
Dipartimento di Informatica
Università del Piemonte Orientale “A. Avogadro”

Via Bellini 25/G, 15100 Alessandria
http://www.di.unipmn.it

A fuzzy approach to similarity in Case-Based

Reasoning suitable to SQL implementation

Authors: Luigi Portinale (luigi.portinale@unipmn.it)
Stefania Montani (stefania.montani@unipmn.it)

TECHNICAL REPORT TR-INF-2007-10-03-UNIPMN

(October 2007)

1

The University of Piemonte Orientale Department of Computer Science Research
Technical Reports are available via WWW at URL

http://www.di.mfn.unipmn.it/.
Plain-text abstracts organized by year are available in the directory

Recent Titles from the TR-INF-UNIPMN Technical
Report Series

2007-02 Space-conscious compression, Gagie, T., Manzini, G., June 2007.

2007-01 Markov Decision Petri Net and Markov Decision Well-formed Net Formalisms,
Beccuti, M., Franceschinis, G., Haddad, S., February 2007.

2006-03 New challenges in network reliability analysis, Bobbio, A., Ferraris, C., Ter-
ruggia, R., November 2006.

2006-03 The Engineering of a Compression Boosting Library: Theory vs Practice in
BWT compression, Ferragina, P., Giancarlo, R., Manzini, G., June 2006.

2006-02 A Case-Based Architecture for Temporal Abstraction Configuration and Pro-
cessing, Portinale, L., Montani, S., Bottrighi, A., Leonardi, G., Juarez, J., May
2006.

2006-01 The Draw-Net Modeling System: a framework for the design and the solution of
single-formalism and multi-formalism models, Gribaudo, M., Codetta-Raiteri,
D., Franceschinis, G., January 2006.

2005-06 Compressing and Searching XML Data Via Two Zips, Ferragina, P., Luccio,
F., Manzini, G., Muthukrishnan, S., December 2005.

2005-05 Policy Based Anonymous Channel, Egidi, L., Porcelli, G., November 2005.

2005-04 An Audio-Video Summarization Scheme Based on Audio and Video Analysis,
Furini, M., Ghini, V., October 2005.

2005-03 Achieving Self-Healing in Autonomic Software Systems: a case-based reasoning
approach, Anglano, C., Montani, S., October 2005.

2005-02 DBNet, a tool to convert Dynamic Fault Trees to Dynamic Bayesian Networks,
Montani, S., Portinale, L., Bobbio, A., Varesio, M., Codetta-Raiteri, D., Au-
gust 2005.

2005-01 Bayesan Networks in Reliability, Langseth, H., Portinale, L., April 2005.

2004-08 Modelling a Secure Agent with Team Automata, Egidi, L., Petrocchi, M., July
2004.

2004-07 Making CORBA fault-tolerant, Codetta Raiteri D., April 2004.

2004-06 Orthogonal operators for user-defined symbolic periodicities, Egidi, L., Teren-
ziani, P., April 2004.

2

2004-05 RHENE: A Case Retrieval System for Hemodialysis Cases with Dynamically
Monitored Parameters, Montani, S., Portinale, L., Bellazzi, R., Leonardi, G.,
March 2004.

2004-04 Dynamic Bayesian Networks for Modeling Advanced Fault Tree Features in
Dependability Analysis, Montani, S., Portinale, L., Bobbio, A., March 2004.

3

A Fuzzy Approach to Similarity in Case-Based

Reasoning suitable to SQL Implementation

Luigi Portinale, Stefania Montani

Dipartimento di Informatica
Universita’ del Piemonte Orientale ”A. Avogadro”, Alessandria Italy

Abstract

The aim of this paper is to formally introduce a notion of acceptance and similarity,
based on fuzzy logic, among case features in a case retrieval system. This is pur-
sued by first reviewing the relationships between distance-based similarity (i.e. the
standard approach in CBR) and fuzzy-based similarity, with particular attention
to the formalization of a case retrieval process based on fuzzy query specification.
In particular, we present an approach where local acceptance relative to a feature
can be expressed through fuzzy distributions on its domain, abstracting the actual
values to linguistic terms. Furthermore, global acceptance is completely grounded
on fuzzy logic, by means of the usual combinations of local distributions through
specific defined norms. We propose a retrieval architecture, based on the above no-
tions and realized through a fuzzy extension of SQL, directly implemented on a
standard relational DBMS. The advantage of this approach is that the whole power
of an SQL engine can be fully exploited, with no need of implementing specific
retrieval algorithms. The approach is illustrated by means of some examples from
a recommender system called MyWine, aimed at recommending the suitable wine
bottles to a customer providing her requirements in both crisp and fuzzy way.

Key words: fuzzy similarity, fuzzy matching, fuzzy case retrieval, fuzzy-SQL, CBR

1 Introduction

Case-Based Reasoning (CBR) systems rely on the well-known R4 cycle, con-
sisting in the four “R” steps namely Retrieval, Reuse, Revise and Retain

[1]. Despite the generality of the above process, case retrieval is the step that

Email address: portinal@di.unipmn.it, stefania@di.unipmn.it (Luigi
Portinale, Stefania Montani).

has received most attention in the past, since there are a variety of applica-
tions and tasks, where just retrieving the most similar cases to the input one
is an added value.

Case retrieval algorithms usually focus on implementing Nearest-Neighbor
(NN) techniques, where local distance metrics relative to individual features
are combined in a weighted way to get a global distance between a retrieved
and a target case. A k-NN case retrieval algorithm will then return the k clos-
est cases to the target one, with respect to the defined notion of distance; the
underlying assumption is that they are the k most similar cases to the target
one. In [5], it is argued that the notion of acceptance can be used as an alter-
native to distance, in order to represent the needs of a flexible case retrieval
methodology. As for distance, local acceptance functions can be combined into
global acceptance functions to determine whether a target case is acceptable
(i.e. it is retrieved) with respect to a given query. In particular, very often
local acceptance functions take the form of fuzzy distributions; in this way,
the definition of a fuzzy linguistic term over the domain of a feature can be
exploited to characterize the acceptance of cases having similar (in the fuzzy
sense) values for that particular attribute or feature.

The definition of a fuzzy linguistic term over a case feature or attribute can
be considered as a “similarity dimension” over which to compare the feature’s
values.
Given two values x and y of a feature f and a linguistic term L defined over
f via a fuzzy membership function µL

f , we can characterize the similarity of
x and y with respect to L through the absolute difference in the membership
in L of x and y (i.e. |µL

f (x) − µL
f (y)|). Smaller is the difference, greater is the

similarity of x and y with respect to L. This captures the intuition that values
that belong to the fuzzy set L with a close degree are considered semantically
similar with respect to L (see also [17]).

