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NEW CHALLENGES IN NETWORK RELIABILITY

ANALYSIS

Andrea Bobbio, Caterina Ferraris, Roberta Terruggia

Dipartimento di Informatica, Università del Piemonte Orientale ∗
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Abstract

Many complex physical, technological, social, biological and economical systems can be represented in
the form of networks, where vertices are the entities of the system and the edges represent the relational
links among the entities. Since complex networks display a high degree of tolerance to random failures,
errors and attacks, network dependability has always been a challenging task in system reliability analysis.
In the literature, network reliability is intended as the probability that two specific nodes (a source node
and a destination node) are connected given the probability of the elements of the network (nodes, edges
or both) of being up or down. A number of techniques have been developed to tackle this problem.
However, in recent year, with the appearance of networks of giant dimensions (e.g. the internet and
www) the exhaustive searching techniques are no more appropriate. A completely new field of research
has emerged to study the statistical properties of these huge networks, together with the study of their
robustness to random failures and attacks. This paper is aimed at illustrating the old a new challenges
in network dependability evaluation.

1 Introduction

The present paper is aimed at investigating modelling and analysis techniques for the evaluation of the relia-
bility of systems whose structure can be described in a form of a graph. For such systems we use the generic
term of networks, where networks are characterized by a set of nodes (vertices) connected by directed or
undirected arcs (edges). Systems in the form of networks are present in nature, in biological systems and in
many technological fields. Their study has proved to be beneficial also in the analysis of social, economical,
epidemic and political relations. With the growing dependence of our modern society on technological sys-
tems and information networks, there is an increasing demand for high dependability. The degree to which a
system is able to provide the required operation needs to be quantitatively assessed by defining proper mea-
surable quantities. The quantitative assessment of system dependability becomes essential in system design,
planning, implementation, validation, manufacturing and field operation.

Traditional reliability analysis techniques in the area of networked systems used to look at networks of tens
or hundreds of vertices [12, 1, 15, 3]. These techniques were based on exhaustive search algorithms intended
to provide qualitative and quantitative information on the network connectivity, dependability, and vulner-
ability. A literature survey indicates that the approaches, which have been used to compute two-terminal
reliability could broadly be classified into two paradigms: i) - the paradigm in which desired network reliability
is directly calculated (series-parallel reduction [5], pivotal decomposition using keystone components [15, 10])
and ii) - the paradigm in which all possibilities through which the two specified nodes can communicate
(or not communicate) with each other are first enumerated (path/cut set search [3, 13]) and then reliability
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(unreliability) expression is evaluated. In this last case, the knowledge of all the minpaths (mincuts) provides
qualitative information about the connectivity properties of the network. If furthermore, the probability of
failure of nodes and edges is known, the reliability expression can be calculated using different techniques,
like inclusion-exclusion method, sum of disjoint products [1], and, more recently, Binary Decision Diagrams
(BDD) [6]. BDDs provide an extraordinarily efficient method to represent complex binary structures by
means of the Shannons decomposition principle [7]. Algorithms exploiting the direct use of BDDs to model
the network connectivity, and the level of reachable complexity, needs to be investigated more deeply.

However, the complexity of real world today networks (the internet, the www, the public telecommuni-
cation networks), can reach millions or even billions of vertices. This change of scale forces a corresponding
change in the analytic approach. Many of the approaches that have been applied in small or medium scale
networks, and many of the questions that have been answered are simply not feasible in much larger net-
works. Recent years have witnessed a substantial new movement in network research [2, 4, 8, 14], with the
focus shifting away from the analysis of small graphs to consideration of large-scale statistical properties of
graphs and with the aim of predicting what the behavior of complex networked systems will be on the basis
of measured structural properties and the local rules governing individual vertices.

The shift, experienced in the past few years in the understanding of complex networks, was rapid and unex-
pected. Empirical studies, models and analytic approaches have enlighten that real networks display generic
organizing principles shared by rather different systems. These advances have created a prolific branch of sta-
tistical mechanics, followed with equal interest by sociologists, biologists and computer scientists. Moreover,
the structural organization of a complex network influences how the system reacts to occasional failures or to
intentional attacks, and hence has a direct impact on the dependability and security of these structures. The
paper will explore exhaustive analysis algorithms for small scale networks (from tens to hundreds of nodes)
by enlightening the developed analytical techniques and the related software tools. For massive large-scale
networks, the paper will mainly provide some pointers to the enormous amount of research material published
in the very last few years.

