Dipartimento di Informatica
Universita del Piemonte Orientale “A. Avogadro”
Via Bellini 25/G, 15100 Alessandria
http://www.di.unipmn.it

universita
degli studi
del piemonte
orientale

The Draw-Net Modeling System: a framework for the design and the solution

of single-formalism and multi-formalism models
Authors: Marco Gribaudo (marco.gribaudo@di.unito.it),
Daniele Codetta-Raiteri (daniele.codetta_raiteri@unipmn.it),

Giuliana Franceschinis (giuliana.franceschinis@unipmn.it).

TECHNICAL REPORT TR-INF-2006-01-01-UNIPMN
(January 2006)

The University of Piemonte Orientale Department of Computer Science Research Technical Reports are available via

2005-06

2005-05

2005-04

2005-03

2005-02

2005-01

2004-08

2004-07

2004-06

2004-05

2004-04

2004-03

2004-01

2003-08

2003-07

2003-06

WWW at URL http://www.di.mfn.unipmn.it/.

Plain-text abstracts organized by year are available in the directory

Recent Titles from the TR-INF-UNIPMN Technical Report Series

Compressing and Searching XML Data Via Two Zips, Ferragina, P.; Luccio, F.; Manzini, G., Muthukrishnan,
S., December 2005.

Policy Based Anonymous Channel, Egidi, L., Porcelli, G., November 2005.

An Audio-Video Summarization Scheme Based on Audio and Video Analysis, Furini, M., Ghini, V., October
2005.

Achieving Self-Healing in Autonomic Software Systems: a case-based reasoning approach, Anglano, C., Montani,

S., October 2005.

DBNet, a tool to convert Dynamic Fault Trees to Dynamic Bayesian Networks, Montani, S., Portinale, L.,

Bobbio, A., Varesio, M., Codetta-Raiteri, D., August 2005.

Bayesan Networks in Reliability, Langseth, H., Portinale, L., April 2005.

Modelling a Secure Agent with Team Automata, Egidi, L., Petrocchi, M., July 2004.

Making CORBA fault-tolerant, Codetta Raiteri D., April 2004.

Orthogonal operators for user-defined symbolic periodicities, Egidi, L., Terenziani, P., April 2004.

RHENE: A Case Retrieval System for Hemodialysis Cases with Dynamically Monitored Parameters, Montani,
S., Portinale, L., Bellazzi, R., Leonardi, G., March 2004.

Dynamic Bayesian Networks for Modeling Advanced Fault Tree Features in Dependability Analysis, Montani,
S., Portinale, L., Bobbio, A., March 2004.

Two space saving tricks for linear time LCP computation, Manzini, G., February 2004.
Grid Scheduling and Economic Models, Canonico, M., January 2004.

Multi-modal Diagnosis Combining Case-Based and Model Based Reasoning: a Formal and Ezperimental Anal-

isys, Portinale, L., Torasso, P., Magro, D., December 2003.
Fault Tolerance in Grid Environment, Canonico, M., December 2003.

Development of a Dynamic Fault Tree Solver based on Coloured Petri Nets and graphically interfaced with
DrawNET, Codetta Raiteri, D., October 2003.

Contents

1 Introduction
2 Draw-Net Modeling System architecture
2.1 The Data Definition Language e
2.2 FormaliSms L e e e e e
2.3 Models L e
2.4 XML format L e
3 Running example
4 Defining formalisms in the DMS
4.1 Simple formalismso e e e e e e
4.2 Derived formalisms L.
4.3 Composed formalismso e e e e e e
4.4 DNForGe i e e e e e
5 Building models in the DMS
5.1 Draw-Net tool e e e e e e
5.1.1 Software architecture of the Draw-Net tool
6 Native solvers
6.1 Analysis of the running example oL
7 Conclusions and future work
Bibliography
Appendix

co =~ ot vt

10
10
12
14
16

18
23
23

25
26

27

28

31

The Draw-Net Modeling System:
a framework for the design and the solution
of single-formalism and multi-formalism models

Marco Gribaudo Daniele Codetta-Raiteri} Giuliana Franceschinis
Dipartimento di Informatica Dipartimento di Informatica
Universita di Torino Universita del Piemonte Orientale
Corso Svizzera, 185 Via Bellini, 25/G
10149 Torino, Italy 15100 Alessandria, Italy
marcog@di.unito.it {raiteri, giuliana}@mfn.unipmn.it
Abstract

This paper presents the Draw-Net Modeling System, a framework for the design and solution of models
expressed in any (graph based) formalism, including the possibility of representing complex models by
means of multi-formalism and analyzing them by exploiting different solution modules. The proposed
approach allows to represent different aspects of a system with the most suitable formalism, and to
analyze different properties by means of the most appropriate solution algorithm and software tool. After
having introduced the XML based language family that can be used to define new formalisms (possibly
extending existing ones), and to describe models, the main functions implemented in the framework are
presented, and the general (open) architecture of the framework is discussed. Some examples of formalisms
are presented, showing the possible applications of the concepts on which the Draw-Net Modeling System

framework is based.

1 Introduction

The performance and dependability evaluation of complex systems may require to represent the behaviour of
the system by means of multi-formalism and multi-solution models. We talk about multi-formalism models
when different modeling formalisms are used to represent in the most suitable way different aspects of the
system; multi-formalism models require multi-solution, i. e. the (combined) use of different solvers to perform
the analysis of the model.

It is thus very important to pursue the goal of embedding in a single tool the possibility of

*Corresponding author: daniele.codetta_raiteriQunipmn.it

1. building models by composition of sub-models (possibly reusing existing sub-models), and choosing

among a set of different formalisms to express each sub-model;

2. defining and executing (more or less complex) solution procedures based on a set of solvers that can be

used in isolation or in combination.

An example of a tool that goes in this direction is Mdbius [1, 2, 3, 4]: it includes several formalisms that
can be integrated (even in a single model), and interpreted uniformly in the framework of a single low level
semantic: models analysis takes place at this common level by means of one of the many solvers included in
Mobius. New formalisms can be embedded in the tool by defining (and implementing) the mapping toward
the common semantic level.

A few other tools, such as Smart [5] and Sharpe [6, 7], allow the combined use of different formalisms,
but usually the set of supported formalisms is predefined and closed.

This paper describes the Draw-Net Modeling System (DMS) [8], a framework supporting the design
and solution of models expressed in any graph-based formalism. The system is characterized by an open
architecture and includes an XML based language family that can be used to define existing as well as new
formalisms and multi-formalism models expressed through such formalisms.

The original idea behind the DMS, that differentiates it from the other approaches, is that it focuses on
the integration of different existing tools to achieve the goal of solving multi-formalism models, rather than
the creation of new tools. Moreover the DMS can be customized for the design and the solution of models
conforming to new graph based formalisms.

Since its first version [9, 10], the DMS framework has been designed to be very flexible and open to allow
the inclusion of new formalisms without any programming effort (or at least very little programming effort):
a user is free of integrating in the framework any (graph based) formalism. This basic idea [9] has evolved,
has been formalized and extended.

The paper is organized as follows: Sec. 2 describes the basic components of the DMS architecture and in
particular the Data Definition Language (DDL) that defines in an abstract way the elements for expressing
formalisms and models; the set of XML based languages used by the tool for the exchange of formalisms and
models is also introduced in this section. Sec. 3 describes a system that can be conveniently modeled and
analyzed by following the DMS multi-formalism, multi-solution approach: it is used as a running example
to illustrate in an intuitive way all the relevant concepts throughout the paper. Sec. 4 shows the formalism
definition process in the DMS, presenting through the running example different situations of increasing
complexity (from simple to derived and composed formalism), and describing the DNForGe editor, one of
the DMS components. Sec. 5 shows how models can be built through the Draw-Net tool (another editor
composing the DMS): a brief discussion of the DMS software architecture highlighting its extensibility is also

included. Sec. 6 presents a core set of solvers currently included in the DMS. Finally, Sec. 7 summarizes the

ideas presented in the paper and defines some future work directions.

