
Dipartimento di Informatica
Università del Piemonte Orientale “A. Avogadro”

Via Bellini 25/G, 15100 Alessandria
http://www.di.unipmn.it

Space-Conscious Compression
Author: T. Gagie (travis@mfn.unipmn.it) and

G. Manzini (manzini@mfn.unipmn.it)

TECHNICAL REPORT TR-INF-2007-06-02-UNIPMN
(June 2007)

2

The University of Piemonte Orientale Department of Computer Science Research
Technical Reports are available via WWW at URL http://www.di.unipmn.it/.

Plain-text abstracts organized by year are available in the directory

Recent Titles from the TR-INF-UNIPMN Technical
Report Series

2007-01 Markov Decision Petri Net and Markov Decision Well-formed Net Formalisms,
Beccuti, M., Franceschinis, G., Haddad, S., February 2007.

2006-04 New challenges in network reliability analysis, Bobbio, A., Ferraris, C., Terruggia,
R., November 2006.

2006-03 The Engineering of a Compression Boosting Library: Theory vs Practice in BWT
compression, Ferragina, P., Giancarlo, R., Manzini, G., June 2006.

2006-02 A Case-Based Architecture for Temporal Abstraction Configuration and Processing,
Portinale, L., Montani, S., Bottrighi, A., Leonardi, G., Juarez, J., May 2006.

2006-01 The Draw-Net Modeling System: a framework for the design and the solution of
single-formalism and multi-formalism models, Gribaudo, M., Codetta-Raiteri, D.,
Franceschinis, G., January 2006.

2005-06 Compressing and Searching XML Data Via Two Zips, Ferragina, P., Luccio, F.,
Manzini, G., Muthukrishnan, S., December 2005.

2005-05 Policy Based Anonymous Channel, Egidi, L., Porcelli, G., November 2005.
2005-04 An Audio-Video Summarization Scheme Based on Audio and Video Analysis, Fu-

rini, M., Ghini, V., October 2005.
2005-03 Achieving Self-Healing in Autonomic Software Systems: a case-based reasoning ap-

proach, Anglano, C., Montani, S., October 2005.
2005-02 DBNet, a tool to convert Dynamic Fault Trees to Dynamic Bayesian Networks,

Montani, S., Portinale, L., Bobbio, A., Varesio, M., Codetta-Raiteri, D., August
2005.

2005-01 Bayesan Networks in Reliability, Langseth, H., Portinale, L., April 2005.
2004-08 Modelling a Secure Agent with Team Automata, Egidi, L., Petrocchi, M., July 2004.
2004-07 Making CORBA fault-tolerant, Codetta Raiteri D., April 2004.
2004-06 Orthogonal operators for user-defined symbolic periodicities, Egidi, L., Terenziani,

P., April 2004.
2004-05 RHENE: A Case Retrieval System for Hemodialysis Cases with Dynamically Mon-

itored Parameters, Montani, S., Portinale, L., Bellazzi, R., Leonardi, G., March
2004.

2004-04 Dynamic Bayesian Networks for Modeling Advanced Fault Tree Features in De-
pendability Analysis, Montani, S., Portinale, L., Bobbio, A., March 2004.

2004-03 Two space saving tricks for linear time LCP computation, Manzini, G., February
2004.

2004-01 Grid Scheduling and Economic Models, Canonico, M., January 2004.

Space-conscious compression

Travis Gagie and Giovanni Manzini ?

Dipartimento di Informatica
Università del Piemonte Orientale
{travis,manzini}@mfn.unipmn.it

Abstract. Compression is most important when space is in short sup-
ply, so compression algorithms are often implemented in limited memory.
Most analyses ignore memory constraints as an implementation detail,
however, creating a gap between theory and practice. In this paper we
consider the effect of memory limitations on compression algorithms. In
the first part we assume the memory available is fixed and prove nearly
tight upper and lower bounds on how much memory is needed to com-
press a string close to its k-th order entropy. In the second part we as-
sume the memory available grows (slowly) as more and more characters
are read. In this setting we show that the rate of growth of the available
memory determines the speed at which the compression ratio approaches
the entropy. In particular, we establish a relationship between the rate of
growth of the sliding window in the LZ77 algorithm and its convergence
rate.

1 Introduction

Data compression has come of age in recent years and compression algorithms
are now vital in situations unforeseen by their designers. This has led to a dis-
crepancy between the theory of data compression algorithms and their use in
practice: compression algorithms are often designed and analysed assuming the
compression and decompression operations can use a “sufficiently large” amount
of working memory; however, in some situations, particularly in mobile or em-
bedded computing environments, the memory available is very small compared
to the amount of data we need to compress or decompress.

Even when compression algorithms are implemented to run on powerful desk-
top computers, some care is taken to be sure that the compression/decompression
of large files do not take over all the RAM of the host machine. This is usually
accomplished by splitting the input in blocks (bzip2), using heuristics to deter-
mine when to discard the old data (compress, ppmd), or by maintaining a “sliding
window” over the more recently seen data and forgetting the oldest data (gzip).
With the exception of the use of a sliding window (see Sect. 4), the validity of
these techniques has not been established in a satisfying theoretical way.

In this paper we initiate the theoretical study of space-conscious compression
algorithms. Although data compression algorithms have their own peculiarities,
? Both authors partly supported by Italian MUIR Italy-Israel FIRB Project “Pattern

Discovery Algorithms in Discrete Structures, with Applications to Bioinformatics”.

2 Travis Gagie and Giovanni Manzini

this study belongs to the general field of algorithmics in the streaming model
(see, e.g., [1, 10]), in which we are allowed only one pass over the input and
memory sublinear (possibly polylogarithmic or even constant) in its size.

Our results. The first contribution of this paper is nearly tight upper and
lower bounds on the compression ratio achievable by one-pass algorithms that
use an amount of memory independent of the size of the input. The bounds are
worst case and given in terms of the empirical k-th order entropy of the input
string. More precisely we prove the following results:

(a) Let λ ≥ 1, k ≥ 0 and ε > 0 be constants and let g be a function independent
of n. In the worst case it is impossible to store a string s of length n over
an alphabet of size σ in λHk(s)n + o(n log σ) + g bits using one pass and
O(σk+1/λ−ε) bits of memory.

(b) Given a (λHk(s)+o(n log σ)+g)-bit encoding of s, it is impossible to recover
s using one pass and O(σk+1/λ−ε) bits of memory.

(c) Given λ ≥ 1, k ≥ 0 and µ > 0, we can store s in λHk(s)n + µn +
O(σk+1/λ log σ) bits using one pass and O(σk+1/λ log2 σ) bits of memory,
and later recover s using one pass and the same amount of memory.

