Scmppm, XmlPpm) usually look at only the immediately enclosing tag since it

would be too space consuming to maintain separate statistics for each possible group of enclosing tags. Using

the XBW transform we can overcome this difficulty since the different groups of enclosing tags are considered

sequentially rather than simultaneously. For example, for a bibliographic database, Sα would contain first

the labels of nodes with upward path =<author<article, then the labels with upward path =<author<book,

and finally the labels with upward path =<author<manuscript, and so on. Hence, we can either compress

all the author names together, or we can decide to compress the three groups of author names separately, or

adopt any other optimization scheme.

2.3 Navigation and search using XBW(d)

Recall that every node of T corresponds to an entry in the sorted multiset S (see Fig. 2). We (logically)

assign to each tree node a positive integer equal to its rank in S. This number helps in navigation and search

because of the following two properties of the sorted multiset S.

1. Let u1, . . . , uc be the children of a node u in T . The triplets s[u1], . . . , s[uc] lie contiguously in S following

this order. Moreover, the last triplet s[uc] has its last-component set to 1, whereas all the other triplets

have their last-component set to 0.

2Readers familiar with the Burrows-Wheeler transform will recognize the analogy: the BWT groups together the characters

which are prefixed by the same substring whereas the XBW groups together data enclosed in the same set of tags.
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2. Let v1, v2 denote two nodes with the same label (i.e., α[v1] = α[v2]). If s[v1] precedes s[v2] in S, then

the children of v1 precede the children of v2 in S.

Example 1 In Fig. 2 we have two nodes labeled <book, whose upward path is <biblio. These nodes have

rank 4 and 5, and have a total of 6 children that are stored in the subarray S[6, 11]. The children of S[4] are

S[6, 8], and the children of S[5] are S[9, 11]. Note that Slast[8] = Slast[11] = 1 since these are the last children

of their parent.

For every internal node label β, we define F(β) as the rank of the first row of S such that Sπ is prefixed

by β. Thus, for the example of Fig. 2 we have F(<author) = 2, F(<biblio) = 4, F(<book) = 6, and so on.

Suppose that the tree contains m internal nodes with label β. We can rephrase Properties 1–2 above stating

that starting from position F(β) there are m groups of siblings which are the offsprings of the nodes with

label β. The end of each group is marked by a value 1 in the array Slast, and the k-th group of siblings gives

the children of the node corresponding to the k-th occurrence of the label β in Sα (see Example 1 for the

case β = <book).

To efficiently navigate and search T , in addition to XBW(d) and the array F, we need auxiliary data

structures for the rank and select operations over the arrays Ŝlast and Ŝα. Recall that given an array A[1, n]

and a symbol c, rankc(A, i) denotes the number of times the symbol c appears in A[1, i], and selectc(A, k)

denotes the position in A of the k-th occurrence of the symbol c.

The pseudocode of the procedure for computing the rank of the children of the node with rank i is shown

in Fig. 3 to highlight its simplicity. We first compute the label c of node i by setting c = Ŝα[i] (Step 1).

Then, we set k = rankc(Ŝα, i) (Step 2) and we have that S[i] is the k-th node with label c is Ŝα. Because of

properties 1–2 the children of S[i] are the k-th group of siblings starting from position y = F(c). The rank

of the children is therefore easily computed by way of rank/select operations over the array Ŝlast (Steps 4–6).

For example, in Fig. 2 for i = 11 we have c = <title and k = 2 so we are interested in the second group of

siblings starting from F(<title) = 12.

The procedures for navigation and SubPathSearch have a similar simple structure and are straightforward

adaptations of similar procedures introduced in [11].The only non trivial operations are the rank and select

queries mentioned above. Note that navigation operations require a constant number of rank/select queries,

and the SubPathSearch procedure requires a number of rank/select queries proportional to the length of the

searched path. In this paper we introduce the new procedure ContentSearch that combines the techniques

of [11] with the FM-index data structure of [12, 13] and will be discussed in Sect. 3.3.
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Algorithm GetChildren(i)

1. c = Ŝα[i];

2. k = rankc(Ŝα, i);

3. y = F[c];

4. z = rank1(Ŝlast, y − 1);

5. First = select1(Ŝlast, z+k− 1)+1;

6. Last = select1(Ŝlast, z + k);

7. return (First, Last).

