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The Engineering of a Compression Boosting Library:

Theory vs Practice in BWT compression

Paolo Ferragina∗ Raffaele Giancarlo† Giovanni Manzini‡

Abstract

Data Compression is one of the most challenging arenas both for algorithm design and engineering.
This is particularly true for Burrows and Wheeler Compression a technique that is important in itself
and for the design of compressed indexes [20]. There has been considerable debate on how to design and
engineer compression algorithms based on the BWT paradigm. In particular, Move-to-Front Encoding
is generally believed to be an “inefficient” part of the Burrows-Wheeler compression process. However,
only recently two theoretically superior alternatives to Move-to-Front have been proposed, namely Com-
pression Boosting [7] and Wavelet Trees [6, 10]. The main contribution of this paper is to provide the
first experimental comparison of these three techniques, giving a much needed methodological contribu-
tion to the current debate. We do so by providing the first carefully engineered compression boosting
library that can be used, on the one hand, to investigate the myriad new compression algorithms that
can be based on boosting, and on the other hand, to make the first experimental assessment of how
Move-to-Front behaves with respect to its recently proposed competitors. The main conclusion is that
Boosting, Wavelet Trees and Move-to-Front yield quite close compression performance. Finally, our
extensive experimental study of boosting technique brings to light a new fact overlooked in 10 years of
experiments in the area: a fast adapting order-zero compressor is enough to provide state of the art
BWT compression by simply compressing the run length encoded transform: Move-to-Front, Wavelet
Trees, and Boosters can all be by-passed by a fast learner.

1 Introduction

In the quest for the ultimate data compressor, Algorithmic Theory and Engineering go hand in hand.
This point is well illustrated by the amount of results and implementations originated by the fundamental
results by Lempel and Ziv. A more recent example is provided by the fundamental contributions given
by Burrows and Wheeler to data compression [3], via their transform (denoted for short bwt). In their
seminal paper Burrows and Wheeler proposed to compress the output of the bwt using Move-to-Front
Encoding (shortly mtf), followed by an order zero compressor A (usually Arithmetic or Huffman coding).
As pointed out by Fenwick [5] in the first systematic study of that new type of compression, the technique is
so powerful that it yields nearly state-of-the-art compression results without any particularly sophisticated
engineering of the coding step. This should be contrasted with PPM-based compressors that involve quite
a bit of engineering. From that point on, the research on bwt compression has focused on two aspects:
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faster bwt computation, and the identification and exploitation of potential inefficiencies in the use of
mtf. While substantial progress has been made on the first point, both theoretically and experimentally
(e.g. [2, 18]), the second point experienced a plethora of heuristically-designed proposals (see [1, 4] and
references therein) which improved over the original proposal but often lacked of analytical justification.

Recently, two theoretical results [6, 7] have shed new light on the role of mtf within the bwt-based
compression paradigm, paving the way to the (analytically justified) design of more powerful bwt-based
compressors. In particular, [7] proposed a new technique, named compression boosting, that fully uses
the power of bwt to show that the performance of any order zero compressor A can be automatically, and
optimally, boosted to higher order entropy compression. On the other hand, [6] proved that combining
the bwt with the Wavelet Tree data structure [10] we can achieve high-order entropy bounds without
using mtf or the boosting technique. At the same time, a novel and very recent analysis of classic bwt
compression [12] showed that mtf may not be as inefficient as initially thought. Summing this with the fact
that the theoretical results in [6, 7] require some sophisticated algorithmic machinery, it is not at all clear
how much computational/compression gain can be achieved by shaving off the mtf-step from the bwt-based
compressors.

The above is the main question addressed in the present paper, whose key contribution is first of all
methodological. We provide the first carefully engineered compression boosting library that can be used,
on the one hand, to investigate the myriad new compression algorithms that can be based on boosting,
and on the other hand, to make the first experimental assessment of how mtf behaves with respect to its
recently proposed competitors: Boosting and Wavelet Trees. The boosting library is available under the
GPL license at the page http://www.mfn.unipmn.it/˜manzini/boosting and it is highly modular in the sense
that it can be used to create a powerful high order compressor even without any knowledge of the bwt.

In order to highlight our additional technical contributions, we need to recall a few facts about com-
pression boosting [7]. Additional details are given in Section 3. The boosting technique builds upon three
main ingredients: bwt, the Suffix Tree data structure, and a greedy algorithm to process them. Specifically,
it is shown that there exists a proper partition of the bwt of a string s exhibiting a deep combinatorial
relation with the k-th order entropy of s. That partition can be identified via a greedy processing of the
suffix tree of s. The final compressed string is then obtained by compressing individually each substring
of the partition by means of the base (order zero) compressor A we wish to boost. The proper design of a
compression booster is a bit trickier than it sounds:

(A) The greedy algorithm alluded to before is a bottom up visit of the suffix tree. In practice, on large
files, the memory requirements for the construction of the suffix tree would be prohibitively large. We use
suffix arrays instead and procedures that efficiently simulate the bottom up visit of the suffix tree [13].

(B) Given the algorithm A we wish to boost, we also need an objective function that estimates how well A
compresses a given string. In [7], the objective function is given in terms of two parameters λ and µ and
the order zero empirical entropy of the string (see Section 3 for details). In practice, λ and µ may either
be not available or be too conservative. This point is discussed in Section 4, where we propose two cost
models and the relative objective functions.

(C) Another important aspect of the boosting process is the ability of the algorithm A to quickly adapt to the
statistics of a string to be compressed. Faster adaptation means better compression. This learning process is
usually governed by parameters establishing how fast A “forgets the past”. We limit our experimentation
to range coding and arithmetic coding. The somewhat intuitive, yet surprising, results are reported in
Section 5 and briefly outlined in point (F) below.