A second aspect related to case retrieval concerns the fact that, in order to
implement a particular case retrieval algorithm, suitable case structuring and
case base organization have to be devised [19,27]. This may be a further burden
in the construction of a CBR system, especially if data concerning cases are
already available in standard relational databases, as in many applications. For
this reason, the use of database technologies for supporting the construction
of case-based systems is recently attracting serious attention; the reasons are
twofold:

• if data of interest are already stored in a database, the database itself can
be used as a case base;

• part of the technological facilities of a DBMS may be exploited in the CBR
cycle, in particular for case retrieval.

5

In particular, with respect to the second point, it would be extremely conve-
nient to be able to exploit standard query languages, like SQL, for the retrieval
of the data of interest, i.e. the cases matching the query case. As mentioned
above, we can denote a stored case as matching the query if the former is
acceptable for the latter with respect to a predefined notion of acceptance.
In the case of standard SQL (and so in the case of standard Relational Data
Base Management Systems - RDBMS), the notion of acceptance can only be
modeled through a boolean condition over the case feature values. This results
in a great limitation for a retrieval system based on plain SQL, since more so-
phisticated notions of acceptance (like those adopted in CBR system) cannot
be directly modeled.

A limited effort has been made, in order to define distance-based approach
directly exploiting SQL [26]; on the contrary, in the last years, we assisted
to a growing interest for the definition of fuzzy extensions to standard SQL
[12,11,30,8,15,22,23,3], leading to several proposals for the definition of an
SQL-like language able to deal with fuzzy conditions for the selection of data.
The availability of such tools can provide a direct implementation of a case re-
trieval system based on a fuzzy notion of acceptance, over a standard RDBMS.

The aim of this paper is to formally introduce a notion of acceptance and con-
textual similarity, based on fuzzy logic, among case features in a case retrieval
system, while proposing at the same time an actual retrieval architecture,
based on the above notions and realized through a fuzzy extension of SQL
directly implemented on a standard SQL engine.

The rest of the paper is organized as follows: section 2 reviews the relation-
ships between distance-based and fuzzy-based similarity; section 3 formalizes
the case retrieval process we are interested to model, semantically grounded
on fuzzy logic; section 4 and section 5 deal with the implementation of the
proposed framework and section 6 reports on some application examples from
a recommender system. Finally, in section 7, a comparison with related works
is presented and the conclusions are drawn.

2 Modeling Case Acceptability with Fuzzy Logic

The Nearest-Neighbor approach to case retrieval is based on distance mea-
sures defined on case features (local distance) that are then combined in a
suitable way, in order to get the actual distance between a query or target
case and a retrieved case (global distance). Case similarity is then defined as
a complementary or dual function of case distance: greater is the distance,
smaller is the similarity and vice versa. On the other hand, we can also view
case retrieval as a way of accepting a set of cases, by means of some measure

6

of acceptance defined on the case features. Standard distance-based similarity,
implicitly defines an acceptance-based retrieval, by means of the induction of
acceptability regions around the target or query case.

In [5], a correspondence between acceptability and distance has been pointed
out through the so-called characteristics similarity curves defining the accept-
ability regions in the feature space. Acceptability functions can then be used
instead of distance or similarity functions and local acceptability can be com-
bined into global acceptability functions to determine whether the case should
be retrieved, that is whether it is acceptable with respect to the query case
and a particular acceptability threshold.

In standard distance-based retrieval acceptability regions are induced from the
local and global distance functions adopted. Another approach could be that of
directly starting from measures directly modeling acceptability, Acceptability
is however a concept related to the query at hand, so an acceptability measure
must be defined according to a reference query context. A concrete example
of an acceptability measure can be a fuzzy membership function, defining
linguistic terms over a feature. A value x of a feature f has an acceptability of
µL

f (x), with respect to the reference L if µL
f (x) is the membership degree of x

in the fuzzy set L. The standard notion of α-cut of a fuzzy set (i.e. the set of
elements having degree of membership in the fuzzy set greater than or equal
to α) can be used to define an acceptability region: all the elements in the
α-cut are accepted. As in the case of characteristics similarity curves, different
acceptability thresholds (i.e. different αs) give rise to different acceptability
regions.

In fuzzy logic, the reference context for characterizing acceptability is usually
a linguistic term, i.e. a fuzzy set; this differs form standard distance-based
CBR, where such a reference is a feature value within the admissible range
(or the “unknown” value is the feature is missing). As pointed out in [6], the
relationship between a standard similarity function SIM(u, v) and a fuzzy
membership function can be established by considering the latter to be the
membership of the fuzzy set SIM modeling the notion of similarity between
two values on the “universe of discourse” (i.e. the range of the considered case
attribute), such that µSIM(u, v) = SIM(u, v)

On the other hand, if one starts by considering a particular fuzzy set L over
the universe (in practical a linguistic term defined over the attribute’s range),
then the membership function of a value u in L (i,e. µL(u)) can be interpreted
as the similarity of u with respect to any value a which is focal for L. A value a
is focal for a fuzzy set L if µL(a) = 1; this means that a is a fully representative
value for the concept represented by L, so the membership of u in L measures
how close (i.e. similar) is u to the considered concept or linguistic term.

7

Finally, in a fuzzy context, global acceptability is easily obtained by using
fuzzy combination through suitable t-norms o t-conorms [20]; this means that
the standard framework of fuzzy logic provides a sound way of aggregating
local information (at the feature level) into a global measure (at the case level).

Despite that, it is worth noting that the problem of aggregation of local fuzzy
measures deserves particular attention. In fact, as precisely pointed out in [6],
there may be different interpretations of the actual meaning of a local (at
the feature level) fuzzy acceptability function, depending on how we interpret
a similarity value equal to 0 (0-similarity). If this constraints the elements
to be definitely not equivalent, then a t-norm based combination should be
used, while on the contrary (i.e. if a value of similarity equal to 0 just does
not contribute to aggregation) a t-conorm would be the right choice. We will
return on this aspect in the next section.

The above considerations open the doors to a different starting point for case
retrieval, semantically grounded on fuzzy logic. The following section will dis-
cuss how this can be formalized.

3 Fuzzy Case Retrieval

Since its first proposal, Case-Based Reasoning has been always identified as a
way of retrieving (and then reusing possibly by adapting) a set of cases match-
ing to a specified level of precision a specific query (often a target case). The
problem of approximate matching is then intrinsic to CBR, but the preferred
way of approaching this problem does not usually exploit fuzzy logic as the
main tool for performing such a matching process. Actually, this possibility
has been evidenced quite early in the CBR literature [17], but the mainstream
of subsequent works largely focused on distance-based approaches.