2 Draw-Net Modeling System architecture

The DMS is a complete framework for the analysis of models that support both multi-formalism specifications
and multi-solution analysis. The key aspect of the DMS is to be an open framework, where other components
can be easily added to the system.

Components can be divided into two categories: Editors and Solvers. Editors are software components
that allow the user to define formalisms and models. Solvers are software components that read the models
written by the editors, compute some sort of analysis, and complete the models definitions by the results
they have computed.

The DMS comprises other components that can be used at different extents to obtain the desired features.

In particular, the DMS is composed by:

e A library to access the features of the DMS framework (called DNIib).

A system of languages called DDL for the definitions of formalisms and models (Sec. 2.1).

A graphical user interface for the definition of formalisms called DNForGe (Sec. 4.4).

A graphical user interface for the definition of models called the Draw-Net tool (Sec. 5.1).

A set of solution components (called the Native Solvers) that can compute performance (or dependabil-
ity) indices of models specified using one of the formalisms belonging to the ”native-formalism” archive

(Sec. 6).

A set of filters for the translation of models expressed in DDL, into the language adopted by a solver.

Currently, the framework provides two graphical user interfaces (DNForGe and the Draw-Net tool) and
a set of solution components (the Native Solvers), but users can add other editors and other solvers to the
system by exploiting the DNlib.

Editors and solvers exchange models and formalisms described with a specific system of languages based
on XML: the Data Definition Language (DDL). Any editor capable of describing models and formalisms
using the DDL can take advantage of the solutions provided by the solvers. In the same way, solvers that
can compute results on models and formalisms described using the DDL, can provide their service to all the
editors. In order to simplify the creation of solvers and editors, the framework provides a library, called the

DNIlib, that implements the DDL.

The DDL is an abstract system of languages that allows the description of models and formalisms. The
solution of a model expressed by means of the DDL, may require the translation of the model into the language
adopted by the solver. This can be carried out in many different ways. In order to achieve the maximum
flexibility, the translation is done by specialized classes called filters. The DMS proposes a set of standard
XML-based formats and filters. These formats will be considered in Sec. 2.4. User defined formats can be
added by including new filters: this allows the direct interaction with existing solvers or editors without any

intermediate translation steps.

2.1 The Data Definition Language

The DDL is the core of the DMS framework. It consist of a system of languages that allows the definition of
a performance model at two levels: the formalism level and the model level.

The formalism level represents the languages used to describe models. It defines all the primitives that
can be used to specify a model in a particular language. For example, it tells that a Petri Net is composed
by Places, Transitions, and Arcs, and that a place contains tokens.

The model level contains the description of a system in the corresponding formalism. It uses the
primitives defined in the corresponding formalism to specify a particular model. For example it tells that a
producer/consumer model described by a Petri Net is composed by two transitions (representing the producer
and the consumer respectively) and a place (representing the buffer where the produced parts are waiting to
be consumed).

Sec. 2.2 and Sec. 2.3 explains the meaning of a formalism and of a model inside the DDL, respectively.

2.2 Formalisms

A formalism is defined as

F={L,E,P,C,e,S,H}
where
e L is the set of Layers;
e F is the set of Elements;
e P is the set of Properties;

e (' is the set of Constraints;

eg € E is the main formalism;

e S: E — 2(FUP) g the structure function;

e H: E — 2F ig the inheritance functions.

Elements are the key feature of the DDL. Elements correspond both to formalisms primitives and to entire
formalisms. Elements for a Petri Net are for example Places, Transitions, Arcs and the Petri Nets themselves.
Properties define the attributes associated with an element. For example a Petri Net’s place has a property
that counts the number of tokens contained in that place. Properties are typed: they can only contain values
of a specific type. A special property type is the Element reference type. It allows to store the reference to
other elements, and it is used for example to define the starting and the ending point for an arc. Properties
are partitioned into two sets P = Pr U Pp: the input properties Pr that are specified by the editors and
contains data belonging to the definition of the model, and output properties Po (also referred as results) that
are filled in by the solvers and returned to the editors as the results of their computations. Input properties
may have associated a default value.

Constraints are logical propositions that tell whether some particular relations between elements and
properties are possible or not. For example, in a Petri Net constraints tell that an arc can only connect places
to transitions, and transitions to places, but not places to places or transitions to transitions.

Each element e € E has associated some properties and a set of elements that it can contain. This
relations is expressed by the structure function S. The ability of an element to be a container, and the fact
that a formalism is an element itself, make it possible to create multi-formalism models, by including sub-
models described in another formalism. However this may also be a source of confusion, since the formalism
structure F' may be confused with a specific formalism. In multi-formalism models, F' may contain more than
one single formalism.

In order to define a single starting point (that is a container formalism that can be used to define sub-
models in specific sub-formalisms), an element eg € E, called the main formalism, is used to represent the
outer-most element of E. Since there is a single main formalism in F', when we will refer to a formalism F,
we will be actually referring to eq.

One of the key features of the DMS is the ability to define new elements by extending existing ones. One
element can inherit properties and sub-elements form other elements. The inheritance is expressed by the
function H. Due to inheritance, the elements are partitioned into two subsets ¥ = E, U E.: abstract and
concrete. Abstract elements e € E, cannot be instantiated directly in model, but can be exploited to define
a common set of properties and sub-elements that can be reused by other elements ¢’ € E.. The actual set

of properties and sub-elements S (e) associated to an element e € E. can be expressed as:

S(e) = S(e)U U S(e').
e'€H(e)

Inheritance is also used to define which elements are sub-formalisms, which are nodes and which are arcs in

the graph that visually describes a model. Every formalism F, in order to be used in the DDL, must include

three special abstract elements: {GraphBased, Node, Edge} C E. Every element that extends GraphBased
is a (sub)formalism. Every element that extends Node is a node in the graph, and every element that extends
FEdge is an edge.

Layers divides the elements and the properties of a formalism into classes. Each class contains elements
and properties that refer to specific aspects of the formalism. Usually a model has three different layers: the
structural layer, the solution layer and the representation layer. The structural layer contains the definition
of the features that characterize the structure of a model. For example in a Petri Net, it contains places,
transitions, tokens, transition rates, arcs, arcs weights an so on. The solution layer contains the parameters
computed by a solver. In the Petri Net example, it may contain transition throughputs, mean number of
tokens, probability of reaching a specific marking and so on. The representation layer contains the definition
of all the graphical aspects of a model, such as the fact that places are drawn by circles and transitions by

boxes.

2.3 Models

A model is defined by its reference formalism, as a set of instances:
M ={F,I,my,A,T,V}
where

e F'is the formalism of the model;

I are the element instances of F.E;

mg € I is the main model;

A : T — 27 is the inclusion function;

T :I — F.E, is the element typing function;

V :Ix F.P - {¥U{nil}} is the assignment function. ¥ represents the set of all the possible values
that a property can hold (i.e. integer, floating points numbers, strings, booleans, element references),

and nil represents the fact that a property is not associated with a particular element.

Every i € I represents an instance of a primitive of the formalism used in the model. T'(7) defines its type,
that is the formalism element to which the instance corresponds. The element type must not be abstract.
An instance ¢ can contain other instances i’ € A(4), as specified by the inclusion function A. Property values
are specified by the assignment function V. In particular V (i, p) represents the value of property p € F.P of

the instance ¢ € I.