While σ is often treated as constant in the literature, we treat it as a variable to
distinguish between, say, O(σk+1/λ−ε) and O(σk+1/λ log2 σ) bits. Informally, (a)
provides a lower bound to the amount of memory needed to compress a string
up to its k-th order entropy; (b) tells us the same amount of memory is required
also for decompression and implies that the use of a powerful machine for doing
the compression does not help if only limited memory is available when decom-
pression takes place; (c) establishes that (a) and (b) are nearly tight. Notice λ
plays a dual role: for large k, it makes (a) and (b) inapproximability results —
e.g., we cannot use O(σk) bits of memory without worsening the compression in
terms of Hk(s) by more than a constant factor; for small k, it makes (c) an inter-
esting approximability result — e.g., we can compress reasonably well in terms
of H0(s) using, say, O(

√
σ) bits of memory. The main difference between the

bounds in (a)–(b) and (c) is a σε log2 σ factor in the memory usage. Since µ is a
constant, µn ∈ o(n log σ) and the bounds on the encoding’s length match. Note
that µ can be arbitrarily small, but the term µn cannot be avoided (Lemma 4).

A second contribution of this paper is the proof of lower bounds similar to (a)
and (b) for the case in which the input string is generated by a stationary ergodic
k-th order Markov source X . We show that, with high probability, a length-n
string drawn from X cannot be stored in λH(X)n+ o(n log σ)+ g bits using one
pass and o(σk log σ) bits of memory (here λ, σ and g have the same meaning as
in (a)). A symmetrical result holds for the space required for recovering a string
emitted by X and compressed up to λH(X)n + o(n log σ) + g bits. Note that an
upper bound analogous to (c) automatically holds for strings generated by an
ergodic k-th order Markov source X (the term Hk is simply replaced by H(X)).

The final contribution of the paper is a first step in the analysis of the power
of compressors when the amount of available working memory grows with the size
of the input. We model this behavior assuming that we are given an increasing
function f(t) and that after reading t characters the compression algorithm is

Space-conscious compression 3

allowed to use Θ(f(t)) bits of memory. In this setting, the result (c) above
implies (Lemma 7) that for any diverging function f (i.e. limt→∞ f(t) = +∞) it
is possible to compress every string up to its k-th order entropy for any k ≥ 0.
Given this state of affairs, it is clear that to understand the role played by the
rate-of-growth function f , we must go deeper than simply considering whether
the compression ratio approaches the k-th order entropy. We initiate this study
with the analysis of LZ77 with a sliding window, which is the algorithm at the
heart of the gzip tool. We show quantitatively that the rate-of-growth function f
influences the convergence rate of the algorithm; that is, the speed at which the
algorithm approaches the k-th order entropy. In particular, now treating σ as a
constant, we prove that

(d) if LZ77 uses a sliding window that grows as f(t) = t/ log2 t, then for any
string s, the output size is bounded by Hk(s)n + O((n log log n)/ log n) si-
multaneously for any k ≥ 0;

(e) if LZ77 uses a sliding window that grows as f(t) = log1−ε t, with 0 < ε < 1,
then for any n > 0 we can build a string ŝ of length n such that LZ77’s
output size is at least H0(s)n + Ω

(
(n log log n)/ log1−ε n

)
bits.

In other words, a faster growing sliding window yields a provably faster rate of
convergence. To our knowledge, these are the first results relating the size of
LZ77’s sliding window and its rate of convergence in the worst case setting. In
the probabilistic setting (see below) what it is known [14] is that using a window
of fixed size W the rate of convergence of LZ77 is Θ((n log log W)/ log W).

2 Notation

In the following we use s to denote the string that we want to compress. We
assume that s has length n and is drawn from an alphabet of size σ. Note that
in Section 3 we measure memory in terms of alphabet size so σ is considered a
variable; conversely, in Section 4 the memory depends on the input size n, so σ
is considered a constant that remains hidden in the asymptotic notation.

For i = 1, 2, . . . , σ, let ni be the number of occurrences of the i-th alpha-
bet symbol in s. The 0-th order empirical entropy of s is defined as H0(s) =
−∑σ

i=1(ni/|s|) log(ni/|s|) (throughout this paper we assume that all logarithms
are taken to the base 2 and 0 log 0 = 0). It is well known that H0 is the maximum
compression we can achieve using a fixed codeword for each alphabet symbol.
We can achieve a greater compression if the codeword we use for each symbol
depends on the k symbols preceding it. In this case the maximum compression is
bounded by the k-th order entropy Hk(s) (see [6] for the formal definition). We
use two properties of k-th order entropy in particular: Hk(s1)|s1|+Hk(s2)|s2| ≤
Hk(s1s2)|s1s2| and, since H0(s) ≤ log |{a : a occurs in s}|, we have Hk(s) ≤
log max|w|=k{j : w is followed by j distinct characters in s}.

We point out that the empirical entropy is defined pointwise for any string and
can be used to measure the performance of compression algorithms as a function
of the string structure, thus without any assumption on the input source. For

4 Travis Gagie and Giovanni Manzini

this reason we say that the bounds given in terms of Hk are worst case bounds.
Another common approach in data compression is to assume that the input
string is generated by a Markov source X . To measure the effectiveness of a
compression algorithm in this setting its average compression ratio is compared
with the entropy of the source H(X). We call this the probabilistic setting, and
we consider it in Sect. 3.3.

Some of our arguments are based on Kolmogorov complexity [8]; the Kol-
mogorov complexity of s, denoted K(s), is the length in bits of the shortest
program that outputs s; it is generally incomputable but can be bounded from
below by counting arguments (e.g., in a set of m elements, most have Kolmogorov
complexity at least log m − O(1)). We use two properties of Kolmogorov com-
plexity in particular, as well: if an object can be easily computed from other
objects, then its Kolmogorov complexity is at most the sum of theirs plus a
constant; and a fixed, finite object has constant Kolmogorov complexity.

In this paper we consider space-conscious compressors, that is, algorithms
that are allowed to use a limited amount of memory during their execution.
We assume that the algorithms are one-pass in the sense that they are allowed
to read each input symbol only once. Hence, if an algorithm needs to access
(portions of) the input more than once it must store it—consuming part of its
precious working memory. In Section 5 we briefly comment on the possibility of
extending our results to multi-pass algorithms. Being space-conscious ourselves,
most of the proofs are reported in the Appendix.

3 Compressing with memory independent of length

Move-to-front compression [2] is probably the best example of a compression al-
gorithm whose space complexity is independent of the input length: keep a list of
the characters that have occurred in decreasing order by recency; store each char-
acter in the input by outputting its position in the list (or, if it has not occurred
before, its index in the alphabet) encoded in Elias’ δ code, then move it to the
front of the list. Move-to-front stores a string s of length n over an alphabet of size
σ in

(
H0(s) + O(log H0(s))

)
n+O(σ log σ) bits using one pass and O(σ log σ) bits

of memory. Note that we can store s in
(
Hk(s) + O(log Hk(s))

)
n+O(σk+1 log σ)

bits by keeping a separate list for each possible context of length k; this increases
the memory usage by a factor of at most σk.