In this section, we aim at formalizing the case retrieval process, based on a
notion of approximate matching directly grounded on fuzzy logic. As pointed
out in the previous section, this does not totally depart from distance-based
approaches, since there are strong relationships between the two categories;
however, it provides a different starting point able to exploit the sound frame-
work of fuzzy set theory and, as we will show in the next section, a powerful
computational framework based on SQL for implementing the retrieval pro-
cess.

Let start by defining what is a case and which are the characteristics of case
attributes.

Definition 3.1 A storable case (or simply a case) c is a set of pairs 〈f, v〉

8

where f is a feature and v an admissible value for f . We denote as Range(f)
the set of admissible values for the feature f .
A case base is a set of storable cases CB = {ci/ci is a storable case}.

In CBR, a case is usually structured in two different parts: the problem de-
scription and the problem solution; without lack of generality, we will assume
that the 〈feature, value〉 description is adopted for both parts.

Definition 3.2 A feature f is said to be nominal if Range(f) is a finite set
of elements with no ordering relation among them.
A feature f is said to be linear if Range(f) is an ordered set; in particular
f is discrete linear if Range(f) is isomorphic to X ⊆ N and f is continuous
linear if Range(f) is isomorphic to Y ⊆ R.

Feature categorization [28] is important in order to define the similarity mea-
sure associated with each single feature. In this paper, we will introduce feature
similarities, by considering a set of linguistic terms as reference contexts for
such similarities. These contexts formally take the form of fuzzy predicates.
Depending on the category of the considered feature, three different types of
fuzzy predicates are considered:

• fuzzy predicates with continuous distribution: corresponding to predicates
defined through fuzzy sets with a continuous membership function; they can
be defined on linear (both continuous and discrete) features (e.g. a trape-
zoidal distribution for the linguistic term young defined over the discrete
domain of integers of the attribute age).

• fuzzy predicates with discrete distribution: corresponding to predicates de-
fined through fuzzy sets with a point-based membership function; they can
then be defined on both nominal as well as on discrete linear features. (e.g. a
vector distribution for the linguistic term bright defined over the attribute
color, associating to each color the membership function to the fuzzy set).

Moreover, approximate matching may require the use of suitable operators for
comparing values in the stored cases with those provided in the query. For this
reason, we consider the possibility of defining fuzzy operators to relate features
values. Also in this case we have different types of operators:

• continuous operators: characterized by a continuous distribution function
(e.g. the operator near over linear features, characterized by a trapezoidal,
triangular or Gaussian-like curve centered at 0 and working on the difference
of the operands);

• discrete operators: defining a similarity relation characterized by a sym-
metric matrix of similarity degrees (e.g. the operator compatible over the
attribute job defining to what degree a pair of different jobs are compatible).

Given the above definitions, we can now characterize the Case Retrieval pro-

9

cess based on fuzzy logic. First of all, let us introduce the concept of query
case.

Definition 3.3 A query case is a set of pairs q = {〈f1, v1〉, . . . 〈fn, vn〉} such
that each fi is a feature and each vi is either

(1) a fuzzy linguistic term defined over Range(fi) with membership function
µvi

: Range(fi) → [0, 1] or
(2) an expression of the kind opixi such that xi ∈ Range(fi) and opi is a

binary operator (either crisp or fuzzy) defined over fi.

The first point refers to the use of a generic fuzzy value, including those
generated by fuzzy modifiers; indeed, if a fuzzy modifier is used (e.g. very,
slightly, etc...), the result is just a modified membership function that can
then be used instead of the original one. We can consider as a fuzzy modifier
any boolean expression of fuzzy terms defined on the feature at hand: for
instance, if the fuzzy term young and old are defined over the feature age, we
could be interested in the fuzzy expression

〈age, (young OR (old AND NOT very old))〉

The fuzzy condition on feature age denotes a new fuzzy set F with relative
membership computable from the original memberships for terms young and
old; the whole expression can then be reduced to the more simple expression
〈age,F〉.

A special (and common) case for the second point is the situation when the
considered operator is the equality operator (=). In this case the expression
〈fi, = vi〉 simply denotes the standard condition of feature fi assuming a crisp
value vi.

The use of a fuzzy linguistic term in the query can be useful also in situations
when the end user specifies an actual (crisp) value for a feature, but it requires
to abstract that value. In such a case, the user can specify the equality on a
crisp value (as in point 2) asking the system to fuzzify it, on the basis of the
fuzzy sets defined over the feature. After the fuzzification provided by the
system, the situation is then reduced to the first point of definition 3.3.

For the sake of generality, let us indicate as P (fi, vi) the predicate related to
the assignment of a condition vi to feature fi; it can be a standard boolean
predicate (in case vi involves a crisp operator), or a fuzzy predicates if linguistic
values are specified. For example P (age, = 40) is true iff the feature age

assumes the value 40; P (age, young) is true with degree µyoung(x) if µyoung

is the membership function of the fuzzy set young defined over age and the
feature age assumes values x.

10

It is worth noting that in our framework, each case in the case base (i.e. each
storable case) does not have any fuzzy specification in its structure; fuzzy
information is used only at the query level to retrieve stored cases on the
basis of an approximate (fuzzy) match.

Definition 3.4 Given a query case q = {〈fi, vi〉(1 ≤ i ≤ n)}, the retrieval
condition induced by q is the fuzzy predicate RCq ≡ En

i=1P (fi, vi) where En
i=1

is a boolean expression involving all the predicates P (fi, vi)

The above definition allows one to determine which kind of role have to play
the matching features in case retrieval; this is related to the discussion about
the interpretation of a similarity degree equal to 0 at the end of section 2
(see also [6]). If for some features we ask to combine similarities in such a
way that a 0-similarity fully contributes to non-equivalence, then a t-norm
combination should be used, resulting in a predicate composition through the
AND (∧) connective. If on the contrary, a 0-similarity does not contribute at all
to non-equivalence, then a t-conorm should be the choice and the predicate
composition should be performed through OR (∨) connective. In case this
two different kinds of concept should be combined, then the corresponding
AND/OR formula can be adopted.

In the following, we will concentrate on the case when RCq ≡
∧n

i=1 P (fi, vi);
this is the most common situation in CBR systems, where the features’ re-
quirements explicitly stated by the user (P (fi, vi) in the above definition) are
actually interpreted as (possibly fuzzy) constraints that must simultaneously
hold.

Definition 3.5 Given a storable case c, a query case q and the retrieval con-
dition RCq, the matching degree of c to q is α(c, q) = µRCq

(c)

Definition 3.6 Given a case base CB, a query case q and a threshold λ ∈
[0, 1], the retrieval set of q with respect to CB and λ is the set RS(q, CB, λ) =
{ci ∈ CB/α(ci, q) ≥ λ}

The problem of finding the stored cases that best match the query, is then
reduced to that of finding the set of cases satisfying, to an acceptable degree
of match (represented by λ), the conditions specified in the query itself. What
the present framework proposes is to fully exploit fuzzy logic for:

• modeling the similarity of the case features with respect to different ap-
proximate concepts (i.e. the fuzzy linguistic terms definable on the feature
values);

• modeling the retrieval conditions as well as the acceptability of the retrieved
cases.