Using our library we have compared the performance of the compression booster against bwt compres-
sors based on mtf (e.g. Bzip2 [21] and variants), bwt compressors based on Wavelet Trees (e.g., Wzip [9]),
and state-of-the-art PPM compressors (e.g. PPMd [23]). We show that:

(D) As predicted by Theory [7], boosting is superior to classic bwt approaches that use mtf in terms of
compression ratio but not by much. It is also slower, as it is to be expected, because of the significant
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time cost for building the optimal bwt-partition (as observed in B). Therefore, those results give a strong
indication that mtf may actually be a time-efficient way to effectively “approximate” the optimal partition
computed by the boosting technique.

(E) As predicted by Theory [6, 10, 11], the simple combination of bwt with Wavelet Trees is very effec-
tive both in time and compression ratio and does not benefit from the use of the booster. However, the
Wavelet Tree approach is outperformed by classic bwt approaches that use mtf. This further confirms
the effectiveness in time and compression ratio of mtf, and leaves open the problem of investigating the
more powerful approach proposed in [6], namely Generalized Wavelet Trees, which are based on sophisti-
cated combinations of binary (like, Run Length encoders) versus non-binary (like, Huffman or Arithmetic
encoders) compressors and Wavelet Trees of properly-designed shapes.

(F) The experiments performed to estimate the best adaptation parameters for range and arithmetic coding
show clearly that a fast adaptation yields state-of-the-art compression by simply compressing a run length
encoded bwt. This is somewhat intuitive, yet surprising: to our knowledge no one observed experimentally
the superiority of this strategy w.r.t. mtf, and no theoretical analysis has explained or suggested such
behavior. Moreover, this result comes from the stronger finding that for a fast adapting range coder the
optimal partition coming out of the booster is the bwt itself (data not shown, due to space limitations).
That is, the strategy is optimal.

(G) All the bwt-based compressors we tested were inferior, in terms of compression ratio, to the highly
engineered PPMd tool. The principle behind bwt and PPM techniques is the same: discover and encode
according to the “best” contexts. However, bwt-based algorithms have the advantage of knowing the entire
string, while PPMd “discovers” good contexts on-line. Yet bwt-based algorithms do not perform as well.
This yields an extremely intriguing engineering problem for data compression practitioners. Note that there
is a very good reason to stick with bwt-based compressors instead of embracing the, apparently superior,
PPM-based compressors: the reason is that bwt-based compressors are a key tool for the construction of
compressed indices which (informally) are compressed files offering the additional capability of very fast
full text search (see [20] for formal definitions and a comprehensive survey).

In conclusion our experiments show that Boosting, Wavelet Trees and mtf yield quite close compression
performance. However, the boosting technique appears to be more robust and works well even with less
effective order zero compressors (such as Huffman coding). Moreover, when used with range/arithmetic
coding the boosting technique yields excellent compression somewhat irrespective of how fast the order-zero
compressor adapts to the statistics of the string. These positive features are achieved using more resources
(time and space) during compression: nevertheless our results show that a careful implementation of
boosting can handle efficiently even very large files.

2 Background and Notation

Let s be a string over the alphabet Σ = {a1, . . . , ah} and, for each ai ∈ Σ, let ni be the number of occurrences
of ai in s. The 0-th order empirical entropy of the string s is defined as1 H0(s) = −

∑h
i=1(ni/|s|) log(ni/|s|).

It is well known that H0 is the maximum compression we can achieve using a fixed codeword for each
alphabet symbol. We can achieve a greater compression if the codeword we use for each symbol depends
on the k symbols preceding it, since the maximum compression is now bounded by the k-th order entropy
Hk(s) (see [15] for the formal definition). For highly compressible strings, |s|Hk(s) fails to provide a
reasonable bound to the performance of compression algorithms (see discussion in [7, 15]). For that
reason, [15] introduced the notion of 0-th order modified empirical entropy:

H∗
0 (s) =







0 if |s| = 0
(1 + ⌊log |s|⌋)/|s| if |s| 6= 0 and H0(s) = 0
H0(s) otherwise.

(1)

1We assume that all logarithms are taken to the base 2 and 0 log 0 = 0.
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Figure 1: The Burrows-Wheeler transform for the string s = mississippi. The matrix on the right
has the rows sorted in lexicographic order. The output of the bwt is the last column of the matrix, i.e.,
ipssm$pissii.

Note that if |s| > 0, |s|H∗
0 (s) is at least equal to the number of bits needed to write down the length of s

in binary. The k-th order modified empirical entropy H∗
k is then defined in terms of H∗

0 as the maximum
compression we can achieve by looking at no more than k symbols preceding the one to be compressed.

Given a string s, the Burrows-Wheeler transform (bwt for short) consists of three basic steps (see Fig. 1):
(1) append to the end of s a special symbol $ smaller than any other symbol in Σ; (2) form a conceptual
matrix M whose rows are the cyclic shifts of the string s$, sorted in lexicographic order; (3) construct the
transformed text ŝ = bwt(s) by taking the last column of M. Notice that every column of M, hence also
the transformed text ŝ, is a permutation of s$. Although it is not obvious, from ŝ we can always recover s,
see [3] for details. The power of the bwt rests on the fact that equal contexts (substrings) of s are grouped
together resulting in a few clusters of distinct symbols in bwt(s). That clustering makes bwt(s) a better
string to compress than s. In their seminal paper Burrows and Wheeler proposed to compress the output
of the bwt using Move-to-Front Encoding (shortly mtf), followed by an order zero compressor (Arithmetic
or Huffman coding). In [12] it is shown that if we use an order zero compressor A such that for any string
x we have |A(x)| ≤ |x|H0(x) + c|x|, then the combination: bwt followed by mtf, followed by A produces an
output bounded by