In this section we first use a more complicated algorithm to get a better
upper bound: given constants λ ≥ 1, k ≥ 0 and µ > 0, we can store s in
(λHk(s) + µ)n + O(σk+1/λ log σ) bits using one pass and O(σk+1/λ log2 σ) bits
of memory. We then prove that µ > 0 is necessary and that we need to know
k. We use the idea from these proofs to prove a nearly matching lower bound
for compression: in the worst case it is impossible to store a string s of length
n over an alphabet of size σ in λHk(s)n + o(n log σ) + g bits, for any function
g independent of n, using one encoding pass and O(σk+1/λ−ε) bits of memory.
We prove a symmetric lower bound for decompression, and close with slightly
weaker lower bounds for when the input comes from a stationary Markov source.

Space-conscious compression 5

3.1 A nearly tight upper bound

The main drawback of move-to-front is the O(log H0(s)) in its analysis (or
O(log Hk(s)) using contexts of length k); we now show how we can replace
this by any given constant µ > 0. We start with the following lemma about
storing an approximation Q of a probability distribution P in few bits, so that
the relative entropy between P and Q is small. The relative entropy D(P‖Q) =∑σ

i=1 pi log(pi/qi) between P = p1, . . . , pσ and Q = q1, . . . , qσ is the expected
redundancy per character of an ideal code for Q when characters are drawn
according to P .

Lemma 1 ([3]). Let s be a string of length n over an alphabet of size σ and
let P be the normalized distribution of characters in s. Given s and constants
λ ≥ 1 and µ > 0, we can store a probability distribution Q with D(P‖Q) <
(λ − 1)H(P) + µ in O(σ1/λ log(n + σ)) bits using O(σ1/λ log(n + σ)) bits of
memory. ut

Armed with this lemma, we adapt arithmetic coding [12] to use O(σ1/λ log(n+
σ)) bits of memory with a specified redundancy per character:

Lemma 2. Given a string s of length n over an alphabet of size σ and constants
λ ≥ 1 and µ > 0, we can store s in (λH0(s)+µ)n+O(σ1/λ log(n+σ)) bits using
O(σ1/λ log(n + σ)) bits of memory. ut

We boost our space-conscious arithmetic coding algorithm to achieve a bound
in terms of Hk(s) instead of H0(s) by running a separate copy for each possible
k-tuple, just as we boosted move-to-front compression:

Lemma 3. Given a string s of length n over an alphabet of size σ and constants
λ ≥ 1, k ≥ 0 and µ > 0, we can store s in (λHk(s)+µ)n+O(σk+1/λ log(n+σ))
bits using O(σk+1/λ log(n + σ)) bits of memory. ut

To make our algorithm use one pass and to change the log(n + σ) factor to
log σ, we process the input in blocks s1, . . . , sb of length O(σk+1/λ log σ). Notice
each individual block si fits in memory — so we can apply Lemma 3 to it —
and log(|si|+ σ) = O(log σ).

Theorem 1. Given a string s of length n over an alphabet of size σ and con-
stants λ ≥ 1, k ≥ 0 and µ > 0, we can store s in (λHk(s)+µ)n+O(σk+1/λ log σ)
bits using one pass and O(σk+1/λ log2 σ) bits of memory, and later recover s us-
ing one pass and the same amount of memory. ut

3.2 Lower bounds

Theorem 1 is still weaker than the strongest compression bounds that ignore
memory constraints, in two important ways: first, even when λ = 1 the bound
on the compression ratio does not approach Hk(s) as n goes to infinity; second,
we need to know k. It is not hard to prove these weaknesses are unavoidable
when using fixed memory, as follows.

6 Travis Gagie and Giovanni Manzini

Lemma 4. Let λ ≥ 1 be a constant and let g be a function independent of n. In
the worst case it is impossible to store a string s of length n in λH0(s)n+o(n)+g
bits using one encoding pass and memory independent of n.

Proof. Let A be an algorithm that, given λ, stores s using one pass and memory
independent of n. Since A’s future output depends only on its state and its
future input, we can model A with a finite-state machine M . While reading
|M | characters of s, M must visit some state at least twice; therefore either M
outputs at least one bit for every |M | characters in s — or n/|M | bits in total
— or for infinitely many strings M outputs nothing. If s is unary, however, then
H0(s) = 0. ut
Lemma 5. Let λ be a constant, let g be a function independent of n and let b
be a function independent of n and k. In the worst case it is impossible to store
a string s of length n over an alphabet of size σ in λHk(s)n + o(n log σ) + g bits
for all k ≥ 0 using one pass and b bits of memory.

Proof. Let A be an algorithm that, given λ, g, b and σ, stores s using b bits of
memory. Again, we can model it with a finite-state machine M , with |M | = 2b

and M ’s Kolmogorov complexity K(M) = K(〈A, λ, g, b, σ〉) + O(1) = O(log σ).
(Since A, λ, g, and b are all fixed, their Kolmogorov complexities are O(1).)

Suppose s is a periodic string with period 2b whose repeated substring r has
K(r) = |r| log σ − O(1). We can specify r by specifying M , the states M is in
when it reaches and leaves any copy of r in s, and M ’s output on that copy of
r. (If there were another string r′ that took M between those states with that
output, then we could substitute r′ for r in s without changing M ’s output.)
Therefore M outputs at least

K(r)−K(M)−O(log |M |) = |r| log σ −O(log σ + b) = Ω(|r| log σ)

bits for each copy of r in s, or Ω(n log σ) bits in total. For k ≥ 2b, however,
Hk(s) approaches 0 as n goes to infinity. ut

The idea behind these proofs is simple — model a one-pass algorithm with
a finite-state machine and evaluate its behaviour on a periodic string — but,
combining it with the following simple results, we can easily show a lower bound
that nearly matches Theorem 1. (In fact, our proofs are valid even for algorithms
that make preliminary passes that produce no output — perhaps to gather
statistics, like Huffman coding [4] — followed by a single encoding pass that
produces all of the output; once the algorithm begins the encoding pass, we can
model it with a finite-state machine.)

Lemma 6 ([3]). Let λ ≥ 1, k ≥ 0 and ε > 0 be constants and let r be a
randomly chosen string of length bσk+1/λ−εc over an alphabet of size σ. With
high probability every possible k-tuple is followed by O(σ1/λ−ε) distinct characters
in r. ut
Corollary 1. Let λ ≥ 1, k ≥ 0 and ε > 0 be constants. There exists a string r
of length bσk+1/λ−εc over an alphabet of size σ with K(r) = |r| log σ −O(1) but
Hk(ri) ≤ (1/λ− ε) log σ + O(1) for i ≥ 1. ut

Space-conscious compression 7

Consider what we get if, for some ε > 0, we allow the algorithm A from
Lemma 5 to use O(σk+1/λ−ε) bits of memory, and evaluate it on the periodic
string ri from Corollary 1. Since ri has period bσk+1/λ−εc and its repeated
substring r has K(r) = |r| log σ − O(1), the finite-state machine M outputs at
least

K(r)−K(M)−O(log |M |) = |r| log σ −O(σk+1/λ−ε) = |r| log σ −O(|r|)
bits for each copy of r in ri, or n log σ − O(n) bits in total. Because λHk(ri) ≤
(1− ε) log σ + O(1), this yields the following nearly tight lower bound; notice it
matches Theorem 1 except for a σε log2 σ factor in the memory usage.