Furthermore, an important aspect mentioned in the introduction, is the fact

11

that a fuzzy characterization of case matching can be directly captured in SQL
based tools. In the next section we will show how a particular fuzzy extension
of SQL can be exploited, in order to implement our framework.

4 Fuzzy Querying in Databases

It is well-known that standard relational databases can only deal with precise
information and standard query languages, like SQL, only support boolean
queries. Fuzzy logic provides a natural way of generalizing the strict satisfiabil-
ity of boolean logic to a notion of satisfiability with different degrees; this is the
reason why considerable efforts has been dedicated inside the database com-
munity toward the possibility of dealing with fuzzy information in a database.

Two main different approaches to this problem can be identified: (1) explicit
representation of fuzzy information inside the database [4,23]; (2) fuzzy query-
ing on a regular database [3,18].
By considering the case retrieval framework proposed in the previous section,
it follows that the latter class of approaches is the one we are interested in.
In fact, since storable cases are supposed to be stored as standard tuples, the
interest is in defining a flexible querying approach on a standard database, to
be used to implement case retrieval.

In [3] standard SQL is adopted as the starting point for a set of extensions able
to improve query capabilities from boolean to fuzzy ones. The implementation
of the SQL extensions can be actually provided on top of a standard relational
DBMS, by means of a suitable module able to transform a fuzzy query into a
regular one through the so called derivation principle [2].

In the following, we concentrate on this methodology, by defining a set of
fuzzy extensions to SQL that may be of interest for CBR and by showing
how they can be processed, in order to transform them in standard queries. In
particular, for the aim of the present work, we are interested in simple SQL
statements with no nesting (i.e. we consider the WHERE clause to be a reference
to an actual condition and not to nested SQL statements); the condition in
the WHERE clause, differently from standard SQL, can be a composite fuzzy
formula involving both crisp and fuzzy predicates and operators as defined in
section 3.

By allowing fuzzy predicates and operators to form the condition of the WHERE
clause, the result of the SELECT is actually a fuzzy relation, i.e. a set of tuples
with associated the degree to which they satisfy the WHERE clause. Such a
degree can be characterized as follows: let

12

SELECT A FROM R WHERE fc

be a query with fuzzy condition fc; the result will be a fuzzy relation Rf with
membership function

µRf (a) = sup
(x∈R)∧(x.A=a)

µfc(x)

. The fuzzy distribution µfc(x) relative to fc must then be computed by taking
into account the logical connectives involved and their fuzzy interpretation.
It is well known that the general way to give a fuzzy interpretation to logi-
cal connectives is to associate negation with complement to one, conjunction
with a suitable t-norm and disjunction with the corresponding t-conorm [20].
In the following, we will concentrate on the simplest t-norm and t-conorm,
namely the min and max operators such that µA∧B(x) = min(µA(x), µB(x))
and µA∨B(x) = max(µA(x), µB(x)).

4.1 Deriving Standard SQL from Fuzzy-SQL

In order to process a query using a standard DBMS, we have to devise a way
of translating the Fuzzy-SQL statement into a standard one. The most simple
way is to require the fuzzy query to return a boolean relation Rb which tuples
are extracted from the fuzzy relation Rf , by considering a suitable threshold
on the fuzzy distribution of Rf . We consider, as in [3], the following syntax

SELECT (λ) A FROM R WHERE fc

which meaning is that a set of tuples with attribute set A, from relation set
R, satisfying the condition fc with degree µ ≥ λ is returned (in fuzzy terms,
the λ-cut of the fuzzy relation Rf resulting from the query is returned).

If we restrict attention to the kind of queries previously discussed (which
are suitable to model standard case retrieval) and if we adopt min and max
operator as norms, then it is possible to derive from a Fuzzy-SQL query, an
SQL query returning exactly the λ-cut required; if other norms are used, we
are only guaranteed that a superset of the λ-cut is returned and a further filter
must be applied to the result [2].

This can be easily verified as follows (see also [2] for more details): let P be
a fuzzy predicate; we write P ≥ λ to indicate that P is satisfied with degree
greater or equal than λ. Let DNC(P,≥, λ) be the derived necessary condition
for P ≥ λ, i.e. a boolean condition such that P ≥ λ → DNC(P,≥, λ).
It is trivial to verify that

13

high

price

1

0.8

110 180

<<

-20 -10 0

1

0.8

1

-18
a-b

(a) (b)

Fig. 1. Fuzzy Distributions

AND(P1, . . . , Pn) ≥ λ ↔ min(P1, . . . , Pn) ≥ λ
↔ DNC(P1,≥, λ) ∧ . . . ,∧DNC(Pn,≥, λ)

OR(P1, . . . , Pn) ≥ λ ↔ max(P1, . . . , Pn) ≥ λ
↔ DNC(P1,≥, λ) ∨ . . . ,∨DNC(Pn,≥, λ)

This implies that, using min and max operators, each derived necessary con-
dition is also a sufficient one and thus the obtained boolean condition can be
used to return exactly the required λ-cut 1 . Each DNC can then be obtained
from the fuzzy distribution associated to the involved predicate.

Example. Consider a generic relation PRODUCT containing the attribute price
over which the linguistic term high is defined. Figure 1 shows a possible
fuzzy distribution for high as well as the distribution of a fuzzy operator
� (much less than), defined over the difference (a − b) of the operands, by
considering the expression a � b. Let C be a generic condition and D(C)
the fuzzy degree of C; D(price = high ∧ price � 100) ≥ 0.8 will hold
iff min(D(price = high), D(price � 100)) ≥ 0.8, iff D(price = high) ≥
0.8 ∧ D(price � 100) ≥ 0.8 iff (110 ≤ price ≤ 180) ∧ (price− 100) ≤ −18.
The latter condition can be easily translated in a standard WHERE clause of
SQL.

In the rest of this work we will assume that min and max operators are adopted
as t-norm and t-conorm.

1 Similar results hold for (P,≤, λ), to be used when negation is involved.

14

5 Implementing Fuzzy Case Retrieval

In order to make effective our fuzzy case retrieval approach on top of a rela-
tional database we have defined the following implementation framework.

• Cases are represented as tuples of relations. It could happen that the rele-
vant information for a case is scattered in different relations of a relational
scheme; in such a situation a suitable view is built, in order to reconstruct
relevant case information in a single table-based structure. We will refer to
this view as the case base CB.

