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Università del Piemonte Orientale “A. Avogadro”

Via Bellini 25/G, 15100 Alessandria
http://www.di.unipmn.it

Space-Conscious Data Indexing and Compression

in a Streaming Model

Authors: P. Ferragina (ferragina@di.unipi.it)
T. Gagie (travis@mfn.unipmn.it) G. Manzini (manzini@mfn.unipmn.it)

TECHNICAL REPORT TR-INF-2008-02-01-UNIPMN
(February 2008)



The University of Piemonte Orientale Department of Computer Science Research Technical Reports
are available via WWW at URL http://www.di.mfn.unipmn.it/.
Plain-text abstracts organized by year are available in the directory

Recent Titles from the TR-INF-UNIPMN Technical Report Series

2007-05 Scheduling Algorithms for Multiple Bag-of-Task Applications on Desktop Grids: a Knowledge-
Free Approach, Canonico, M., Anglano, C., December 2007.

2007-04 Verifying the Conformance of Agents with Multiparty Protocols, Giordano, L., Martelli, A.,
November 2007.

2007-03 A fuzzy approach to similarity in Case-Based Reasoning suitable to SQL implementation, Porti-
nale, L., Montani, S., October 2007.

2007-02 Space-conscious compression, Gagie, T., Manzini, G., June 2007.
2007-01 Markov Decision Petri Net and Markov Decision Well-formed Net Formalisms, Beccuti, M.,

Franceschinis, G., Haddad, S., February 2007.
2006-03 New challenges in network reliability analysis, Bobbio, A., Ferraris, C., Terruggia, R., November

2006.
2006-03 The Engineering of a Compression Boosting Library: Theory vs Practice in BWT compression,

Ferragina, P., Giancarlo, R., Manzini, G., June 2006.
2006-02 A Case-Based Architecture for Temporal Abstraction Configuration and Processing, Portinale,

L., Montani, S., Bottrighi, A., Leonardi, G., Juarez, J., May 2006.
2006-01 The Draw-Net Modeling System: a framework for the design and the solution of single-formalism

and multi-formalism models, Gribaudo, M., Codetta-Raiteri, D., Franceschinis, G., January 2006.
2005-06 Compressing and Searching XML Data Via Two Zips, Ferragina, P., Luccio, F., Manzini, G.,

Muthukrishnan, S., December 2005.
2005-05 Policy Based Anonymous Channel, Egidi, L., Porcelli, G., November 2005.
2005-04 An Audio-Video Summarization Scheme Based on Audio and Video Analysis, Furini, M., Ghini,

V., October 2005.
2005-03 Achieving Self-Healing in Autonomic Software Systems: a case-based reasoning approach,

Anglano, C., Montani, S., October 2005.
2005-02 DBNet, a tool to convert Dynamic Fault Trees to Dynamic Bayesian Networks, Montani, S.,

Portinale, L., Bobbio, A., Varesio, M., Codetta-Raiteri, D., August 2005.
2005-01 Bayesan Networks in Reliability, Langseth, H., Portinale, L., April 2005.
2004-08 Modelling a Secure Agent with Team Automata, Egidi, L., Petrocchi, M., July 2004.
2004-07 Making CORBA fault-tolerant, Codetta Raiteri D., April 2004.



Space-Conscious Data Indexing and Compression

in a Streaming Model

Paolo Ferragina1, Travis Gagie2, and Giovanni Manzini2

1 Dipartimento di Informatica, Università di Pisa, Italy
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Abstract. Compressed full-text indexes, data compressors, and streaming algorithms
are three powerful tools for dealing with massive datasets. Surprisingly, algorithms for
building compressed indexes (or files) are space-inefficient and/or incompatible with
a streaming setting. Space-conscious streaming algorithms are crucial because current
disk features make sequential disk accesses at least two orders of magnitude faster than
random accesses. For the first time in the literature, we investigate string problems in
the streaming model and prove upper and lower bounds on the complexity of building
compressed indexes and compressing data in terms of the classic product: internal-
memory space × number of passes over the disk data.