2 Small Scale Networks: Exhaustive Analysis

We consider exhaustive analysis tools based on searching algorithms through the net. They can be distin-
guished in qualitative and quantitative algorithms. Qualitative algorithms provide information on the level
of connectivity of two nodes and on the level of vulnerability. If failure probability value can be assigned to
edges or nodes or both, we compute the reliability from the connectivity and we compute the unreliability
from the vulnerability. The network is represented in the form of a graph G=(V,E), where V is the set of
vertices (or nodes) and E the set of edges (or arcs). We assume, in general, that edges can be undirected or
directed, and that arcs or nodes or both can be failure prone. In order to study the reliability of a network
we identify a single node as a source node O and a single node as a sink node Z. The analysis may be either
qualitative or quantitative.

2.1 Path sets and Cut sets

Definition 1 For a given graph G=(V,E), a path is a subset of components, arcs and/or nodes, that guar-
antees the source O and sink Z to be connected if all the components of this subset are functioning. A path
H is a minpath if a subset of elements in H does not exist that is also a path.

Definition 2 For a given graph G=(V,E), a cut is a subset of components, arcs and/or nodes, whose failure
disconnects the source O and sink Z. A cut K is a mincut if a subset of elements in K does not exist that is
also a cut.
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Property 1 Any path contains at least one component from each cut, and any cut contains at least one
component from each path [12].

Let h be the number of minpaths between a source O and a sink Z in a network G=(V,E) and let H1, H2, , Hh

be the h minpaths. Since all the elements of a minpath must be working for the minpath to be connected,
the elements of the minpath are logically connected in AND. However, since any one of the minpaths is
sufficient to make the network working, the network connectivity S can be represented as the logical OR of
its minpaths:

S = H1 ∪ H2 ∪ ...Hh

According to the above definition, the point-to-point reliability is:

Rs = Pr{S} = Pr{H1 ∪ H2 ∪ ...Hh} (1)

The probability of the union of non-disjoint events, as in Formula 1, can be computed by different techniques:

• The inclusion-exclusion expansion algorithm [18];

• Prepocessing minpaths or mincuts for sum of disjoint products [1, 13, 11];

• Binary Decision Diagram (BDD) representation [6]: BDDs represent Boolean functions as directed
acyclic graphs.

Example

A bridge network with directed arcs has the configuration presented in Figure 1. We consider that only arcs
can fail. Minpaths are searched by means of the Dijkstra algorithm, while mincuts are searched by means of
the YTL algorithm [19].

O Z

node 3

e1 e4

e3

e2 e5
node 4node 1

node 2

Figure 1: A directed bridge network

The network possesses three minpaths and four mincuts. They are, respectively:

H1 = {e1, e4} H2 = {e2, e3, e4} H3 = {e2, e5}

K1 = {e1, e2} K2 = {e2, e4} K3 = {e4, e5} K4 = {e1, e3, e5}

From the above formulas, the network connectivity can be expressed as:

S1−4 = e1e4 ∪ e2e3e4 ∪ e2e5 (2)
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We assume that the elements of the graph have only two states up and down, and that the element failures
are statistically independent. By denoting with pi the probability of the arc ei of being working, by applying
the classical inclusion-exclusion formula for calculating the probability we get from 2:

R1−4 = Pr{S1−4} = p1p4 + p2p3p4 + p2p5 − p1p2p3p4 − p2p3p4p5

−p1p2p4p5 + p1p2p3p4p5 (3)

2.2 BDD Representation

A BDD is a way to represent a Boolean expression by means of the Shannon’s decomposition principle: if F
is a Boolean function on variables x1, x2, , xn the following decomposition holds:

F = x1Fx1=1 ∪ ¬x1Fx1=0 (4)

Where, (¬x1 = NOTx1); Fx1=1 is derived from F assuming x1 is true, and Fx1=0 is derived from F assuming
x1 is false.