µ|s|Hk(s) + (log ζ(t) + c)|s| + log |s| + µgk (2)

where ζ is the Riemann zeta function. The above bound holds for any k ≥ 0 and t > 1. Concerning
H∗

k , in [15] it is shown that if we use Run Length Encoding (shortly rle) between mtf and the order zero
compressor, the output is bounded by

(5 + ǫ)|s|H∗
k(s) + log2 |s| + g′k (3)

for any k ≥ 0 and ǫ ≈ 10−2. The bottom line is that combining the Burrows-Wheeler transform with
mtf and an order zero compressor we can achieve the k-th order entropy, Hk or H∗

k , simultaneously for
any k ≥ 0. Note however, that the coefficient in front of the k-th order entropy in (2) and (3) is greater
than 1 whereas we are assuming that A achieves H0 without any multiplicative constant. This means
that there is a small inefficiency as we go from H0 and H∗

0 to Hk and H∗
k . It is an open question wether

this inefficiency can be removed with a more detailed analysis or is inherent in the use of Move-to-Front
encoding. We point out that other techniques for achieving the k-th order entropy via the bwt have been
proposed in the compressed index literature (see [20] for a general survey). In this paper we consider only
“pure” compressors which are more space efficient since they do not need the extra information required
for supporting indexing operations.
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Figure 2: Suffix tree for the string s = mississippi$. The symbol associated to each leaf is displayed
inside a circle, it is the symbol occupying the corresponding position of ŝ, when the leaves are listed from
left to right.

3 A BWT-based compression booster

Recently, [7] has described a bwt-based compression booster that, starting from an order zero compressor,
achieves the k-th order entropy without the inefficiency found in the mtf-based approach. In this section
we quickly review how the boosting algorithm works; the details and proofs can be found in [7].

A crucial ingredient of the compression booster is the relationship between the bwt matrix and the
suffix tree data structure. Let T denote the suffix tree of the string s$. T has |s|+ 1 leaves, one per suffix
of s$, and edges labelled with substrings of s$ (see Figure 2). Any node u of T has implicitly associated
a substring of s$, given by the concatenation of the edge labels on the downward path from the root of
T to u. In that implicit association, the leaves of T correspond to the suffixes of s$. We assume that the
suffix tree edges are sorted lexicographically. As a consequence, if we scan T ’s leaves from left to right, the
associated suffixes are lexicographically sorted.

Since each row of the bwt matrix is prefixed by one suffix of s$ (see Section 2), there is a natural
one-to-one correspondence between the leaves of T and the rows of the bwt matrix. Moreover, since the
suffixes are lexicographically sorted, both in T and in the bwt matrix, the i-th leaf (counting from the left)
of the suffix tree corresponds to the i-th row of the bwt matrix. We associate the i-th leaf of T with the
i-th symbol of the string ŝ = bwt(s). The symbol written in the leaf v is thus the symbol preceding in s the
substring of s$ associated with v. We write ℓi to denote the i-th leaf of T and ℓ̂i to denote its associated
symbol. From the above discussion, it follows that ŝ = ℓ̂1ℓ̂2 · · · ℓ̂|s|+1. See Figure 2 for an example.

Let w be a substring of s. The locus of w is the node τ [w] of T that has associated the shortest string
prefixed by w. For any suffix tree node u, let ŝ〈u〉 denote the substring of ŝ concatenating, from left to
right, the symbols associated to the leaves descending from node u. For example, in Figure 2, given the
node τ [i] as the locus of the substring i, we have ŝ〈τ [i]〉 = pssm. Given a suffix tree T , we say that a
subset L of its nodes is a leaf cover if every leaf of the suffix tree has a unique ancestor in L. Any leaf
cover L = {u1, . . . , up} naturally induces a partition of the leaves of T namely ŝ〈u1〉, . . . , ŝ〈up〉. Because
of the relationship between T and the bwt matrix this is also a partition of ŝ.

Example 1 Consider the suffix tree for s = mississippi in Figure 2. A leaf cover consists of all nodes
of depth one. Using the notion of locus, we can describe this leaf cover as L1 = {τ [$], τ [i], τ [m], τ [p], τ [s]}.
Another leaf cover is L2 = {τ [$], τ [i$], τ [ip], τ [is], τ [m], τ [p], τ [si], τ [ss]} which is instead formed by nodes
at various depths. The partition of ŝ induced by L1 is {i, pssm, $, pi, ssii} and the one induced by L2 is
{i, p, s, sm, $, pi, ss, ii}.
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(1) Construct the suffix tree T for the string s$.
(2) Visit T in postorder. Let u be the visited node, and let u1, . . . , uc be its children:

(2.1) Compute C(ŝ〈u〉).
(2.2) Compute Z(u) = min {C(ŝ〈u〉),

∑

i
Z(ui)}.

(2.3) Set the leaf cover L(u) = {u} if Z(u) = C(ŝ〈u〉);
otherwise set L(u) ∪c

i=1
L(ui).

(3) Set Lmin = L(root(T )).

Figure 3: The pseudocode for the linear-time computation of an optimal leaf cover Lmin.

Let C denote a function which associates to every string x over Σ ∪ {$} the positive real value C(x).
For any leaf cover L, we define its cost as:

C(L) =
∑

u∈L

C(ŝ〈u〉). (4)

Example 2 The “smallest” leaf cover of T is {root(T )} and its induced partition consists of the whole
string ŝ. Hence C({root(T )}) = C(ŝ). The “largest” leaf cover consists of the tree leaves {ℓ1, . . . , ℓ|s|+1}.

Its induced partition consists of the singletons ℓ̂1, . . . , ℓ̂|s|+1, hence C({ℓ1, . . . , ℓ|s|+1}) =
∑|s|+1

i=1 C(ℓ̂i).