Figure 3: Algorithm for computing the range (First, Last) such that S[First],S[First + 1], . . . ,S[Last] are the

children of node S[i].

3 Implementation

3.1 Computation of the XBW transform

To build the tree T we parse the input document d using the Expat library by James Clark.3 Expat is a stream

oriented parser written in C. We set its handlers in order to create the tree nodes and their labels. The time

required to build the tree T from one hundred MBs of XML data is a few seconds. In [11] the authors show

that given T we can compute XBW(d) in time linear in the number of tree nodes. In our tests we followed a

simpler approach: we represent Sπ as an array of pointers to T nodes and we sort S operating on this array

of node pointers. Experimentally we found that the stable-sorting of Sπ is the most time-consuming part of

XBW computation because of the many pointer indirections that generate cache misses. Future work will be

devoted to implementing more efficient algorithms, by using insights from the optimal algorithm proposed

in [11].

3.2 Compression of XBW(d): the XBzip tool

If we are only interested in a compressed (non-searchable) representation of the XML document d, we simply

need to store the arrays Ŝlast, Ŝα and Ŝpcdata as compactly as possible. This is done by the XBzip tool whose

pseudocode is given in Fig. 4. Experimentally, we found that instead of compressing Ŝlast and Ŝα separately it

is more convenient to merge them in a unique array Ŝ′α obtained from Ŝα adding a label </ in correspondence

of bits equal to 1 in Ŝlast. For example, merging the arrays Ŝlast and Ŝα of Fig. 2 yields

Ŝ′α = <biblio</=</=</<book<book</@id<author

<title</@id<author<title</=</=</=</=</

3http://expat.sourceforge.net/.
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Algorithm XBzip

1. Compute XBW(d) = 〈Ŝlast, Ŝα, Ŝpcdata〉;

2. Merge Ŝα and Ŝlast into Ŝ′α
3. Compress separately Ŝ′α and Ŝpcdata using Ppmdi.

Figure 4: Pseudocode of XBzip.

This strategy usually offers superior performance in compression because it is able to capture repetitiveness

in the tree structure.

As we observed in Sect. 2.2 the arrays Ŝ′α and Ŝpcdata are locally homogeneous since the data descending

from a certain tree path is grouped together. Hence, we expect that Ŝ′α and Ŝpcdata are best compressed

splitting them in chucks according to the structure of the tree T . For simplicity in our tests we compress

Ŝ′α and Ŝpcdata using the general purpose compressor Ppmdi [26]. Somewhat surprisingly this simple strategy

already yields good experimental results (see Sect. 4.1).

3.3 Supporting navigation and search: the

XBzipIndex tool

In Sect. 2.3 we observed that for navigation and search operations, in addition to XBW(d), we need data

structures that support rank and select operations over Ŝlast and Ŝα. In [11] the authors use rank/select data

structures with theoretically efficient (often optimal) worst-case asymptotic performance; in this paper we

depart from their approach and use practical methods. In particular, we will view the array and use string

indexing techniques. The resulting tool is called XBzipIndex and its pseudocode is shown in Fig. 5. Some

details follow.

The array Ŝlast. Observe that search and navigation procedures only need rank1 and select1 operations over

Ŝlast. Thus, we use a simple one-level bucketing storage scheme. We choose a constant L (default is L = 1000),

and we partition Ŝlast into variable-length blocks containing L bits set to 1. For each block we store:

• The number of 1 preceding this block in Ŝlast (called 1-blocked rank).

• A compressed image of the block obtained by Gzip.

• A pointer to the compressed block and its 1-blocked rank.

It is easy to see that rank1 and select1 operations over Ŝlast can be implemented by decompressing and

scanning a single block, plus a binary search over the table of 1-blocked ranks.

The array Ŝα. Recall that Ŝα contains the labels of internal nodes of T . We represent it using again a

one-level bucketing storage scheme: we partition Ŝα into fixed-length blocks (default is 8Kb) and for each

block we store:

11



Algorithm XBzipIndex

1. Compute XBW(d) = 〈Ŝlast, Ŝα, Ŝpcdata〉;

2. Store Ŝlast using a compressed representation supporting rank/select queries (see text);

3. Store Ŝα using a compressed representation supporting rank/select queries (see text);

4. Split Ŝpcdata into buckets such that two elements are in the same bucket if they have the same upward
path;

5. Compress each bucket using the FM-index.

Figure 5: Pseudocode of XBzipIndex.