Theorem 2. Let λ ≥ 1, k ≥ 0 and ε > 0 be constants and let g be a function
independent of n. In the worst case it is impossible to store a string s of length
n over an alphabet of size σ in λHk(s)n + o(n log σ) + g bits using one encoding
pass and O(σk+1/λ−ε) bits of memory. ut

With a good bound on how much memory is needed for compression, we
turn our attention to decompression. Good bounds here are equally important,
because often data is compressed once by a powerful machine (e.g., a server
or base-station) and then transmitted to many weaker machines (clients or
agents) who decompress it individually. Fortunately for us, compression and de-
compression are essentially symmetric. Recall Theorem 1 says we can recover
s from a

(
λHk(s) + µ)n + O(σk+1/λ log σ)

)
-bit encoding using one pass and

O(σk+1/λ log2 σ) bits of memory. Using the same idea about finite-state ma-
chines and periodic strings gives us the following nearly matching lower bound:

Theorem 3. Let λ ≥ 1, k ≥ 0 and ε > 0 be constants and let g be a function
independent of n. There exists a string s of length n over an alphabet of size σ
such that, given a (λHk(s)n + o(n log σ) + g)-bit encoding of s, it is impossible
to recover s using one pass and O(σk+1/λ−ε) bits of memory. ut

3.3 Markov sources

As many classic analyses assume the data comes from a Markov source, we close
this section with versions of Theorems 2 and 3 that have slightly weaker bounds
on memory usage — we show o(σk log σ) bits of memory are insufficient, instead
of O(σk+1/λ−ε) — but apply when the data are drawn from a such a source. (All
other things being equal, upper bounds are stronger when proven in terms of
empirical entropy, without any assumptions about the source; conversely, lower
bounds are stronger when they hold even with such assumptions.) The proofs of
these theorems are slightly different and involve de Bruijn sequences; a σ-ary de
Bruijn sequence of order k contains every possible k-tuple exactly once and, so,
has length σk + k − 1. This property means every such sequence has kth-order
empirical entropy 0 and, equivalently, can be generated by a deterministic kth-
order Markov source. Rosenfeld [13] proved there are (σ!)σk−1

such sequences
so, by Stirling’s formula, a randomly chosen one d has expected Kolmogorov
complexity E[K(d)] = log(σ!)σk−1 −O(1) = |d| log σ −O(|d|).

8 Travis Gagie and Giovanni Manzini

Theorem 4. Let λ ≥ 1 and k ≥ 0 be constants and let g be a function indepen-
dent of n. There exists a stationary ergodic kth-order Markov source X over an
alphabet of size σ such that, if we draw a string s of length n from X , then with
high probability it is impossible to store s in λH(X)n + o(n log σ) + g bits using
one pass and o(σk log σ) bits of memory. ut

Theorem 5. Let λ ≥ 1 and k ≥ 0 be constants and let g be a function indepen-
dent of n. There exists a stationary ergodic kth-order Markov source X over an
alphabet of size σ such that, if we draw a string s of length n from X , then with
high probability it is impossible to recover s from a (λH(X)n+o(n log σ)+g)-bit
encoding of s using one pass and o(σk log σ) bits of memory. ut

4 Compressing with (slowly) growing memory

In the previous section we have given upper and lower bounds to the amount of
memory required to compress up to the k-th order entropy for a fixed k. It is well
known that the best compressors, e.g. LZ77, LZ78, and BWT-based tools, are able
to compress up to the k-th order entropy for all k ≥ 0 simultaneously. That is, for
any k ≥ 0 and for any string s, their output is bounded by λHk(s)n+gk(n), with
gk(n) ∈ o(n). Intuitively this means that these algorithms can take advantage of
an “order-k regularity” for an arbitrarily large k. Unfortunately, Lemma 5 tells
us that using memory indepedendent of n, it is impossible to compress up to
λHk(s)n for any k ≥ 0.

For the above reasons, in this section we study compression algorithms in
which the available memory grows with the size of the input. Given an increasing
function f , we define the class Cf of one-pass compressors in which the working
space grows according to f in the sense that when the algorithm has read t
characters it is allowed to use a working space of size Θ(f(t)) bits. Our first
result shows that if limt→∞ f(t) = ∞ the algorithms in Cf can compress up to
λHk(s)n for any k ≥ 0.

Lemma 7. For any increasing and diverging function f there exists an algo-
rithm in Cf achieving the compression ratio given in Theorem 1 for any k ≥ 0.

Proof. For a given k let n′ be such that f(n′) is greater than the working space of
the algorithm in Theorem 1. Consider now the procedure that outputs the first n′

characters without compression and then executes the algorithm of Theorem 1.
Since the space for the initial n′ characters is just a constant overhead, for
sufficiently long strings this procedure asymptotically achieves the space bound
of Theorem 1 as claimed. ut

The proof of Lemma 7 suggests that although any diverging working space
suffices to get a compression ratio close to Hk for any k ≥ 0, the rate of growth of
the working space is likely to influence the rate of convergence, that is, the speed
with which the compression ratio approaches the entropy. The quantitative study
of this problem in the general setting appears to be a rather challenging task. In

Space-conscious compression 9

the following we initiate this study by exploring the relationship between working
space and rate of convergence for the important special case of the algorithm
LZ77 with a growing sliding window.

4.1 Window size vs. convergence rate for LZ77

In the following we assume that the alphabet size is a constant (see comment
at the beginning of Section 2). The LZ77 algorithm works by parsing the input
string s into a sequence of words w1, w2, . . . , wd and by encoding a compact
representation of these words. For any non-empty string w let w− denote the
string w with the last character removed, and, if |w| > 1, let w−− = (w−)−.
Assuming the words w1, w2, . . . ,wi−1 have been already parsed, LZ77 selects
the i-th word as the longest word wi that can be obtained by adding a single
character to a substring of (w1w2 · · ·wi)−−. Note that although this is a recursive
definition there is no ambiguity. In fact, if |wi| > 1 at least the first character of
wi belongs to w1w2 · · ·wi−1.

In the algorithm LZ77 with sliding window (LZ77sw from now on) the word
wi is selected using a sliding window of size Li, that is, w−i must be a substring
of (ziwi)−− where zi is the length-Li suffix of w1w2 · · ·wi−1. In practical imple-
mentations the sliding window length is usually fixed (for example it is equal to
215 in gzip) but for our analysis we will consider a sliding window which grows
with the size of the parsed string. Once wi has been found, it is encoded with the
triplet (pi, `i, αi), where pi is the starting position of w−i in the sliding window,
`i = |wi|, and αi is the last character of wi. In the following we assume that
encoding pi takes log Li +O(1) bits, encoding `i takes1 log `i +O(log log `i) bits,
and encoding αi takes log σ + O(1) bits2. If we store the already parsed portion
of the input in a suffix tree, the algorithm LZ77 runs in linear time and uses
a working space of Θ(n log n) bits. The same result holds for LZ77sw as well:
the only difference is that we use a truncated suffix tree [7, 11] to maintain the
sliding window so the working space is Θ(L log L) bits, where L is the maximum
size of the sliding window.