1 Introduction

Full-text indexes are data structures that index a text string T [1, n] to support subsequent
searches for arbitrarily long patterns like substrings, regexp, errors, etc., and have many appli-
cations in computational biology and data mining. Recent years have seen a renewed interest
in these data structures since it has been proved that full-text indexes can be compressed
up to the k-th order empirical entropy of the input text T , and searched without being fully
decompressed [27]. At the same time, it has been shown that modern data compressors based
on full-text indexes can approach the empirical entropy of an input string without making any
assumption on its generating source [13]. Such fundamental achievements have been accom-
panied by a large algorithmic-engineering effort (see e.g. [14, 12, 28] and references therein)
that turned these theoretical breakthroughs into a technological advancement: compressed
full-text indexes improve a suffix-tree’s space by a factor of 100, and a suffix-array’s space by
a factor of 20, without significant slowdown in the query performance.

Clearly, data compression and indexing are mandatory when the data to be processed
and/or transmitted has large size. But larger data means more memory levels involved in
their storage and hence, more costly memory references. It is already known how to design an
optimal external-memory (uncompressed) full-text index [11, 20], and some results on external
memory compressed indexes have recently appeared in the literature [2, 5, 17]. Whichever is
the index you choose (compressed or uncompressed), to use it you first need to build it! The
sheer size of data available nowadays for mining and search applications has turned this into
a hot topic because the construction/compression phase may be a bottleneck that can even
prevent these indexing and compression tools from being used in large-scale applications.

Recent research [15, 18, 19, 26] has highlighted that a major issue in the construction of
such data structures is the large amount of working space usually needed for the construction.
Here working space is defined as the space required by an algorithm in addition to the space
required for the input (the text to be indexed/compressed) and the output (the index or the
compressed file). If the data to be indexed is too large to fit in main memory one must resort



to external memory construction algorithms. Such algorithms are known (see e.g. [9, 21, 6, 7]),
but they all use Θ(n log n) bits of working space. This amount of working space may be two
orders of magnitude larger than the final size of the compressed index that, for typical data,
is a factor 3-to-5 smaller than the original input and is anyway O(n) bits in the worst case.

Given these premises, the first issue we address in this paper is the design of construction
algorithms for full-text indexes which work on a disk-memory system and are space conscious
in that their working space is as small as possible. The second issue we address concerns the
way our algorithms fetch/write data onto disk: we design them to access disk data only via
sequential scans (i.e. streaming-like). This approach is motivated from the fact that sequential
I/Os are two orders of magnitude faster than random I/Os. Indeed, sequential disk access rates
are currently comparable to random access rates in internal memory. This fact is routinely
exploited by expert programmers to get better performance in practice, and it is currently the
subject of a large body of research, named Data Streaming, typically dealing with sketching,
geometric, or graph problem [1, 8, 10, 25]. In this paper we follow this line of research and
investigate, for the first time in the literature, two string problems: building (compressed)
full-text indexes and compressing data. We provide upper and lower bounds for them in
terms of the product “internal-memory space × passes over the disk data”.

Let us now detail our results, and compare them technically with the known literature. Our
model of computation consists of an internal memory with M words (i.e. Θ(M log n) bits),
and O(1) disks of unbounded capacity, supporting only sequential accesses to disk data.1 The
complexity of our algorithms will be measured in terms of the number of disk passes in the
worst case. In our model sorting n items takes Θ(n/M) passes on one disk [24], and O(log n)
passes on (at least) two disks [22]. Since the construction of most full-text indexes reduces to
suffix-array construction, which in turn needs (log n) recursive sorting-levels [9], we can build
a (compressed) full-text index via a sort-based approach in O( n

M log n) passes on one disk and

O(log2 n) passes on two or more disks. The working space of this approach is Θ(n log n) bits
regardless of the number of disks. Our first result is to show that in our model we can build
a suffix array using a simple sort-less approach, that, even on a single disk, takes O(n/M)
passes and n bits of working space (Theorem 2). If we allow more than one disk, our algorithm
is faster than the sort-based approach whenever M = Ω(n/ log2 n). This condition holds on
modern PCs for texts of size up to a few Terabytes.