• Case features are represented by standard relational attributes; basic SQL
types will determine the category of the feature (e.g. int for a discrete linear
feature, float for a continuous linear feature, varchar for nominal features,
etc...).

• Fuzzy terms and fuzzy operators are defined through a suitable meta-database
containing all the fuzzy knowledge.

• A query case is defined by specifying conditions on the values for a set of
features as indicated in definition 3.3.

• Retrieval takes place, after specifying an acceptability threshold λ, by gen-
erating a Fuzzy-SQL query on the case base (with threshold λ), returning
the set of cases (tuples) within the λ limit of acceptability (i.e. the λ-cut of
the resulting relation).

As already mentioned in section 3, concerning the query case specification, a
particular attention must be paid when an expression of the type 〈f, = v〉 is
specified. This may be dealt with in two different ways, depending on the user
intentions:

• using the crisp condition f = v, stating that the feature f must have value
v;

• transforming the expression 〈f, = v〉 into the expression 〈f,F〉 where F is
the fuzzy set resulting from the fuzzification of the value v of the feature f .

In the last case, fuzzification may take place in different ways.

If the feature f is linear, the fuzzy expression f nearf v can be generated, with
nearf being a fuzzy operator modeling the proximity of values for the feature
f . This fuzzification strategy requires the knowledge engineer to specify such
proximity operators for the features potentially subject to fuzzification.

In case f is a nominal attribute, a fuzzification method can be defined by
considering the membership µ1(v) with respect to a given fuzzy set F1 defined
on Range(f). In that case, a new fuzzy set F2 with membership distribution
µ2 can be defined such that µ2(v

′) = 1 for every v′ such that µ1(v
′) = µ1(v)

and by scaling proportionally the membership function for other values.

15

GUI
(Browser)

(PHP/Apache)

metadb
(fuzzy KB) case base

DBMS
(POstsgeSQL)

Fuzzy-SQL
compiler

Query Case

Retrieval Set

queries and
case management

fuzzy knowledge
management

Fuzzy-SQL query

SQL query

meta information

fCBR

1

3

4

2

Fig. 2. The fCBR architecture

In [17] another simple kind of fuzzification is proposed (applicable to both
linear and nominal features). This fuzzification takes also into account the level
of acceptability λ specified for retrieval; it simply transforms the expression
〈f, = v〉 into the expression 〈f,

∨
i F〉〉 for each F〉 such that µF〉

(v) ≥ λ.

Once a query case q and an acceptability threshold λ have been specified
on the case base CB, a Fuzzy-SQL query can then be generated as follows:
SELECT (λ) * FROM CB WHERE RCq

Retrieved cases will then be obtained as the tuples of the result table obtained
from the query. Of course, if one is interested in just a subset A of the case
features, the target list of the query will be A instead of ∗.

Figure 2 shows the block scheme of the fCBR architecture, implementing the
described framework. It is a web-based architecture implemented following
the classical 3-tier approach. A standard browser provides the Graphical User
Interface through which the user can interact (by providing query cases and
by analyzing retrieved information) and the system administrator can man-
age the implemented application (by defining and controlling both the fuzzy
knowledge base and the case base). A Fuzzy-SQL compiler is invoked every
time a fuzzy query is generated from the user specified query case, returning
the corresponding standard SQL code to be executed by the application.

16

6 MyWine: a Case Study in Fuzzy Case Retrieval

To demonstrate the capabilities of the approach, we present an example of
product recommendation: the MyWine application 2 . MyWine is a web-
based application, exploiting the fCBR architecture described in the previous
section, with the goal of recommending wine bottles, available from an e-
catalog, matching a set of user requirements. Such requirements may contain
precise (e.g. a wine from a particular producer) as well as vague or fuzzy
specifications (e.g. a wine with a cheap price and a medium aging).

The relational scheme for the database is composed by the following tables:

WINE REGION(region name,country);
PRODUCER(prod name,prod address,prod email,prod website, region name);
WINE TYPE(wtype name,type,color);
WINE(wine name,prod name,wtype name,region name,category,cru);
BOTTLE(wine name,prod name,year,availability,price)

Underlined fields represent primary keys. Foreign key constraints are defined
as follows:

PRODUCER:foreign key(region name)

references WINE REGION(region name)

WINE:foreign key(prod name) references PRODUCER(prod name)

WINE:foreign key(wtype name) references WINE TYPE(wtype name)

WINE:foreign key(region name) references WINE REGION(region name)

BOTTLE:foreign key(wine name,prod name)

references WINE(wine name,prod name)

The table WINE REGION stores information about a particular wine region that
may be the region of a producer as well as the region where a wine is produced
(a producer may produce wines in different regions, while having residence in a
particular wine region); table WINE TYPE concerns information about a generic
wine type (e.g. Barolo, Chianti Classico, Chardonnay California, etc...) such
as the name, the possible type or classification (e.g. DOCG in Italy, AC in
France) and the color; table WINE concerns specific wines of given producers
belonging to a given wine type (wtype name) and stores information about the
category of the wine (dry, sweet, strong sweet, passito) and the possible cru
from which the wine is produced; table BOTTLE stores the specific information

2 A preliminary version of this application has also been described in [24].

17

Field Fuzzy Values Distrib./Domain Type

producer common, important discrete/discrete

wtname prestigious discrete/discrete

regionname important discrete/discrete

aging young, medium, old contin./discrete

price very cheap, cheap, medium, contin./contin.

expensive, very expensive

Table 1
Fuzzy predicates for MyWine.

about a particular production of a wine such as the year, the price and the
store availability; finally table PRODUCER stores all the specific information of
a producer.

As we can notice that database is quite structured since it has been designed
by taking into account standard DB design techniques; however, in order to
maintain relevant product information in a more compact form, the following
view has been defined:

CREATE VIEW PRODUCT(winename,year,producer,price

wtname,wttype,color,category,

region,aging) AS

SELECT B.wine_name,B.year,B.prod_name,B.price,

WT.wtype_name,WT.type,WT.color,W.category,

W.region_name,($CURRENT_YEAR-B.year) AS aging

FROM BOTTLE B, WINE W, WINE_TYPE WT

WHERE (W.wtype_name=WT.wtype_name) AND

(B.wine_name=W.wine_name)

The PRODUCT view represents the case base CB. Every row in such a view is a
storable case. Notice that, once a suitable product has been retrieved by using
the above view, if more details on the producer, the wine region or the wine
itself are needed, they can be obtained by joining the view with the suitable
tables.

In our example we consider the set of fuzzy predicates shown in table 1. The
membership functions for the two continuous distributions (for aging and
price) are reported in figure 3.

