
Dipartimento di Informatica
Università del Piemonte Orientale “A. Avogadro”

Via Bellini 25/G, 15100 Alessandria
http://www.di.unipmn.it

Markov Decision Petri Net and Markov Decision

Well-formed Net formalisms
Author: M. Beccuti (beccuti@mfn.unipmn.it), G. Franceschinis

(giuliana.franceschinis@mfn.unipmn.it) and S. Haddad
(haddad@lamsade.dauphine.fr)

TECHNICAL REPORT TR-INF-2007-02-01-UNIPMN
(February 2007)

The University of Piemonte Orientale Department of Computer Science Research
Technical Reports are available via WWW at URL http://www.di.unipmn.it/.

Plain-text abstracts organized by year are available in the directory

Recent Titles from the TR-INF-UNIPMN Technical
Report Series

2006-03 New challenges in network reliability analysis, Bobbio, A., Ferraris, C., Terrug-
gia, R., November 2006.

2006-03 The Engineering of a Compression Boosting Library: Theory vs Practice in

BWT compression, Ferragina, P., Giancarlo, R., Manzini, G., June 2006.

2006-02 A Case-Based Architecture for Temporal Abstraction Configuration and Pro-

cessing, Portinale, L., Montani, S., Bottrighi, A., Leonardi, G., Juarez, J., May
2006.

2006-01 The Draw-Net Modeling System: a framework for the design and the solution of

single-formalism and multi-formalism models, Gribaudo, M., Codetta-Raiteri,
D., Franceschinis, G., January 2006.

2005-06 Compressing and Searching XML Data Via Two Zips, Ferragina, P., Luccio, F.,
Manzini, G., Muthukrishnan, S., December 2005.

2005-05 Policy Based Anonymous Channel, Egidi, L., Porcelli, G., November 2005.

2005-04 An Audio-Video Summarization Scheme Based on Audio and Video Analysis,
Furini, M., Ghini, V., October 2005.

2005-03 Achieving Self-Healing in Autonomic Software Systems: a case-based reasoning

approach, Anglano, C., Montani, S., October 2005.

2005-02 DBNet, a tool to convert Dynamic Fault Trees to Dynamic Bayesian Networks,
Montani, S., Portinale, L., Bobbio, A., Varesio, M., Codetta-Raiteri, D., August
2005.

2005-01 Bayesan Networks in Reliability, Langseth, H., Portinale, L., April 2005.

2004-08 Modelling a Secure Agent with Team Automata, Egidi, L., Petrocchi, M., July
2004.

2004-07 Making CORBA fault-tolerant, Codetta Raiteri D., April 2004.

2004-06 Orthogonal operators for user-defined symbolic periodicities, Egidi, L., Teren-
ziani, P., April 2004.

2004-05 RHENE: A Case Retrieval System for Hemodialysis Cases with Dynamically

Monitored Parameters, Montani, S., Portinale, L., Bellazzi, R., Leonardi, G.,
March 2004.

2004-04 Dynamic Bayesian Networks for Modeling Advanced Fault Tree Features in De-

pendability Analysis, Montani, S., Portinale, L., Bobbio, A., March 2004.

2004-03 Two space saving tricks for linear time LCP computation, Manzini, G., February
2004.

2004-01 Grid Scheduling and Economic Models, Canonico, M., January 2004.

2

Markov Decision Petri Net and Markov Decision

Well-formed Net formalisms

M. Beccuti, G. Franceschinis1 and S. Haddad2

1 Univ. del Piemonte Orientale,
giuliana.franceschinis@mfn.unipmn.it

2 LAMSADE CNRS, Univ. Paris Dauphine
haddad@lamsade.dauphine.fr

February 2007

Abstract

In this work, we propose two high-level formalisms, Markov Decision Petri Nets
(MDPNs) and Markov Decision Well-formed Nets (MDWNs), useful for the
modeling and analysis of distributed systems with probabilistic and non deter-
ministic features: these formalisms allow a high level representation of Markov
Decision Processes. The main advantages of both formalisms are: a macroscopic
point of view of the alternation between the probabilistic and the non determin-
istic behaviour of the system and a syntactical way to define the switch between
the two behaviours. Furthermore, MDWNs enable the modeller to specify in
a concise way similar components. We have also adapted the technique of the
symbolic reachability graph, originally designed for Well-formed Nets, produc-
ing a reduced Markov decision process w.r.t. the original one, on which the
analysis may be performed more efficiently. Our new formalisms and analy-
sis methods are already implemented and partially integrated in the GreatSPN
tool, so we also describe some experimental results.

Introduction

Markov Decision Processes (MDP). Since their introduction in the 1950’s,
Markov Decision process models have gained recognition in numerous fields in-
cluding computer science and telecommunications [15]. Their interest relies on
two complementary features. On the one hand, they provide to the modeler a
simple mathematical model in order to express optimization problems in ran-
dom environments. On the other hand, a rich theory has been developed leading
to efficient algorithms for most of the practical problems.

Distributed Systems and MDPs. The analysis of distributed systems mainly
consists in (1) a modeling stage with some high-level formalism (like Petri nets
or process algebra), (2) the verification of properties expressed in some logic
(like LTL or CTL) and (3) the computation of performance indices by enlarging
the model with stochastic features and applying either (exact or approximate)
analysis methods or simulations. In this framework, a MDP may be viewed as
a model of a distributed system where it is possible to perform a non deter-
ministic choice among the enabled actions (e.g., the scheduling of tasks) while
the effect of the selected action is probabilistic (e.g., the random duration of a
task). Then, with appropriate techniques, one computes the probability that a
property is satisfied w.r.t. the “worst” or the “best” behavior [2, 6]. The time
model that will be considered in this paper is discrete: each non deterministic
choice is taken in a given decision epoch, after the probabilistic consequence of
the choice has been performed, a new decision epoch starts.

Here the way we model distributed systems by MDPs is rather different.
During a stage, the system evolves in a probabilistic manner until periodically a
(human or automatic) supervisor takes the control in order to configure, adapt
or repair the system depending on its current state before the next stage. In
other words, usual approaches consider that the alternation between non de-
terministic and probabilistic behavior occurs at a microscopic view (i.e., at the
transition level) whereas our approach adopts a macroscopic view of this alter-
nation (i.e., at a stage level). It should be emphasized that, depending on the
applications, one or the other point of view should be preferred and that the
user should have an appropriate formalism and associated tools for both cases.
For instance PRISM [11], one of the most used tools in this context, works at
the microscopic level whereas the formalism of stochastic transition systems is

1

Figure 1: From nets to Markov decision processes

based on a macroscopic view [7]. The latter formalism is a slight semantical
variation of generalized stochastic Petri nets [14] where the choice among the
enabled immediate transitions is performed non deterministically rather than
probabilistically. Despite its simplicity, this formalism has a serious drawback
for the design process since the modeler has no mean to syntactically define
the switches between the probabilistic behavior and the non deterministic one.
Furthermore, the difference between the distributed feature of the probabilistic
behavior and the centralized one of the non deterministic behavior is not taken
into account.

Our contribution. In this work, we propose a high-level formalism in order
to model distributed systems with non deterministic and probabilistic features.
Our formalism is based on Well-formed Petri Nets (WN) [3]. First, we introduce
Markov Decision Petri nets (MDPN): an MDPN is defined by three parts, a set
of active components (e.g., processes or machines), a probabilistic net and a non
deterministic net. Every transition of the probabilistic net is triggered by a sub-
set of components. When every component has achieved the activities related
to the current probabilistic stage, the supervisor triggers the non deterministic
transitions in order to take some decisions, either relative to a component or
global. Every transition has an attribute (run/stop) which enables the modeler
to define when the switches between the nets happen. The semantics of this
model is designed in two steps: a single Petri net can be derived from the spec-
ification and its reachability graph can be transformed with some additional
information, also specified at the MDPN level, into an MDP.

Distributed systems often present symmetries i.e, in our framework, many
components may have a similar behavior. Thus, both from a modeling and
an analysis point of view, it is interesting to look for a formalism expressing
and exploiting behavioral symmetries. So we also define Markov Decision Well-
formed nets (MDWN) similarly as we do for MDPNs. The semantics of a model
is then easily obtained by translating a MDWN into a MDPN. Furthermore,
we develop an alternative approach: we transform the MDWN into a WN,

2

then we build the symbolic reachability graph of this net [4] and finally we
transform this graph into a reduced MDPN w.r.t. the original one. We prove
that we can compute on this reduced MDP, the results that we are looking for in
the original MDP. The different relations between the formalisms are shown in
Fig. 1. Finally we have implemented our analysis method within the GreatSPN
tool [5] and performed some experiments.

The paper is organized as follows: chapter 1 introduces the MDPN formal-
ism, while chapter 2 the MDWN formalism. Finally in chapter 3 we conclude
and give some perspectives .

3

Chapter 1

Markov Decision Petri Nets

In this chapter we are going to introduce a first high level formalism from which
an MDP can be derived: Markov Decision Petri Nets (MDPN) based on Petri
Nets (PN)1 with priorities.

In section 1.1 we introduce the Markov Decision Process formalism and we
show with an example that it may not be easy to model a realistic distributed
system at the MDP level.

In section 1.2 we introduce the Markov Decision Petri Net formalism; while
section 1.3 shows how to use the MDPN formalism in order to model and study
a distributed system.

Finally, in section 1.4 we summarize and discuss the characteristics of this
new formalism.

1.1 Introduction

In general we want to model systems composed by multiple active components
whose behavior during a period is described in a probabilistic way and a cen-
tralized decision maker taking some decisions between execution periods (e.g.,
assigning available resources to components).

A first example could be a system with two (anonymous) components that
can be in service or out of service and a centralized decision maker that can
choose between different repair policies.

The system can be summarized as follows:

• two similar components; that can be down or up. If a component is out
of order then it is in the state down else is in the state up;

• a decision maker (or failure detection and recovery system) which must
take for every component in every time unit one of the two following
actions/decisions:

1we consider that the reader has already familiarity with the PN notation in any case more
details can be found in [14]

4

– repair a component in the state down;

– do not repair a component (in the state down);

• a limited number of failures can be recovered in parallel (limited restore
resources).

We assume that the system maintainer must pay a penalty when all the
components are down and a repair cost for every assigned restore resource.
Hence

Cpenalty(state) =

{
Cdown if state = all components down

0 otherwise

where Cdown > 0 is a fixed penalty cost, and

Crepair(action) =

{
CAssignRes if action = AssignResource

0 otherwise

where CAssignRes > 0 is a fixed repair cost.
These systems can be efficiently modeled using the MDP; in fact the MDP

formalism gives the possibility to perform a non deterministic choice among the
enabled actions (e.g. repair/do not repair) while the effect of the selected action
is probabilistic (e.g. the random duration of a task).

A (discrete time and finite) MDP is a dynamic system where the transitions
between states are defined as follows: let s ∈ S be the current state, first an
action a is selected non deterministically among the subset of actions currently
enabled (denoted As), then the new state is obtained by sampling from a prob-
ability distribution depending on s and a (denoted, p(·|s, a)). An MDP includes
rewards associated with state transitions; here, we choose a slightly restricted
definition of the rewards that do not depend on the destination state but only
on the source state and the chosen action (denoted, r(s, a)). Starting from such
elementary rewards, different kinds of global rewards may be associated with a
finite or infinite execution thus raising the problem to find an optimal strategy
w.r.t. a global reward. For the sake of simplicity, we restrict the global rewards
to be either the total reward or the average reward (depending on the nature
of the analysis, finite horizon i.e. transient or infinite horizon i.e. steady state).
The next definitions formalize these concepts.

Definition 1 (MDP) An MDP M is a tuple M = 〈S, A, p, r〉 where:

• S is a finite set of states,

• A is a finite set of actions defined as
⋃

s∈S As where As is the set of
enabled actions in state s,

• ∀s ∈ S, ∀a ∈ As, p(·|s, a) is a (transition) probability distribution over S
such that p(s′|s, a) is the probability to reach s′ from s by triggering action
a,

5

• ∀s ∈ S, ∀a ∈ As, r(s, a) ∈ R the reward associated with state s and action
a.

A finite (resp. infinite) execution of an MDP is a finite (resp. infinite)
sequence σ = s0a0 . . . sn (resp. σ = s0a0 . . .) of alternating states and actions,
s.t. ∀i, si ∈ S ∧ ai ∈ Asi

and p(si+1|si, ai) > 0.