Our second contribution is to show how to compute the BWT (a basic ingredient of both
compressors and compressed indexes) using a sort-less approach in O(n/M) passes and n bits
of disk working space. This is a key contribution since the total space usage of the algorithm
is Θ(n) and therefore proportional to the size of the input. Note also that at each pass over
disk data we scan Θ(n) bits. This yields an additional Θ(log n) speedup with respect to the
sort based approach that at each pass scans Θ(n log n) bits. An additional benefits of working
via sequential scans is that the data can be stored on disk in compressed form. Our algorithm
takes full advantage of this property since, if the input has small entropy and is therefore
highly compressible, the same is true not only for the output but for the intermediate files as
well. To our knowledge ours is the first construction algorithm with this feature.

Another important contribution of our paper is a space-conscious method to invert the
BWT (and thus decompress the data) which uses O(n/M) passes with one disk or O(log2 n)

1 Our model is a reminiscence of the PL-LEMA model of [1], that constraints the classic External
Memory model [29] to set M = O(polylog(n)) and to execute only a polylog number of random
I/Os. All other I/Os must be sequential and thus examine the disk data in passes. In our model
algorithms operate in disk passes only (i.e. no random I/Os at all) and M is an arbitrary parameter.



At the beginning of the pass, saext and posext are stored on disk and contain the sa and pos arrays
of ThTh−1 · · ·T1.

1. Compute in internal memory the array saint[1, m] containing the lexicographic ordering of the
suffixes starting in Th+1. This step uses Th+1, Th and the first m entries of posext which are on
disk (these are needed since suffixes extend up to T1). Let us call the suffixes starting in Th+1

new suffixes, and the ones starting in Th · · ·T1 old suffixes;
2. Compute how many old suffixes fall between two lexicographically consecutive new suffixes. This

step uses saint, and a left-to-right scan of Th · · · T1, and posext;
3. Update saext and posext so that they include all the suffixes of the longer string Th+1Th · · ·T1.

Fig. 1. Pass h + 1 of the CF-algorithm, where m = Θ(M/ log n).

passes with two disks, and Θ(n) bits of disk working space (Theorem 7). This improves known
sort-based bounds, and is based on different techniques than the ones we used to derive
our construction algorithms. Further contributions of our paper are: streaming algorithms
for computing the array Ψ and a sampling of the suffix array, which are both important
ingredients of compressed indexes (Theorems 5 and 6); and a lightweight internal-memory
algorithm for computing the BWT, which is the fastest in the literature when the amount of
working space is n + o(n) bits (Theorem 4).

Finally, we try to assess to what extent we can improve our algorithms for comput-
ing/inverting the BWT with only one disk. In this setting, lower bounds are often established
considering the product “internal-memory space × passes” [24]. For our BWT construction
and inversion algorithms such product is O(n log n) bits, and we prove that we cannot reduce
them to o(n/ logn) with a streaming algorithm using a single disk (Theorem 8). Hence our
algorithms are a factor O(log2 n) from the optimal. To our knowledge, this is the first lower
bound of this kind established in the field of data compression and indexing.

2 Notation

We briefly recall some definitions related to compressed full-text indexes; for further details
see [27]. Let T [1, n] denote a text drawn from a constant size alphabet Σ. As is usual, we
assume that T [n] is a character not appearing elsewhere in T and lexicographically smaller
than all other characters. Given two strings s, t we write s ≺ t to denote that s precedes t
lexicographically. The suffix array sa[1, n] is the permutation of [1, n] giving the lexicographic
order of the suffixes of T , that is T [sa[i], n] ≺ T [sa[i + 1], n] for i = 1, . . . , n − 1. The inverse
of the sa is the pos array, such that pos[i] is the rank of suffix T [i, n] in the suffix array. This
way, sa[pos[i]] = i. We denote by posd the set of (n/d) values pos[d], pos[2d], . . . , pos[n] that
indicate the distribution of the positions of the d-spaced suffixes within sa.