The functions Fx1=1 and Fx1=0 depend now on (n-1) variables; applying to them the Shannon decompo-
sition 4, pivoting with respect to one of the remaining (n-1) variables, each one of the two functions Fx1=1

and Fx1=0 can be decomposed in two functions depending on (n-2) variables. Applying iteratively the Shan-
non’s decomposition formula pivoting with respect to a complete sequence of all the variables, a complete
decomposition can be obtained. The sequence of decompositions can be represented in graphical form using
a binary tree. Each node of the tree represents the pivot variable with respect to which the decomposition
is done. From each node spawn two branches: the left branch has the value true (or 1) and its descendent
is the first term Fx1=1 of the decomposed function obtained by fixing the value of the pivot variable to 1,
the right branch has the value false (or 0) and its descendent Fx1=0 is the second term of the decomposed
function obtained by fixing the value of the pivot variable to 0. We apply the Shannons decomposition to
the Boolean connectivity function of the directed bridge network expressed as the union of the minpaths in
Formula (2). The ordering of the variables strongly affects the decomposition. With the ordering:

e2 ≺ e5 ≺ e3 ≺ e1 ≺ e4

the Boolean connectivity expression (2) is built step by step in Figure2. Occasionally, the binary tree contains
identical subtrees. To make the representation more compact, identical subtrees may be folded. The compact
representation in which duplicated subtrees are folded and the terminal nodes 1 and the terminal nodes 0 are
merged is called the Binary Decision Diagram (BDD). In Figure 2, the subtrees generated at the node e1e4

appear twice and can be folded to produce the BDD of Figure 3. The computation of the probability of the
BDD of Figure 3, can again proceed recursively by resorting to the Shannon decomposition.

(5)

Pr{F} = p1Pr{Fx1=1} + (1 − p1)Pr{Fx1=0}

= Pr{Fx1=0} + p1(Pr{Fx1=1} − Pr{Fx1=0}) (6)

where p1 is the probability of the Boolean variable x1 to be true and (1− p1) is the probability of the Bolean
variable x1 to be false. Recursive application of Equation (5) is pictorially shown in Figure 4. Computation
of the probability values at the intermediate nodes (pr1, pr3, pr5) provides the value of the network reliability
R1−4 = pr2 as in Formula (3).

2.3 Direct algorithms

Direct algorithms are intended to derive the connectivity logical function and the reliability of a network
from the structure of the graph, without passing from a preliminary search for the minpaths or mincuts.
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Figure 2: Shannon’s decomposition of the connectivity of the bridge network (1)
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Figure 3: BDD representation of the bridge network (1)

Several techniques have been envisaged for this purpose. An algorithm based on the construction and saving
of the pathsets in disjoint binary form is presented in [9]. The logical expression of the connectivity is directly
derived from the graph as a sum of disjoint logical terms (SDP), so that the reliability expression can be
calculated as sum of products. Furthermore, the paper in [9] proposes specific operators to modify the logical
expression of the connectivity by adding (or removing) arcs in the network. From this point of view, the
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pr1 = 0+p1 p4

pr3 = pr1+p3 (p4 - pr1)

pr2 = pr1+p2 (pr5 - pr1)

pr5 = pr3+p5 (1 - pr3)

Figure 4: Probability computation from the BDD of Figure 3

paper is oriented to follow a step by step growth of a network. According to [9], the SPD expressions for the
connectivity and for the reliability of nodes 1-4 in Figure 1 (denoting qi = 1 − pi) become:

S1−4 = e1e4 ∪ e2e5¬e1 ∪ e2e5e1¬e4 ∪ e2e3e2(¬e1¬e5) (7)

R1−4 = p1p4 + p2p5q1 + p2p5p1q4 + p2p3p4(q1q5) (8)

Two algorithms have been recently proposed in the literature to derive directly the connectivity function in
the form of a BDD, without deriving the corresponding logical expression. The algorithm in [17], revisited in
[10] is based on a suitable factorization algorithm, consisting in pivoting along a complete sequence of arcs
and deriving the right subgraph when the arc is supposed working (the arc is contracted or short-circuited)
and the left subgraph the arc is supposed not working (the arc is deleted or opened). Using as a scalable
benchmark a lattice structure with the source O and the destination Z located on the external vertices of
the main diagonal, both papers indicate a lattice of 12 x 12 (144 nodes and 264 edges) as an upper limit to
computational power of the method.