The total reward of such an execution is defined by trw(σ) =
∑n−1

i=0 r(si, ai)

(resp. trw(σ) = limn→∞

∑n−1
i=0 r(si, ai) provided the limit exists) and its average

reward is arw(σ) = (1/n)
∑n−1

i=0 r(si, ai) (resp. arw(σ) = limn→∞
1
n

∑n−1
i=0 r(si, ai)

provided the limit exists).

We denote SEQ∗(M) (resp. SEQ∞(M)) the set of finite (resp. infinite) se-
quences. A strategy st is a mapping from SEQ∗(M) to A fulfilling st(s0a0 . . . sn) ∈
Asn

. Hence a strategy discards non determinism, and the behavior of M w.r.t.
st is a stochastic process Mst defined as follows: assume that the current execu-
tion is s0a0 . . . sn then an = st(s0a0 . . . sn) and the next state sn+1 is randomly
chosen w.r.t. distribution p(·|sn, an). Consequently, the reward of a random
sequence of Mst is a random variable and the main problem in the MDP frame-
work is to maximize or minimize the mean of this random variable by choosing
an appropriate strategy allowing to obtain this maximum/minimum when it
exists. In this case we can define the optimal total reward as follows:

V∗
n(s) = max

a∈As

((r(s, a) +
∑

s′∈S

p(s′|s, a) · max
a′∈As′

Vn−1(s
′, a′))

(resp. lim
n→∞

V∗
n(s) provided the limit exists)

In the framework of finite MDPs, efficient solution techniques have been
developed like value iteration, policy iteration, modified policy iteration and
linear programming [15].

As an example the MDP representing the system introduced at the beginning
of this section is shown in Fig. 1.1.

Table 1.1 shows the MDP states and the MDP actions possible in every
state,while table 1.2 shows the possible transition probabilities.

Finally the reward of the model depending on the current state and on the
action selected can be defined as follows:

r(s, a) = Crepair(a) + Cpenalty(s)

This means that if the system is in the states 0 or 1 and the decision maker
selects the action AssignRes then the maintainer will have to pay Cdown for
the current state and CAssignRes for the future restore operation.

The four possible strategies2 are shown in table 1.3. It is important to ob-
serve that the possible strategies are actually only three because when we select
the strategies 〈NoAssignRes, AssignRes〉 and 〈NoAssignRes, NoAssignRes〉

2Only in the states 0 and 1 a choice between the possible actions can be made. In all the
other states we have only one possible action

6

Figure 1.1: Symbolic representation of the MDP modeling the system with two
identical components that can fail and be repaired

7

State Description Actions
0 all components are down AssignRes,NoAssignRes
0r a component is down while a NoAssignRes

component is on repair
1 a component is up while the AssignRes,NoAssignRes

other is down
1r a component is up while the NoAssignRes

other is on repair on it
2 all components are up NoAssignRes

Table 1.1: MDP states description and the MDP actions for state

Transition Probabilities Value
pt(0|0, NoAssignRes) 1
pt(0r|0, AssignRes) 1 − prepair

pt(1|0, AssignRes) prepair

pt(0r|0r, NoAssignRes) 1 − prepair

pt(1|0r, NoAssignRes) prepair

pt(0|1, NoAssingRes) pfault

pt(1|1, NoAssignRes) 1 − pfault

pt(0r|1, AssignRes) pfault(1 − prepair)
pt(1|1, AssignRes) pfaultprepair

pt(1r|1, AssignRes) (1 − pfault)(1 − prepair)
pt(2|1, AssignRes) (1 − pfault)prepair

pt(0r|1r, NoAssignRes) pfault(1 − prepair)
pt(1|1r, NoAssignRes) pfaultprepair

pt(1r|1r, NoAssignRes) (1 − pfault)(1 − prepair)
pt(2|1r, NoAssignRes) (1 − pfault)prepair

pt(0|2, NoAssignRes) pfaultpfault

pt(1|2, NoAssignRes) 2pfault(1 − pfault)
pt(2|2, NoAssignRes) (1 − pfault)(1 − pfault)

Table 1.2: MDP transition probabilities

8

State 1
〈AssignRes, AssignRes〉 〈AssignRes, NoAssignRes〉

State 0
〈NoAssignRes, AssignRes〉 〈NoAssignRes, NoAssignRes〉

Table 1.3: MDP strategies

we obtain the same average reward in steady state: the two strategies are equiv-
alent because the system will eventually reach the state 0 and it will always stay
in it independently from the action selected for the state 1.

It is easy to observe that the MDP generation of this small system is a
rather easy task, but if the system has more components and resources with
different behaviors, then its modeling at the MDP level can be very hard. For
instance if we change the previous example considering the two different com-
ponents (different fault probabilities and repair probabilities) the corresponding
MDP is much more complicated (the number of states becomes 8 as shown
in table 1.4). Table 1.4 shows the MDP states and its possible actions in
every state for this case. Table 1.5 instead shows all the possible strategies
(we have used the label NoAssRes for the actions pair NoAssignResComp1,
NoAssignResComp2,AssResComp1 for the actions pair AssignResComp1, NoAssignResComp2

and AssResComp2 for the actions pair NoAssignResComp1, AssignResComp2).
This is the reason of the introduction of Markov Decision Petri Net formalism

(MDPN); we want to hide part of this complexity using a higher-level model. In
fact the MDPN formalism does not give at the specification level the detail of
the states space while it is possible at the specification level to define a complex
decision or complex probabilistic behavior as a composition of simpler decisions
or probabilistic behaviors.

1.2 Markov Decision Petri Net formalism

A Markov Decision Petri Net is composted by two different parts:

• the probabilistic one;

• the non deterministic one.

so that it is possible to distinguish clearly the probabilistic behavior of the
system from the non deterministic one.

This allows to design the two parts separately and then compose them auto-
matically. In the rest of this section we will use the scheme in Fig. 1.2 in order
to explain these two parts.

In the rest of this section we will use the scheme in Fig. 1.2 in order to
explain these two parts.

The probabilistic part models the probabilistic behavior of the system and
can be seen as composition of n (controllable/non-controllable) components,

9

State Description Actions
0 all components are down AssignResComp1,

AssignResComp2,
NoAssingResComp1,
NoAssingResComp2

0r1 the component 2 is down while NoAssingResComp1,
the component 1 is on repair NoAssingResComp2

0r2 the component 1 is down while NoAssingResComp1,
the component 2 is on repair NoAssResingComp2

1up1 the component 1 is up while AssignResComp1,
the other is down AssignResComp2,

NoAssingResComp1,
NoAssingResComp2

1up2 the component 2 is up while AssignResComp1,
the other is down AssignResComp2,

NoAssingResComp1,
NoAssingResComp2

1r1 the component 1 is up and NoAssingResComp1,
the other is on repair NoAssingResComp2

1r2 the component 2 is up and NoAssingResComp1,
the other is on repair NoAssingResComp2

2 all components are up NoAssingResComp1,
NoAssingResComp2

Table 1.4: States and actions for state of the MDP modeling a system with two
different components

10

Strat. 0 1up1 1up2
1 NoAssRes NoAssRes NoAssRes
2 NoAssRes NoAssRes AssResComp1

3 NoAssRes NoAssRes AssResComp2

4 NoAssRes AssResComp1 NoAssRes
5 NoAssRes AssResComp1 AssResComp1

6 NoAssRes AssResComp1 AssResComp2

7 NoAssRes AssResComp2 NoAssRes
8 NoAssRes AssResComp2 AssResComp1

9 NoAssRes AssResComp2 AssResComp2

10 AssResComp1 NoAssRes NoAssRes
11 AssResComp1 NoAssRes AssResComp1

12 AssResComp1 NoAssRes AssResComp2

13 AssResComp1 AssResComp1 NoAssRes
14 AssResComp1 AssResComp1 AssResComp1

15 AssResComp1 AssResComp1 AssResComp2

16 AssResComp1 AssResComp2 NoAssRes
17 AssResComp1 AssResComp2 AssResComp1

18 AssResComp1 AssResComp2 AssResComp2

19 AssResComp2 NoAssRes NoAssRes
20 AssResComp2 NoAssRes AssResComp1

21 AssResComp2 NoAssRes AssResComp2

22 AssResComp2 AssResComp1 NoAssRes
23 AssResComp2 AssResComp1 AssResComp1

24 AssResComp2 AssResComp1 AssResComp2

25 AssResComp2 AssResComp2 NoAssRes
26 AssResComp2 AssResComp2 AssResComp1

27 AssResComp2 AssResComp2 AssResComp2

Table 1.5: All the strategies of the MDP with two different components, that
can fail and be repaired.

11

Figure 1.2: The MDPN schema

Global decision Local decision

Run Trunnd
g Trunnd

l

Stop Tstopnd
g Tstopnd

l

Table 1.6: Schema of the non deterministic transitions

that can interact; instead the non deterministic part models the non determin-
istic behavior of the system where the decisions must be taken (we shall call this
part the decision maker). Hence the global system behavior can be described
as an alternating sequence of probabilistic and non deterministic phases.

The probabilistic behavior of a component is characterized by two different
types of actions/transitions Trunpr and Tstoppr. The Trunpr transitions repre-
sent intermediate steps in a probabilistic behavior phase and can involve several
components (synchronized in that transition), while the Tstoppr ones always
represent the conclusion of the probabilistic phase of at least one component.

In the non deterministic part, the decisions can be defined at the system
level (T nd

g , global decision) or at the component level (T nd
l , local decision). The

sets T nd
g and T nd

l are again partitioned in Trunnd
g and Tstopnd

g , and Trunnd
l

and Tstopnd
l . This is shown in table 1.6.

Like in the probabilistic part, a transition t ∈ Trunnd where Trunnd =
Trunnd

g ∪ Trunnd
l , can never conclude the non deterministic phase of the sys-

12

tem or a component, while a transition t ∈ Tstopnd where Tstopnd = Tstopnd
g ∪

Tstopnd
l , always concludes the non deterministic phase of the global system or

of a specific component.
It is important to introduce some additional terminology and assumptions: 1) a
component that is subject to local non deterministic choice will be called con-
trollable component, otherwise it will be called non controllable component;
2) a given probabilistic phase ends when all the components have finished their
(current) probabilistic phase, while a given non deterministic phase ends when
the decision maker has taken a decision at the global system level (if any is
specified) and for every controllable component; 3) our model has a discrete
time semantics; one time unit elapses (i.e. a new decision epoch starts) at each
entrance in a non deterministic phase after having left a probabilistic phase.

The formal definition of the MDPN formalism follows.

Definition 2 (Markov Decision Petri Net (MDPN)) A Markov Decision
Petri Net (MDPN) is a tuple

NMDPN = 〈Comppr , Compnd, Npr
PN , Nnd

PN 〉

where:

• Comppr is a finite non empty set of component identifiers;

• Compnd ⊆ (Comppr ∪ {ids}) is a finite non empty set of the controllable
component identifiers plus the global system (ids) identifier;

• Npr = 〈P, T pr, Ipr, Opr , Hpr, priopr, weightpr, act, m0〉 is a Petri Net with
priorities and weights associated with the transitions, and with the addi-
tional function act.
The set T pr is partitioned into two subsets: T pr = Trunpr] Tstoppr

act : T pr → 2Comppr

is a function that associates with every transition
t ∈ T pr a set of components3.

• Nnd = 〈P, T nd, Ind, Ond, Hnd, priond, obj, m0〉, is a Petri Net with transi-
tion priorities and with the additional function obj.
The set of transitions is partitioned into two subsets: T nd = Trunnd]
Tstopnd

obj : T nd → Compnd is a function that associates with every transition
t ∈ T nd an element of Compnd (This element is a controllable compo-
nent, and it is the “object” to which the action (decision) represented by
transition t refers).

Furthermore, the following constraints must be fulfilled:

• T pr ∩ T nd = ∅;

• ∀id ∈ Comppr, act−1({id}) ∩ Tstoppr 6= ∅;

3These components are the “actors” that synchronize in transition t.

13

• ∀id ∈ Compnd, obj−1({id}) ∩ Tstopnd 6= ∅;

In the rest of the report we will call Npr the probabilistic part and Nnd the
decision maker.