In addition to these predicates, two similarity relations (discrete operator) are
also defined: simr on the attribute regionname modeling a fuzzy similarity
among wine regions (with respect to “soil” characteristics) and simw on at-
tribute wtname, modeling the similarity among wine types (with respect to

18

price

ageing

Fig. 3. Plotting of the fuzzy memberships for attributes price and aging

basic wine’s characteristics). For instance, if the user requires a wine “similar
to” Barolo, the system is able to exploit specific similarities in order to propose
bottles of Barbaresco (and possibly of Nebbiolo) as well.

Finally, some continuous fuzzy operators have been defined; for example the
operator much less than for the attribute price (mlt p), the operator near for
attributes price (near p) and year (near y), the operator about for attribute
aging (a a). In this way, we can model for instance a requirement of the type
“the user wants a bottle of wine of about (a a) 3 years of aging and with a
price of about (near p) 25.5 euros”. Figure 4 shows the membership functions
of such operators, each one defined on the difference between the operands.
A query case is constructed by the user through a suitable template, where
the feature she is interested in (i.e. her requirements) are selected and instan-
tiated (in a mixed crisp and fuzzy way). Notice that in a deployed applica-
tion, the user does not necessarily has to specify each requirement directly.
Requirements (and so fuzzy conditions) may be elicited through a guided
user-machine dialogue; for example, the system may ask the user something
like ”Do you need the product for making an important gift?”. If the an-
swer is yes, the system may add to the retrieval condition an expression like
〈wtname, important〉.

Let us show an example of user consultation of MyWine. Suppose the user is
interested in knowing which bottles of wines similar to “Barolo” are available
in the catalog. She is interested in viewing in the result only the name of the
wine, the producer, the year and the price. She also wants a relatively high
degree of match to her requirements and she decided to specify an acceptability

19

Fig. 4. Membership function for continuous operands in MyWine.

threshold of 0.7. The following query is generated by the system:

SELECT (0.7) winename, producer, year, price

FROM PRODUCT

WHERE wtname |sim_w| ’Barolo’

where |op| is the syntax used to specify a discrete operator op. The translation
into standard SQL produces the following query:

SELECT winename, producer, year, price

FROM PRODUCT

WHERE (((wtname LIKE ’Barbaresco’) OR (wtname LIKE ’Barolo’)

OR (wtname LIKE ’Bolgheri_Rosso’) OR (wtname LIKE ’Bolgheri_Sassicaia’)

OR (wtname LIKE ’Bordeaux_Rouge’) OR (wtname LIKE ’Cabernet_Sauvignon’)

OR (wtname LIKE ’Chianti_Classico’) OR (wtname LIKE ’Langhe_Rosso’)

OR (wtname LIKE ’Sicilia_Rosso’)))

The wine types listed in the WHERE clause of the above query are those satisfy-
ing the relation simw with a degree greater than or equal to 0.7. The retrieved
products are shown on table 2. As we can see, not every bottle is of Barolo
wine, but several products are bottles of wine comparable with Barolo. Sup-
pose now that the user is not satisfied since too many products are shown; a
possibility is to impose a more strict acceptability level, by rising the thresh-
old. If we set λ = 0.8, the last 3 tuples (from N. 15 to N. 17) are pruned, since
their degree of matching is below the threshold.

20

N. winename year producer price

1 Barbaresco 1997 Angelo Gaja 145

2 Barbaresco 1998 Angelo Gaja 120.5

3 Chianti Classico 1998 Banfi 18

4 Chianti Classico 2000 Banfi 12

5 Barolo Arione 1997 Gigi Rosso 35

6 Barolo Arione 1996 Gigi Rosso 45.25

7 Langhe Sperss 2006 Angelo Gaja 120

8 Sito Moresco 2005 Angelo Gaja 45

9 Barolo Castello 1993 Terre del Barolo 25.7

10 Chateau Margaux 1990 Chateau Margaux 234

11 Sassicaia 1996 Tenuta San Guido 225

12 Barolo PerCristina 2000 Domenico Clerico 77

13 Barolo 2003 Domenico Clerico 51.5

14 Barolo 2002 Domenico Clerico 55

15 La Segreta Nero 2000 Planeta 30

16 Alfeo 1998 Ceralti 35

17 Cabernet Sauvignon Reserve 1993 Mondavi 66

Table 2

Consider now the user willing to add a requirement about the price, and in
particular that among the selected products, the interest is on a medium price.
If we denote as RT1 the result table containing tuples from N.1 to N. 14 (i.e.
the second retrieval set), the following query is generated

SELECT (0.8) winename, producer, year, price

FROM RT1

WHERE price=[medium]

Again the syntax f = [l] means that we ask for a feature f taking value in the
fuzzy set l with continuous distribution. The derived SQL query will be

SELECT winename, producer, year, price

FROM RT1

WHERE price BETWEEN 9 AND 21

The new retrieval set RT2 just contains tuples (cases) N.3 e N.4, since the

21

other bottles are too expensive with respect to the query. The user can decide
now to rise the price level from medium to expensive, but by stating a limit
as well, that is that the price must be much less than 70 euros. The new query
that the system generates is:

SELECT (0.8) winename, producer, year, price

FROM RT1

WHERE price=[expensive] AND price mlt_p 70

that is equivalent to:

SELECT (0.8) winename, producer, year, price

FROM PRODUCT

WHERE price=[expensive] AND price mlt_p 70 AND wtname |sim_w| ’Barolo’

The derived boolean condition on price will be

(price BETWEEN 24 AND 48) AND (price-70 <= -18.0)

At this point only tuples (cases) N. 5,6,8,9 are retrieved and the user can
decide to stop, since a reasonable set of products among which to decide has
been recommended.

What is important to notice is that, in this approach, the acceptability level
(i.e. the λ threshold) is global on the whole retrieval condition; this means that,
in order to distinguish different acceptability levels on the different features,
a well defined system-user interaction must devised.