For the algorithm LZ77 we know (see [6, Th. 4.1]) that for any k ≥ 0 and for
any string s:

|LZ77(s)| ≤ Hk(s)n + O

(
n

log log n

log n

)
(1)

which implies that the convergence rate is O((n log log n)/ log n).
In the following we say that LZ77sw uses an f(t)-size sliding window to denote

that when t characters have been read, LZ77sw maintains a sliding window of size
df(t)e (hence, for f(t) = t we have the original LZ77 algorithm). We prove that
for f(t) = t/ log2 t the convergence rate is still O((n log log n)/ log n), whereas for
f(t) = log1−ε t, with 0 < ε < 1, the convergence rate is Ω

(
(n log log n)/ log1−ε n

)
.

1 Since we cannot bound in advance the size of `i, we are assuming we code it using
Elias’ δ code.

2 Other encodings are possible but we believe our analysis can be adapted to all
“reasonable” encodings.

10 Travis Gagie and Giovanni Manzini

To bound the convergence rate of LZ77sw with a sliding window growing as
(t/ log2 t), we first bound the number of times the same word can appear in the
parsing of the input string.

Lemma 8. Let g(t) denote an increasing and diverging function. The LZ77sw

algorithm with window size f(t) = t/g(t) produces a parsing of the input string
in which the same word appears at most O(g(n) log(n)) times. ut
The next lemma relates the number of words in the parsing with the k-th order
entropy, and Lemma 10 gives an upper bound to the total number of words.

Lemma 9 ([6, Lemma 2.3]). Let y1, . . . , yd denote a parsing of a string s in
which each word yi appears at most M times. For any k ≥ 0 we have

d log d ≤ |s|Hk(s) + d log
(|s|

d

)
+ d log M + Θ(d) . ut

Lemma 10. Let y1, . . . , yd denote a parsing of a string s in which each word yi

appears at most M times. We have d = O(n/ log(n/M)). ut
Theorem 6. The algorithm LZ77sw with a sliding window growing as f(t) =
(t/ log2 t) produces an output bounded by nHk(s) + O((n log log n)/ log n).

Proof. Let w1 · · ·wd denote the LZ77sw parsing of s. Recall that for each word
wi LZ77sw outputs a triple (pi, `i, αi) whose encoding is described above. Using
elementary calculus it is easy to show that if LZ77sw parses s into d words, the
output size is bounded by

|LZ77sw(s)| ≤ d log n + d log (n/d) + O(d log log n) .

Recall that by Lemma 8 each word appears at most O
(
log3 n

)
times in the

parsing. Since d log n = d log d + d log(n/d), using Lemma 9 we get

|LZ77sw(s)| ≤ d log d + 2n log(n/d) + O(d log log n)
≤ Hk(s)n + 3d log(n/d) + O(d log log n) .

Finally, by Lemma 10 we have d = O(n/ log n), hence

|LZ77sw(s)| ≤ nHk(s) + O

(
n log log n

log n

)

as claimed. ut
Now we show that the algorithm LZ77sw with a sliding window of size o(log t)

has a convergence rate ω(n log log n/log n). To this end, for any ε, with 0 < ε < 1,
we consider the LZ77sw algorithm with a sliding window of size f(t) = log1−ε(t).
Fix n > 0 and let b = 1 +

⌈
log1−ε(n)

⌉
. Note that b− 1 is the maximum window

size reached when compressing a string of length n. We define ŝ = 0j(10b−1)h

where h = bn/bc and j < b is such that |ŝ| = n.

Space-conscious compression 11

Lemma 11. We have H0(ŝ)n ≤ (n/b) log b + Θ(n/b). ut
Lemma 12. Let ŝ = w1w2 . . . wd denote the LZ77sw parsing of ŝ. Then, if the
word wi contains the character 1, the word wi+1 contains only 0’s.

Proof. It is easy to see that if 1 appears in wi it must be the last character of
wi. As a consequence, the next word will be wi+1 = 0` where ` is the current
window size. ut
Lemma 13. For the LZ77sw algorithm with a sliding window of size f(t) =
log1−ε(t) we have

|LZ77sw(ŝ)| ≥ 3(n/b) log b−O(n/b).

Proof. Observe that when we have read t ≥ √
n characters, the sliding window

has size
⌈
log1−ε t

⌉ ≥ ((log n)/2)1−ε. From that point on, encoding a position in
the sliding window—which must be done for each word in the parsing—takes at
least

(1− ε) log((log n)/2) = (1− ε) log log n− (1− ε) ≥ log b− 2

bits. In addition, by the proof of Lemma 12 we see that each other word will
have length equal to the window size; encoding each one of these lengths will
again cost at least log b−2 bits. By Lemma 12, after we have read

√
n characters

there are still 2(n − √n)/b words to be parsed. The above observations imply
that their encoding takes at least 3(n/b) log b−O(n/b) bits. ut
Theorem 7. For the LZ77sw algorithm with a sliding window growing as f(t) =
log1−ε(t), we can build an arbitrarily long string ŝ such that

|LZ77sw(ŝ)| ≥ H0(ŝ)n + Ω
(
(n log log n)/ log1−ε n

)
.

Proof. By Lemmas 11 and 13 we have

|LZ77sw(ŝ)| −H0(ŝ)n ≥ 2n log b

b
−O

(n

b

)
=

2n log log n

log1−ε n
−O

(
n

log1−ε n

)
. ut

Comparing Theorems 6 and 7 we see that the penalty we pay for using a
smaller window is a slower convergence rate. Further work is needed to narrow
the huge gap between the rate of growth of the sliding window in the two the-
orems. In particular, it would be interesting to determine the smallest rate of
growth that guarantees an output size bounded by Hk(s)n+O((n log log n)/ log n)
as in (1).

5 Future work

We plan to generalize the results in Section 3 to multipass algorithms. Munro
and Paterson [9] introduced a model for multipass algorithms in which the data is
“stored on a one-way read-only tape. [. . .] Initially the storage is empty and the

12 Travis Gagie and Giovanni Manzini

tape is placed with the reading head at the beginning. After each pass the tape is
rewound to this position with no reading permitted.” Among other things, they
proved sorting a set of n distinct elements in p passes takes Θ(n/p) memory
locations (each of which can hold a single element).

It seems we can modify the algorithm in Theorem 1 so that, allowed p passes,
during each pass it processes only those character following a (1/p)-fraction of
the possible contexts; any character following a different context is ignored. This
way, the algorithm might need only a (1/p)-fraction as much memory during each
pass. On the other hand, consider a p-pass compression algorithm compressing
the string ri from Corollary 1: we can specify r by specifying the algorithm, the
algorithm’s memory configurations when it enters and leaves a particular copy
of r in ri during each pass (i.e., 2p configurations in all), and its output while
reading that copy during each pass. Thus, allowing the algorithm in the proof of
Theorem 2 to use p passes but only O((1/p) · σk+1/λ−ε) bits of memory seems
not to affect the proof.