• A compressed image of the block (obtained using Gzip). Note that single blocks are usually highly

compressible because of the local homogeneity of Ŝα.

• A table containing for each internal-node label β the number of its occurrences in the preceding prefix

of Ŝα (called β-blocked ranks).

• A pointer to the compressed block and its β-blocked rank.

Since the number of distinct internal-node labels is usually small with respect to the document size, β-

blocked ranks can be stored without adopting any sophisticated solution. The implementation of rankβ(Ŝα, i)

and selectβ(Ŝα, i) derives easily from the information we have stored.

The array Ŝpcdata. This array is usually the largest component of XBW(d) (see the last column of Table 1

and Table 3). Recall that Ŝpcdata consists of the Pcdata items of d, ordered according their upward paths.

Note that the procedures for navigating and searching T do not require rank/select operations over Ŝpcdata

(see Sect. 2). Hence, we use a representation of Ŝpcdata that efficiently supports XPath queries of the form

//Π[contains(.,γ)], where Π is a fully-specified path and γ is an arbitrary string of characters. To this

end we use a bucketing scheme where buckets are induced by the upward paths. Formally, let Sπ[i, j] be

a maximal interval of equal strings in Sπ. We form one bucket of Ŝpcdata by concatenating the strings in

Ŝpcdata[i, j]. In other words, two elements of Ŝpcdata are in the same bucket if and only if the have the same

upward path. Note that every block will likely be highly compressible since it will be formed by homogeneous

strings having the same “context”.4 For each bucket we store the following information:

• An FM-index [12, 13] of the bucket.5 The FM-index is a compressed representation of a string that

supports efficient substring searches within the bucket. Substring searches are efficient since they only

access a small portion of the compressed bucket (proportional to the length of the searched string, and

not to the length of the bucket itself).

4Notice that Xcq [20] uses a similar partitioning of the Pcdata into data streams, however queries are supported by fully

scanning the tree structure properly compressed by exploiting a DTD.
5We used the following parameter settings for the FM-index (cfr [12]): b = 2Kb, B = 32Kb and f = 0.05. These parameters

can be tuned to trade space usage for query time.
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• A counter of the number of Pcdata items preceding the current bucket in Ŝpcdata.

• A pointer to the FM-indexed block and its counter.

Using this representation of Ŝpcdata, we can answer the query //Π[contains(.,γ)] as follows (see procedure

ContentSearch in Fig 6). By the procedure SubPathSearch we identify the nodes whose upward path is

prefixed by ΠR (i.e. the reversal of Π). Then, we identify the substring Ŝpcdata[F, L] containing the labels of

the leaves whose upward path is prefixed by =ΠR. Note that Ŝpcdata[F, L] consists of an integral number of

buckets, say b. To answer the query, we then search for γ in these b buckets using their FM-indexes. Since

the procedure SubPathSearch takes time proportional to |Π|, the overall cost of the query is proportional to

|Π|+ b|γ|.

In addition to the above data structures, we also need two auxiliary tables: the first one maps node labels

to their lexicographic ranks, and the second associates to each label β the value F[β]. Due to the small number

of distinct internal-node labels in real XML files, these tables do not need any special storage method.

Algorithm ContentSearch(Π, γ)

1. (First, Last)← SubPathSearch(Π);

2. F← rank=(Ŝα, First− 1) + 1;

3. L← rank=(Ŝα, Last);

4. Let B[i, j] be the range of buckets covering Ŝpcdata[F, L].

5. Search for γ in the FM-indexes of the buckets B[i, j].

Figure 6: Search for the string γ as a substring of the textual content of the nodes whose leading path is Π

(possibly anchored to an internal node).

4 Experimental results

We have developed a library of XML compression and indexing tools based on the XBW transform. The

library, called XBzipLib, consists of about 4000 lines of C code and runs under Linux and Windows (CygWin).

This library can be either included in another software or it can be directly used at the command-line with

a full set of options for compressing, indexing and searching XML documents. We have tested our tools on

a PC running Linux with two P4 CPUs at 2.6Ghz, 512Kb cache, and 1.5Gb internal memory.

In our experiments we used nine XML files which cover a wide range of XML data formats (data centric

or text centric) and structures (many/deeply nested tags, or few/almost-flat nesting). Whenever possible we

have tried to use files already used in XML experimentations. Some characteristics of the documents are

shown in Table 1. The following is the complete list providing the source for each file.
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• Pathways6 contains the graphical description of metabolic pathways by means of the KEGG Markup

Language (KGML). The XML structure contains many distinct attribute values consisting of long

strings and many attributes per tag.