Observations: 1) all the components and the decision maker share the same
set of places; 2) a transition t ∈ T pr can be used to synchronize two or more
components; 3) we cannot have a component without probabilistic behavior.

Let us now introduce the rewards associated with the MDPN net; two types
of reward functions are possible: the state reward and the transition reward.
These are then combined through a third function to obtain a global reward.

Definition 3 (MDPN reward functions)

• rs : INP → IR is a function defining for every net marking its reward
value.

• rt : T nd → IR is a function defining for every transition its reward value.

• rg : IR × IR → IR is a function which is not decreasing w.r.t its second
parameter (the reason is to allow efficient analysis and will be clarified
later in this section), and which is needed to obtain a global reward function
for the derived MDP; the first parameter is a state reward, while the second
is a reward associated with a non deterministic (complex) action.

An example of probabilistic and non deterministic subnets is shown in Fig. 1.3.
Fig. 1.3 in the left part shows the probabilistic behavior of a component which
can work fine or fail; while Fig. 1.3 in the right part shows how the decision
maker implements the possible ways of assigning the resources to a component
(e.g. for repairing a component).

The Tstoppr transitions are WorkFine, Fail, Wait, EndRep, while the only
Trunpr transition is Resume The non deterministic transitions are all Tstopnd

transitions. This simple model can be easily complicated with more components
in a modular way as shown in Fig. 1.11.

1.2.1 MDPN semantics

The MDPN semantics is given in two steps: the first step defines how to compose
the probabilistic part and the decision maker and to derive from such composi-
tion a unique PN. The second step consists in generating the (finite) RG of the
PN obtained in the first step and then in deriving an MDP from it.

From MDPN to PN: before describing how to compose the probabilistic
part with the decision maker, we explain the semantics of the additional places
Stoppr

i , Runpr
i , Stopnd

i , Runnd
i , Stopnd

0 and Runnd
0 and the additional non de-

terministic transitions PrtoNd and NdtoPr, that will be introduced during the
composition phase.

14

Trunpr = {Resume}, while all the other probabilistic transitions belong
to Tstoppr. All the non deterministic transition belong to Tstopnd.

Figure 1.3: An example MDPN with only one (controllable) component.

Places Stoppr
i , Runpr

i , Stopnd
i , Runnd

i , Stopnd
0 and Runnd

0 will be used to
regulate the interaction among the components, the global system and the de-
cision maker. It is important to observe that we have a place Runpr

i , Stoppr
i for

every component where i identifies the component, while we insert the places
Runnd

0 and Stopnd
0 if the decision maker takes same global decision and the pair

of places Runnd
i and Stopnd

i for every controllable component i ∈ Compnd.
The non deterministic transitions PrtoNd and NdtoPr are used to ensure

that the decision maker takes a decision for every component in every time
unit: the former triggers a non deterministic phase when all the components
have finished their probabilistic phase, the letter triggers a probabilistic phase
when the decision maker has finished the non deterministic phase.

Fig. 1.4 shows how these elements are connected together.
The formal definition of the PN that is built from the components submodel,

the decision maker and the additional places and transitions described above
follows.

N comp = 〈P comp, T comp, Icomp, Ocomp, Hcomp, priocomp, weightcomp, m0〉,

where:

Places P comp = P ∪i∈Comppr
{Runpr

i , Stoppr
i } ∪i∈Compnd

{Runnd
i , Stopnd

i }

Transitions T comp = T pr ∪ T nd ∪ {PrtoNd, NdtoPr}

15

Figure 1.4: Arcs connecting the places Stoppr
i , Runnd

i and the transition
PrtoNd; arcs connecting the places Stopnd

i , Runnd
i and the transition NdtoPr

priorities ∀t ∈ T nd, prio(t) = priond(t)
∀t ∈ T pr, prio(t) = priopr(t)
prio(PrtoNd) =any natural number, prio(NdtoPr) =any natural num-
ber, (actually these values are irrelevant, as we shall see later).

weights ∀t ∈ T pr, weightcomp(t) = weightpr(t), for all others t ∈ T comp the
weight is not defined.

I,O,H

• ∀p ∈ P, t ∈ T nd : Icomp(t, p) = Ind(t, p), Ocomp(t, p) = Ond(t, p), Hcomp(t, p) =
Hnd(t, p)

• ∀p ∈ P, t ∈ T pr : Icomp(t, p) = Ipr(t, p), Ocomp(t, p) = Opr(t, p), Hcomp(t, p) =
Hpr(t, p)

• ∀t ∈ T prs.t.i ∈ act(t) : Icomp(t, Runpr
i) = 1

• ∀t ∈ Tstoppr s.t.i ∈ act(t) : Ocomp(t, Stoppr
i) = 1

• ∀t ∈ Trunpr s.t.i ∈ act(t) : Ocomp(t, Runpr
i) = 1

• ∀t ∈ T nds.t.i ∈ act(t) : Icomp(t, Runnd
i) = 1

• ∀t ∈ Tstopnd s.t.i ∈ act(t) : Ocomp(t, Stopnd
i) = 1

• ∀t ∈ Trunnd s.t.i ∈ act(t) : Ocomp(t, Runnd
i) = 1

• ∀i ∈ Comppr : Icomp(PrtoNd, Stoppr
i) = 1

• ∀i ∈ Compnd : Ocomp(PrtoNd, Runnd
i) = 1

• ∀i ∈ Comppr : Ocomp(NdtoPr, Runpr
i) = 1

• ∀i ∈ Compnd : Icomp(NdtoPr, Stopnd
i) = 1

• for all the other pairs t, p not mentioned in the above definition of I,
O and H: Icomp(t, p) = 0, Ocomp(t, p) = 0, Hcomp(t, p) = 0;

16

Figure 1.5: An example of PN obtained from the composition of the component
and the decision maker in Fig. 1.3

the initial marking m0 is equal to that of (both) the PN Nnd and Npr ∀p ∈
P , ∀i ∈ Compnd : m0(Runnd

i) = 1; , m0(Stopnd
i) = 0; ∀i ∈ Compnd :

m0(Runpr
i) = 0; m0(Stoppr

i) = 0;

Fig. 1.5 shows the PN obtained from the composition of the component and the
decision maker in Fig. 1.3

RG semantics and transitions sequence reward Considering the RG
obtained from the composed PN we observe that the reachability set (RS) can be
partitioned into two subsets: the non deterministic states (RSnd), in which only
non deterministic transitions are enabled, and the probabilistic states (RSpr), in
which only probabilistic transitions are enabled. Notice that by construction it is
not possible to have both nondeterministic and probabilistic transitions enabled
in any marking of the PN obtained from an MDPN: in fact a probabilistic
transition can be enabled only if there is at least one place Runpr

i with marking
m(Runpr

i) > 0, while a non deterministic transition can be enabled only if there
is at least one place Runnd

i with marking m(Runnd
i) > 0. Initially only the

Runnd
i places are marked; only when all the tokens in the Runnd

i places have
migrated to the Stopnd

i places (through the firing of some transition in Tstopnd),
the transition NdtoPr can fire, removing all tokens from the Stopnd

i places and
putting one token in each Runpr

i place. Similarly, transition PrtoNd is enabled
only when all tokens have moved from the Runpr

i to the Stoppr
i places; the firing

of PrtoNd brings the tokens back in each Runnd
i place. It is thus clear that it

can never be the case that a place Runpr
i and a place Runnd

i are simultaneously
marked.

17

Figure 1.6: An example showing the two different time semantics of the evolution
produced by an MDPN

Observe that any path in the RG can be partitioned into (maximal) sub-paths
traversing only states of the same type, so that each path can be described as
an alternating sequence of non deterministic and probabilistic sub-paths. Each
probabilistic sub-path can be substituted by a single “complex” probabilistic
step and assigned a probability based on the weights of the transitions firing
along the path. The nondeterministic sub-paths can be interpreted according to
two alternative semantics: the first one considers each non deterministic marking
in the path (and thus in the RG) as an observable state, that is a state where
the system spends one time unit (in other words a state where a new decision
epoch starts); the second semantics considers a path through non deterministic
states as a single complex action and the only state where time is spent is the
first one in the sequence (that is the state that triggers the “complex” decision
multi-step).

In the former case, every non deterministic state in the RG will translate
in a MDP state while in the latter case, the non deterministic paths will be
substituted by “complex” actions in the MDP to be generated, and only the
first state in each path will appear as a state in the MDP (the others states in
the path are vanishing, borrowing the terminology from the literature on GSPN
/ SWN).

Fig. 1.6 illustrates through one example the two different timing semantics
applied to the same path.

In the rest of paper we decide to adopt the second semantics since it easily
simulates the first one, while the converse simulation remains an open issue.

For instance to simulate the first semantics having chosen the second one
we only need to add a dummy probabilistic step after each non deterministic
transition firing, that does not change the global state but serves only as a time
advance probabilistic action (that brings back the control to the non determinis-
tic part with probability one). In our MDWN framework this could be achieved
by introducing a dummy time advance subnet activated after each firing of a
T nd transition with no effect on the overall state. The subnet could contain a
single place Pdummy that should inhibit all the transitions in T nd, and a sin-
gle probabilistic transition Tdummy, that should have Pdummy as single input
place and no output places.

Let us now define the reward function for a sequence of non deterministic
transitions, σ ∈ (T nd)∗; abusing notation we use the same name rt() for the

18

reward function for single transitions and for transition sequences.

Definition 4 (The transition sequence reward rt(σ)) The transition reward
for a non deterministic transition sequence is defined as follows:

rt(σ) =
∑

t∈T nd

rt(t)|σ|t

where |σ|t is the number of occurrences of non deterministic transition t in σ

Observation: The above definition of rt(σ) assumes that the firing order in such
a sequence is irrelevant w.r.t. the reward. Otherwise stated, a sequence of non
deterministic transitions produces a set of decisions, that do not need to be
implemented in a defined order.

Generation of the MDP from the RG of the PN derived from the
MDPN In this subsection we describe how to derive an MDP from the RG
of the PN previously obtained.

The MDP can be obtained from the RG (shown in Fig. 1.7) of the PN model
in two steps (as showing in Fig. 1.7):

• build from the RG the RGnd where all the transition sequences passing
only through non deterministic states are reduced to one non deterministic
step.

• build the RGMDP ≈ MDP from the RGnd where all probabilistic paths
are removed.

Before proceeding to the transformation of the RG into a MDP some re-
quirements must be checked on it:

• in the probabilistic states part, it is required that there is not any termi-
nal strongly connected component (i.e., there is not any set of absorbing
probabilistic states);

• it is required that the RG does not contain any deadlock state.

We do not require anything on the presence of loops in the RG because they
will be managed by the Bellman and Ford algorithm as described later.

To efficiently derive the RGnd from the RG it is necessary to decide if the
solution of our problem must maximize or minimize the reward function. Then
every sub-graph in the RG corresponding to a set of sequences of non deter-
ministic states starting with the same non deterministic state and ending with
a probabilistic state is substituted in the RGnd by a new sub-graph obtained
from the previous one connecting directly the first non deterministic state nd to
every probabilistic state pr (in the initial sub-graph) with an arc labeled σnd,pr;
where σnd,pr is the non deterministic transitions sequence between nd and pr
with the maximum/minimum rt . In the rest of paper we will call σnd,pr a non

19

Figure 1.7: The RG of the PN model in Fig. 1.5

Figure 1.8: The steps from the RG to RGMDP

20

Algorithm 1 function BellmanFord(list vertexes, list edges, vertex source)

1: for vertex v in vertexes do
2: if v is source then
3: v.distance := 0
4: else
5: v.distance := infinity
6: v.predecessor := null
7: for i from 1 to size(vertexes) do
8: for each edge uv in edges do
9: u := uv.source

10: v := uv.destination
11: if v.distance > u.distance + uv.weight then
12: v.distance := u.distance + uv.weight
13: v.predecessor := u
14: for edge uv in edges do
15: u := uv.source
16: v := uv.destination
17: if v.distance > u.distance + uv.weight then
18: error ”Graph contains a cycle”

deterministic macro-transition and Tmacro will be the set containing all the non
deterministic transitions sequence.

The minimum sequence is calculated using the Bellman and Ford algorithm
for a single-source shortest paths in a weighted digraph (algorithm 1) where
the transition reward corresponds to the cost function associated with the arcs,
while the maximum is calculated using still the Bellman and Ford algorithm
but the cost function must be set to the opposite of the transition reward. It is
important to observe that if we want to use the Bellman and Ford algorithm in
order to find the maximum/minimum path between nd and pr, rt(σ) must be
defined as sum of transition rewards(this motivates the definition of rt(σ)).