The Burrows-Wheeler transform bwt[1, n] is defined as bwt[i] = T [(sa[i] − 1) mod n]. The
array Ψ [1, n] is the permutation of [1, n] such that sa[Ψ(i)] = sa[i] + 1 mod n. The value Ψ [i]
is the lexicographic rank of the suffix which is one character shorter than the suffix of rank i.
The basic ingredients of most compressed indexes are either the bwt or the Ψ array, optionally
combined with the set posd for some d = Ω(log n). In this paper we describe external memory
algorithms for the computation of all these three basic ingredients.

3 Construction algorithms

The Crauser-Ferragina’s algorithm. In [6] Crauser and Ferragina proposed an external-
memory suffix array construction algorithm which is an evolution of a previous algorithm by



At the beginning of pass h + 1, we assume that saext contains the suffix array of ThTh−1 · · · T1, and
bitsext is defined as described in the text. Both arrays are stored on disk.

1. Compute in internal memory the array saint[1, m] which contains the lexicographic ordering of
the suffixes starting in Th+1. This step uses Th+1, Th and the first m− 1 entries of bitsext. Let us
call the suffixes starting in Th+1 new suffixes, and the ones starting in Th · · ·T1 old suffixes.

2. Compute in internal memory the array bwt[1, m] defined as bwt[i] = Th+1[saint[i] − 1], for i =
1, . . . , m. If saint[i] = 1 set bwt[i] = $ where $ is a character not appearing in T .

3. Scanning bwt, ThTh−1 · · ·T1, and bitsext compute how many old suffixes fall between two lexico-
graphically consecutive new suffixes.

4. Update saext and bitsext so that they contain the correct information for the extended string
Th+1Th · · · T1.

Fig. 2. Pass h + 1 of the new CF-algorithm.

Gonnet et al. [16]. Like [16], the algorithm logically partitions the input text T [1, n] into blocks
of size m = Θ(M) characters each, i.e. T = Tn/mTn/m−1 · · ·T2T1, and computes incrementally
the suffix array sa of T via n/m passes, one per block of T . Unlike [16], these text blocks are
examined from the right to the left and auxiliary data structures are introduced to guarantee
improved I/O-bounds in the worst case. The pseudo-code of the generic (h + 1)-th pass is
given in Figure 1.

At the beginning of pass h, CF-algorithm maintains on disk the suffix array of the string
Th · · ·T1, and its inverse array posext. After the last pass h = n/m, so we have saext = sa and
posext = pos. The generic pass (h + 1) works as follows. We load the text block t = Th+1Th

into memory, and compute the lexicographic ordering saint of the (new) text suffixes starting
in Th+1 (and extending up to T [n]); then merge saint with the (old) text suffixes in saext in
order to produce the new arrays saext and posext for the extended string Th+1Th · · ·T1. The
merging process is implemented in [6] with the help of a counter array gap[0, m]: which stores
in gap[j] the number of (old) suffixes of the string Th · · ·T1 which lie lexicographically between
the saint[j − 1]-th and the saint[j]-th new text suffix starting in Th+1. The computation of
gap is performed by scanning rightward the string Th · · ·T1 and by binary-searching saint

for the lexicographic position of each old suffix. Finally, gap is used to quickly merge saint

with saext, and update posext correspondingly, via one disk scan: entry gap[j] indicates how
many consecutive (old) suffixes in saext follow the saint[j − 1]-st new suffix and precede the
saint[j]-th new suffix.

Theorem 1 ([6, Th. 1]). The CF-algorithm computes the suffix array in O(n/M) passes
over Θ(n log n) bits of disk data, using Θ(n log n) bits of working space. The CPU time is
O

(
(n2/M) log M

)
. ⊓⊔

The CF-algorithm scans the input text leftwards; we can turn any of its disk scans into a
rightward scan by simply reversing T . Keeping this in mind, and for simplicity of description,
our algorithms below will also be described as algorithms that execute right-to-left disk scans.