Table 1: XML based interchange formats

Formalism | Model

Structure FDL MDL
Results RDL MQL
Representation FRL MRL

The instances enclosed in other instances, and the property assigned to a particular instance, must be

compatible with the definitions and the constraints specified by the formalism. In other words:
T(i) € F.E. AYi' € A(i) =

= T(i") € F.S(T(i)) A\Vpe F.P,p & F.5(T(i)) =
= V(i,p) = nil A c = true,Ve € F.C

Also a model M may contain more than a single model. This enables the support for model classes
[11]. myp represents the main model in M.I, and it must be compatible with the main formalism, that is:
T(mg) = F.eg. In the following, we will address mg simply with the term model. All this aspects will be

clarified in Sec. 5.

2.4 XML format

A set of standard filters to represent the data types expressed by the DDL is defined in the DMS. This set of
filters uses the XML interchange format. In particular it defines six different XML based markup languages:
one for each of the standard layers that compose both the formalisms and the models. Table 1 summarizes
the languages composing the XML interchange format.

The Formalism Definition Layer (FDL), the Result Definition Layer (RDL) and the Formalism Represen-
tation Layer (FRL) are related to the formalism; they define its primitives, which results may be computed,
and how the elements are graphically represented, respectively. The Model Definition Layer (MDL), the
Model Query Layer (MQL) and the Model Representation Layer (MRL) are related to a model; they contain
the definition of the model, which results need to be computed, and the graphical structure of the model,

respectively. The FDL and MDL of the example described in Sec. 3 are presented in the Appendix.

3 Running example

Multi-formalism modeling means representing the system by means of several interacting sub-models, ex-
pressed with different formalisms.

In this section, we provide an example of a system that is conveniently represented by using multi-
formalism, with the aim of evaluating the system unavailability, i. e. the probability that the system is not
working at a certain time. Multi-formalism involves multi-solution because each sub-model needs a specific
solution method in order to be analyzed.

Such system consists of a lighting plant composed by a set of 9 lamps (L1, L2, ..., L9), one electric power
supplier (5), one battery (B) and a controller (C').

Initially, all the lamps are working and are electrically supplied by S; each lamp may fail after a random
period of time which is a random variable ruled by a negative exponential distribution whose failure rate is
AL = 1/4320h = 0.000231481h~1; also the electric power supplier S may fail, but it can be repaired. The
time to fail and the time to repair of S are random variables obeying the negative exponential distribution:
the failure rate of S is Ag = 1/8760h = 0.000114155h~"; the repair rate of S is us = 1/24h = 0.0416667h L.

While S is under repair, it is replaced in its function by the battery B; the charge level of B changes
during the time, it is expressed as a percentage and it is indicated by [g. Such value is initially equal to
100%; while B replaces S, Ip gradually decreases: in order to exhaust its charge, the battery B needs to
supply electric power for 168h; when Ig = 0% the battery can not supply the lamps.

The aim of the controller C' is switching the electric power supply from S to B when S fails; the controller
is a multi-state component: it is initially working, but it may turn to stuck. From the stuck state, the
controller can turn back to the working state, or it can turn to the definitive failed state. Only in the working
state, the controller can fulfil its aim. The duration of the controller states are random variables which
will obey to the negative exponential distribution; Fig. 8 shows the possible state transitions of C' with the
corresponding rates.

The system works correctly if at least 5 of the 9 lamps are not yet failed, and the electric power is supplied
by S or B. The system fails if 5 lamps fail, or the electric power is not supplied by neither S nor B.

Three sub-models are involved in order to represent the whole system behaviour:

o a Parametric Fault Tree (PFT) [12, 13, 14] (Fig. 6) to represent the combination of component failure

events leading to the system failure;

o a Fluid Stochastic Petri Net (FSPN) [15, 16, 17] (Fig. 7) to represent the failure of S and its replacement

by B during the repair, with the consequent wear of B during the repair time;

e a Continuous Time Markov Chain (CTMC) [7, 18] (Fig. 8) to represent the controller state transitions.

In the next sections, we will refer to such models to explain how formalisms and models are built in

DNForGe and Draw-Net tool respectively.

4 Defining formalisms in the DMS

The reference model (Sec. 5) is described using three different formalisms (PFT, FSPN, CTMC) collected in
a composed formalism. In particular, CTMC and PFT are Simple formalisms (Sec. 4.1) in the sense that they
can be described in a single definition. FSPNs can be more easily described by extending the Generalized
Stochastic Petri Nets (GSPN) [19] and adding them the fluid features. We call these kind of formalisms
Derived formalisms (Sec. 4.2). The Composed formalisms (Sec. 4.3) can be described as containers of other
previously defined formalisms, with the addition of special composition primitives.

In Sec. 4.4, we will show the graphical user interface called DNForGe implemented to manipulate such

formalisms.

4.1 Simple formalisms

A simple formalism defines the primitives of a graph based model whose elements can only be nodes and
edges, with no sub-models. At the same time, a simple formalism does not inherit any element from a parent
formalism (inter-formalism inheritance), except from GraphBased. However, in a simple formalism Fy, the
intra-inheritance is possible; this means that an element e € Fy.E (e # eg) can inherit some of its properties
from a set of parent elements py,...,pn, (m > 1) inside the same simple formalism; other properties can be
defined specifically for the element e.

In a simple formalism, it is also possible to define elements as abstract; such elements can not be in-
stantiated in the model; their unique aim is being the parent of other elements. This is useful when several
elements have common properties; so, such properties can be defined once in an abstract element, then they
can be inherited by the elements needing them.

In order to explain such concepts, let us consider the case of the PFT formalism; Fig. 1 shows the
elements of the PFT formalism, using a UML-like graphic language where each box indicates the name
of an element, its properties and the results computable on it. In Fig. 1, the nodes of a PFT can
be events or gates; for this reason, two abstract elements derive from the basic element Node. Such
abstract elements are EVENT and GATE; the first one collects the common properties of the event
nodes: Label and Description. Four types of event node derive from EVENT: BASIC_EVENT, INTER-
NAL_EVENT, TOP.EVENT, REPLICATOR_EVENT; such elements are instantiable in a PFT model. A
result named Probability is defined for TOP_EVENT. BASIC_EV ENT has two additional properties
(Distribution_Type, Distribution_Parameter) and one result (Criticality). REPLICATOR_EVENT has two

10

< -=formals m>>=PFT

e - ARC
i r—
BASIC_REPLICATOR_EVENT \4?
edge
BASIC_EVENT INTERNAL_EVENT) TOP_EVENT REPLICATOR_EVENT
+Listribution_Type:string +Replication_Parameter:string
+Distribution_Parameter:float I +Parameter_Range:integer
-Probability {:float
+Criticality f:float J’? Jj
< -<abstact >=EVENT node
+Label: string [:3
+Description: sthing
l %T
AND OR K. out_of_N <=abstract >>GATE
-klinteger [:3 +Label:string
-Minteger

= -<formalis m=>Grap hBas ed

-
-

Figure 1: UML-like diagram of the simple formalism PFT.

11

STATE
hode <=formalsm>>CTMC Trans tion_Arc edge
-Label: string

< initial_Probabilivyfiaat [W— -Rate:float B

-Probability §:float

< =formalis m> > GraphBas ed

ot

Figure 2: UML-like diagram of the simple formalism CTMC.

specific properties: Replication_Parameter and Parameter_Range. A further type of event node is present
in the diagram in Fig. 1: BASIC_.REPLICATOR_EVENT; such element inherits the properties and results
of both REPLICATOR_EVENT and BASIC_EVENT.