In [7] it is proven that the procedure in Figure 3 computes a leaf cover Lmin of minimum cost. That
is, Lmin is such that C(Lmin) ≤ C(L), for any leaf cover L. Lmin is called an optimal leaf cover and we say
that Lmin induces an optimal partition of ŝ with respect to the cost function C. The relevance of Lmin for
achieving the k-th order entropy derives by the following Theorem proven in [7].

Theorem 1 Let A denote an order zero compressor such that for any string x we have |A(x)| ≤ λ|x|H∗
0 (x)+

µ where λ and µ are constants. Let Lmin denote an optimal partition of ŝ with respect to the cost function
C(x) = λ|x| H∗

0 (x) + µ. Then, if we use algorithm A to compress the substrings of the optimal partition of
ŝ induced by Lmin, the overall output size is bounded by λ|s| H∗

k(s) + gk bits for any k ≥ 0.

A similar result holds for the entropy Hk as well: if the output of A is bounded in terms of H0, we can use
the booster to achieve the k-th order entropy Hk for any k ≥ 0 (see [7] for details). Since the algorithm of
Fig. 3 consists of a postorder visit of the suffix tree T , and the visit of each node takes constant time, the
computation of the optimal partitioning takes O(|s|) time.

4 The compression boosting library

The efficient implementation of the compression booster algorithm is a non trivial engineering task. The
main challenge is avoiding the explicit construction of the suffix tree which would require an unpractically
large amount of working memory.

We now detail our implementation discussing its space requirements in the “real world” model where
we assume that every character takes one byte and every integer takes 4 bytes. Let n = |s|. We first
compute the suffix array of s using the ds algorithm [18] that has a peak memory usage of only 5.03n
bytes: n bytes for the text, 4n for the suffix array, and 0.03n working space. The algorithm ds is one
of the fastest available algorithms for “real world” files but its worst-case running time is Θ

(

n2 log n
)

. If
one desires a space economical algorithm with a smaller worst-case running time the best alternative is an
algorithm by Burkhardt and Kärkkäinen [2] which runs in O(n log n) time and uses 5n+O(n/ log n) space.

Given the suffix array we compute and store ŝ = bwt(s) using n bytes. To compute the optimal partition
of ŝ avoiding the explicit construction of the suffix tree we use the technique from [13] that allows one
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to emulate the post-order visit of the suffix tree using the Longest Common Prefix (shortly LCP) array.
Thus, we use the Lcp6 algorithm from [16] for computing in O(n) time the LCP array given s, ŝ, and the
suffix array. This algorithm overwrites the LCP array over the suffix array and has a peak space usage of
(6 + δ)n bytes. The parameter δ is at most 4 and is bounded also by |Σ|k/n + 2Hk(s) for any k ≥ 0. This
means that the space usage is smaller for highly compressible inputs (see [16] for details).

Having computed the LCP array we can discard the input string s; thus at this stage wa are only
storing ŝ and the LCP array for a total space usage of 5n bytes. The computation of the optimal partition
using the algorithm of Fig. 3 and the technique in [13] reduces to a left to right scan of the LCP array.
This allows us to store the endpoints of intervals of the optimal partition in the same memory used for
the LCP array (that is, overwriting the LCP array). Thus the only additional memory used during the
“emulated” suffix tree visit is the space used to store the stack of the suffix tree nodes whose visit has
started but not yet finished. This space could be Θ(n) in the worst case, but in practice is much smaller
than n bytes overall (see Figure 6).

Cost models. An important issue in the implementation of the compression booster is the choice of the
parameters λ and µ in the cost function C(x) = λ|x|H∗

0 (x)+µ of Theorem 1. Given a compressor A, theory
dictates that λ and µ be chosen so that |A(x)| ≤ C(x) for any string x. However, if we strictly enforce
this condition it is possible that for many strings x we have C(x) ≫ |A(x)|. Since the optimal partitioning
is computed minimizing C(Lmin), if C(x) is “too far” from |A(x)| we could end up with a partition which
do not exploit the full potential of the compressor A. To evaluate this phenomenon our boosting library
supports two different cost models. In addition to the “entropy bound” model outlined above, we provide a
“real cost” model in which the optimal partition is computed with respect to the cost C(x) = |A(x)|. Using
the “real cost” model we get the best possible compression that we can achieve using the compressor A.
The drawback of this model is that during the suffix tree visit the processing of a node no longer takes
constant time and therefore the whole procedure no longer runs in linear time. The time cost might be
quadratic in the worst case, although the experimental results show that the overall running time usually
increases only by a factor 1.5 (see Figures 5 and 6)

For implementing the “entropy bound” model we used the following approach. Instead of determining
the parameters λ and µ so that |A(x)| ≤ C(x) for any string x, we use a cost function of the form

C(x) = |x| H∗
0 (x) + µ|Σx| log |Σ| (5)

where |Σx| is the number of distinct characters in x and Σ is the number of distinct characters in the input
string s (and therefore also in ŝ = bwt(s)). The rationale for this choice is the following: 1) we can get rid
of the parameter λ since the optimal partition does not change if the cost function is scaled by a constant
factor, 2) we use the term µ|Σx| log |Σ| because the order zero compressor A, in addition to the encoding
of x, must somehow indicate which characters of s are present in x. We point out that this is not the only
possible choice: using our library one can define a completely different cost function (see below).

User interface. Our library provides a simple interface to boost the performance of an arbitrary com-
pressor using either mtf or the optimal partitioning strategy outlined in Sect. 3. This can be done even
without any knowledge of the Burrows-Wheeler transform! The user simply needs to provide compression
and decompression procedures and, for the computation of the optimal partition, a procedure evaluating
the cost function C(x).