The algorithm suggested in [20] generates the BDD directly, without explicitly forming the Boolean ex-
pression, via a recursive depth first search on the graph. An outline of the proposed algorithm is reported in
Figure 5. We have implemented the algorithm of Fig. 5 by resorting to the BDD library developed at the
Carnagie Mellon University (http://www.cs.cmu.edu/~modelcheck/bdd.html). We have tested the algorithm
using the scalable (directed) lattice graph proposed in [17, 10]. Table 1 displays the dimension of the lattice,
the number of nodes and of edges of the graph, and the number of nodes of the BDD resulting from the
application of the algorithm of Figure 5. Finally, from the BDD the list of minpaths is obtained by applying
a transformation of the BDD according to a technique proposed in [16].

The complexity of the resulting BDD, expressed as the number of the BDD nodes, versus the lattice di-
mension, is plotted in Figure 6. An exponential increasing complexity is evident from the plot, as theoretically
argued in [17].

Further comparison among different algorithms and experimentation of new data structures is needed.
However, the search through a graph is know to be a NP-complete problem and the exhaustive methods grow
in complexity very rapidly as a function of the network dimension (number of nodes and edges). Hence, it
is hard to imagine how these methods can overcome the barrier of the order of hundreds of nodes. For large
and very large networks new techniques are needed and new ideas are emerging.
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bdd_gen(start_node){

T_bdd = 0

set start_node in this_path

for (edge_i in the set of edges starting from start_node){

next_node = the other end of edge_i

if(next_node == sink_node)

subpath_bdd = edge_i_bdd

else if (next_node is already in this_path)

continue;

else

subpath_bdd = bdd_gen(next_node) AND edge_i_bdd

T_bdd=T_bdd OR subpath_bdd

}

clear start_node in this_path

return T_bdd

}

Figure 5: Generation of the BDD via a recursive depth first search on the graph.

Lattice #Lattice nodes #Lattice arcs # BDD nodes # minpath
2 x 2 4 4 6 2
4 x 4 16 24 94 20
6 x 6 36 60 1034 252
8 x 8 64 112 8334 3432

10 x 10 100 180 56338 N.A.
12 x 12 144 264 342038 N.A.

Table 1: Benchmark on Directed Lattice Graph

3 Large Scale Networks

Massive large-scale networks have been the object of an enormous amount of research material published in
the very last few years. The following lines of investigation are of particular interest in the dependability
arena:

• Structural properties: A new mathematical foundation for complex interactive networks;

• Error and attack tolerance;

• Modeling and diagnosis methods for large-scale complex networks;

• Innovative techniques for defense against catastrophic random failures and preferential attacks.

Real word today networks can reach millions or even billions of vertices. The Internet and World Wide
Web are perhaps the most known network systems that have influenced our every day life. But several
examples belonging to a great class of large scale evolving networks can be mentioned: e.g. communications
nets, collaboration networks, public relations nets, citations of scientific papers, some industrial networks,
transportation networks, many biological networks, etc.. Quite recently, it has become clear that their
complex structure is a natural consequence of the principles of their evolution and of their growth. Some
simple basic ideas have been proposed for studying the self-organization of growing networks and processes
occurring within them. Some basic ideas, used later by physicists, were proposed long ago by the outstanding
Hungarian mathematician Paul Erds and his collaborator Rènyi. Most of the results of their graph theory
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Figure 6: BDD complexity of the connectivity function of a lattice graph

are related to random graphs. Random graphs exhibit a Poisson distribution of connections, so that the tail
of the distribution decays exponentially. The study of large modern networks has assessed two main relevant
factors:

• Large networks evolve dynamically.

• Interest to study how growing networks self organize into special (scale free) structures and the role of
the mechanism of preferential linking.