References

1. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues
in data stream systems. In Proceedings of the 21st Symposium on Principles of
Database Systems, pages 1–16, 2002.

2. J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A locally adaptive data
compression scheme. Communications of the ACM, 29:320–330, 1986.

3. T. Gagie. Large alphabets and incompressibility. Information Processing Letters,
99:246–251, 2006.

4. D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40:1098–1101, 1952.

5. R. Karp, S. Shenker, and C. Papadimitriou. A simple algorithm for finding frequent
elements in streams and bags. ACM Trans. Database Syst., 28(1):51–55, 2003.

6. R. Kosaraju and G. Manzini. Compression of low entropy strings with Lempel–Ziv
algorithms. SIAM Journal on Computing, 29(3):893–911, 1999.

7. N. J. Larsson. Extended application of suffix trees to data compression. In DCC
’96: Proceedings of the Conference on Data Compression, page 190, Washington,
DC, USA, 1996. IEEE Computer Society.

8. M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Appli-
cations. Springer-Verlag, 2nd edition, 1997.

9. J. I. Munro and M. S. Paterson. Selection and sorting with limited storage. The-
oretical Computer Science, 12:315–323, 1980.

10. S. Muthukrishnan. Data Streams: Algorithms and Applications. Now Publishers,
2005. See also: http://www.nowpublishers.com/tcs/.

11. J. C. Na, A. Apostolico, C. Iliopoulos, and K. Park. Truncated suffix trees and
their application to data compression. Theor. Comput. Sci., 304(1-3):87–101, 2003.

12. J. Rissanen. Generalized Kraft inequality and arithmetic coding. IBM Journal of
Research and Development, 20:198–203, 1976.

13. V. R. Rosenfeld. Enumerating De Bruijn sequences. MATCH Communications in
Mathematical and in Computer Chemistry, 45:71–83, 2002.

14. A. J. Wyner. The redundancy and distribution of the phrase lengths of the
fixed-database LempelZiv algorithm. IEEE Transactions on Information Theory,
43:1452–1464, 1997.

Space-conscious compression 13

A Appendix

A.1 Proof of Lemmas 1, 2 and 3 and Theorem 1

Lemma 1. Let s be a string of length n over an alphabet of size σ and let P be
the normalized distribution of characters in s. Given s and constants λ ≥ 1 and
µ > 0, we can store a probability distribution Q with D(P‖Q) < (λ−1)H(P)+µ
in O(σ1/λ log(n + σ)) bits using O(σ1/λ log(n + σ)) bits of memory.

Proof. Suppose P = p1, . . . , pσ. We can use an O(n)-time algorithm due to
Karp, Papadimitriou and Shenker [5] to find the t ≤ rσ1/λ values of i such
that pi ≥ 1/(rσ1/λ), where r = 1 + 1

2µ/2−1
, using O(σ1/λ log max(n, σ)) bits of

memory; or, since we are not concerned with time in this paper, we can simply
make σ passes over s to find these t values. For each, we store i and bpir

2σc;
since r depends only on µ, in total this takes O(σ1/λ log σ) bits. (As an aside,
since r < 1 + 2/(µ ln 2), if we were treating µ as a variable, the bound would be
O(log(1/µ) · σ1/λ log σ).) This information lets us later recover Q = q1, . . . , qσ

where

qi =

(1− 1/r)bpir
2σc∑ {bpjr2σc : pj ≥ 1/(rσ1/λ)

} if pi ≥ 1/(rσ1/λ),

1
r(σ − t)

otherwise.

Suppose pi ≥ 1/(rσ1/λ); then pir
2σ ≥ r. Since

∑{bpjr
2σc : pj ≥ 1/(rσ1/λ)

} ≤
r2σ,

pi log(pi/qi)

≤ pi log
(

r

r − 1
· pir

2σ

bpir2σc
)

< 2pi log
r

r − 1
= piµ .

Now suppose pi < 1/(rσ1/λ); then pi log(1/pi) > (pi/λ) log σ. Therefore

pi log(pi/qi)

< pi log
(
(σ − t)/σ1/λ

)

≤ (λ− 1)(pi/λ) log σ

< (λ− 1)pi log(1/pi) .

Since pi log(pi/qi) < (λ − 1)pi log(1/pi) + piµ in both cases, D(P‖Q) < (λ −
1)H(P) + µ. ut

14 Travis Gagie and Giovanni Manzini

Lemma 2. Given a string s of length n over an alphabet of size σ and constants
λ ≥ 1 and µ > 0, we can store s in (λH0(s)+µ)n+O(σ1/λ log(n+σ)) bits using
O(σ1/λ log(n + σ)) bits of memory.

Proof. Let P be the normalized distribution of characters in s, so H(P) = H0(s).
First, as described in Lemma 1, we store a probability distribution Q with
D(P‖Q) < (λ − 1)H(P) + µ/2 in O(σ1/λ log σ) bits using O(σ1/λ log(n + λ))
bits of memory. Then, we process s in blocks s1, . . . , sb of length d4/µe (except
sb may be shorter). For 1 ≤ i < b, we store si as the first dlog(2/ Pr[X = si])e
bits to the right of the binary point in the binary representation of

f(si) = Pr[X < si] + Pr[X = si]/2

=
d4/µe∑

j=1

Pr
[
X[1] = si[1], . . . , X[j − 1] = si[j − 1], X[j] < si[j]

]

+Pr[X = si]/2 ,

where X is a string of length d4/µe chosen randomly according to Q, X < si

means X is lexicographically less than si, and X[j] and si[j] indicate the indices
in the alphabet of the jth characters of X and si, respectively. Notice that,
since |f(si) − f(y)| > Pr[X = si]/2 for any string y 6= si of length d4/µe,
these bits uniquely identify f(si) and, thus, si. Also, since the probabilities in
Q are O(log σ)-bit numbers, we can compute f(si) from si with O(σ) additions
and O(1/µ) = O(1) multiplications using O(log σ) bits of memory. (In fact, with
appropriate data structures, O(log σ) additions and O(1) multiplications suffice.)
Finally, we store sb in |sb|dlog σe = O(log σ) bits. In total we store s in

b−1∑

i=1

dlog(2/ Pr[X = si])e+ O(σ1/λ log σ)

≤
b−1∑

i=1

d4/µe∑

j=1

log(1/qsi[j]) + 2

 + O(σ1/λ log σ)

= n

σ∑

i=1

pi log(1/qi) + 2(b− 1) + O(σ1/λ log σ)

≤ n(D(P‖Q) + H(P)) + µn/2 + O(σ1/λ log σ)
≤ (λH0(s) + µ)n + O(σ1/λ log σ)

bits using O(σ1/λ log(n + σ)) bits of memory. ut

Lemma 3. Given a string s of length n over an alphabet of size σ and constants
λ ≥ 1, k ≥ 0 and µ > 0, we can store s in (λHk(s)+µ)n+O(σk+1/λ log(n+σ))
bits using O(σk+1/λ log(n + σ)) bits of memory.