As another example, consider a user looking, with a rather high degree of
matching, for old-aged wines similar to “Barbaresco” and from an important
wine region. The generated query will be:

SELECT (0.8) winename, producer, year, price

FROM PRODUCT

WHERE (wtname |sim_w| ’Barbaresco’) AND (regionname = {important})

AND (aging = [old])

Syntax f = {l} concerns the match of a feature f with a fuzzy value l with
discrete distribution. This result in the following SQL code:

SELECT winename, producer, year, price

FROM PRODUCT

WHERE (((wtname LIKE ’Barbaresco’) OR (wtname LIKE ’Barolo’)

OR (wtname LIKE ’Bolgheri_Rosso’)))

AND (((regionname = ’Bordeaux’) OR (regionname = ’Chianti’)

OR (regionname = ’Langhe’) OR (regionname = ’Napa_Valley’)

22

N. winename year producer price

1 Barbaresco 1997 Angelo Gaja 145

2 Barbaresco 1998 Angelo Gaja 120.5

5 Barolo Arione 1997 Gigi Rosso 35

6 Barolo Arione 1996 Gigi Rosso 45.25

9 Barolo Castello 1993 Terre del Barolo 25.7

16 Alfeo 1998 Ceralti 35

12 Barolo PerCristina 2000 Domenico Clerico 77

Table 3

OR (regionname = ’Bolgheri’) OR (regionname = ’Sauternes’)))

AND ((aging >= 7))

The retrieval set RT3 is shown in table 3. Now the user decides to filter the
result with another requirement: the wine she’s looking for must be of an
important producer. The new query takes the form of

SELECT (0.8) winename, producer, year, price

FROM RT3

WHERE producer={important}

or equivalently

SELECT (0.8) winename, producer, year, price

FROM PRODUCT

WHERE (wtname |sim_w| ’Barbaresco’) AND (regionname = {important})

AND (aging = [old]) AND (producer={important}

This retrieves only tuples N. 1,2,12. However, the user could decide to add the
requirement on the producer, but with a smaller acceptability degree with re-
spect to the rest, for instance 0.7. This has to be implemented by the following
query

SELECT (0.7) winename, producer, year, price

FROM RT3

WHERE producer={important}

that is not equivalent to

SELECT (0.7) winename, producer, year, price

FROM PRODUCT

WHERE (wtname |sim_w| ’Barbaresco’) AND (regionname = {important})

23

N. winename year producer price

1 Barbaresco 1997 Angelo Gaja 145

2 Barbaresco 1998 Angelo Gaja 120.5

3 Chianti Classico 1998 Banfi 18

4 Chianti Classico 2000 Banfi 12

5 Barolo Arione 1997 Gigi Rosso 35

6 Barolo Arione 1996 Gigi Rosso 45.25

16 Alfeo 1998 Ceralti 35

10 Chateau Margaux 1990 Chateau Margaux 234

11 Sassicaia 1996 Tenuta San Guido 225

12 Barolo PerCristina 2000 Domenico Clerico 77

Table 4

AND (aging = [old]) AND (producer={important}

Indeed, with the first query we only retrieve tuples N. 1,2,5,6,12, while with
the second, we would relax also the requirements on the wine region, the wine
type and the aging, by producing a totally different retrieval set (see table 4).
Figure 5 shows some screenshots of the described session.

7 Conclusions and Related Works

We have presented an approach where local acceptance relative to a feature
can be expressed through fuzzy distributions on its domain, abstracting the
actual values to linguistic terms. Global acceptance is then completely defined
in fuzzy terms, by means of the usual combinations of local distributions
through specific defined norms and so it is completely grounded on fuzzy
logic.

As noted by many researchers [17,21], the use of fuzzy set theory for indexing
and retrieval of cases has several advantages: the conversion of numerical fea-
tures into qualitative ones (with the advantage of making simple the retrieval
as well as of providing a suitable level of abstraction for judging similarity);
the use of multiple retrieval keys or indices for a given feature (i.e. different
fuzzy sets defined on the same feature); the use of modifiers for making re-
trieval more flexible, etc... In [9] it is argued that fuzzy logic is really relevant
in both case representation and in case retrieval, where “fuzzy knowledge rep-
resentation” and “fuzzy matching” methods can provide the suitable tools.

24

Retrieval Set

Case Details

Query Case

Fig. 5. Screenshots from MyWine

Also Yager in [29] argues for a unified view of CBR and fuzzy reasoning sys-
tems and works in [6,10] are clearly steps in this direction. Fuzzy rules have
also been proposed as a way of formalizing the case-based reasoning process
[14], by making clear the distinctions among the different interpretations of
the so-called CBR hypothesis (“similar problems have similar solutions”).

Despite that, the attempt of building CBR systems directly exploiting fuzzy
logic for retrieval has not received as much attention as the definition of
distance-based approaches, which are by now much more popular in the CBR
community. Remarkable exceptions are the works in [16,17,7,13].

In [16] the system CAREFUL is described; it is based on a hierarchical object-
oriented case representation, where case features can assume fuzzy linguistic
values as well. A fuzzy classification algorithm is then exploited to implement
case retrieval.

In [17] an attempt is described to directly use fuzzy set theory for indexing and
retrieving cases; however, the emphasis is more on making possible a simple
indexing of numerical features through abstractions to fuzzy linguistic terms.

25

An index structure is then built for every case feature, using fuzzy terms as
index keys. The matching and retrieval process neither addresses the problem
of properly combining query requirements as done in our work, nor it addresses
the issue of standard DBMS retrieval.

The work in [7] reports on some experiences at General Electric in using fuzzy
logic (and soft computing techniques in general) for CBR. In particular, in
the property valuation application fuzzy sets are used to model a preference
criterion on the relevant features, by setting a membership degree equal to 1
for values that are considered definitely similar and by scaling other values
(until 0 is reached) for values at the boundary of the allowed deviations. In
the plastics color matching application, a fuzzy preference function is used to
compute the similarity of a single feature with the corresponding target feature
and linguistic terms are associated to the level of similarity (excellent for very
small differences, good for small differences, etc...) In these works, fuzzy logic
is essentially exploited to model similarities, but no attempt is done to build a
global fuzzy retrieval condition and in implementing it (as done by our Fuzzy-
SQL approach). In particular, similarity is directly expressed through fuzzy
sets (defined for instance on the difference of values), while in our approach,
similarity is induced as a difference in membership and is contextualized by
the possible linguistic terms that are defined on the feature’s range.

Finally, the approach described in [13], deals with the definition of a fuzzy
CBR strategy for whether prediction. The problem described there requires
to retrieve the set of k most similar cases to the target, in order to obtain
predictions on the whether conditions, by means of a weighted aggregation of
the retrieved outcomes. This is a quite standard task in CBR, but the novelty
is that a fuzzy k-NN classification is adopted. Fuzzy logic is then used as a
way of comparing case features, in order to get a degree of membership in the
resulting classes on which to base the final prediction.

In the present paper we have defined a case retrieval approach suitable for
query cases expressible (either directly or indirectly) with fuzzy concepts. An
extended version of SQL, able to deal with fuzzy predicates and conditions,
is introduced as a suitable way to directly query a case base stored on a
relational DBMS; this approach is based on the language proposed in [3],
extending standard SQL in order to deal with fuzzy queries. The advantage of
this approach is that the whole power of an SQL engine can be fully exploited,
with no need of implementing specific retrieval algorithms. Moreover, the use
of SQL and of standard DBMS allows us to obtain an efficient retrieval even
in very large case bases.