So far we have not discussed what happens in presence of non deterministic
transition loops; first of all we must distinguish between two types of loops:

• negative loops where the reward function decreases;

• positive loops where the reward function increases.

This distinction is necessary because when we are interested to maximize the
reward function the negative loops are not a problem, these paths will be not
considered by the Bellman and Ford algorithm; while if the Bellman and Ford
algorithm finds a positive loop the RGnd cannot be obtained.

The same thing happens when we want to minimize the reward function,
but in this case only the positive loops will create problems.

For example if we want to maximize the reward function then the non de-
terministic markings nd2, nd3, nd4, nd6, nd7, nd9 and nd10 will not appear in

21

Figure 1.9: The RGnd obtained from the RG in Fig. 1.7

the RGnd obtained from the RG (Fig. 1.7). Therefore the path 〈nd1
PrtoNd
−→

nd2
NoAssignRes

−→ nd3
NdtoPr
−→ pr2〉 will be substituted by the path 〈nd1

σnd1,pr2−→

pr2〉 where σnd1,pr2
is the transitions sequence 〈nd1

PrtoNd
−→ nd2

NoassignRes
−→

nd3
NdtoPr
−→ pr2〉 with maximum rt. In the same way the path 〈nd1

PrtoNd
−→

nd2
AssignRes

−→ nd4
NdtoPr
−→ pr3〉 will become 〈nd1

σnd1,pr3−→ pr3〉 where σnd1,pr3

is the transitions sequence 〈nd1
PrtoNd
−→ nd2

AssignRes
−→ nd4

NdtoPr
−→ pr3〉 with

maximum rt. It is important to observe that in this case there are not non
deterministic sequences starting and ending with the same states; such that it
is simpler to compute the minimum/maximum sequence.

The RGnd for the example is shown Fig. 1.9.
The values of transitions firings sequence reward function for the non deter-

22

ministic macro-transitions in Fig. 1.9 are:

rt(σnd1 ,pr2
) = rt(PrtoNd) + rt(NoAssignRes) + rt(NdtoPr)

rt(σnd1 ,pr3
) = rt(PrtoNd) + rt(AssignRes) + rt(NdtoPr)

rt(σnd5 ,pr1
) = rt(PrtoNd) + rt(NoAssignRes) + rt(NdtoPr)

rt(σnd8 ,pr4
) = rt(PrtoNd) + rt(NoAssignRes) + rt(NdtoPr)

It is important to observe that all the non deterministic transition firing
sequences start with the transition PrtoNd and end with the transition NdtoPr.
These transitions have always rt() equal to zero so that we can discard them in
the following way:

rt(σnd1,pr2
) = rt(NoAssignRes)

rt(σnd1,pr3
) = rt(AssignRes)

rt(σnd5,pr1
) = rt(NoAssignRes)

rt(σnd8,pr4
) = rt(NoAssignRes)

The final step takes in input the RGnd and returns RGMDP . First of all
the probabilistic paths are reduced in the same way as the vanishing paths are
reduced in the GSPN [14] then the transition probability function is computed.

For example the path nd5

σnd5,pr1−→ pr1
Work
−→ nd5 and nd5

σnd5,pr1−→ pr1
FailProc
−→

nd1 become nd5
σnd5,pr1−→ nd5 with probability p(nd5|nd5, σnd5,pr1

) = 1 − pfault

and nd5

σnd5,pr1−→ nd1 with probability p(nd1|nd5, σnd5,pr1
) = pfault.

Every path starting with a non deterministic state followed by a sequence
of probabilistic states ending with a non deterministic state is substituted in
the RGMDP by a path containing only the two non deterministic states. These
states will be connected by an arc labeled with the same label of the first non
deterministic arc in such path, so that an MDP action corresponds to a non
deterministic macro-transition.

In order to define the general way to compute the transition probability
function of the MDP it is useful to introduce matrix IP .

Definition 5 (Transition probability matrix) The matrix P represents the
transition probability matrix and can be decomposed as follows:

IP = (
∞∑

n=0

(P (pr,pr))n ◦ P (pr,nd)) (1.1)

P (pr,pr) represents the probability of moving from a probabilistic marking to
a probabilistic marking pr without hitting any intermediate non deterministic
marking and P (pr,nd) represents the probability of moving from probabilistic to
non deterministic markings.

23

Figure 1.10: The MDP obtained from the MDPN in Fig. 1.3

In the computation of
∑∞

n=0(P
(pr,pr))n, two possibilities may arise. The

first corresponds to the situation in which there are no loops involving only
probabilistic states. This means that for any probabilistic state pri ∈ RSpr there
is a value n0,i such that any sequence of transition firings of length n ≥ n0,i

starting from such state must reach a non deterministic state ndj ∈ RSnd. In
this case

∃n0 :

∞∑

k=0

(P (pr,pr))k =

n0∑
)k=0(P

(pr,pr))k

The second corresponds to the situation in which there are possibilities of loops
among probabilistic states, so that there is a possibility to remain trapped within
a set of probabilistic states. In this case if there is at least a path that allows
to exit from the loop arriving in a non deterministic state then:

∞∑

n=0

(P (pr,pr))n = [I − P (pr,pr)]−1

In conclusion equation (1.1) can be rewritten in this way:

IP =

(
∑n0

k=0(P
(pr,pr))k) ◦ P (pr,nd) if there are no loops

([I − P (pr,pr)]−1) ◦ P (pr,nd) if there are loops

from which we can conclude that the probability distribution dist(nd, σ)

with nd
σ

−→ pr is given by the row vector IP [pr].
The reward function for every action is instead computed by the following

formula:
r(nd, σ) = rg(rs(nd), rt(σ))

24

Probability Value
pr(nd1|nd1, σnd1,pr2

) 1
pr(nd8|nd1, σnd1,pr3

) prepair

pr(nd5|nd1, σnd1,pr3
) 1 − prepair

pr(nd1|nd5, σnd5,pr1
) pfault

pr(nd5|nd5, σnd5,pr1
) 1 − pfault

pr(nd8|nd8, σnd8,pr4
) prepair

pr(nd5|nd8, σnd8,pr4
) 1 − prepair

Table 1.7: Transition probability function of the MDP in Fig. 1.10

Reward Value
r(nd1, σnd1,pr2

) rσ(σnd1,pr1
) + rs(nd1)

r(nd1, σnd1,pr3
) rσ(σnd1,pr3

) + rs(nd1)
r(nd5, σnd5,pr1

) rσ(σnd5,pr1
) + rs(nd5)

r(nd8, σnd8,pr4) rσ(σnd8,pr4) + rs(nd8)

Table 1.8: Reward function of the MDP in Fig. 1.10

Now it should be clear why rg must be not decreasing in its second parameter,
in fact only under this condition we can discard some paths with lower reward
when applying the Bellman and Ford algorithm in the derivation of the MDP
from the MDPN Reachability Graph.

In Fig. 1.10 the graphical representation of the MDP obtained from the
MDPN in Fig. 1.3 is shown and in tables 1.7 and 1.8 its transition probability
function and its reward function are shown.

1.3 A more complex example

In this section we are going to show and solve an MDPN model of the system
described in the section 1.1 but with two components and one resource. In
Fig. 1.11 the probabilistic part and the non deterministic part are shown. It is
important to remark that in this example the decision maker does not take any
global decision since the decision process in this case can be decomposed into a
set of decision local to the single components.

An example of the derived MDP assuming that we want to minimize the
total reward is shown in Fig. 1.12 where:

• σ1 = {NoAssigRes2, NoAssigRes1};

• σ2 = {NoAssigRes2, AssignRes1};

• σ3 = {AssignRes2, NoAssigRes1};

and its states are described in table 1.10.

25

Figure 1.11: The probabilistic and non deterministic part

26

|Probabilistic| |Non deterministic| |Total|
RG 32 48 80
RGnd 32 8 40
RGMDP 0 8 8

Table 1.9: States of the MDP in Fig. 1.12

ID Marking
nd1 DOWN1(1)Stoppr

1 (1)AvailableRes(1)UP2(1)Stoppr
2 (1)

nd8 DOWN1(1)Stoppr
1 (1)AvailableRes(1)DOWN2(1)Stoppr

2 (1)
nd17 UP1(1)Stoppr

1 (1)AvailableRes(1)UP2(1)Stoppr
2 (1)

nd22 UP1(1)Stoppr
1 (1)AvailableRes(1)DOWN2(1)Stoppr

2 (1)
nd29 InRepair1(1)Stoppr

1 (1)DOWN2(1)Stoppr
2 (1)

nd34 InRepair1(1)Stoppr
1 (1)UP2(1)Stoppr

2 (1)
nd39 DOWN1(1)Stoppr

1 (1)InRepair2(1)Stoppr
2 (1)

nd44 UP1(1)Stoppr
1 (1)InRepair2(1)Stoppr

2 (1)

Table 1.10: States of the MDP in Fig. 1.12

The number of states of this MDP (table 1.9) is higher than that of the
MDP shown in section 1.1, because in the MDPN formalism the components
can not be considered indistinguishable; however if we merge together the states
nd29 and nd39, and the states nd34 and nd44 then we obtain exactly the MDP
presented in section 1.1 (this is the reason for introducing the Markov Decision
Well-formed net).

It is important to observe that the MDP derived in this section and the
MDP presented in section 1.1 are equivalent and we can derive from them the
same optimal strategies.

For example if we set:

• pfault = 0.3;

• prepair = 0.6;

• Cpenalty = 100

then we can observe that the optimal strategy is:

• ∀0 ≤ Crepair ≤ 17
16Cpenalty we must repair a component every time that is

down;

• ∀ 17
16Cpenalty < Crepair ≤ 13

4 Cpenalty we must repair only when all the
components are down4;

• ∀Crepair > 13
4 Cpenalty we must never repair a component.

These results are summarized in table 1.11.
4Only a component will be repaired at a time

27

Figure 1.12: The derived MDP

28

Crepair Optimal policy Optimal policy value
0 nd8:assign, nd1, nd22:assign 15.0685

50 nd8:assign, nd1, nd22:assign 33.5616
70 nd8:assign, nd1, nd22:assign 42.8082

87.5 nd8:assign, nd1, nd22:assign 47.4315
100 nd8:assign, nd1, nd22:assign 52.0548

106.25 nd8:assign, nd1, nd22:assign 54.3664

112.5 nd8:assign,nd1, nd22:not assign 55.8333
150 nd8:assign, nd1, nd22:not assign 63.3333
200 nd8:assign, nd1, nd22:not assign 73.3333
300 nd8:assign, nd1, nd22:not assign 93.3333
325 nd8:assign, nd1, nd22:not assign 98.3333

337.5 nd8:not assign,nd1, nd22:not assign 100
350 nd8:not assign, nd1, nd22:not assign 100

Table 1.11: Optimal strategies

1.4 Discussion

We have introduced a high level formalism for defining an MDP and we have
described how starting from an MDPN model to automatically obtain the corre-
sponding MDP. Unfortunately this formalism has a drawback: by definition, the
components are identified and always distinguished in the state representation,
even if they have similar behavior (i.e., even if one component is an exact copy
of another component). This can have an impact both at the level of the model
description (which could become difficult to read when several components are
present), and at the level of the state space size. A solution may be the use of
a higher-level formalism for modeling the components and the decision maker
nets. The Well-formed nets (WNs) formalism is a good candidate. First, it is a
high level Petri Net formalism that allows to represent systems in a concise way
thanks to the possibility of associating information with tokens and of parame-
terizing transition firings. Furthermore it is also the support of efficient analysis
techniques that take into account the symmetries of the system.

29

Chapter 2

Markov Decision

Well-formed net

In this chapter the Markov Decision Well-formed Net formalism is introduced
in order to give an higher level formalism to express an the MDP. Section 2.1
describes the syntax and the semantics of the Markov Decision Well-formed
Nets (MDWN). The unfolding algorithm, the RG and the SRG technique are
also presented in this section.

Section 2.2 shows some experiments.
In this chapter we consider that the reader has already familiarity with

the WN notation, in every case a short presentation on the WN is shown in
appendix A.