Space-conscious compression 15

Proof. We store the first k characters of s in O(log σ) bits then apply Lemma 2
to subsequences s1, . . . , sσk , where si consists of the characters in s that imme-
diately follow occurrences of the lexicographically ith possible k-tuple. Notice
that although we cannot keep s1, . . . , sσk in memory, enumerating them as many
times as necessary in order to apply Lemma 2 takes O(log σ) bits of memory. ut

Theorem 1. Given a string s of length n over an alphabet of size σ and con-
stants λ ≥ 1, k ≥ 0 and µ > 0, we can store s in (λHk(s)+µ)n+O(σk+1/λ log σ)
bits using one pass and O(σk+1/λ log2 σ) bits of memory, and later recover s us-
ing one pass and the same amount of memory.

Proof. Let c be a constant such that, by Lemma 3, we can store any substring si

of s in (λHk(si)+µ/2)|si|+ cσk+1/λ log σ bits using O(σ1/λ log(|si|+σ)) bits of
memory. We process s in blocks s1, . . . , sb of length d(2c/µ)σk+1/λ log σe (except
sb may be shorter). Notice each block si fits in O(σk+1/λ log2 σ) bits of memory.
When we reach si, we read it into memory, apply Lemma 3 to it — using

O
(
σk+1/λ log

(
d(2c/µ)σk+1/λ log σe+ σ

))
= O(σk+1/λ log σ)

bits of memory — then erase it from memory. In total we store s in

b∑

i=1

(
(λHk(si) + µ/2)|si|+ cσk+1/λ log σ

)

≤ (λHk(s) + µ/2)n + bcσk+1/λ log σ

≤ (λHk(s) + µ)n + cσk+1/λ log σ

bits using O(σk+1/λ log2 σ) bits of memory.
Notice the encoding of each block si also fits in O(σk+1/λ log2 σ) bits of

memory. To decode each block later, we read its encoding into memory, search
through all possible strings of length d(2c/µ)σk+1/λ log σe in lexicographic order
until we find the one that yields that encoding — using O(σk+1/λ log2 σ) bits of
memory — and output it. ut

The method for decompression in the proof of Theorem 1 above takes ex-
ponential time but is very simple (recall we are not concerned with time here);
reversing each step of the compression takes linear time but is slightly more
complicated.

A.2 Proofs of Lemma 6, Corollary 1 and Theorems 2 and 3

Lemma 6. Let λ ≥ 1, k ≥ 0 and ε > 0 be constants and let s be a random
string of length bσk+1/λ−εc over an alphabet of size σ. With high probability
every possible k-tuple is followed by O(σ1/λ−ε) distinct characters in s.

16 Travis Gagie and Giovanni Manzini

Proof. Consider a k-tuple w. For 1 ≤ i ≤ n − k, let Xi = 1 if the ith through
(i + k − 1)st characters of s are an occurrence of w and the (i + k)th character
in s does not occur in w; otherwise Xi = 0. Notice w is followed by at most∑n−k

i=1 Xi + k distinct characters in s and Pr[Xi = 1 |Xj = 1] ≤ 1/σk and
Pr[Xi = 1 |Xj = 0] ≤ 1/(σk − 1) for i 6= j. Therefore, by Chernoff bounds and
the union bound, with probability greater than

1− σk

26bσk+1/λ−εc/(σk−1)
≥ 1− σk/26σ1/λ−ε

every k-tuple is followed by fewer than 6bσk+1/λ−εc/(σk−1)+k ≤ 12σ1/λ−ε +k
distinct characters. ut

Corollary 1. Let λ ≥ 1, k ≥ 0 and ε > 0 be constants. There exists a string s
of length bσk+1/λ−εc over an alphabet of size σ with K(s) ≥ |s| log σ −O(1) but
Hk(si) ≤ (1/λ− ε) log σ + O(1) for i ≥ 1.

Proof. If s is randomly chosen, then K(s) ≥ |s| log σ−1 with probability greater
than 1/2 and, by Lemma 6, with high probability every possible k-tuple is fol-
lowed by O(σ1/λ−ε) distinct characters in s; therefore there exists an s with
both properties. Every possible k-tuple is followed by at most k more distinct
characters in si than in s and, thus,

Hk(si) ≤ log max
|w|=k

{
j : w is followed by j

distinct characters in si

}

≤ log O(σ1/λ−ε)
≤ (1/λ− ε) log σ + O(1) .

ut

Theorem 2. Let λ ≥ 1, k ≥ 0 and ε > 0 be constants and let g be a function
independent of n. In the worst case it is impossible to store a string s of length
n over an alphabet of size σ in λHk(s)n + o(n log σ) + g bits using one encoding
pass and O(σk+1/λ−ε) bits of memory.

Proof. Let A be an algorithm that, given λ, k, ε and σ, stores s while using
one encoding pass and O(σk+1/λ−ε) bits of memory; we prove that in the worst
case A stores s in more than (λHk(s) + µ)n + o(n log σ) + g bits. Again, we can
model it with a finite-state machine M , with |M | = 2O(σk+1/λ−ε) and K(M) =
O(log σ). Let r be a string of length bσk+1/λ−εc with K(r) ≥ |r| log σ − O(1)
and Hk(xi) ≤ (1/λ− ε) log σ + O(1) for i ≥ 1, as described in Corollary 1, and
suppose s = ri for some i. We can specify r by specifying M , the states M is
in when it reaches and leaves any copy of r in s, and M ’s output on that copy.
Therefore M outputs at least

K(r)−K(M)−O(σk+1/λ−ε) = |r| log σ −O(|r|)

Space-conscious compression 17

bits for each copy of r in s, or n log σ−O(n) bits in total — which is asymptot-
ically greater than λHk(s)n + o(n log σ) + g ≤ (1− ε)n log σ + o(n log σ) + g. ut

Theorem 3. Let λ ≥ 1, k ≥ 0 and ε > 0 be constants and let g be a function
independent of n. There exists a string s of length n over an alphabet of size σ
such that, given a (λHk(s)n + o(n log σ) + g)-bit encoding of s, it is impossible
to recover s using one pass and O(σk+1/λ−ε) bits of memory.