Compression: the user needs to provide the procedure encode(char ∗s, int n) where s is the string to be en-
coded (compressed) and n is its length. Optionally, the user can provide also two procedures enc start(void),
and enc stop(void) for initializations and cleanups. Assuming that the optimal partitioning strategy re-
turns the partition ŝ1, . . . , ŝk of ŝ = bwt(s), our library first calls the procedure enc start() followed by
encode(ŝi, |ŝi|) for i = 1, . . . , k, followed by enc stop(). By means of a command line switch it is possible
to use mtf instead of the partitioning strategy. In this case our library simply calls enc start() followed by
encode(mtf(ŝ), |ŝ|), followed by enc stop().
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Decompression: the user needs to provide the procedure decode(char ∗t, int n), and, optionally,
dec start(void), and dec stop(void). The decompression of a file consists of a call to dec start(), followed
by one or more calls to decode(), followed by a call to dec stop(). The size of ŝ = bwt(s) is stored at the
beginning of the compressed file, therefore the booster goes on calling decode() until the whole ŝ has been
recovered.

Cost function: here there are many possible choices. If the user only wants to use mtf no additional
procedure is needed. As an alternative, the user can provide a procedure int cost(char ∗x, int n) that given
a string x of length n returns an estimate of the size of the output produced by encode with input x. To
compute the optimal partitioning according to the “real cost” model the user should define cost() so that
it returns the number of bits produced by encode(x, |x|), but nothing prevents the user to define cost in a
different way. In addition, or in alternative, to cost() the user can define a procedure double bound(stats ∗)
that given the statistics of x (i.e. the number of occurrences of each character) returns an estimate of the
number of bits produced by encode(x, |x|). To compute the optimal partitioning according to the “entropy
bound” model the user should define bound() so that it returns the value C(x) given by (5), but again,
other alternatives are possible.

5 Experimental Results

Using the boosting library described in the previous section we have implemented several bwt-based com-
pressors. By means of extensive experiments we tried to assess to what extent mtf and the boosting
algorithm are able to turn a generic order zero compressor into a state of the art compressor. We ran all
experiments on a 2.6 GHz Pentium 4 CPU with 1.5 GB of main memory running Fedora Linux. All code
was written in C and compiled using gcc Ver. 3.2.2. As a testbed we used the collection of file introduced
in [18] for testing suffix array construction algorithms. These files are described in Figure 4 and available
for download from [17]. We used these files instead of the classical Calgary and Canterbury corpus since
these corpora contain only relatively small files which provide a poor indication of the asymptotic behavior
of our algorithms (the results for the largest files of the Canterbury corpus are reported in the Appendix).

Algorithms. The following is a description of the algorithms tested in our experiments.

Bzip2 is the well known tool based on the bwt developed by Julian Seward [21]. Bzip2 splits the input file
into blocks of size 900Kb and computes the bwt followed by mtf on each block. The actual compression
is done using rle02 followed by Multiple-Table Huffman coding. Note that splitting the input file into
smaller blocks is a sensible design choice (for example it limits the amount of working memory used
by the algorithm). However, if the input file is homogeneous it is usually advantageous, in terms of
compression ratio, not to split the input. Since a single bwt is preferable also for the construction of
compressed indexes, all the algorithms listed below compute the bwt of the whole file. Hence, we have
included Bzip2 only for providing a reference to a known tool.

MtfRleMth executes the same steps as Bzip2 operating on the whole input instead that on fixed length
blocks.

MtfRleRc. The earliest versions of Bzip2 used arithmetic coding instead of multiple-table Huffman. The use
of arithmetic coding was later discontinued mainly because of possible patenting problems. Recently,
range coding [19] has been (re)discovered as a patent-free alternative to arithmetic coding. Range
coding and arithmetic coding are based on similar concepts and achieve similar compression. MtfRleRc
compresses the bwt using mtf followed by rle0, followed by range coding (we used the implementation

2We use rle to denote the run length encoding of the runs of any character, while we use rle0 to denote the run length
encoding only of the runs of zeros. If a string was produced by mtf, rle0 is the natural choice because of the massive presence
of 0-runs as observed by Fenwick [5].
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from [14]). Note that MtfRleRc is identical to MtfRleMth except that, instead of Multiple-table Huffman
coding, it uses range coding.

RleRc compresses the bwt using rle followed by range coding.

BoostRleRc is an implementation of the boosting algorithm applied to the compressor consisting of rle
followed by range coding. Note that the difference in compression between RleRc and BoostRleRc gives
the “added value” of the use of the booster.

MtfRleAc, RleAc, BoostRleAc are analogous respectively to MtfRleRc, RleRc, BoostRleRc except that they
use the arithmetic coding routines from [24] instead of range coding.

MtfRleHuff, RleHuff, BoostRleHuff are analogous respectively to MtfRleRc, RleRc, BoostRleRc except that
they use Huffman coding instead of range coding. Note that MtfRleHuff differs from MtfRleMth in that
the former uses a single Huffman table whereas the latter uses up to six tables for the same file.

Wavelet. This algorithm computes the bwt of the whole input and compresses the resulting string using
a wavelet tree [10]. Recall that a wavelet tree is a data structure that reduces the compression of a
string over a finite alphabet to the compression of a set of binary strings. The binary strings are then
compressed using rle to represent runs on 0’s and 1’s, and the rle values are finally encoded using γ-
coding (this is essentially the algorithm Wzip of [9]). The importance of wavelet trees stems from the
fact that they have been used for the design of efficient bwt-based compressed indices [8, 10, 11] and
that it has been recently proven in [6] that they also can achieve the k-th order entropy for any k ≥ 0.
More precisely, from [6] follows that for a string s over the alphabet Σ the output size of Wavelet is
bounded by 4|s| H∗

k(s) + 6|Σ|k+1 log(|s|) bits.