2.1 Markov Decision Well-formed Net formal-

ism

2.1.1 WN informal introduction

WNs are an high-level Petri net formalism whose syntax has been the starting
point of several efficient analysis methods. Below, we describe the main features
of WNs. The reader can refer to [3] and to the appendix A for a formal definition.

In a WN (and more generally in high-level Petri nets) a color domain is
associated with places and transitions. The colors of a place label the tokens
contained in this place, whereas the colors of a transition define different ways
of firing it. In order to specify these firings, a color function is attached to every
arc which, given a color of the transition connected to the arc, determines the
number of colored tokens that will be added to or removed from the correspond-
ing place. Finally the initial marking is defined by a multi-set of colored tokens
in each place.

A color domain is a Cartesian product of color classes, this may be viewed as
primitive domains. Classes can have an associated (circular) order expressed by

30

means of a successor function. The Cartesian product defining a color domain
is possibly empty (e.g., for a place which contains neutral tokens) and may
include repetitions (e.g., a transition which synchronizes two colors inside a
class). A class can be divided into static subclasses. The colors within a class
represent objects with the same nature (processes, resources, etc.), whereas the
colors inside a static subclass have the same potential behavior (batch processes,
interactive processes, etc.).

A color function is built by standard operations (linear combination, com-
position, etc.) on basic functions. There are three basic functions: a projection
which selects an item of a tuple and is denoted by a typed variable (e.g., p, q); a
synchronization/diffusion that is a constant function which returns the multiset
composed by all the colors of a class or a subclass and is denoted SCi

(SCi,k
)

where Ci (Ci,k) is the corresponding (sub)class; and a successor function which
applies on an ordered class and returns the color following a given color.

Transitions and color functions can be guarded by expressions. An expres-
sion is a boolean combination of atomic predicates. An atomic predicate either
identifies two variables [p = q] or restricts the domain of a variable to a static
subclass.

Examples of arc functions, transition guards, color domains can be seen in
the MDWN model of Fig. 2.1 and Fig. 2.3. The details about the WN notation
can be found in [3].

The constraints on the syntax of WN allow to automatically exploit the be-
havioral symmetries of the model and perform state-space based analysis on a
more compact RG: the symbolic reachability graph (SRG). The SRG construc-
tion lies on the symbolic marking concept, namely a compact representation
for a set of equivalent ordinary markings. A symbolic marking is a symbolic
representation, where the actual identity of tokens is forgotten and only their
distributions among places are stored. Tokens with the same distribution and
belonging to the same static subclass are grouped into a so-called dynamic sub-
class. Starting from an initial symbolic marking, the SRG can be constructed
automatically using a symbolic firing rule [3].

Various behavioral properties may be directly checked on the SRG. Fur-
thermore, this construction leads also to efficient quantitative analysis, e.g. the
performance evaluation of Stochastic WNs (SWNs) [3] (a SWN is obtained from
a WN by associating an exponentially distributed delay with every transition,
which may depend only on the static subclasses to which the firing colors be-
long).

2.1.2 Markov Decision Well-formed Net definition

A MDWN, like an MDPN, is composed by two distinct parts: the probabilis-
tic one and the non deterministic one, and also in this case the set of transi-
tions in each part is partitioned into Trun and Tstop, as shown in Fig. 1.2.
Each part of a MDWN is a WN model: the two parts share the same set of
color classes. A MDWN comprises a special color class, say C0, representing
the system components: its cardinality |C0| gives the total number of compo-

31

nents in the system. This class can be partitioned into several static subclasses
C0 = (

⊎m

k=1 C0,k)] (
⊎n0

k=m+1 C0,k) such that colors belonging to different static
subclasses represent components with different behavior and the first m static
subclasses represent the controllable components while the others represent the
non-controllable components.

Every transition in an MDWN has an associated color domain, defining its
color instances. A color instance is expressed as a tuple of elements, each one
with a type (a basic color set, possibly C0). Some elements in a transition
color instance have type C0 and represent a component identifier (we call such
elements the component parameters) and are used to specify the system com-
ponents involved in the transition instance firing.

Definition 6 (Markov Decision Well-formed Net (MDWN)) A Markov
Decision Well-formed (MDWN) is a tuple

NMDWN = 〈Npr
WN , Nnd

WN , synctype, dyn, static〉,

where:

• Npr
WN = 〈P, T pr, C, cdpr, Ipr, Opr , Hpr, φ, prio, weightpr, mpr

0 〉, is a WN
with weights associated with the transitions;

• Nnd
WN = 〈P, T nd, C, cdnd, Ind, Ond, Hnd, φ, prio, mnd

0 〉, is a WN;

• synctype : T pr∪T nd → {Some, Allbut} is a function which associates with
every transition a label, s.t. ∀t ∈ Tstoppr ∪ T nd ⇒ synctype(t) = Some.
This function is used to identify whether a transition involves only a given
number of components or all components in the system except a given
subset;

• dyn(t), where t ∈ T pr ∪ T nd and cd(t) =
⊗

i∈{0,...,n} Cei

i , is a subset of

{1, . . . , e0};

• static(t), where t ∈ T pr ∪ T nd, is a subset of {1, . . . , n0} where n0 repre-
sents the number of static subclasses in C0; static(t) is meaningful only if
synctype(t) = Allbut.

Furthermore, the following constraints must be fulfilled:

• T pr ∩ T nd = ∅;

• T pr = Trunpr] Tstoppr ∧ T nd = Trunnd] Tstopnd;

• ∀t ∈ T pr ∧ synctype(t) = Some ⇒ dyn(t) 6= ∅;

• ∀t ∈ T pr∧synctype(t) = Allbut : ∀i ∈ dyn(t), φ(t) ⇒ (xi ∈ ∪j∈static(t)C0,j)
moreover

∑
j∈static(t) |C0,j | > |dyn(t)|, where xi represents the projection

of the color of t on the i-th component parameter; this constraint is needed
for consistency of transitions of type ”Allbut” (the subset of not involved
component cannot exceed the size of the subclass they belong to);

32

• ∀t ∈ T nd ⇒ 0 ≤ |dyn(t)| ≤ 1; this is needed to ensure that each ”stop”
non deterministic transition involves only one (controllable) component;

• ∀C0,k there exists at least one transition t ∈ Tstoppr such that: ei-
ther synctype(t) = Some ∧ ∃i ∈ dyn(t) such thatφ(t) ⇒ xi ∈ C0,k or
synctype(t) = Allbut ∧ C0,k ∈ static(t), moreover if k ≤ m there exists a
similar t ∈ Tstopnd.

• all component parameters of any transition must be assigned different ele-
ments from C0 in each transition instance: this should be enforced by the
transition guard.

In the rest of the report we will call Npr
WN the probabilistic part and

Nnd
WN the decision maker, that is the non deterministic part.

Now we introduce the rewards associated to the MDWN net; two types of
reward functions are possible: the place reward and the transition reward.

Before introducing the place reward we must define the set C̃ .

Definition 7 (C̃) C̃ is the set of sets {C̃i}i∈I with I = {0, . . . , n}. While C̃i is
the set {1, . . . , ni} where ni is the number of static subclasses in Ci.

We can always map the color class C on the set C̃ such that the definition of the
c̃d function immediately follows:

Definition 8 (c̃d) The function c̃d(p) is defined as follows:

c̃d
def
=

˜
(
⊗

i∈I

Cei

i) =
⊗

i∈I

C̃ei

i

For instance if C0 = C0,1 ∪ C0,1 ∪ C0,3 where C0,1 = {comp1, comp2}, C0,2 =

{comp3}, C0,3 = {comp4}, then C̃0 = {C0,1, C0,1, C0,3}, and if p ∈ P with

cd(p) = C0×C0×C0 then c̃d(p) = C̃0×C̃0×C̃0, moreover if c = 〈comp1, comp2, comp3〉 ∈

cd(p) then c̃ = 〈1, 1, 2〉 ∈ c̃d(p).
It is important to observe that an unique c̃ corresponds to every c.

Definition 9 (MDWN reward functions)

• rs :
⊗

p∈P IN
ecd(p) → IR is a function which returns for every colored

marking a reward value.

• ∀t ∈ T nd, rt[t] : cd(t) → IR is a vector which associates with every tran-
sition a function defining the reward value of its instances; two instances
may be assigned a different reward value only if there exists a standard
predicate capable to distinguish the two.

• rg : IR × IR → IR is defined as in MDPN.

33

An example of MDWN is shown in Figs. 2.1 and 2.2. In this model we are
assuming that there are several instances of three component types: Proc, Mem
and ResCtr (grouped in banks, each with one instance of each component):
rather than replicating the same subnet several times, we use colored tokens to
represent several instances on the same net structure. Instead there is only one
instance of on other component the global memory. Class C0 comprises four
static subclasses {P, M, GM, R}, one for each component type. The cardinality
of the processor (P), local memory (M) and resource control (R) subclasses
corresponds to the number of banks in the system, while the cardinality of the
global memory subclass is one. Arcs in Figs. 2.1 and 2.2 are annotated with very
functions (tuples of projections) and all the variables appearing in the functions
in this example are component parameters. The guards on the arcs include a
term in the form d(x) = CompType to force parameter x to range within static
subclass CompType. The additional terms φxyz, φxz, φyz are not detailed here,
but are used to associate components in the same bank: in fact the probabilistic
part of the model must correctly synchronize components of type Proc, Mem
and ResCtr belonging to the same bank (the model represents a situation where
only one resource is assigned to each bank at a time, and it can be used to
resume all failed components in the bank).

2.1.3 MDWN semantics

In this section we are going to describe how it is possible to obtain from an
MDWN model the corresponding MDP model. The two possible methods are
shown in Fig. 1

The first method requires to unfold the MDWN in order to obtain an equiv-
alent MDPN and to derive from this an MDP, but this is not very efficient in
fact it will multiply the number of places, transitions and arcs, moreover if the
number of components is high the cost for computing the results will be high.

Instead the second method derives directly from an MDWN model an MDP.
This second method can be decomposed in two steps: the first step defines how
to compose the probabilistic part and the decision maker and to derive from such
composition a unique WN. The second step consists in generating the (finite)
RG of the WN obtained in the first step and then in deriving an MDP from
it. In this way there is no need to produce the intermediate, potentially huge
MDPN, but the cost for computing the result can still be high. In the last part
of this section we show how the properties of WN can be extended to MDWN
so that a smaller MDP can be directly derived from the Symbolic Reachability
Graph of the corresponding WN, gaining in solution efficiency.

From MDWN to MDPN Given an MDWN with a finite color domains, it is
always possible to derive an equivalent MDPN applying an unfolding algorithm1

1It is important to observe that while the unfolding of a MDWN is unique, the inverse
operation of folding a MDPN to obtain a more compact, colored representation of the same
model, may lead to several alternative MDWN models, depending on the point of view of the
folding and the desired degree of compacting.

34

Trunpr = {FailP roc, FailMem, EndRep, StartResume} all other transitions
belong to Tstoppr; all variables are component parameters. Transition priorities
are denoted π = prio(t) in the figure. P , M , GM and R are the Proc, Mem,
GlobMem and ResCtr subclasses respectively.

Figure 2.1: Probabilistic part of the multiprocessor system MDWN model

all the non deterministic transition belong to Tstopnd. P , M , GM and R are
the Proc, Mem, GlobMem and ResCtr subclasses respectively.

Figure 2.2: Non deterministic part of the multiprocessor system MDWN model

35

Definition 10 (Unfolding of MDWN) The MDPN resulting from the un-
folding of a MDWN is defined as follows:

• Comppr is the color class C0;

• Compnd is the set (
⊎m

i=0 C0,i) ∪ {ids};

• Npr
PN = 〈P ′, T pr′, Ipr′, Opr′, Hpr′, priopr′, weightpr′, Comp, m′

0〉 where:

– P ′ = {〈p, c〉, p ∈ P, c ∈ cd(p)};

– T pr′ = {〈t, c〉, t ∈ T pr, c ∈ cdφ(t)};

– Ipr′[〈p, c〉 〈t, c′〉] = (Ipr[p, t](c′))[c];

– Opr′[〈p, c〉 〈t, c′〉] = (Opr [p, t](c′))[c];

– Hpr′[〈p, c〉 〈t, c′〉] = (Hpr[p, t](c′))[c];

– priopr′[〈t, c〉] = priopr[t](c);

– weightpr′[〈t, c〉] = weightpr[t](c);

– act′(〈t, c〉):

∗ ∀t ∈ T pr, synctype(t) = Some ⇒
⋃

i∈dyn(t) c0,i;

∗ ∀t ∈ T pr, synctype(t) = Allbut ⇒
⋃

j∈static(t) C0,j\(
⊎

i∈dyn(t) c0,i);
where c0,i denotes the projection of color c on the i-th occurrence
of C0 in cd(t)

– mpr′
0 [〈p, c〉] = mpr

0 [p, c].