• XMark7 has been produced by xmlgen (of the XML Benchmark Project) and models an auction

database with significantly nested elements.

• Dblp8 is the popular bibliography database of major Computer Science journals and conference pro-

ceedings. Its main feature is the highly structured format of the file.

• Shakespeare9 is a corpus of marked-up Shakespeare’s plays, which contains many long textual pas-

sages with few distinct tag and attribute names.

• Treebank10 is a large collection of parsed (and partially encrypted) English sentences from the Wall

Street Journal, tagged with parts of speech. It is deeply nested and with many distinct tag and attribute

names.

• XBench has been produced by the homonymous software as a single text-centric XML document,

covering the case of an e-commerce catalog data that is captured as XML. The structural features are

similar to Shakespeare but for a larger file.

• SwissProt11 is a protein sequence database which strives to provide a high level of annotations, a

minimal level of redundancy and high level of integration with other databases. It is the file having the

largest tree size, with many distinct tag and attribute names.

• News12 is a large corpus of news articles gathered from more than 2000 news sources from July 2005.

The XML tree is small and flat, but the textual data is very large.

4.1 XML compression

To evaluate the real advantages of XML-conscious tools we compare them with general purpose compres-

sors. The literature offers various general purpose compressors ranging from dictionary-based (Gzip), to

block-sorting (Bzip2), and Ppm-based compressors (we used Ppmdi [26] which is the one with the best per-

formance). In addition, we compare XBzip with the current state-of-the-art XML-conscious compressors:
6http://www.genome.jp/kegg/xml/
7http://monetdb.cwi.nl/xml/
8http://www.cs.washington.edu/research/xmldatasets/
9http://www.ibiblio.org/xml/examples/shakespeare/

10http://www.cis.upenn.edu/~treebank/
11http://www.cs.washington.edu/research/xmldatasets/
12http://www.di.unipi.it/~gulli/
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Dataset Size (bytes) Tree Size #Leaves Tree depth #Tag/Attr |Ŝα| |Ŝpcdata|

Max/Avg (distinct)

Pathways 79,054,143 9,338,092 5,044,682 10 / 3.6 4,293,410 (49) 24,249,238 36,415,927

XMark 119,504,522 5,762,702 3,714,508 13 / 6.2 2,048,194 (83) 15,361,789 85,873,039

Dblp 133,856,133 10,804,342 7,067,935 7 / 3.4 3,736,407 (40) 24,576,759 75,258,733

Shakespeare 7,646,413 537,225 357,605 8 / 6.1 179,620 (22) 1,083,478 4,940,623

TreeBank 86,082,516 7,313,000 4,875,332 37 / 8.1 2,437,668 (251) 9,301,193 60,167,538

XBench 108,672,761 7,725,246 4,970,866 9 / 7.2 2,754,380 (25) 7,562,511 85,306,618

SwissProt 114,820,211 13,310,810 8,143,919 6 / 3.9 5,166,891 (99) 30,172,233 51,511,521

News 244,404,983 8,446,199 4,471,517 3 / 2.8 3,974,682 (9) 28,319,613 176,220,422

Table 1: XML documents used in our experiments. The first three files are data centric, the others text

centric. Note that columns |Ŝα| and |Ŝpcdata| report the byte length of these two strings.

• Xmill13 [21] is of the earliest known XML-conscious compressors. It is user-configurable and separates

structure, layout and data. Content data are distributed into separate data streams (int, char, string,

base64, etc) which can be compressed with either ad-hoc algorithms or with the classical Gzip, Bzip2 or

Ppmdi tools. We did not adopt any ad-hoc compressor for the Xmill’s streams because we test many

different sources and they have different characteristics; also, whatever ad-hoc optimizer one chooses to

use with Xmill can be used with XBzip (see Sect. 3.2) or on the PPM-based compressors.

• XmlPpm14 [8] compresses every token (tag, attribute, value, content) by means of one among several

“multiplexed” PPM compressors. Recently [9] proposed a variant of XmlPpm which exploits DTDs or

schemas to improve compression. We did not experiment with this variant because, according to the

author’s conclusions, on large documents it achieves compression ratios similar to XmlPpm.