Proof. Let r be a string of length bσk+1/λ−εc with K(r) = |r| log σ − O(1) but
Hk(ri) ≤ (1/λ − ε) log σ + O(1) for i ≥ 1, as described in Corollary 1, and
suppose s = ri for some i. Let A be an algorithm that, given λ, k, ε, σ and a
(λHk(s)n+ o(n log σ)+ g)-bit encoding of s, recovers s using one pass; we prove
A uses ω(σk+1/λ−ε) bits of memory. Again, we can model A with a finite-state
machine M , with log |M | equal to the number of bits of memory A uses and
K(M) = O(log σ). We can specify r by specifying M , the state M is in when it
starts outputting any copy of r in s, and the bits of the encoding it reads while
outputting that copy of r; therefore

K(r) ≤ K(M) + O(log |M |) +
(
λHk(s)n + o(n log σ) + g

)
/i

≤ O(log σ) + O(log |M |) + |r| ((1− ε) log σ + o(log σ) + g/n
)

≤ (1− ε)|r| log σ + o(|r| log σ) + O(log |M |) + g/n ,

so
O(log |M |) + g/n ≥ ε|r| log σ − o(|r| log σ) = Ω(σk+1/λ−ε log σ) .

The theorem follows because n can be arbitrarily large compared to g. ut

A.3 Proofs of Theorems 4 and 5

Before proving Theorems 4 and 5 we prove two preliminary lemmas, somewhat
similar to Lemma 6 and Corollary 1.

Lemma 14. Let k ≥ 0 be a constant. There exists a string s of length σk over
an alphabet of size σ with K(s) ≥ |s| log σ −O(|s|) but Hk(si) = 0 for i ≥ 1.

Proof. If s consists of the first σk characters of a σ-ary de Bruijn sequence of
order k, then s followed by the first k− 1 characters in s contains every possible
k-tuple exactly once and, thus, Hk(si) = 0 for i ≥ 1. There are (σ!)σk−1

such de
Bruijn sequences, however [13], so there exists such an s with K(s) ≥ log(σ!)σk−1

— which, by Stirling’s Formula, is at least |s| log σ −O(|s|). ut
Lemma 15. Let λ ≥ 1 and k ≥ 0 be constants. There exists a stationary
ergodic kth-order Markov source X over an alphabet of size σ with H(X) <
(log σ)/(4λ) + 1 such that, if we draw a string s of length n from X and di-
vide it into blocks s1, . . . , sb of length σk, then with high probability K(si) ≥
|si| log σ −O(|si|) for at least b/3 values of i.

18 Travis Gagie and Giovanni Manzini

Proof. Let d be a string of length σk with K(d) ≥ |d| log σ−O(|d|) but Hk(di) =
0 for i ≥ 1, as described in Lemma 14. Let z be a constant with 0 < z ≤ 1/(4λ)
and (1− z)σk ≥ 1/2. Let X be the kth-order Markov source that, after emitting
a k-tuple w, emits the unique character that follows w in d2 with probability
1− (1−1/σ)z and emits each other character with probability z/σ. Notice that,
since with probability zk > 0 the next k characters are chosen randomly and
independently of preceding characters, X is stationary and ergodic. Also X is
equivalent to the following process: we flip a coin biased to show heads with
probability 1 − z and tails with probability z; on heads, we choose the unique
character that follows w in d2; on tails, we choose the next character randomly.
Therefore H(X) = H(1 − z, z) + zH(1/σ, . . . , 1/σ) < (log σ)/(4λ) + 1. We see
σk consecutive heads with probability (1 − z)σk ≥ 1/2, so each block si is a
cyclic shift of d with probability at least 1/2; therefore, by Chernoff bounds,
K(si) ≥ |si| log σ − O(|si|) for at least b/3 values of i with probability at least
1− exp(−b/36). ut

Proof of Theorem 4. Let X be a Markov source as described in Lemma 15 and
let A be an algorithm that, given σ, λ, k and ε, stores s while using one encoding
pass and o(σk log σ) bits of memory; we prove that with high probability A stores
s in more than λH(X)+o(n log σ)+g bits. Again, we can model A with a finite-
state machine, with |M | = 2o(σk log σ) states and K(M) = O(log σ). Consider
s in blocks s1, . . . , sb of length σk (except sb may be shorter). As for r in the
proof of Theorem 2, we can specify a block si by specifying M , the states M is
in when it reaches and leaves si in s, and M ’s output on si. Therefore, for each
si with K(si) ≥ |si| log σ −O(|si|), M outputs at least

K(si)−K(M)− o(σk log σ) = |si| log σ − o(|si| log σ)

bits, or with high probability at least (n log σ)/3 − o(n log σ) bits in total —
which is asymptotically greater than λH(X)n + o(n log σ) + g ≤ (n log σ)/4 +
o(n log σ) + g. ut

Proof of Theorem 5. Let X be a Markov source as described in Lemma 15 and
let A be an algorithm that, given σ, λ, k, ε and a (λH(X)n + o(n log σ) + g)-bit
encoding of s, recovers s using one pass; we prove A uses Ω(σk log σ) bits of
memory. Again, we can model A with a finite-state machine M , with log |M |
equal to the number of bits of memory A uses and K(M) = O(log σ). As in
the proof of Theorem 4, consider s in blocks s1, . . . , sb of length σk (except sb

may be shorter); we can specify si by specifying M , the state M is in when it
starts outputting si, and the bits of the encoding it reads while outputting si.
Therefore

b∑

i=1

K(si) ≤
(
K(M) + O(log |M |)) b + λH(X)n + o(n log σ) + g ,

so

(n log σ)/3−O(n) ≤ (n log σ)/4 + o(n log σ) + g + O
(
(n log |M |)/σk

)

Space-conscious compression 19

and log |M | = Ω(σk log σ). ut

A.4 Proofs of lemmas in Section 4

Proof of Lemma 8. Assume LZ77sw outputs the word w exactly k times and
let p1, p2, . . . , pk denote the starting positions of such occurrences. Note that
for i > 1, LZ77sw can output the word w at position pi only if the previous
occurrence of w is outside the current sliding window. This means when the
algorithm reaches position pi, pi−1 must be outside the sliding window. Since
the sliding window at pi has size pi/g(pi), we must have pi − pi−1 > pi/g(pi)
or, equivalently: pi

(
1− 1

g(pi)

)
> pi−1. Applying the above inequality for i =

2, . . . , k and using the fact that g(pi) < g(n) we get pk

(
1− 1

g(n)

)k−1

> p1.

Since p1 ≥ 1, and pk < n we have n
(
1− 1

g(n)

)k−1

> 1 and taking the logarithm

log n + (k − 1) log
(

1− 1
g(n)

)
> 0.

Since for vanishing ε, log(1−ε) = −ε+O
(
ε2

)
, we get (k−1) ≤ g(n) log n+o(log n)

an the thesis follows. ut

Proof of Lemma 10. It is well known that if the words in the parsing are
distinct then d = O(n/ log n). Assuming that each word is repeated exactly M
times, the total number of words is roughly M times the number of distinct words
used for a parsing of a string of length n/M , that is O(M(n/M log(n/M))) =
O(n/ log(n/M)). ut

Proof of Lemma 11. We have

nH0(ŝ) ≤ (n/b) log b + n(b−1
b) log(b/(b− 1))

= (n/b)[log b + (b− 1) log(1 + 1
b−1)] = (n/b) log b + Θ(n/b)

where the last equality holds since the term (b − 1) log(1 + 1
b−1) is bounded by

log e. ut