BoostWav is an implementation of the boosting algorithm applied to the wavelet tree encoder using the
“real cost” model. Thus the difference between Wavelet and BoostWav is that the former builds a
wavelet tree on the whole bwt, whereas the latter finds an optimal partition of the bwt and builds a
wavelet tree on each substring of the optimal partition. Again, the difference in compression between
Wavelet and BoostWav gives the “added value” of the use of the booster.

PPMd is an implementation of the ppm encoder by Dmitry Shkarin [23, 22] which is the current state of
the art for PPM compression . In our tests we used PPMd at its maximum strength, that is using a
model of order 16 and 256Mb of working memory.

PPMdr1 consists of the PPMd encoder with option -r1. Using this option shortage of memory is handled
cutting off the current model instead than restarting from scratch. This strategy improves compression
at the expense of running time. Again, we used an order 16 model and 256Mb of working memory.

Range/arithmetic coding variants. The behavior of range and arithmetic coding depends on two
parameters: MaxFreq and Increment. The ratio between these two values essentially controls how quickly
the coding “adapts” to the new statistics. For range coding we set MaxFreq = 65536 (the largest possible
value) and we experimented with three different values of Increment. Setting Increment = 256 we get a
range coder with fast adaptation, with Increment = 32 we get a range coder with medium adaptation,
and finally setting Increment = 4 we get a range coder with slow adaptation. For arithmetic coding we set
MaxFreq = 16383 (the largest possible value) and Increment = 64 obtaining therefore a fast adaptation.

Compression ratio. Figure 5 reports the compression ratio (in bits per symbol) and compression time
(microseconds per symbol) for the all the algorithms mentioned above. Looking at the average compres-
sion ratio we can see that both mtf and the boosting algorithm do a good job in transforming an order
zero compressor into a state-of-the-art compressor. However, our data show some unexpected behaviors.
Considering the three version of range coding (with fast, medium, and slow adaptation) we see that mtf
achieves the best compression using medium adaptation whereas the boosting algorithm “prefers” fast

adaptation. It is also remarkable that RleRc with fast adaptation achieves a very good compression, better
indeed that mtf combined with any version of range coding (and the same is true for RleAc fast). This
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means that the bwt can be compressed efficiently using rle and an order zero encoder that quickly adapts
to the new statistics (and therefore quickly forgets past symbols). This is somewhat intuitive, but to our
knowledge no one observed experimentally the superiority of this strategy w.r.t. mtf, and no theoretical
analysis has explained or suggested such behavior. Overall the data show that the boosting algorithm is
superior to mtf in terms of compression ratio, and this seems especially true with the less effective order
zero compressors (for example Huffman coding). This superiority is however paid in terms of running time
as discussed below.

Running time. The data in Figure 5 (top) show that for range coding the boosting algorithm with the
“real cost” model is between 4 and 5 times slower than mtf in compression while there is no significant dif-
ference in decompression. For arithmetic and Huffman coding the ratio is even higher. The data in Figure 5
(bottom) show that using the “entropy bound” model the compression time decreases significantly and
there is a corresponding loss in compression efficiency. Summing up, mtf and the boosting algorithm (with
the two different cost models) offer three different trade offs between compression ratio and compression
time: the user can choose the one most suitable for the application at hand. Figure 6 reports the resource
usage of the various stages of the boosting algorithm. We can see that the most time consuming step is
the optimal partition computation via the suffix tree visit both in the “real cost” and “entropy bound”
models. Note also that the peak memory usage is achieved during the LCP array computation.

Wavelet tree performance. The data in Figure 5 show that the algorithms Wavelet and BoostWav
roughly achieve the same compression as the algorithms based on Huffman coding (RleHuff and BoostR-
leHuff) and are inferior to the algorithms based on range/arithmetic encoding. It is natural to expect that
Wavelet and BoostWav can reach the performance of BoostRleRc and BoostRleAc if instead of encoding the
rle values using γ coding we encode them using range/arithmetic coding which are more flexible and can
encode each value using a “fractional” number of bits. However, given the results in [9], the parameter
settings of those order-zero encoders may play a role as they do for BoostRleRc and BoostRleAc. We will
address this issue in the full paper. Finally, we point out that the similar compression ratio of Wavelet and
BoostWav provide an experimental validation of the theoretical analysis of [6] which states that even using
a single wavelet tree—as in the algorithm Wavelet—we already achieve the k-th order entropy.

PPMd performance. The results in Figure 5 show that PPMd outperforms all other compressors, and,
for the files of the Canterbury corpus, Figure 7 shows that the Weighted Frequency Count algorithm (which
is based on the bwt) compresses better than mtf, boosting, and wavelet tree algorithms. This suggests that
in the field of (bwt) compression Theory is currently a step behind Practice. Although we emphasize that
for the construction of compressed indexes it is essential to have simple and efficient bwt-based algorithms
whose performance are theoretically guaranteed, we take these results as a stimulus for further research!
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File Size (Kb) Ave. LCP Alphabet Description

sprot 107,048 89.08 66 Swiss prot database (original file name sprot34.dat)

rfc 113,693 93.02 120 Concatenation of RFC text files

howto 38,498 267.56 197 Concatenation of Linux Howto text files

reuters 112,022 282.07 93 Reuters news in XML format

linux 113,530 479.00 256 Tar archive containing the Linux kernel 2.4.5 source files

jdk13 68,094 678.94 113 Concatenation of html and java files from the JDK 1.3 doc.

etext99 102,809 1,108.63 146 Concatenation of Project Gutemberg etext99/*.txt files

chr22 33,743 1,979.25 5 Genome assembly of human chromosome 22

gcc 84,600 8,603.21 150 Tar archive containing the gcc 3.0 source files

w3c 101,759 42,299.75 256 Concatenation of html files from www.w3c.org

Figure 4: Files used in our experiments.