• ScmPpm15 [3] combines the Ppm-technique with the Structural Contexts Model (SCM) idea, which is

to use a separate Ppm-model to compress the text that lies inside each different structure type.

• Lzcs16 [2] is based on a Lempel-Ziv approach which takes advantage of redundant information (repeated

subtrees) that can appear in the tree structure of the XML document. Compressed documents generated

by Lzcs are easy to display, access at random, and navigate. In a second stage, the Lzcs-output can

be further compressed using Ppmdi: this improves compression but loses random access and navigation

features.

We comment on two interesting issues arising from our experiments (see Fig. 7).
13http://sourceforge.net/projects/xmill (vers 0.8).
14http://xmlppm.sourceforge.net/.
15http://www.infor.uva.es/~jadiego/download.html.
16http://www.infor.uva.es/~jadiego/download.html.
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Figure 7: Comparison of XML compressors. Compression ratio (top) and compression time (bottom). Com-

pression times are scaled with respect to Gzip compression time. Note that Xmill, XmlPpm, Scmppm, and

XBzip all use Ppmdi as their base compressor.

• XBzip and Scmppm are the best algorithms in terms of compression ratio. Surprisingly, Ppmdi is

competitive with them, and it is much faster. With the exception of Gzip, all other (XML-conscious

and unconscious) compressors lie within a 5% absolute difference in their compression ratios.

• Xmill and XmlPpm are faster than Ppmdi over all files except Treebank (which is a pathological case

for structure and ciphered-content), but they are significantly slower than Gzip (which achieves by far

the worst compression). XBzip is from 2 to 6 times slower than Xmill and XmlPpm. Profiling shows

that 90% of XBzip running time is spent for the computation of the XBW transform which is currently

done using an algorithm requiring quadratic time complexity in the worst case (see Sect. 3.1). This can

be easily decreased by implementing the optimal algorithm described in [11]. The decompression time

of XBzip is already comparable to the one of Xmill and XmlPpm.

In summary, the experimental results show that XML-conscious compressors are still far from being a

clearly advantageous alternative to general purpose compressors. However, the experiments show also that

our simple XBW-based compressor provides the best compression for most of the files. We think that the new

compression paradigm introduced with XBW (i.e. first linearize the tree then compress) is much interesting

in the light of the fact that we are simply applying Ppmdi without fully taking advantage of the local
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Dataset Huffword XPress XQzip XBzipIndex XBzip

Pathways 33.68 – – 3.62 1.84

XMark 34.15 – 38 28.65 18.07

Dblp 44.00 48 30 14.13 9.69

Shakespeare 42.08 47 40 21.83 17.46

TreeBank 67.81 – 43 54.21 29.52

Xbench 44.96 – – 19.47 15.45

SwissProt 43.10 42 38 7.87 4.66

News 45.15 – – 13.52 10.61

Table 2: Compression ratio achieved by queriable compressors over the files in our dataset. For XPress and

XQzip we report results taken from [23, 10] (the symbol – indicates a result not available in these papers).

The comparison between the last two columns allows us to estimate the space overhead of adding navigation

and search capabilities to XBzip. Note that we can trade space usage for query time by tuning the parameters

of the FM-index [12]

homogeneity properties of the strings Ŝ′α and Ŝpcdata (see Sects. 2.2 and 3.2). This will be further investigated

in a future work.

4.2 Searching XML compressed files

The literature offers various solutions to index XML files [6]. Here we only refer to XML compression formats

that support efficient query operations. In Table 2 we compare our XBzipIndex against the best known

queriable compressors. We were not able to test XPress [23], XGrind [27] and XQzip [10], because either

we could not find the software or we were unable to run it on our XML files. However, whenever possible we

show in Table 2 the performance of these tools as reported in their reference papers.

• Huffword [24] is a variant of the classical Huffman-compressor in which the dictionary consists of

the tokens (usually words) extracted from the document. This is the typical storage scheme of (Web)

search engines and Information Retrieval tools. Therefore its compression performance can be seen as

a lower bound to the storage complexity of these approaches (see e.g. [18]).

• XPress and XGrind adopt an homomorphic transform to preserve the structure of the XML data.

Their compression ratio is usually not competitive with XML compressors because of the fine-granularity

of the individually compressed data units. To answer a query, these tools need to scan the whole

compressed file. As a result, for large files query time is of the order of tens of seconds. In Table 2 we

refer only to XPress because [23] shows that it outperforms XGrind.