The abstract element GATE has one property: Label. Such property is inherited by all the types of gate
deriving from GATE: AND, OR, K out_of _N. The last one has two specific properties: K and N. The
type ARC concerns the connection arcs of the PFT; it derives from the basic element Edge.

The use of abstract elements may be useful also to set connection constraints among nodes. In the case
of PFT, an arc can connect only an event to a gate or vice-versa; so, we can establish such constraint in the
element ARC, by involving the abstract elements EV ENT and GATE; in this way, the constraint holds for
any type of event or gate deriving from the abstract elements EVENT and GATE.

CTMC is a simple formalism too: it is shown in Fig. 2. Its elements are STATE and TRANSITION _ARC;
Label and Initial _Probability are the properties of ST AT E, while Probability is its result; Rate is the prop-
erty of TRANSITION_ARC.

4.2 Derived formalisms

Derived formalisms are the result of the application of inter-formalism inheritance; this means that some
of the elements of a derived formalism are inherited from another formalism (simple or derived); the other
elements are formalism specific.

It is possible to define a formalism as abstract; in this way, it can only be used for derivation. Moreover,

12

Fluid_Place

-Fluid_Lewel:float f—————#ifi

< <formals m=>=F5PN

g

< <formali m=>G5PN

PLACE

IMMEDIATE_TRANSITION

-Label: string
-Taokensiinteger

-MeanToken(:float

=ve ight: float

le——————— -Flowne_Rate:float

Fluid_Arc

[

TIMED_TRANSITION

-Diztribution_Type:stHing
-Diztribution_Parameter:float

DIRECTED_ARC INHIBITO R_ARC
J? ‘I; i
< <abstract >=ARC edge
+hultiplicity:integer —[f.“-*

v v

node

< <abstract =>=TRANSITION

+Label: string

+Throughput §:float

< -<formali m=>GraphBas ed

Figure 3: UML-like diagram of the derived formalism FSPN.

13

suppose that an element e (e # eg) inside a formalism F} is declared as private; if the formalism F} is derived
from Fi, F5 includes all the elements of F7, except e.

A case of derived formalism is FSPN derived from GSPN. Fig. 3 shows the elements of both the GSPN and
FSPN formalisms using an UML-like graphic language. The GSPN elements PLACE and TRANSITION
are nodes, since they derive from the basic element Node. PLACE has two properties (Label, Tokens)
and one result (Mean_Tokens). TRANSITION is an abstract element collecting the common property
(Label) and the common result (T"hroughput) of the transitions. Two elements derive from TRANSITION:
IMMEDIATE_TRANSITION, TIMED_TRANSITION; the first one has one property called Weight, while
the second one has two specific properties: Distribution Type and Distribution_Parameter. In the GSPN
formalism, two types of edge are defined: DIRECTED_ARC and INHIBITOR_ARC) both of them derive
from the abstract element ARC' whose unique property is Multiplicity. ARC' derives from the basic element
Edge.

FSPN formalism is a derivation from the GSPN formalism: FSPN inherits the same elements of GSPN,
with the addition of two new elements: FLUID_PLACE and FLUID_ARC' both of them have one property:
Fluid_Level and Flow_Rate respectively. FLUID _PLACE derives from Node, while FLUID_ARC derives
from Edge.

4.3 Composed formalisms

In a multi-formalism model, we may have a container model and a set of sub-models; the container model is
an higher level model whose aim consists of containing several sub-models, and defining how each sub-model
interacts with the others. Moreover, a container model must indicate the way to solve each sub-model and
to combine the results together providing the solution of the whole multi-formalism model.

The elements to build a container model have to be defined in a Composed formalism. The main role of
a composed formalism, is being the container of the several simple or derived formalisms, together with a
set of elements (nodes, edges, measures) necessary to build the higher level models. Moreover, a composed
formalism F, can derive from another composed formalism F}; in such case, F» inherits all the elements of
F; including nodes, edges and contained formalisms.

Fig. 4 shows the structure of an example of composed formalism called Container and consisting
of an element called SOLV ER which is a node, and two edges called COMMUNICATION_ARC and
SOLUTION_ARC. The property of the SOLV ER node is Solution_T ool indicating the tool to be applied
to a sub-model. The SOLUTION_ARC is used to connect SOLVER to a sub-model. COMMUNICA-
TION_ARC is used to establish a connection between two sub-models with the consequent exchange of some

values. A connection between two models establishes a sort of dependency of one model from the other.

14

=-<=formalis m>=>=Contamner

< -=<formali m>=GraphBas ed

!

t

COMMUNICATION_ARC SOLUTION_ARC <<measure>=>Unavaikbility| [<<submodel>=>PFT
-Result:string -t:float
-iDbject:zting _
-‘ariahle: string -Htifloat
\L <=5 ubmode I =F5PN
47 SOLVER
edge hode
-Lolution_Toal:string
<—

=<-<submode I>>=CTMC

Figure 4: UML-like diagram of the composed formalism Container.

15

For instance, if a parameter of the model M; corresponds to a result to be computed on the model Ms,
then M; depends on M. For this reason, a COMMUNICATION_ARC must have a verse pointing to the
dependent sub-model; moreover, such an edge has some properties: Result in order to set which result has
to be computed, Object to set the object of the result computation, Variable to indicate the name of the
variable storing the result, once returned by the solution tool.

The formalisms included in this composed formalisms (Fig. 4) are PFT, FSPN and CTMC.

However, the use of a container model with several sub-models, is not the only possible structure of a
multi-formalism model; for this reason, a composed formalism may include other composed formalisms; in

this way, we can have a hierarchy of formalisms organized in several levels.

4.4 DNForGe

The Draw-Net tool (model editor) allows to create or edit any graph based model whose formalism has been
previously defined. Due to the complexity of a formalism specification, and the high number of parameters
to define, building a formalism “by hand”, writing directly its XML code, would be unpractical; so a way to
simplify the specification of a formalism, became necessary.

For this reason, a graphical interface called DNForGe (Draw-Net FOrmalism GEnerator has been devel-
oped with the aim of creating and editing formalisms for the DMS. By means of DNForGe, the user can
manipulate the definition of a formalism avoiding to deal with the XML code. Such code is automatically
generated or updated by DNForGe.

Let us consider the composed formalism introduced in Sec. 4.3; the main window of DNForGe is named
” DNForGe: Composer” (Fig. 5.a) and displays in a tree graphical structure the hierarchy of the involved
formalisms; composed formalisms are indicated by a folder icon to express that they can include one or more
formalisms. By means of the main window, the user can modify the formalisms hierarchy by adding or
removing formalisms inside composed formalisms.

Moreover, from this window, the user can select a single formalism and edit it. In this way, another
window appears and is is named ” DNForGe: Formalism Elements” (Fig. 5.b) and allows the user to add
or remove elements (nodes, edges, measures) in a certain formalism. If the user selects an element of the
formalism and decides to edit it, a further window appears and is called ” DNForGe: Element Editor” (Fig.
5.c); here, the user can add, remove or edit the properties of the previously selected element.

In general, DNForGe allows the user to define formalisms of any kind (simple, derived, composed),
exploiting all the aspects described in the previous sections, such as intra-formalism and inter-formalisms

inheritance, abstract and private elements.