sprot rfc howto reut linux jdk13 etext chr22 gcc w3c averg ctime dtime

Bzip2 1.660 1.496 2.069 1.193 1.480 0.563 2.206 1.954 1.267 0.788 1.424 0.53 0.14

MtfRleMth 1.376 1.207 1.762 0.797 1.326 0.366 1.896 1.856 1.094 0.539 1.167 0.96 0.46

RleRc fast 1.345 1.146 1.712 0.762 1.296 0.362 1.787 1.825 1.070 0.545 1.129 0.90 0.48

MtfRleRc fast 1.372 1.202 1.781 0.792 1.332 0.360 1.886 1.765 1.096 0.536 1.161 0.90 0.48

BoostRleRc fast 1.345 1.146 1.712 0.762 1.296 0.362 1.787 1.825 1.070 0.545 1.129 4.11 0.48

RleRc med. 1.368 1.187 1.792 0.795 1.353 0.392 1.850 1.829 1.131 0.576 1.171 0.89 0.48

MtfRleRc med. 1.373 1.188 1.759 0.787 1.314 0.360 1.878 1.767 1.084 0.529 1.153 0.96 0.48

BoostRleRc med. 1.360 1.167 1.759 0.775 1.337 0.372 1.812 1.828 1.107 0.566 1.152 4.13 0.49

RleRc slow 1.409 1.267 1.915 0.850 1.452 0.436 1.967 1.836 1.229 0.627 1.245 0.90 0.48

MtfRleRc slow 1.389 1.196 1.774 0.795 1.324 0.366 1.895 1.772 1.095 0.537 1.164 0.90 0.48

BoostRleRc slow 1.367 1.188 1.809 0.786 1.381 0.382 1.849 1.830 1.132 0.586 1.175 4.12 0.48

RleAc fast 1.343 1.141 1.706 0.760 1.294 0.361 1.786 1.823 1.065 0.543 1.126 0.97 0.59

MtfRleAc fast 1.371 1.196 1.775 0.790 1.330 0.359 1.884 1.763 1.089 0.532 1.158 0.94 0.53

BoostRleAc fast 1.343 1.140 1.704 0.759 1.289 0.361 1.782 1.823 1.064 0.543 1.125 7.43 0.59

RleHuff 1.635 1.688 2.365 1.118 1.927 0.561 2.619 2.067 1.600 0.817 1.596 0.89 0.47

MtfRleHuff 1.446 1.279 1.859 0.840 1.387 0.386 2.030 1.878 1.150 0.572 1.230 0.95 0.46

BoostRleHuff 1.385 1.218 1.819 0.801 1.388 0.389 1.866 1.963 1.151 0.594 1.195 5.04 0.45

Wavelet 1.502 1.252 1.841 0.834 1.407 0.392 1.930 1.870 1.154 0.630 1.230 0.96 1.01

BoostWav 1.498 1.252 1.839 0.833 1.407 0.392 1.928 1.870 1.154 0.630 1.229 3.55 0.94

PPMd 1.301 1.157 1.660 0.794 1.145 0.380 1.732 1.749 0.964 0.465 1.080 0.60 0.66

PPMdr1 1.256 1.117 1.587 0.731 1.129 0.365 1.685 1.734 0.937 0.457 1.045 1.19 1.25

sprot rfc howto reut linux jdk13 etext chr22 gcc w3c averg ctime dtime

BoostRleRc fast 1.345 1.146 1.712 0.762 1.296 0.362 1.787 1.825 1.070 0.545 1.129 4.11 0.48

BoostRleRc fast µ = 32 1.355 1.149 1.715 0.766 1.300 0.371 1.788 1.831 1.075 0.557 1.134 3.04 0.48

BoostRleRc fast µ = 8 1.381 1.165 1.736 0.778 1.320 0.393 1.800 1.844 1.104 0.613 1.158 3.07 0.49

BoostRleRc med. 1.360 1.167 1.759 0.775 1.337 0.372 1.812 1.828 1.107 0.566 1.152 4.13 0.49

BoostRleRc med. µ = 32 1.364 1.169 1.775 0.780 1.341 0.378 1.827 1.830 1.113 0.572 1.158 3.02 0.48

BoostRleRc med. µ = 8 1.375 1.172 1.762 0.781 1.345 0.392 1.815 1.836 1.118 0.617 1.166 3.02 0.48

BoostRleRc slow 1.367 1.188 1.809 0.786 1.381 0.382 1.849 1.830 1.132 0.586 1.175 4.12 0.48

BoostRleRc slow µ = 32 1.378 1.204 1.851 0.799 1.401 0.394 1.883 1.830 1.163 0.602 1.194 3.02 0.48

BoostRleRc slow µ = 8 1.385 1.205 1.832 0.801 1.406 0.416 1.863 1.831 1.163 0.671 1.203 3.05 0.48

BoostRleHuff 1.385 1.218 1.819 0.801 1.388 0.389 1.866 1.963 1.151 0.594 1.195 5.04 0.45

BoostRleHuff µ = 32 1.397 1.250 1.901 0.818 1.445 0.403 1.925 1.968 1.201 0.612 1.229 2.96 0.45

BoostRleHuff µ = 8 1.409 1.241 1.849 0.821 1.414 0.425 1.883 1.967 1.183 0.674 1.225 2.96 0.46