The combination of the dynamical evolution with growing aggregation principles has led to the discovering
that the network connectivity does not exhibit a Poisson distribution, but a power-law long-tailed distribution.
The power-law decay in the connectivity distribution entails the presence of few nodes with an extremely
large degree of connectivity dispersed into a net whose node have a relatively low degree of connectivity. The
highly connected nodes, called hubs, play a special role in the properties of the network. After these findings,
a number of researchers in different areas have started intensive study of evolving networks in various areas,
and some extensive review articles have recently appeared [2, 4, 8, 14].

3.1 Dependability and Security

Many complex networks show a very high degree of tolerance to malfunction or errors, in the sense that a
malfunction of an edge or of a node perturbs the behaviour of the system only locally, but has very little
effect on the overall properties of the system. Hence, it became natural to extend the research interests
to encompass studies on the behaviour of huge networks in the presence of failures or errors. Since exact
point-to-point probability calculations are not possible due to the dimension of the system, the studies where
directed to evaluating how overall statistical properties of the network are affected by local damage. A failure
of an edge or a node is the loss of operation of the element and can be emulated by removing that element
from the graph. Studies in this direction were addressed on topological aspects of robustness caused by edges
or node removal [2]. Edge removal affects only the link between the two connecting nodes and all the paths
passing through that link, while node removal implies the disconnection of all the edges ingoing or outgoing
from that node and inflicts more damage than edge removal.

Research was addressed to explore the network connectivity property as a function of the fraction of edges (or
node) removal and the correlation between robustness and network topology. Calling f the fraction of edges
removed from the structure, the studies were focussed on finding the existence of a critical fraction fc for
which the resulting network is no more connected (were connectivity is defined and measured in a statistical
sense). Two main cases of possible malfunction are considered:
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• The element removal (either edges, nodes or both) occurs randomly; i.e. any element has the same
probability of being removed. In this case we talk about random failure;

• The element removal (either edges, nodes or both) is preferential; i.e. there is an intentional attack
targeted at nodes with the potential highest effect on the network connectivity.

The first case models physical failures, and an appropriate metric is the dependability, while the second one
models malicious attacks and is more pertinent to the field of security. The structure of the network reacts
differently to the two different types of failure. The main results are surveyed in [2]. For random graphs a
critical removal frequency fc can be identified such, that when f > fc, the network breaks into small isolated
clusters. For scale free networks, in the limit of the network dimension going to infinity, a critical frequency
cannot be identified since the networks remains connected through the hubs as the removal fraction tends
to 1. This result can be summarized by saying that scale free networks display an exceptional robustness
against random failure and random node removal, and are more resilient than random graph structures. For
intentional malicious attacks, the situation is reversed. Scale free networks are more fragile to maliciously
preferential attacks since the damage of the highly connected nodes has a dramatic disruptive effect on the
network. The presence of hubs makes the structure more vulnerable to intentional damage. A similar effect
has been observed for the spreading of diseases in epidemic studies or the diffusion of viruses in information
networks. For random networks a disease spreads in the whole network only if the infection rate is larger that
a critical value, while in scale free networks the whole network is infected at any spreading rate [2]. Thus
again scale free networks are more vulnerable than random graphs.

In these aforementioned studies, element failures are considered as statistical independent and their pres-
ence does not modify the failure properties of the other, even neighbouring, elements. Often this is not the
case, and a single point failure can produce a cascade effect on adjacent nodes and edges. The investigation
of ‘cascade failures, their impact on the net properties and the relation between robustness and net structure
are important fields of investigation.

4 Conclusion and Future Work.

We have divided our presentation in two main sections: small scale networks and large scale networks, and
we have illustrated the most promising analysing techniques and results in the two cases. Of course the
challenge is to make the algorithms implemented for small scale networks to cope with larger dimensions,
by exploiting new and more compact data structures or introducing approximations (partition of the net in
subnets and clusters, search for the paths of minimal length only), and find the way of evaluating point-
to-point measures in huge systems. A new emerging challenging field is the study of the performance and
dependability properties among different interacting networks, like the interaction of the power distribution
network with the control information system, the telecommunication with the transportation systems.
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