16

Composed Formalism: |Container I & Open H _Hs_ave || DNEW |
[Container
a) [pET
[reprd
[etmc
‘Simple Formalism: PFT\ | E-j.Add Formalism || O Auto Ref. |
| &% Replace || & Edit H & Remove ‘
;v DN ForGe: Formalism elements -|O%]
Formalism file; [PFT | & save || & Open || [l New || A Model Atributes |

BE 2 properties, 0 results, title=Basic Event

IE: O properties, 0 results, title=Internal Event
TE: 0 properties, 1 results, title=Top Event

RE: 2 properties, 0 results, title=Replicator Event

ME

1]

| D_New MNode || Q’Delete Mode

b) Arc 0 properties, 0 results, 0 constraints, title=Arc

| DNewArc || Q’Delete Arc

L) 1 properties, 1 results, title=Unreliability

| D_ Mew Measure || '3? Delete Measure

c)

hdDNForGe: Element Editor -0

E name: |BE| | E description: |Basic Event | E icon in the menu; Element type:

Element icon in the graph: l%l w | lcon width: 36 Icon height: (26
Elements: [E |vH @& Set as Parent | Element parents: IE 4 Remove Parent

| @ New Property | | @ New Result |

- - -
Property Name: [Distribution_Type | Property Type: f&! New Condition 3{; Remove Property E
Result Name: |Criticality @ default compute % Remove Result

Figure 5: Screenshots of DNForGe: a) Composer; b) Formalism Elements; ¢) Element Editor.
17

H.“:@e Document #1 8
v

H:ﬂ RootContainer I-l{i: PFTO Mumerical | ¢
T TE)
1
POWER I?I LIGHT
k=5
n=9
prob_5_ko § B L(i)
l-prob_ B ok 1:1,2, ..9

A=231481E-4 |
IE:——‘I b
Chowall & @E@ég@@

Figure 6: Submodel PFTj.

5 Building models in the DMS

In this section the multi-formalism model representing the behaviour of the system proposed in Sec. 3, is
described; the model is composed by a container model called RootContainer, and three sub-models: PFTy,
FSPN;, CTMC,. All of them are instances of the formalisms defined in Sec. 4. Each sub-model represent
a specific features of the system behaviour, as mentioned at the end of Sec. 3. In this section, first, each
sub-model is presented, then the container model is shown. Such multi-formalism model is drawn by means

of the Draw-Net tool.

PFT model

PFTy is shown in Fig. 6 and respects the PFT formalism (Sec. 4.1); TE is an instance of TOP_EVENT
and indicates the system failure. T'E is the output of an instance of an OR gate whose input events are
POWER and LIGHT; so, TE happens if the event POW ER or the event LIGHT occurs; both of them are
instances of INTERNAL _EV ENT in the PFT formalism; this means that they are the output of a gate.
POW ER models the absence of power supply and is the output of an instance of AND; the input of
such gate are instances of BASIC_EVENT named S and B; they model the failure of the power supply

18

“"\:@e Document #1 e
| m(ﬂRaatContainer PGGFSPNl :.Numerical Q Q
|
1 S_fail 8 ko 416867E-2 :
& e — . |
S_Ok@ D O | |S_repa|r |
1.14155E-4 g
I C_fod |
B switch_OFF !
|
B_switch ON mmmmp | P |
WEAR CWEAR_OUT
Dirac (CHARGE)
1.68
CHARGE ;
oo ’ BREACOO

Figure 7: Submodel FSPN;.

and of the battery respectively. They are stochastic events whose property Distribution_ Type is set to
? Constant_Probability” with the property Distribution_Parameter set to the expression prob_S_ko and 1 —
prob_B_ok respectively. POW ER occurs if both S and B occur.

LIGHT is the output of an instance of K _out_of_N, with the properties K=5§ and N=9; an instance
of BASIC_REPLICATOR_EVENT is the input of such gate; this instance is named L(i) having i as Repli-
cation_Parameter and a Parameter_Range varying from 1 to 9. This means that L(¢) replaces 9 distinct
instances of BASIC_EV ENT with the same Distribution_Type (” Negative_Ezponential”) and with the same
Distribution_Parameter (0.000231481, mentioned in Sec. 3). L(i) models the failure of each of the 9 lamps.
So, LIGHT occurs when K =5 of the N = 9 lamps fail.

All event and gates are connected together by means of instances of ARC respecting the constraint defined

in the PFT formalism.

19

FSPN model

Fig. 7 shows the model FSPN; for the power supply, respecting the FSPN formalism (Sec. 4.2). S_ok
and S_ko are instances of PLACE, so they can contain a discrete number of tokens. S_ok and S_ko model
respectively the working and the failed condition of the power supply S; when one of these place is marked
(contains one token), the relative condition is true, else it is false. Initially, S_ok contains one token (T'okens =
1), while S_ko is empty (T'okens = 0).

S_fail is an instance of TIMED_TRANSITION; this transition models the failure of S, so it has to
fire after a random period of time in order to move the token from the place S_ok to the place S_ko. For
S_fail, Distribution_Type="Negative_Ezrponential” and Distribution_Parameter is equal to the failure rate
of S, mentioned in Sec. 3. S_repair is another instance of TIMED TRANSITION and models the repair
of S by moving the token from the place S_ko back to S_ok; it has the same Distribution Type of S_fail
and its Distribution_Parameter is set to the repair rate of S.

All arcs in FSPN; are instances of DIRECTED_ARC and are used by the transitions to move tokens
from a place to another. Another instance of PLACE is B_ok; if such place is marked, the battery is not
failed. Initially, for B_ok, Tokens = 1. The contemporary marking of S_ko and B_ok, enables the firing
of two instances of IMMEDIATE TRANSITION: B_switch-ON and C_fod, modeling respectively the
switch of the power supply from S to B, and the failure on demand of C. Such transitions are enabled at
the same time; for this reason, the property Weight establishes the probability to fire of each of them: for
B_switch.ON, Weight = p; for C_fod, Weight =1 — p.

If the transition B_switch_-ON fires, B_on becomes marked; B_on is an instance of PLACE and when it
is marked, it models that the battery is supplying electric power. If instead, the transition C_fod fires, the
token inside B_ok is removed; when B_ok is empty, the battery is failed.

Let us consider now CHARGE as an instance of FLUID_PLACFE; this means that CHARGE contains
a continuous amount of fluid instead of a discrete number of tokens. Fluid places are useful to model
the variation of continuous quantities, such as the charge level of the battery. For CHARGE, initially
the property Fluid_Level is equal to 100, in order to model the complete charge of the battery. WEAR
is an instance of TIMED _ TRANSITION, enabled while the place B_on is marked, and connected to
CHARGE by means of an instance of FLUID_ARC having Flow_Rate = 1.68; while WEAR is enabled,
some fluid is removed from CH ARG E with respect to the value of the property Flow_Rate. This models the
gradual decrease of the charge of the battery while it supplies electric power. WEAR_OUT is an instance
of TIMED TRANSITION:; its properties are Distribution_Type="Dirac” and Distribution_Parameter =
CHARGE; this means that WEAR_OUT fires when the fluid level inside CHARGE is equal to 0, in other

words when the charge of the battery is null. The effect of the firing of this transition is the removal of the

20

mﬂ@@ Document #1 a_
' Q

HﬂRootComainer uﬂcmcz | Mumerical | &

1.38889E-3 E

@ 2.08333E-2 @
2.08333E-2

THs

howAllm %ﬁm@Ame

Figure 8: Submodel CT M Cs.

token from the place B_ok.
B_switch_OFF is another instance of IMMEDIATE TRANSITION; if B_on is marked and one token
appears in S_ok due to the firing of S_repair, B_switch_.OFF fires removing the token inside B_on; in this

way, we model the switch of the power supply from B to S, when S is repaired.

CTMC model

CTMC, (Fig. 8) respects the CTMC formalism (Sec. 4.1) and shows the possible states of the controller
C. C_ok is an instance of STATFE with the property I'nitial_Probability = 1, so it is the initial state; from
this state, the controller can turn to the instance of STATE named C_stuck, by means of an instance of
TRANSITION_ARC having Rate = 0.00138889; from C_stuck, C can turn back to C'_ok by means of an
instance of TRANSITION_ARC having Rate = 0.0208333, or to another instance of STATE named C_ko
by means of an instance of TRANSITION_ARC with the same previous value for the property Rate. C_ko
is an absorbing state. C_stuck and C_ko have Initial _Probability = 0. C_ok, C_stuck and C_ko represent

respectively the working, stuck and failed condition of the controller C.