• Nnd
PN = 〈P ′, T nd′, Ind′, Ond′, Hnd′, priond′, weightnd′, Comp, m′

0〉 where:

– T nd′ = {〈t, c〉, t ∈ T nd, c ∈ cd(t)};

– Ind′[〈p, c〉 〈t, c′〉] = (Ind[p, t](c′))[c];

– Ond′[〈p, c〉 〈t, c′〉] = (Ond[p, t](c′))[c];

– Hnd′[〈p, c〉 〈t, c′〉] = (Hnd[p, t](c′))[c];

– priond′[〈t, c〉] = priopr [t](c);

– weightnd′[〈t, c〉] = weightnd[t](c);

– obj(〈t, c〉):

∗ ∀t ∈ T nd ⇒
⋃

i∈dyn(t){c0,i};

The reward functions r′m and r′t of the unfolded MDPN are defined as follows:

• rs′[〈p, c〉] = rs[p](c̃);

• rt′[〈t, c〉] = rt[t](c);

• r′g = rg.

36

Figure 2.3: arcs connecting places Stoppr, Runnd
l , Runnd

g , and transition

PrtoNd and their functions; arcs connecting places Stopnd
l , Stopnd

g , Runnd
l and

transition NdtoPr and their function; example of connection of the decision
maker to places Runnd and Stopnd: component parameters are highlighted in
boldface in the arc functions.

From MDWN to composed WN Before describing the second method
we must explain the use of the places Stoppr

l , Runpr
l , Stopnd

l , Runnd
l , Stopnd

g ,

Runnd
g and the non deterministic transitions PrtoNd and NdtoPr, that are

introduced during the composition phase.
The places Stoppr, Runpr, Stopnd

l , Runnd
l , Stopnd

g and Runnd
g are used in

order to regulate the interaction among the components, the global system and
the decision maker. The color domain of the places Stoppr, Runpr, Stopnd

l

is C0, that is they will contain colored tokens representing the components;
while Runnd

g , Stopnd
g are neutral; The non deterministic transitions PrtoNd

and NdtoPr are used to assure that the decision maker takes a decision for
every component in every time unit.

The schemes, describing how the places Stoppr, Runpr, Stopnd
l , Runnd

l ,
Stopnd

g and Runnd
g and the transitions PrtoNd and NdtoPr are connected,

are shown in the Fig. 2.3. Observe that the basic schema is instead the same
already defined for MDPN but now the arcs are annotated with function 〈S〉 (in-
put) and

∑m
i=1〈SC0,i

〉 (output) meaning that all components must synchronize
in that point.

Now we are going to describe how to derive a unique WN composing the
probabilistic part with the non deterministic part.

Places Runpr and Stoppr, introduced above, are connected with its run/stop
transitions of Npr in the same way as for MDPNs, similarly places Runnd

l and
Stopnd

l Runnd
g and Stopnd

g introduced above are connected to the run/stop tran-

sitions of Nnd as for MDPNs, but now the arcs must be annotated with the
following functions:

37

• ∀t ∈ T pr ∪ T nd
l , if synctype(t) = Some ⇒ 〈

∑
i∈dyn(t) x0,i〉, where x0,i

denotes the i-th component of type C0 in the color domain of t;

• ∀t ∈ Trunpr, if synctype(t) = Allbut ⇒ 〈
∑

j∈static(t) S0,j −
∑

i∈dyn(t) x0,i〉

Observe that the arcs connecting transitions T nd
g and places Runnd

g , Stopnd
g are

not annotated with any function because these places have neutral color (i.e.
they contain plain black tokens).

Once the composed WN is built, its RG can be constructed and transformed
into a MDP following the same two steps already explained for MDPN.

An efficient analysis technique. We have justified the introduction of the
MDWN formalism in order to cope the limitations of the MDPN, but for the
moment we have only shown how the MDWN works out the first problem: the
MDWN is more convenient than the MDPN for its compactness, readability.

For instance we can observe that the MDWN model in Fig. 2.1 can be
extended to n identical components only changing the number of elements in the
C0; while in the MDPN formalism this would require to introduce n component
nets.

Anyway the number of MDP states is the same for both formalisms, such
that the MDPs obtained are equivalent (they have same number of states).

In this section we are going to describe how to obtain a Lumped MDP from
the SRG2 of the composed WN and we will prove that the optimal reward,
computed on the MDP M obtained from the RG, can be computed directly on
the Lumped MDP M′ imposing the following assumptions:

• Stationary rewards and transition probabilities; r(s, a) and p(·|s, a)
do not vary from decision epoch to decision epoch;

• Bounded rewards ∀s ∈ S and ∀a ∈ As, |r(s, a)| < ∞;

• Discrete and finite state space S is discrete and finite .

First of all we observe that the following properties are satisfied:

1. ∀m, m′ ∈ m̂, rs(m) = rs(m′)

2. ∀〈t, c〉, 〈t, c′〉,∈ 〈t, ĉ〉, rt(〈t, c〉) = rt(〈t, c′〉)

3. ∀σ, σ′ ∈ σ̂, rt(σ) = rt(σ′)

In fact it is easy to prove that these properties of the reward functions rs, rt are
satisfied by the symmetries constrains imposed on their definitions.

Afterwords the reward functions rs, rt can be easily extended for the SRG
as follows:

Definition 11 (MDWN reward functions)

2The SRG is constructed following the standard algorithm described in [3]

38

• rs is extended to the symbolic markings as follows:

∀m ∈ m̂, rs(m̂)
def
= rs(m)

• rt is extended to the symbolic instance as follows:

∀〈t, c〉 ∈ 〈t, ĉ〉, rt(〈t, ĉ〉)
def
= rt(〈t, c〉)

• rt is extended to the symbolic instance sequence as follows:

∀σ ∈ σ̂, rt(σ̂)
def
= rt(σ)

The Lumped MDP is obtained again in two steps:

• build from the SRG the SRGnd where all the transition sequences passing
only through non deterministic symbolic markings are reduced to one non
deterministic step;

• build the SRGMDP from the SRGnd where all probabilistic paths are
substituted by single probabilistic arcs.

These two steps are computed exactly in the same way as for the RG, the
only difference is in the computation of the transition probability function. The
probability of each ”symbolic” probabilistic step is obtained from first com-
puting the weight of the corresponding symbolic transition instance and then
normalizing it w.r.t all the enabled symbolic transition instances in the source
symbolic marking; the weight of the symbolic transition instances is defined as
the product of its multiplicity by the weight of any ordinary transition instance
represented by it (Appendix A).

Now let us prove that the optimal reward, computed on the MDP M ob-
tained from the RG, can be computed directly on the Lumped MDP M′.

We prove this showing that a Lumped MDP M′ is stochastically bisimilar
w.r.t the MDP M. This requires that every ordinary marking m ∈ SM is
stochastically bisimilar to the symbolic marking m̂ ∈ SM′ where m ∈ m̂:

• rg(rs(m̂), rt(σ̂)) = rg(rs(m), rt(σ)) where σ̂ is an action enabled in m̂ and
σ is an action enabled in m and σ ∈ σ̂;

• ∀m̂′ ∈ SM′ p(m̂′|m̂, σ̂) =
∑

m′∈ bm
′,σ∈bσ p(m′|m, σ);

• ∀σ ∈ σ̂ and σ ∈ Am, σ̂ ∈ A bm, σ ∈ σ̂′ ⇒ σ̂ = σ̂′.

• ∀m̂, m̂′ ∈ SM′ , ∀σ̂ ∈ A bm : p(m̂′|m̂, σ̂) > 0 ⇒ ∀m ∈ m̂, ∃σ ∈ σ̂ :
p(m′|m, σ) > 0 where m′ ∈ m̂′;

The demonstration that the stochastic bisimilarity holds could be immedi-
ately deduced. The first point is satisfied by the definition 11, the second by the
procedure to compute the probability of the probabilistic transition sequences
of the SRG; while the last two points are satisfied by the SRG definition.

This notion of equivalence lead us to the following theorem on optimal value
equivalence.

39

Theorem 1 (Optimal value equivalence) Let M′ be the lumped MDP stochas-
tically bisimilar to the MDP M then:

V∗
n(m) = V∗

n(m̂)

where m ∈ m̂ and σ ∈ σ̂.
Proof:
Let us define the m-step optimal action value function recursively for all the
state-action pairs in M

Vn(m, σ) = rg(rs(m), rt(σ)) +
∑

m′∈S

p(m′|m, σ) · max
σ′∈Am′

Vn−1(m
′, σ′)

and in M′

Vn(m̂, σ̂) = rg(rs(m̂), rt(σ̂)) +
∑

bm
′∈S

p(m̂′|m̂, σ̂) · max
bσ′∈Abm′

Vn−1(m̂
′, σ̂′)

Now we prove by induction on m that the theorem is true.
(1)For case m = 0.
We have V0(m, σ) = rg(rs(m), rt(σ)) and V0(m̂, σ̂) = rg(rs(m̂), rt(σ̂))
by the definition 11

rg(rs(m), rt(σ)) = rg(rs(m̂), rt(σ̂))

(2)Let us assume that Vj−1(m, σ) = Vj−1(m̂, σ̂) for all values of j − 1 less than
n. Now we have:

Vj(m̂, σ̂) = rg(rs(m̂), rt(σ̂)) +
∑

bm
′∈S

p(m̂′|m̂, σ̂) · max
bσ′∈Abm′

Vj−1(m̂
′, σ̂′)

by the definition 11:

Vj(m̂, σ̂) = rg(rs(m), rt(σ)) +
∑

bm
′∈S

p(m̂′|m̂, σ̂) · max
bσ′∈Abm′

Vj−1(m̂
′, σ̂′)

by the stochastic bisimilarity definition and by induction hypothesis:

Vj(m̂, σ̂) = rg(rs(m), rt(σ)) +
∑

bm
′∈S

∑

m′∈bm
′

p(m′|m, σ) max
σ′∈Am′

Vj−1(m
′, σ′)

= rg(rs(m), rt(σ)) +
∑

m′∈S

p(m′|m, σ) max
σ′∈Am′

Vj−1(m
′, σ′)

= Vj(m, σ).

Since the reward is bounded then:

max
bσ∈Abm

{Vn(m̂, σ̂)} = max
σ∈Am

{Vn(m, σ)}

V∗
n(m̂) = V∗

n(m).

2

40

We have shown that the optimal reward computed from Lumped MDP M′

is equivalent to the optimal reward computed by MDP obtained from the RG
technique but we have not discussed about the relation between the optimal
policies in the two models. We must observe that the optimal policy computed
by the Lumped MDP can be always translated to get an optimal policy for
the MDP. From an ordinary marking m it is always possible to deduce the
corresponding symbolic marking m̂ and then the optimal associated symbolic
action from which it possible to obtain the corresponding optimal ordinary
action.

It is important to observe that several optimal ordinary actions may corre-
spond to a symbolic action: in this case we can select randomly one of these
possible optimal actions because they are all equivalent. In fact it is possi-
ble to show that ∀m, m′ ∈ m̂, m is stochastically bisimilar to m′, so that
V∗

n(m, σ) = V∗
n(m′, σ′) with σ, σ′ ∈ σ̂ and σ̂ ∈ A bm.

We can observe that in literature the concept of stochastically bisimilarity
has already been used to obtain an MDP size reduction (i.e. in [10, 16]), but all
these methods require to build all the MDP state space and then to reduce it,
while our method builds directly the Lumped MDP without generating all the
state space.

Furthermore the possibility of abstracting details through the symbolic tran-
sition allows to obtain a more effective reduction than the method proposed
in [10] since we consider as equivalent, actions that are ”similar” but not iden-
tical.