Figure 5: Experimental results for the files in Fig. 4. In each table Columns 2 to 11 report the compression for each file
in bits per symbol. Column 12 reports the average compression in bits per symbol, and the last two columns report average
compression and decompression time in microseconds per symbol. The table on the top reports the performance of the boosting
algorithm for the “real cost” model only. The bottom table compares the “real cost” vs the “entropy bound” model: the
first entry in each section reports the performance of the “real cost” model and the following entries the performance of the
“entropy bound” model for µ = 8 and µ = 16 (the parameter µ is the one appearing in (5)).
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running time peak memory
bwt lcp visit cmpr total lcp visit

sprot 0.70 0.60 1.67 0.11 3.08 7.01 5.00

rfc 0.60 0.51 2.35 0.11 3.57 6.86 5.00

howto 0.50 0.45 2.83 0.15 3.93 7.29 5.01

reut 1.24 0.55 1.92 0.08 3.79 6.58 5.00

linux 0.52 0.42 3.39 0.12 4.46 6.88 5.04

jdk13 1.15 0.40 2.10 0.05 3.70 6.26 5.00

etext 0.75 0.63 2.65 0.16 4.19 7.57 5.00

chr22 0.49 0.54 6.33 0.17 7.53 8.34 5.49

gcc 0.85 0.40 3.00 0.10 4.36 6.75 5.07

w3c 1.10 0.43 3.18 0.06 4.78 6.31 5.01

running time
bwt lcp visit cmpr total

sprot 0.70 0.59 1.23 0.11 2.63

rfc 0.60 0.51 1.52 0.11 2.74

howto 0.50 0.46 1.86 0.15 2.96

reut 1.24 0.56 1.32 0.08 3.19

linux 0.52 0.42 2.17 0.12 3.23

jdk13 1.15 0.40 1.48 0.05 3.08

etext 0.75 0.64 1.59 0.16 3.14

chr22 0.49 0.54 0.89 0.18 2.10

gcc 0.86 0.40 1.64 0.10 3.00

w3c 1.10 0.43 2.34 0.06 3.94

Figure 6: Running time and peak memory usage for the various stages of the BoostRleRc (medium adaptation) algorithm
using the “real cost” model (left) and the “entropy bound” model (right, the table only shows running times since the memory
usage is the same as for the “real cost” model). The running times of the four basic steps (bwt computation, LCP array
computation, optimal partition computation via suffix tree visit, actual compression using range coding) and the total running
time are given in microseconds per input byte. The peak memory usage is given for the LCP array computation and the suffix
tree visit which are the steps using more memory. Memory usage is reported as number of used bytes per input byte.
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alice asyoulik kennedy lcet10 plrabn ptt5 bible ecoli world averg ctime dtime

Bzip2 2.272 2.529 1.012 2.019 2.417 0.776 1.672 2.158 1.584 1.787 0.41 0.16

MtfRleMth 2.267 2.529 1.057 2.015 2.416 0.799 1.579 2.122 1.392 1.718 0.44 0.41

RleRc fast 2.328 2.572 1.500 2.052 2.418 0.730 1.539 2.126 1.393 1.740 0.46 0.50

MtfRleRc fast 2.293 2.556 0.857 2.032 2.427 0.814 1.568 2.016 1.404 1.669 0.45 0.45

BoostRleRc fast 2.328 2.572 1.500 2.052 2.418 0.730 1.536 2.126 1.391 1.739 2.93 0.45

RleRc med. 2.563 2.803 1.433 2.232 2.604 0.732 1.643 2.121 1.487 1.798 0.43 0.44

MtfRleRc med. 2.296 2.558 0.959 2.029 2.431 0.794 1.571 2.010 1.397 1.673 0.44 0.45

BoostRleRc med. 2.388 2.638 1.433 2.089 2.453 0.732 1.561 2.121 1.446 1.753 2.81 0.44

RleRc slow 2.724 2.990 1.488 2.374 2.766 0.750 1.738 2.124 1.567 1.859 0.43 0.44

MtfRleRc slow 2.316 2.587 1.055 2.050 2.457 0.794 1.586 2.010 1.406 1.689 0.44 0.45

BoostRleRc slow 2.386 2.637 1.488 2.107 2.471 0.750 1.567 2.122 1.451 1.762 2.80 0.44

RleAc fast 2.320 2.564 1.497 2.044 2.410 0.727 1.535 2.124 1.387 1.736 0.51 0.54

MtfRleAc fast 2.284 2.548 0.848 2.023 2.419 0.810 1.564 2.013 1.398 1.664 0.50 0.51

BoostRleAc fast 2.320 2.564 1.497 2.044 2.410 0.727 1.535 2.124 1.387 1.736 5.31 0.54

RleHuff 2.934 3.240 1.818 2.635 3.162 0.839 2.141 2.372 1.878 2.169 0.42 0.41

MtfRleHuff 2.377 2.670 1.500 2.132 2.570 0.834 1.679 2.114 1.453 1.801 0.42 0.41

BoostRleHuff 2.483 2.711 1.608 2.167 2.534 0.772 1.616 2.290 1.493 1.856 3.89 0.40

Wavelet 2.366 2.661 1.185 2.111 2.506 0.834 1.614 2.178 1.464 1.779 0.44 0.69

BoostWav 2.366 2.661 1.185 2.111 2.506 0.834 1.613 2.178 1.464 1.779 2.54 0.65

PPMd 2.038 2.310 1.145 1.794 2.206 0.754 1.408 2.024 1.211 1.590 0.80 0.83

PPMdr1 2.038 2.310 1.145 1.794 2.206 0.754 1.408 2.024 1.211 1.590 0.79 0.83

WFC06 2.149 2.409 0.816 1.893 2.272 0.706 1.463 1.954 1.298 — — —

Figure 7: Experimental results for the large files of the Canterbury corpus. The last line reports the results for the Weighted
Frequency Count algorithm [J. Abel, Personal Communication] which is a recent non-trivial bwt-based algorithm.
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