Container model

Fig. 9 shows the container model called RootContainer; it respects the Container formalism (Sec. 4.3)
and sets the interconnections among the sub-models PFTy, FSPN; and CTMC(C,, explained above. A
measure named Unavailability whose property is ¢ (time), concerns the whole multi-formalism model and
indicates the unavailability of the system at a given time ¢. Several instances of COM MUNICATION _ARC

connecting sub-models, indicate the exchange of results among sub-models: in PFTy (Fig. 6), the property

21

HE‘G@@ Document #1 @
I t-ﬁdRootCDmainer Mumerical m (;J:
| I
..----l.‘ ..‘IIIII..
i PFT ! . FEFN !
1solvers ;solvers f
L]
"":"" Result: MeanToken ."':'“.
e Okject: 8 ko =
Result: Probability = Variable: prob 8
Object: TE .
Variable: U_t “+
Fesult: MeanToken
Object: B ok st
7 =2 Besult: Probability
Variable: prok_ B Object: C_ok
Variakle: p
]]] bl
Unavailability :' ctme 1 CTMO
t = 10000 h ssolvers 2
U_t '.‘Illll.‘
¢
L4
:ShowAnF?‘,j BRI A

Figure 9: Container model.

Distribution_Parameter of the basic event S is set to the variable prob_S _ko, while Distribution_Parameter
of the basic event B is set to 1 — prob_B_ok; the properties of the arcs connecting F'SPN; to PFTj indicate
that prob_S_ko and prob_B_ok must be computed on F'SPN; as the mean number of tokens present in the
places called S_ko and B_ok respectively. Since the number of tokens inside such places can be 0 or 1, their
mean number of tokens at time ¢ will be the probability of these places to be marked at time £.

In F'SPN;, the property Weight of the transition B_switch_.ON is equal to the value of the variable p,
while the same property of the transition C'_fod is equal to 1 — p. In RootContainer, the properties of the
arc connecting CTMCs to FSPN,; indicate that p must be computed on CT M Cy as the probability of the
state C_ok.

Finally, the measure Unawvailability relative to the whole multi-formalism model, is connected to PFT,
to indicate that it is equal to the probability of TE in PFTy. Due to the connections among the sub-models

in the container model (Fig. 9), the unavailability analysis of the system at time ¢, must follow these steps:

1. analyzing C'T M C> returning the probability of being in state C'_ok at time t;

2. setting p to such probability in F\SPNy;

22

3. analyzing F'SPN; returning the mean number of tokens inside the places S_ko and B_ok;

4. setting prob_S_ko and prob_B_ok to such values, in PFTy;

5. analyzing PFT, returning the probability of TE at time ¢;
6. setting U_t to such value, in the container model; U_t is the system Unavailability at time ¢.

In RootContainer, the solver to be used for each sub-model, is indicated by means of instances of

SOLVER and SOLUTION_ARC.

5.1 Draw-Net tool

One of the most important components of the DMS framework is the graphical user interface (simply referred
as the Draw-Net Tool). Tt is a standard graphical user interface written in Java. The Draw-Net tool can read
formalisms written using the DDL and saved using the XML-interchange formats described in Sec. 2.4. The
choice of the Java language allows the interface to be easily ported into a wide variety of operating systems
and architectures. The GUI exploits the Java reflection API to dynamically load its components. All the
classes used to implement the user-interaction features are listed in an XML file and dynamically loaded at
run-time. This makes also the GUI easily customizable and extensible.

The standard features of the GUI are its multi-document interface, layers support, the possibility to add
many kind of graphical annotations. Arcs are drawn using Bezier curves, and can be broken if needed. It can
include images, and it can export SVG files to produce high quality graphical representations of the model.

A structure panel allows the possibility to nest sub-models written in other formalisms. Arcs can then
connect primitives from the enclosing model to its sub-model.

A screenshot of the Draw-Net tool can be seen in Fig. 10; other screenshots can be found on the Draw-Net

web page [20].

5.1.1 Software architecture of the Draw-Net tool

The Draw-Net tool is designed in to allow customization and extensibility without need to recompile the
source code of the tool. This is very important for a tool that wants to support a wide variety of formalisms.
Many formalisms in fact require different graphical support. For example Bayesian Networks may require the
user to draw tables and to use them to assign probability to the possible output, conditioned to the various

combinations of inputs. The extensibility is achieved using three concepts: panels, states and commands.

23

Y DrawNET Xe

File Edit Miew Ingert bModify Solve Window Help

UnN=21=] [%{@. ¥ (B3 oo

WW

s JLY

HE(:RootComainer l weJPETD J|

} a2l
'Mumerical | Q|
\

- (W(E (D

i
-
~=

(B[R EEZANAY

A=

POWER

FI LIGHT

! =
[ShowAII@
o

frtessagesd Heip)

k=5
k:n n=9
L-U.-l
prob_S ko § B Li)
l-prob_ B ok i:1,2 .,9
A=2.31481E-4
b1
3 'H -,

R

@
F2
(¥
IS
(&

J%: Set FSM state: BlackArrouwinit
20 Go to selected Sub Model

14 Set FSM state: BlackArrowiMoveNSelect

21 TTpdate SubModel Level data set, step 1!
§.2<- Undate SUBMOGEE Leviel dataer Step. 2!

| Gad Model e

~ Measures
Edges

||U mmm Top Event
||U —= Basic Replicator Event %
4
i

OR gate

:mylnstanc "-fProper‘ties\fResultsw-

‘Dx]ﬁ ;oo zoo |
T lDGD H: |2EIU @
Rotation: D
‘.'. %0
| oo
|

["Layers‘f Structure’

Figure 10: Screenshot of the Draw-Net tool.

24

Panels represent internal windows of the GUI. They can be used to provide functionalities, like new draw-
ing tools, drawing aid or to present customized input panels, specific for elements of a particular formalism.

States define the way in which user interface works. The drawing in the main window is regulated by a
Finite State Machine (FSM). Each drawing tool selected by the user puts the FSM in a different state. The
actions done by the mouse over the main window causes FSM events. Each state defines how to react to
these events, and possibly a new state to jump to. This allows complex interactions like the one required to
draw arcs using Bezier curves.

Commands produce changes to the model or to the tool. Every action done by the user is implemented
by executing a particular command. The Draw-Net tool provides a standard way to record changes made
by a command. This allows the implementation of a undo / redo and history feature independent from the
nature of a particular command. Commands are divided into four levels, depending on the type of action they
perform: Tool, Frame, SubModel and Element. Tool commands perform actions relative to the entire GUI
and not related to any model, like opening a new window or showing a new panel. Frame commands perform
actions related to a particular model, like saving it to disk or passing it to a solver. SubModel commands
perform actions related to a specific sub-model, like adding or renaming an element. Element commands
operate on the single elements: for example, they assign properties or show results.

The key feature of the extensibility of the GUI is that panels, states and commands can be added without
needing to recompile the GUI. They are all created by extending the corresponding java base classes, and
are dynamically loaded using Java introspection API. In particular the name of the classes that implement
the required panels, states and commands are stored in a configuration file written in XML. The Draw-Net
tool dynamically creates instances of these classes during its startup. An example of this configuration file is

presented in the Appendix.