2.2 Experiments discussion

In this section we will present an example modeling a multiprocessor system
where each processor has a local memory; the system includes also a global
shared memory that can be used by any processor when its local memory
fails. Each processor, local memory and global shared memory can fail in-
dependently; however we consider recoverable failures, that can be solved by
restarting/reconfiguring the failed component.

The system includes an automatic failure detection system that is able to
detect and perform a reconfiguration of the failed component (e.g. by resetting
it). The failure detection and recovery system can handle a limited number k
of failures in parallel.

Notice that if a local memory Mi and the global shared memory GM are both
failed at the same time, the processor Pi cannot perform any useful work, even if
it is not failed; moreover we assume that when both the processor Pi and its local
memory Mi are simultaneously failed, they are reset together (this is considered
as a single reset operation). The components in this system are: n processors,
n local memories and one global shared memory, moreover it is convenient from
a modeling point of view to introduce a logical ”reset” component associated
with each ”physical” component modelling a reset procedure.

The MDWN probabilistic part of this system is depicted in Fig. 2.1.

41

The decision maker corresponds to the automatic failure detection and re-
covery system; it may represent any possible recovery strategy; it is modeled in
such a way that any association of up to k recovery resources to any subset of
failed components at a given time can be realized by the model. It is depicted
in Fig. 2.2.

Unfortunately the use of the standard predicates φxyz , φxz , φyz for this
model diminishes the effectiveness of the reduction induced by the SRG tech-
nique.

The effectiveness of the reduction induced by the SRG technique is in-
stead higher if we consider the new model in Figs. 2.4 and 2.5; where we
use two color classes {C0, C1} for representing the system components where
C0 = {P, M, GM, R}, C1 = {1, . . . , n} and P, M, GM, R are four cardinality
one static subclasses. A processor is unequivocally identified by means of pair
from P × C1, in the same way the local memory is identified by means of pair
from M × C1.

This requires to extend the MDWN definition given in section 2.1 to allow
that a component identifier be represented with a tuple of colors. This does
not affect any other definition and does not require any change in the RG/SRG
technique; we have used a single class component identifiers in the MDWN
definition in order to make the formalization simpler.

42

Figure 2.4: Probabilistic part of the multiprocessor system MDWN model with
two color classes {C0, C1} for representing the system components

Figure 2.5: Non deterministic part of the multiprocessor system MDWN model
with two color classes {C0, C1} for representing the system components

43

Proc=2,Mem=2,Res=2 Proc=3,Mem=3,Res=2 Proc=4,Mem=4,Res=2
Prob. Non det. Time Prob. Non det. Time Prob. Non det. Time

RG 19057 21031 13s 755506 863886 1363s 26845912 31895848 >13h
RGnd 19057 441 9s 755506 4078 2833s
RGMDP 0 441 2s 0 4078 250s

SRG 9651 10665 9s 132349 150779 284s 1256220 1478606 5032s
SRGnd 9651 219 3s 132349 831 222s 1256220 2368 12795s
SRGMDP 0 219 1s 0 831 28s 0 2360 518s

RG prio 19057 5235 9s 755506 103172 983s 26845912 1863024 >13h
RGnd prio 19057 411 4s 755506 4078 1830s
RGMDP prio 0 411 2s 0 4078 246s

SRG prio 9651 2697 6s 132349 18904 187s 1256220 96044 3270s
SRGnd prio 9651 219 2s 132349 831 75s 1256220 2368 1560s
SRGMDP prio 0 219 1s 0 831 26s 0 2360 234s

Table 2.1: Results for the example modeling a multiprocessor system. It is important to observe that the RG for Proc=4 and
Mem=4 is not computed because it requires a lot of time; its size is computed indirectly by the SRG

4
4

The reduction in the size of the model state space of the final MDP are
reported in table 2.2; it shows the number of states and the computation time
respectively of the RG, RGnd, RGMDP , SRG, SRGnd and SRGMDP for differ-
ent numbers of banks. The computation was performed with an AMD Athlon
64 2.4Ghz of 4Gb memory capacity. In particular the first, the second and the
third lines report the number of states and computation time of the RG, the
RGnd and the RGmdp, while the following three lines show the number of states
and the computation time obtained using the SRG technique. It is easy to ob-
serve how the SRG technique wins both in terms of space and time gain with
respect to the RG technique.

A further reduction of the number of states for this model can be achieved as-
sociating different priorities to the system transitions such that the interleavings
between the non deterministic/probabilistic actions are reduced. For instance
the last six lines in table 2.2 show the reduction in terms of non deterministic
states and time computation obtained imposing an order on the decision maker
choices. (First the decision maker must take all the decisions for the processors
then for the memories and in the end for the global memory).

It is important to observe that it is not always possible to use this trick since
the actions must be independent; the priorities in practice must not reduce the
set of possible strategies. Our tool solves the MDPs using the library graphMDP
developed at the Ecole Nationale Suprieure de l’Aronautique et de l’Espace
Toulouse (ONERA-Toulouse http://www.cert.fr/dcsd/cd/teichteil). The opti-
mal strategy is expressed as a set of optimal actions, such that for every system
state an optimal action is given.

For example let us consider a model with two processors and memories, with
two recovery resources, with probability of processor fault 0.01, memory fault
0.05, global memory fault 0.001, continuing the processor recovery 0.20, con-
tinuing the memory recovery 0.05, and continuing the global memory recovery
0.05, with cost of the processor recovery 200, memory recovery 100 and global
memory recovery 150, and with penalty 500 if the number of active processors
is one and 1000 if it is zero. In this case we can observe that if a fault happens
and there is a free recovery resource then the recovery of this fault must start
immediately moreover the global memory recovery is preferred with respect the
processor recovery and the memory recovery.

After having obtained the optimal strategy we would like to synthesize a
new model without non determinism implementing it (this could be achieved by
substituting the decision maker part with a new probabilistic part implementing
the decisions of the optimal strategy): classical Markov chain analysis techniques
could then be applied to this model, moreover the new net would constitute a
higher level (hopefully easier to interpret) description for the optimal strategy.
Unfortunately this is not always easy (especially when the number of states is
large), but this is an interesting direction of future research.

45

Chapter 3

Related work and final

consideration

3.1 Related work

In this section we are going to compare our formalism with two other high level
formalisms for MDP: the PRISM language and the Stochastic Transition System
(STS) proposed in [7].

The PRISM language [11] is a state-based language based on the Reactive
Modules formalism of Alur and Henzinger [1]. A system is modeled by PRISM
language as composition of modules(components) which can interact with each
other. Every model contains a number of local variables used to define it state
in every time unit, and the local state of all modules determines the global state.
The behavior of each module is described by a set of commands; such that a
command is composed by a guard and a transition. The guard is a predicate
over all the (local/nonlocal) variables while a transition describes how the local
variable will be update if the its guard is true.

The composition of the modules is defined by a process-algebraic expression:
parallel composition of modules, action hiding and action renaming.

Comparing the MDPN formalism with the PRISM language we can observe
that they have the same expressive power: we can define local or global non-
deterministic actions and the reward function on the states and/or on the actions
in both formalisms; such that it is possible to translate MDPN model directly
in a PRISM model. The main difference is that using the MDPN formalism
one can define complex probabilistic behaviors and complex non-deterministic
actions as a composition of simpler behaviors or actions.

If we compare the PRISM language with the MDWN then we can see that the
MDWN has two other advantages: a parametric description of the model and an
efficient analysis technique making it possible to automatically take advantage
of intrinsic symmetries of the system. In fact the PRISM language has a limited
possibility for parametrization. In order to cope with this problem in [8] it was

46

presented a syntactic pre-processor called eXtended Reactive Modules (XRM)
which can generate RM models giving to the users the possibility of describing
the system using for instance: for loops, if statements.

Instead several techniques proposed in order to reduce the states explosion
problem in PRISM i.e. in [9] were based on the minimization of the RG with
respect to bisimulation; but this requires to build all the state space and then
to reduce it; hence our method gives the possibility of managing models with
a bigger number of states. It generates directly the Lumped MDP without
building all the state space.

A direct comparison between our formalisms and the STS is not possible,
because the STSs are an high level formalism for modeling the continuous time
MDPs. It extends the Generalized Stochastic Petri Net by introducing transi-
tions with an unspecified delay distributions and by the introducing the pos-
sibility of non-deterministic choice among enabled immediate transitions. In
every way we can observe that the STS has the same problems of GSPN for-
malism; that make its utilization less advantage with respect to the WN. It is
also important to observe that there are no tools supporting this formalism.

3.2 Conclusion and Future Work

We have introduced MDPNs, based on Petri nets, and MDWNs, based on Well-
formed nets, in order to model and analyze distributed systems with probabilis-
tic and non deterministic features. From a modeling point of view, these models
support a macroscopic point of view of alternation between the non probabilis-
tic behavior and the non deterministic one of the system and a syntactical way
to define the switch between the two behaviors. Furthermore, MDWNs enable
the modeler to specify in a concise way similar components. From an analy-
sis point of view, we have adapted the technique of the symbolic reachability
graph producing a reduced Markov decision process w.r.t. the original one, on
which the analysis may be performed. Our methods are already implemented
and integrated in the GreatSPN tool and we have described some experimental
results.

The MDPN and MDWN formalisms open up two different research areas for
future work. One topic will be the adaptation of the Extended SRG technique
[12, 13] for the MDWN model. In fact in the systems with mostly symmetric be-
havior and occasional local asymmetric behavior (partially symmetric systems)
the SRG approach loses most of its efficiency. In these systems the Extended
SRG (ESRG) can be used obtaining more states space reduction than using the
SRG.

Another important topic will be to explore the (symbolic) optimal policy in
order to synthesize it so that a new model without non determinism behaviors
can be automatically obtained and studied with classical Markov chain analysis
techniques.

47

Bibliography

[1] R. Alur and T. Henzinger. Reactive modules. Formal Methods in System
Design, 15(1):7–48, 1999.

[2] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeter-
ministic systems. In 15th Int. Conf. of Foundations of Software Technology
and Theoretical Computer Science, volume 1026 of LNCS, pages 499–513,
Bangalore, India, 1995. Springer.

[3] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-
formed coloured nets for symmetric modelling applications. IEEE Trans-
actions on Computers, 42(11):1343–1360, nov 1993.

[4] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. A symbolic
reachability graph for coloured Petri nets. Theoretical Computer Science,
176(1–2):39–65, 1997.

[5] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7:
Graphical editor and analyzer for timed and stochastic petri nets. Per-
formance Evaluation, special issue on Performance Modeling Tools, 24(1-
2):47–68, November 1995.

[6] L. de Alfaro. Temporal logics for the specification of performance and
reliability. In 14th Symposium on Theoretical Aspects of Computer Science,
volume 1200 of LNCS, pages 165–176, Hansestadt Lbeck, Germany, 1997.
Springer.

[7] L. de Alfaro. Stochastic transition systems. In 9th International Confer-
ence on Concurrency Theory, volume 1466 of LNCS, pages 423–438, Nice,
France, 1998. Springer.

[8] K. Demaille, S. Peyronnet, and B. Sigoure. Modeling of sensor networks
using XRM. In 2nd International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation, Paphos, Cyprus, 2006.

[9] H. Garavel and H. Hermanns. On combining functional verification and
performance evaluation using CADP. In In FME 2002: International Sym-
posium of Formal Methods Europe,, pages 10–429, Copenhagen, Denmark,
2000.

48

[10] Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and
model minimization in markov decision processes. Artificial Intelligence,
147(1-2):163–223, 2003.

[11] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool
for automatic verification of probabilistic systems. In 12th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, volume 3920 of LNCS, pages 441–444, Vienna, Austria, 2006.
Springer.

[12] L. Capra, C. Dutheillet, G. Franceschinis, and J-M. Ilié. Exploiting Partial
Symmetries for Markov Chain Aggregation. Electronic Notes In Theoretical
Computer Science, 39 (3), 2000.

[13] M. Beccuti, S. Baarir, G. Franceschinis, and J-M. Iliè. Efficient lumpability
check in partially symmetric systems. In tool paper for the 3st IEEE In-
ternational Conference on Quantitative Evaluation of Systems (QEST’06),
Riverside, CA, USA, September 2006. IEEE Computer Society.

[14] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Frances-
chinis. Modelling with Generalized Stochastic Petri Nets. Wiley Se-
ries in Parallel Computing, John Wiley and Sons, 1995. Download
http://www.di.unito.it/∼greatspn.