Once the retrieved cases has been obtained, they can be used as starting point
for different kind of CBR systems. For example, in a CBR-based recommender
system (as described in section 6), the case base CB can be a table or view,

26

containing the set of products to be recommended; the user can then specify
a set of characteristics the product she looks for should have, without the
commitment of being precise about such characteristics. The fuzzy retrieval
engine will finally propose the set of products in the case base that match
the user requirements at the desired level (possibly after a suitable set of
interactions).

In a medical decision support system, one case feature can be the diagnostic
class of a patient (i.e. the case solution). The fuzzy specification of a set
of features of a prototypical patient belonging to one class can support the
diagnostician in determining the standard characteristics of a diagnostic class,
as well as the possibility of actually performing a diagnosis [25].

We believe that the research on the strict relationships between CBR and
fuzzy set theory will eventually lead to the constructions of flexible reasoning
systems, able to deal with problems of greater and greater complexity.

References

[1] A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues,
methodological variations and system approaches. AI Communications,
7(1):39–59, 1994.

[2] P. Bosc and O. Pivert. Fuzzy queries in conventional databases. In L. Zadeh
and J. Kacprzyk, editors, Fuzzy Logic for the Management of Uncertainty, pages
645–672. John Wiley, 1992.

[3] P. Bosc and O. Pivert. SQLf: a relational database language for fuzzy querying.
IEEE Transactions on Fuzzy Systems, 3(1), 1995.

[4] B.P. Buckles and F.E. Petry. A fuzzy representation of data for relational
databases. Fuzzy Sets and Systems, 7:213–226, 1982.

[5] H-D. Burkhard. Extending some concepts of CBR: foundations of case retrieval
nets. In M. Lenz, B. Bartsch-Spoerl, H-D. Burkhard, and S. Wess, editors, Case
Based reasoning Technology: from Foundations to Applications, pages 17–50.
LNAI 1400, Springer, 1998.

[6] H-D. Burkhard and M.M. Richter. On the notion of similarity in Case-Based
Reasoning and fuzzy theory. In S.K. Pal, T.S. Dillon, and D.S. Yeung, editors,
Soft Computing in Case Based Reasoning, pages 29–46. Springer, 1998.

[7] W. Cheetham, P. Cuddihy, and K. Goebel. Applications of soft CBR at General
Electric. In Soft Computing in Case-Based Reasoning, pages 335–365. Springer,
2000.

[8] E. Cox. Fuzzy sql: A tool for finding the truth. the power of approximate
database queries. PC AI Magazine, 14(1), 2000.

27

[9] R. Lopez de Mantaras and E. Plaza. Case-based reasoning: An overview. AI
Communications, 10:21–29, 1997.

[10] D. Dubois, F. Esteva, P. Garcia, L. Godo, R. Lopez de Mantaras, and H. Prade.
Fuzzy modelling of case-based reasoning and decision. In Proc. 2nd Intern.
Conference on Case-Based Reasoning (ICCBR-97), LNAI, pages 599–610,
Providence, RI, 1997.

[11] J. Galindo, J.M. Medina, O. Pons, and J.C. Cubero. A server for fuzzy
SQL queries. In Lecture Notes in Artificial Intelligence 1495, pages 164–174.
Springer, 1998.

[12] J. Galindo, A. Urrutia, and M. Piattini. Fuzzy Databases: modeling, design and
implementation. IGI Publ., 2006.

[13] B.K. Hansen. Whether prediction using CBR and fuzzy set theory.
Master Thesis, Dalhousie University, 2000. http://www.cs.dal.ca/∼
bjarne/thesis.pdf.

[14] H. Huellermeier, D. Dubois, and H. Prade. Formalizing case-based inference
using fuzzy rules. In Soft Computing in Case-Based Reasoning, pages 47–72.
Springer, 2000.

[15] Scianta Intelligence. Fuzzy sql (http://scianta.com/products/fuzzysql.htm).

[16] M. Jaczynski and B. Trousse. Fuzzy logic for the retrieval step of a case-based
reasoner. In 2nd European Workshop on Case-Based Reasoning - EWCBR94,
pages 313–320, Chantilly, France, 1994.

[17] B.C. Jeng and T-P. Liang. Fuzzy indexing and retrieval in case-based systems.
Expert Systems with Applications, 8(1):135–142, 1995.

[18] J. Kacprzyck and A. Ziolowski. Database queries with fuzzy linguistic
quantifiers. IEEE Transactions on Systems, Man and Cybernetics, 16(3), 1986.

[19] J.L. Kolodner. Case-Based Reasoning. Morgan Kaufmann, 1993.

[20] C.T. Liu and C.S. George Lee. Neural Fuzzy Systems. Prentice Hall, 1996.

[21] J. Main, T.S. Dillon, and S.C.K. Shiu. A tutorial on case-based reasoning. In
Soft Computing in Case-Based Reasoning, pages 1–18. Springer, 2000.

[22] B. Malysiak, D. Mrozek, and S. Kozielski. Processing fuzzy sql queries with
flat, context-dependent and multidimensional membership functions. In Proc.
IASTED Int. Conference on Computational Intelligence, CI 2005, pages 36–41,
Calgary, Canada, 2005.

[23] J.M. Medina, O. Pons, and M.A. Vila. An elementar processor of fuzzy SQL.
Mathware and Soft Computing, 1(3):285–295, 1994.

[24] L. Portinale and S. Montani. A fuzzy case retrieval approach based on SQL for
implementing electronic catalogs. In proc. 6th European Conference on Case-
Based Reasoning, Aberdeen, 2002. Springer.

28

[25] L. Portinale, S. Montani, and R. Bellazzi. Fuzzy approach to case retrieval
through fuzzy extension of SQL. International Journal on Engineering
Intelligent Systems, 10(3):159–171, 2002.

[26] J. Schumacher and R. Bergmann. An efficient approach to similarity-based
retrieval on top of relational databases. In E. Blanzieri and L. Portinale, editors,
Proc. 5th EWCBR, pages 273–284, Trento, 2000. Lecture Notes in Artificial
Intelligence 1898.

[27] I. Watson. Applying Case-Based Reasoning: Techniques for Enterprise Systems.
Morgan Kaufmann Publ., 1997.

[28] D.R. Wilson and T.R. Martinez. Improved heterogeneous distance functions.
Journal of Artificial Intelligence Research, 6:1–34, 1997.

[29] R.R. Yager. Case-based reasoning, fuzzy systems modelling and solutions
composition. In Proc. 2nd Intern. Conference on Case-Based Reasoning
(ICCBR-97), LNAI, pages 633–642, Providence, RI, 1997.

[30] Q. Yang, W. Zhang, J. Wu, and H. Nakajima. Efficient processing of nested
fuzzy SQL queries in a fuzzy database. IEEE Transaction on Knowledge and
Data Engineering, 13(6):884–901, 2001.

29