6 Native solvers

The DMS framework provides a standard way to define single or multi-formalism models in a user-friendly
way. However, model definition is usually only meaningful if solver applications that can compute results on
these models, exist. In this section, we will briefly present some of the solution components that have already
been included in the DMS framework.

FSPNedit [21] is a tool based on the DMS and allows the solution of FSPNs. It can provide model analysis
using both numerical techniques and discrete event simulation.

Another tool [22] based on the DMS, concerns the analysis of an extension of PFTs called Dynamic
Repairable Parametric Fault Trees (DRPFT) [23, 24, 25]; such formalisms includes dynamic gates to model

dependencies among failure events, and repair boxes to model repair processes. The analysis of DRPFTs

25

involves two methods: the combinatorial solution and the state space solution.

There is another tool for the analysis of Fault Tree extensions using the Draw-Net tool as graphical
interface; such tool implements the conversion of simpler Dynamic Fault Trees (DFT) [26, 27] in Dynamic
Bayesian Networks (DBN) [28, 29, 30]. The use of BNs allows to compute new measures on DFTs. Also a
DBN solver has been based on the DMS.

Such solvers concern single models; future developments will regard the study of generalized solution

methods for multi-formalism models.

6.1 Analysis of the running example

In this section, we perform the transient analysis of the multi-formalism model described in Sec. 5 and
representing the behaviour and the failure mode of the system described in Sec. 3. We are interested in
computing the Unavailability of the system after 1000h.

We use the Sharpe tool to solve CT M Cy and PFT, while we use FSPNEdit to solve FSPN;. According
to the analysis steps given by the container model and indicated at the end of Sec. 5, these are the intermediate

results obtained on the sub-models for a mission time equal to 1000h:
1. the analysis of CT M C, returns that the probability of the state C_ok is equal to 0.496608.
2. In FSPNy, pis set to 0.496608.
3. The analysis of FSPN; returns that

e the mean number of tokens inside the place S_ko is equal to 0.002732;

e the mean number of tokens inside the place B_ok is equal to 0.892103.
4. In PF1T,,

e prob_S_ko is set to 0.002732;

e prob_B ko is set to 0.892103.
5. The analysis of PFT returns that the probability of TE is equal to 0.022751.
6. In the container model, U_t is set to 0.022751.

Thus, from the analysis of the multi-formalism model for a mission time of 1000h, we obtain that the

Unavailability of the system at that time (U_t), is equal to 0.022751.

26

7 Conclusions and future work

The DMS is an open and extensible framework supporting the multi-formalism multi-solution approach to
the modeling of systems: it allows to model different aspects of a system with the most appropriate formalism
and analyze it through a solution process based on one or more solvers.

The basic ideas behind the DMS were already introduced in its first implementations, but they have
evolved significantly: with respect to the previous version [9], the DMS includes now DNIib, DDL, DNForGe;
moreover, the Draw-Net tool has been completely redesigned, with the addition of new facilities increasing
its extensibility.

Future work will concern the implementation of multi-solution in the DMS; in particular, future work will
regard the integration of the available native solvers together with the construction of filters to get interfaced

with new solvers.

27

References

[1]

[4]

[5]

[6]

D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. Doyle, W. Sanders, and P. G. Webster. The
Mobius Framework and its Implementation. IEEE Transactions on Software Engineering, 28(10):956—
969, 2002.

G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. M. Doyle, W. H. Sanders, and P. Web-
ster. The Mobius Modeling Tool. In Proceedings of the 9th International Workshop on Petri Nets and
Performance Models, pages 241-250, Aachen, Germany, September 2001.

T. Courtney, D. Daly, S. Derisavi, V. Lam, and W. H. Sanders. The Md&bius Modeling Environment.
In Tools of the 2003 Illinois International Multiconference on Measurement, Modelling, and Evaluation
of Computer-Communication Systems, volume research report no. 781/2003, pages 34-37, Universitat

Dortmund Fachbereich Informatik, 2003.

T. Courtney, D. Daly, S. Derisavi, S. Gaonkar, M. Griffith, V. Lam, and W. H. Sanders. The Mobius
Modeling Environment: Recent Developments. In Proceedings of the 1st International Conference on

Quantitative Evaluation of Systems (QEST), Twente, The Netherlands, September 2004.

G. Ciardo and A. S. Miner. SMART: Simulation and Markovian Analyzer for Reliability and Timing. In
Proc. of the 7th Int. Workshop on Petri Nets and Performance Models, pages 41-43, Saint Malo, France,
June 1997.

R. Sahner and K. S. Trivedi. Reliability modeling using SHARPE. IEEE Transactions on Reliability,
R-36:186-193, 1987.

R. A. Sahner, K. S. Trivedi, and A. Puliafito. Performance and Reliability Analysis of Computer Systems;
An Ezrample-based Approach Using the SHARPE Software Package. Kluwer Academic Publisher, 1996.

M. Gribaudo, D. Codetta-Raiteri, and G. Franceschinis. Draw-Net, a customizable multi-formalism
multi-solution tool for the quantitative evaluation of systems. In Proceedings of the 2nd International

Conference on Quantitative Evaluation of Systems, pages 257-258, Turin, Italy, September 2005.

V. Vittorini, G. Franceschinis, M. Gribaudo, M. Iacono, and N. Mazzocca. DrawNet++: Model objects
to support performance analysis and simulation of complex systems. In Proceedings 12th International

Conference on Modelling Tools and Techniques for Computer and Communication System Performance

Evaluation (TOOLS 2002), pages 233-238, London, 2002. Springer Verlag - LNCS, Vol 2324.

28

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

G. Franceschinis, M. Gribaudo, M. Iacono, V. Vittorini, and C. Bertoncello. DrawNet++: a flexible
framework for building dependability models. In In Proc. of the Int. Conf. on Dependable Systems and
Networks, Washington DC, USA, June 2002.

V.Vittorini, M. Tacono, N. Mazzocca, and G. Franceschinis. The OsMoSys approach to multi-formalism

modeling of systems. Journal of Software and System Modeling, 3(1), March 2004.

A. Bobbio, G. Franceschinis, R. Gaeta, and G. Portinale. Parametric fault tree for the dependability
analysis of redundant systems and its high-level Petri net semantics. IEEE Transactions on Software

Engineering, 29(3):270-287, March 2003.

G. Franceschinis, R. Gaeta, and G. Portinale. Dependability Assessment of an Industrial Programmable
Logic Controller via Parametric Fault-Tree and High Level Petri Net. In Proc. 9th Int. Workshop on
Petri Nets and Performance Models, pages 29-38, Aachen, Germany, Sept. 2001.

A. Bobbio, D. Codetta-Raiteri, Massimiliano De Pierro, and G. Franceschinis. Efficient Analysis Algo-
rithms for Parametric Fault Trees. In Proceedings of the Workshop on Techniques, Methodologies and

Tools for Performance Evaluation of Complexr Systems, pages 91-105, Turin, Italy, September 2005.

M. Gribaudo, M. Sereno, and A. Bobbio. Fluid Stochastic Petri Nets: An Extended Formalism to
Include non-Markovian Models. In 8-th International Conference on Petri Nets and Performance Models

- PNPMY9, pages 71-82. IEEE Computer Society, 1999.

M. Gribaudo, A. Bobbio, and M. Sereno. Modeling physical quantities in industrial systems using
Fluid Stochastic Petri Nets. In Proceedings 5-th International Workshop on Performability Modeling of
Computer and Communication Systems, pages 81-85, 2001.

M. Gribaudo, M. Sereno, A. Horvath, and A. Bobbio. Fluid Stochastic Petri Nets augmented with
flush-out arcs: Modelling and analysis. Discrete Event Dynamic Systems, 11(1/2):97-117, 2001.