[15] M. L. Puterman. Markov Decision Processes. Discrete Stochastic Dynamic
Programming. Wiley, 2005.

[16] B. Ravindran and A. G. Barto. Symmetries and Model Minimization of
Markov Decision Processes. Technical report, Computer Science Tech-
nical Report 01-43 University of Massachusetts, Amherst, MA, 2001.
http://www-anw.cs.umass.edu/∼ravi/TR01-43.ps.

49

Appendix A

WN background:

definitions and notation

The Well-formed Net (WN) formalism [3] was inspired by the Colored Petri Net
(CPN) formalism and has the same modeling power of CPNs (but unlike CPNs it
includes transition priorities and inhibitor arcs). However its color annotations
syntax is peculiar: it was defined with the aim of developing efficient analysis
techniques able to automatically exploit the behavioral symmetries embedded
in the model.

Definition 12 A Well-formed Net is a ten-tuple

N = 〈P, T, C, cd, I, O, H, φ, prio, m0〉

P and T are the place and transition sets; transition input, output and inhibitor
arcs are defined by I, O, H , which define also their color annotations (called arc
expressions); m0 is the initial (colored) marking. prio defines the transition
priorities (assigning a priority level prio(t) ∈ N to each transition). The other
elements correspond to the model color annotations, described next.

Basic color classes. C = {C1, . . . , Cn} is a set of pairwise disjoint basic color
classes. Ci is a finite not empty set and it can be partitioned into ni disjoint
subsets Ci,j , j = 1, . . . , ni called static subclasses; |Ci| denotes the cardinality
ni of the partition. A basic color class Ci may be (circularly) ordered, the order
is induced by a successor function: the successor of element c is denoted !c.

Color domain. cd defines the color domains of places and transitions, which
are Cartesian products of basic color classes. The color domain of a node k is
denoted cd(k) = Ce1

1 ×Ce2

2 ×. . .×Cen
n , where ei ∈ N is the number of occurrences

of class Ci in cd(k) and its value depends on the considered node.
Elementary Function. I, O and H are defined on T ×P and can map a pair

t, p to an empty function, meaning that there is no input, output or inhibitor
arc connecting t and p, or to an arc function f : cd(t) → Bag(cd(p)), defined
next.

50

Let us consider the color domain cd = Ce1

1 ×Ce2

2 × . . .×Cen
n : an elementary

color function is a linear mapping from cd to Bag(Ci) (for some i ∈ 1, . . . , n)
chosen among the following functions:
- the projection denoted X l

i defined as: X l
i(. . . , c

j1
1 , . . . , cj2

2 , . . . , cjn
n , . . .) 7→ cl

i

- the successor denoted !X l
i defined as: !X l

i(. . . , c
j1
1 , . . . , cj2

2 , . . . , cjn
n . . .) 7→!cl

i

- the diffusion function (also called synchronization function, depending if it
annotates an output or an input arc), which is constant, denoted Si and defined
as follows: Si(. . . , c

j1
1 , . . . , cj2

2 , . . . , cjn
n . . .) 7→

∑
∀c∈Ci

c

Notice that in practice the symbols X l
i used above to denote the projection func-

tion are substituted by names of transition variables (representing the transition
parameters) in the models; each variable has a type Ci. The variable-based no-
tation makes the model more readable, since variables can be given meaningful
names.
The diffusion(synchronization) function can be restricted to a static subclass, de-
noted Si,j and defined as follows: Si,l(. . . , c

j1
1 , . . . , cj2

2 , . . . , cjn
n . . .) 7→

∑
∀c∈Ci,l

c

Due to the linear property of the the elementary functions, they can be just
defined on the single elements of the domain. Abusing notation, the elementary
functions and their linear extension are usually denoted in the same way.

Class function. A color function f on class Ci, also called Ci class-function, is
a linear combination of elementary functions (with same domain and codomain):

fi =
∑

j

αj · X
j
i +

|Ci|∑

q=1

βq · Si,q +
∑

j

γj ·!X
j
i

The coefficients βq ∈ N, αj , γj ∈ Z must satisfy the following constraint: if f−
i

and f+
i are respectively the multisets of elements with negative and positive

coefficients in the formula above (so that fi = f+
i − f−

i), then it must hold
f−

i ⊆ f+
i .

Arc function. An arc function F on an input, output or inhibitor arc, con-
necting transition t and place p, is a sum so defined:

F =
∑

k

λk ·
n⊗

i=1

ei⊗

j=1

f j,k
i

where fk
i,j : cd(t) → Bag(Ci), λk ∈ N and ei is the number of occurrences of

class Ci in cd(p). The symbol
⊗

denotes the Cartesian product quantifier, in

the text we shall also use the alternative representation 〈f 1
1 , f2

1 , . . . f
e′

n
n 〉, briefly

called function tuple (or simply tuple).
Transition and color function guards. A guard is a Boolean expression de-

fined on a transition color domain whose basic terms are standard predicates.
Standard predicates allow to compare color elements from the same color class
Ci, and can take the following form:
- [Xj

i = Xk
i](c), it evaluates to true iff the jth component of type Ci in c is equal

to the kth component of same type;

51

- [d(Xj
i) = Ci,h)](c), it evaluates to true iff the jth component of type Ci in c

belongs to Ci,h;

- [d(Xj
i) = d(Xk

i)](c), it evaluates to true iff the jth and kth components of type
Ci in c belong to the same static subclass.

In WNs the φ function associates a guard with each transition, the default
guard is [true]. Moreover, guards may be employed in arc expressions. Let F
be a function tuple and g a guard, then the guarded tuple is defined as

[g]F
def
= if g(c) then F (c) else ∅

A guarded arc function is then a linear combination of guarded tuples. We use
the notation cdφ(t) denots the subset of cd(t) satisfies φt

Definition 13 (Marking) A marking m is expressed as a distribution of col-
ored tokens in the all places.

Definition 14 (Transition instance) A transition instance 〈t, c〉 in m is a
binding c of the transition variables to the objects in the appropriate color class.

The evolution of an WN system is defined through a firing rule applied to a
given transition instance 〈t, c〉. The new marking obtained from the transition
instance firing satisfies: ∀p ∈ P, m′(p) = m(p) − I(p, t)[c] + O(p, t)[c].

Now we introduce some definitions and properties concerning the SRG tech-
nique.

Definition 15 (Color permutation) Let ξ = {s = 〈s1, . . . , sh, sh+1, sn〉} be
a subgroup of the permutation on C1, . . . , Cn such that:

• ∀0 < i ≤ h si is a permutation on Ci such that ∀0 < k ≤ ni, Ci,k = si(Ci,k)

• ∀h < i ≤ n si is a rotation on Ci such that ∀0 < k ≤ ni, Ci,k = si(Ci,k)

We recall the definition of marking permutation:

Definition 16 (marking permutation) Let m(p) be the marking of a place
p, and s ∈ ξ. Then m(p)′ = s.m(p) is a marking defined by applying the s to
each object tuple c in m(p).

The firing propriety is preserved with respect to the color permutation:

Property 1 The firing property is preserved by applying a permutation both on
the markings and the transition instance. ∀m ordinary, ∀t ∈ T , ∀c ∈ cdφ(t) and
∀s ∈ ξ

m[t, c〉m′ ⇔ s.m[t, s.c〉s.m′

In this way we introduce also the definition of symbolic marking .

Definition 17 (Symbolic Marking) Let Eq be the equivalence relation de-
fined by:

mEqm′ ⇔ ∃s ∈ ξ, m′ = s.m

An equivalence class of Eq is called symbolic marking (m̂).

52

Figure A.1: Grouping of ordinary transition instance firings in a symbolic tran-
sition instance firing

In order to build the SRG directly starting from a symbolic initial marking,
without building the RG and then grouping markings into equivalence classes,
a symbolic firing rule was defined on the symbolic marking in [3]. This requires
to introduce the concept of a symbolic instance 〈t, ĉ〉. A symbolic transition in-
stance represents groups of ordinary transition instances as depicted in Fig. A.1

such that the symbolic instance firing m̂
〈t,bc〉
→ stands for all the ordinary firing

instances that can be obtained by valid assignments of objects to ĉ

Its cardinality |m̂
〈t,bc〉
→ | corresponds to the number of ordinary firings from

each single ordinary marking m ∈ m̂ that are represented by the symbolic firing
instance (e.g. the cardinality of the symbolic firing instance in Fig. A.1 is two).

53

Appendix B

Tool: description and use

This is a prototype package that uses the GreatSPN package1 in order to draw
the models (MDPN/MDWN) and to generate the (S)RG of these models, and
the GraphMDP library2 in order to solve the derived MDP.

Initially the user draws the components and the decision maker net (MDPN/
MDWN) through the GUI of GreatSPN3 and composes them using algebra tool.
After that, the WNRG or the WNSRG program4 executed with the option −r
generates the file .dot containing the (S)RG of the model in the dot format5. The
model rewards rs and rt are defined in the file .reward following the grammar in
Fig. B.1. The RG2RRG program taking in input the .dot file and the .reward
file returns the .RG1 and .RG2 files containing the RGnd and the RGMDP in
the dot format and the .xml file containing the derived MDP in XML format
(the DTD of the .xml file is shown in Fig. B.2)

This .xml file is given in input to the MDP solve program that solves the
MDP returning the optimal strategy and the optimal (average) reward.

The table B.1 shows the input and output files for every program while the
table B.2 describes these files.

1GreatSPN is a software package for the modeling, validation, and performance evaluation
of distributed systems using Generalized Stochastic Petri Nets and their colored extension:
Stochastic Well-formed Nets. It is available for free for universities and non-profit organiza-
tions (http://www.di.unito.it/ greatspn/)

2GraphMDP is a library for modeling, drawing and solving a Markov Decision Process
(http://www.cert.fr/dcsd/cd/teichteil/)

3For the moment the probabilistic transitions are drawn as timed transitions and those
deterministic as immediate transitions

4the WNRG computes the Reachability Graph of the model, while the WNSRG compute
the Symbolic Reachability Graph of the model

5It is important to observe that RG can be drawn using the dot program: dot
〈net name〉.dot -Tps -o 〈net name〉.ps

54

Reward = TransitionReward | PlaceReward | FormulaReward
TransitionReward = T 〈transition name〉 value
PlaceReward = P 〈place name〉 value
FormulaReward = F value (Arguments)
Arguments = 〈place name〉 op value | 〈place name〉 op value and Arguments
op = > | = | <
value = double

Figure B.1: The .reward file grammar

<!DOCTYPE MDP[
<!ELEMENT MDP (STATES,ACTIONS)>

<!ATTLIST MDP
stationary (yes | no)#REQUIRED
Infinite (true | false) #REQUIRED
InfiniteCriteriumType (DISCOUNTED

|AVERAGE REWARD) #IMPLIED
DecompositionAlgorithmType NMTOKEN #IMPLIED
Horizon NMTOKEN #IMPLIED
Optimization algorithm (POLICY ITERATION

| VALUE ITERATION
| LINEAR PROGRAMMING) #IMPLIED>

<!ELEMENT STATES (STATE)+ >

<!ELEMENT STATE (LABEL)>
<!ELEMENT LABEL (#PCDATA)>

<!ELEMENT ACTIONS (ACTION)+ >

<!ELEMENT ACTION (LABEL,TRANSITIONS)>
<!ELEMENT LABEL (#PCDATA)>

<!ELEMENT TRANSITIONS (TRANSITION)+>

<!ELEMENT TRANSITION (STARTING STATE,ENDING STATE,
PROBABILITY,REWARD)>

<!ELEMENT STARTING STATE (#PCDATA)>
<!ELEMENT ENDING STATE (#PCDATA)>
<!ELEMENT PROBABILITY (#PCDATA)>
<!ELEMENT REWARD (#PCDATA)>

] >

Figure B.2: DTD of the .xml file

Input files Program Output files
.def and .net WNRG/WNSRG -r .dot
.def, .net, .dot and .reward RG2RRG .RG1, .RG2 and .xml
.xml MDP solve

Table B.1: Input and output files for some modules

55

Extension Format Description
.dot ASCII model (S)RG in dot format
.RRG1 ASCII model (S)RGnd in dot format
.RRG2 ASCII model (S)RGMDP in dot format
.reward ASCII model reward
.xml ASCII model MDP in XML format

Table B.2: List of files

56