• XQzip removes duplicate subtrees, as in Lzcs, and groups the data into data streams according to the

enclosing tag/attribute, as in Xmill. As a result XQzip achieves compression better than XPress and
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Dataset % Index Ŝlast % Index Ŝα Index Ŝpcdata Auxiliary Bytes per node

Pathways 1.7 0.8 6.0 9.7 0.31

XMark 3.6 2.5 29.5 7.8 5.94

Dblp 4.9 2.3 32.3 8.1 1.75

Shakespeare 4.6 3.4 32.3 9.7 3.11

TreeBank 5.2 14.7 68.5 0.2 6.38

Xbench 4.4 4.7 23.8 0.6 2.74

SwissProt 2.2 2.5 14.0 8.0 0.68

News 1.0 0.5 18.5 0.6 3.91

Table 3: Percentage of each index part with respect to the corresponding indexed string. Auxiliary info

includes all the prefix-counters mentioned in Section 3.3, and it is expressed as a percentage of the total index

size. The last column gives an estimate of the avg number of bytes spent for each tree node.

XGrind and close to Xmill.

From the previous comments and Table 2 we observe that XBzipIndex significantly improves the compression

ratio of the known queriable compressors by 20% to 35% of the original document size. Table 3 details the

space required by the various indexing data structures present in XBzipIndex. As expected, the indexing

of Ŝlast and Ŝα requires negligible space, thus proving again that these two strings are highly compressible

and even a simple compressed-indexing approach, as the one we adopted in this paper, pays off. Conversely,

Ŝpcdata takes most of the space and we plan to improve compression by fine tuning the parameters of the

FM-indexes that we use for storing this array (see Sec. 3.3).

As far as query and navigation operations are concerned, we refer to Table 4. Subpath searches are

pretty much insensitive to the document size, as theoretically predicted, and indeed require few milliseconds.

Navigational operations (e.g. parent, child, block of children) require less than one millisecond in our tests.

As mentioned before, all the others queriable compressors—like XPress, XGrind, Xqzip—need the whole

scanning of the compressed file, thus requiring seconds for a query, and use much more storage space.

5 Concluding Remarks

We have adopted the methods in [11] for compressing and searching labelled trees to the XML case and

produced two tools: XBzip, a XML (un)compressor competitive with known XML-conscious compressors

but simpler and with guarantees on its compression ratio; XBzipIndex that introduces the approach of using

full-text compressed indexing for strings and improves known methods by up to 35% while simultaneously

improving the search operations by an order of magnitude. Our tools are simple, usable, and downloadable

from
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Dataset: Query Ŝlast blocks Ŝα blocks Ŝpcdata blocks Time # occ

(# bytes) (# bytes) in secs

Pathways: //entry[@id="3"] 5 (5005) 4 (498) 2 0.007 62,414

XMark //person/address/city[.contains="Orange"] 8 (71324) 6 (1599) 2 0.008 41

Dblp: //article/author[contains="Kurt"] 5 (47053) 4 (1509) 2 0.001 288

Dblp: //proceedings/booktitle[contains="Text"] 5 (21719) 4 (875) 2 0.002 10

Dblp: //cite[@label="XML"] 5 (5005) 4 (473) 134 0.002 7

Dblp: //article/author 5 (47053) 2 (967) 0 0.008 221,289

Shakespeare: //SCENE/STAGEDIR 5 (14917) 2 (1035) 0 0.002 4259

Shakespeare: //LINE/STAGEDIR[contains="Aside"] 5 (21525) 4 (1128) 2 0.003 302

TreeBank //S/NP/JJ[contains="59B"] 8 (18436) 6 (5965) 697 0.020 2

Xbench //et/cr[contains="E4992"] 2 (2774) 2 (996) 4 0.006 11

SwissProt: //Entry/species[contains="Rattus"] 5 (11217) 4 (1540) 2 0.002 2,154

News: //description[contains="Italy"] 2 (2002) 2 (66) 2 0.003 1,851

Table 4: Summary of the search results for XBzipIndex. These time figures do not include the mmapping

of the index from disk to internal memory and the loading of the auxiliary infos, which take 0.01 secs on

average. Columns 2, 3, and 4 report the number of blocks accessed during the query.

http://roquefort.di.unipi.it/~ferrax/xbzipLib.tgz.
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