K. Trivedi. Probability € Statistics with Reliability, Queueing & Computer Science applications. Wiley,
IT Edition, 2001.

M. Ajmone-Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with Generalized
Stochastic Petri Nets. J. Wiley and Sons, 1995.

http://www.draw-net.com. Draw-Net web page.

M. Gribaudo. FSPNEdit: A fluid stochastic Petri net modeling and analysis tool. Technical report, Tools
of Aachen 2001 - International Multiconfernce on Measurements Modelling and Evaluation of computer

Communication Systems - University of Dortmund, Bericht No. 760/2001, 2001.

29

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

D. Codetta-Raiteri. Development of a Dynamic Fault Tree solver based on Colored Petri Nets and
graphically interfaced with DrawNET. Technical Report TR-INF-2003-10-06-UNIPMN, Dipartimento

di Informatica, Universita del Piemonte Orientale, October 2003.

A. Bobbio and D. Codetta-Raiteri. Parametric Fault-trees with dynamic gates and repair boxes. In

Proc. Reliability and Maintainability Symposium, pages 459465, Los Angeles, CA USA, January 2004.

D. Codetta-Raiteri. Parametric Dynamic Fault Tree and its Solution through Modularization. In Sup-
plemental Volume of the International Conference on Dependable Systems and Networks, pages 157-159,
Florence, Italy, June 2004.

A. Bobbio, D. Codetta-Raiteri, M. De Pierro, and G. Franceschinis. System Level Dependability Analysis.
In M. Violante M. Sonza Reorda, Z. Peng, editor, System-level Test and Validation of Hardware/Software

Systems, volume 17 of Springer Series in Advanced Microelectronics. Springer, 2005.

J. B. Dugan, S. J. Bavuso, and M. A. Boyd. Dynamic Fault-Tree Models for Fault-Tolerant Computer
Systems. IEEE Transactions on Reliability, 41:363-377, 1992.

R. Manian, D. W. Coppit, K. J. Sullivan, and J. B. Dugan. Bridging the Gap Between Systems and
Dynamic Fault Tree Models. In Proceedings Annual Reliability and Maintainability Symposium, pages
105-111, 1999.

A. Bobbio, L. Portinale, M. Minichino, and E. Ciancamerla. Improving the Analysis of Dependable
Systems by Mapping Fault Trees into Bayesian Networks. Reliability Engineering and System Safety,
71:249-260, 2001.

S. Montani, L. Portinale, and A. Bobbio. Dynamic Bayesian Networks for Modeling Advanced Fault
Tree Features in Dependability Analysis. In Advances in Safety and Reliability (ESREL 2005), volume 2,
pages 1415-1422. Balkema, 2005.

S. Montani, L. Portinale, A. Bobbio, M. Varesio, and D. Codetta-Raiteri. DBNet, a tool to convert
Dynamic Fault Trees to Dynamic Bayesian Networks. Technical Report TR-INF-2005-08-02-UNIPMN,

Dipartimento di Informatica, Universita del Piemonte Orientale, August 2005.

30

Appendix: XML based interchange format

The content of this appendix supports the explanation of the concepts reported in this paper. In this appendix,
we present the FDL definition files generated by DNForGe for the CTMC formalism and for the Container
formalism, the MDL file generated by the Draw-Net tool, and an excerpt of the Draw-Net tool configuration
file that dynamically loads panels, states and commands of the GUI.

FDL for the CTMC formalism

<?xml version="1.0" encoding="UTF-8" standalone='"no"?7>
<!DOCTYPE fdl SYSTEM ’../../dtd/fdl.dtd’>
<fdl main="CTMC">
<include src="base/GraphBased.fdl" />
<include src="base/Instantiable.fdl" />
<elementType name="CTMC" >
<parent ref="GraphBased" />
<parent ref="Instantiable" />
<elementType name="STATE" >
<parent ref="Node" />
<propertyType name="Label" type="string" default="7" />
<propertyType name="Initial_Probability" type="float" default="0.1" />
</elementType>
<elementType name="Transition_Arc" >
<parent ref="Edge" />
<propertyType name="Rate" type="float" default="0.1" />
</elementType>
</elementType>
</£d1>

FDL for the Container formalism

<?xml version="1.0" encoding="UTF-8" standalone="no"7>
<!DOCTYPE fdl SYSTEM ’../../dtd/fdl.dtd’>
<fdl main="Container">

<include src="base/GraphBased.fdl" />

<include src="base/Instantiable.fdl" />

<include src="PetriNets/FSPN/FSPN.fdl" />

<include src="FT/PFT/PFT.fd1" />

<include src="MC/CTMC/CTMC.fd1" />

<elementType name="Container" >

<parent ref="GraphBased" />

31

<parent ref="Instantiable" />
<elementType name="SOLVER" >
<parent ref="Node" />
<propertyType name="Solution_Tool" type="string" default="7" />
</elementType>
<elementType name="COMMUNICATION_ARC" >
<parent ref="Edge" />
<propertyType name="Result" type="string" default="?" />
<propertyType name="Object" type="string" default="?" />
<propertyType name="Variable" type="string" default="7" />
</elementType>
<elementType name="SOLUTION_ARC" >
<parent ref="Edge" />

</elementType>

<elementTypeRef ref="PFT" />
<elementTypeRef ref="FSPN" />
<elementTypeRef ref="CTMC" />
</elementType>
</£d1>

MDL for the model

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<mdl fdl="Multiformalism/Container.fdl" main="RootContainer">
<Container id="PowerPlant">
<FSPN id=’FSPN1’ visibility=’false’ Title=’’>
<PLACE id=’S_ok’ visibility=’false’ Tokens=’1’ Labe1=’S_working’/>
<PLACE id=’S_ko’ visibility=’false’ Tokens=’0’ Label=’S_failed’/>

</FSPN>
<CTMC id=’CTMC2’ visibility=’false’ Title=’’>
<STATE id=’Cok’ visibility=’false’ Label=’C_working’ Initial_Probability=’1’/>

<Transition_Arc id=’Arc0’ visibility=’false’ from=’Cok’ to=’Cstuck’ Rate=’0.00138889’/>

</CTMC>
<PFT id=’PFT0’ visibility=’false’ Title=’’>
<TOP_EVENT id=’TE’ visibility=’false’ Label=’System’/>
<O0R id=’0R’ visibility=’false’ Label=’orl’/>
<INTERNAL_EVENT id=’POWER’ visibility=’false’ Label=’Power Supply’/>

</PFT>

<SOLVER id="FSPNsolver" Solution_Tool="FSPNedit"/>

32

<SOLUTION_ARC id="ArcO" from="FSPN1" to="FSPNsolver"/>

</Container>

</md1>

The Draw-Net tool configuration file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE fdl SYSTEM "gdf.dtd">

<gdf>

<!-- States of the FSM -->

<FSMstate class="FSMStates.FSM_BlackArrowInit"/>
<FSMstate class="FSMStates.FSM_BlackArrowMoveNSelect"/>
<FSMstate class="FSMStates.FSM_BlackArrowMove"/>

<!-- Commands of the GUI -->

<command class="Commands.Tool.CMD_New"/>

<command class="Commands.Frame.CMD_Save"/>

<command class="Commands.SubModel.CMD_ZoomFact">
<parameter type="integer" value="25"/>

</command>

<!-- Panels -->

<panelWindow name="Functions" caption="Functions"
icon="icons/Function.gif"

x="916" y="180" w="216" h="180" visible="false">

<panelElement name="Transform" caption="Transform"

class="Panels.FunctionPanel.DrawNETTransformPanel"/>

<panelElement name="Align" caption="Align"

class="Panels.FunctionPanel.DrawNETAlignPanel" />

</panelWindow>

</gdf>

33