The new CF-algorithm. We now describe a version of the CF-algorithm that introduces
two main improvements: working space (and consequently amount of processed data), and
CPU time. The new algorithm still splits T into n/m blocks T = Tn/m · · ·T1, but it keeps on
disk a bit array bitsext, in place of posext, defined as follows: at the beginning of pass h + 1
it is bitsext[i] = 1 if and only if the suffix T [i, n] starting in Th · · ·T1 is larger than the first



suffix Th · · ·T1. We notice that at pass (h + 1), the first jh = n − hm + 1 positions of bitsext

are not used, and that T [jh] is the first character of Th · · ·T1. The pseudo-code of pass h + 1
of the new CF algorithm is illustrated in Fig. 2.

The use of bitsext instead of posext gains a twofold advantage over the original CF-
algorithm: reduction of the working space on disk (n bits instead of Θ(n log n)), and log-
arithmic reduction in the number of passes (and in the total amount) of processed data.
Precisely, at the beginning we read into internal memory the substring t[1, 2m] = Th+1Th and
the binary array b[1, m− 1] = bitsext[jh +1, jh +m− 1].2 Note that, by definition of bitsext, it
is b[i] = 1 iff the suffix starting at Th[1+ i] is lexicographically greater than the suffix starting
at Th[1], for i = 1, . . . , m − 1. To build saint we need to lexicographically sort the suffixes
starting in Th+1 and possibly extending up to T [n]. Observe that, given two such suffixes
starting at positions i and j of Th+1, with i < j, we can compare them lexicographically by
comparing (in internal memory) the strings t[i, m] and t[j, j + m − i]. If these strings differ
we are done. If t[i, m] = t[j, j + m − i] the order of the suffixes is determined by the relative
order of the suffixes starting at t[m + 1] ≡ Th[1] and t[j + m − i + 1] ≡ Th[j − i + 1] which is
given by the bit stored in b[j − i], available in internal memory.

This argument shows that t[1, 2m] and b[1, m− 1] contain all the information we need to
build saint by just working in internal memory. The actual computation of saint is done in
O(m) time as follows. First we compute the rank rm of the suffix starting at t[m]; that is,
we compute for how many indices i with 1 ≤ i < m the suffix starting at t[i]—and extending
up to T [n]—is smaller than the suffix starting at t[m]. This can be done in O(m) time using,
for example, Lemma 5 in [19]. At this point the problem of building saint is equivalent to the
problem of building the suffix array of the string t[1, m−1]$ where $ is a special end-of-string
character that has rank precisely rm (instead of being lexicographically smaller than all other
suffixes, as is usually assumed). Thus, we can compute saint in O(m) time and O(m log m)
bits of space with a straightforward modification of the algorithm DC3 [21].

Then we build the array bwt which is a sort of BWT of Th+1 (it is not the usual BWT
since the order of the suffixes in saint takes into account the whole string Th+1 · · ·T1). The
crucial point of the algorithm is now to use bwt to compute efficiently how many old suffixes
(of Th · · ·T1) lie between two lexicographically consecutive new suffixes (starting in Th+1).
This is done by deploying the following lemma.

Lemma 1. For any character α ∈ Σ, let C[α] denote the number of characters in bwt that
are smaller than α, and let Rank(α, i) denote the number of occurrences of α in the prefix
bwt[1, i]. Assume that the old suffix T [k, n] is lexicographically larger than precisely i new
suffixes, that is,

T [saint[i], n] ≺ T [k, n] ≺ T [saint[i + 1], n].

Then, the (one-character longer) old suffix T [k−1, n] is lexicographically larger than precisely
j new suffixes, that is, T [saint[j], n] ≺ T [k − 1, n] ≺ T [saint[j + 1], n], where

j =

{
C[T [k − 1]] + Rank(T [k − 1], i) if T [k − 1] 6= Th+1[m];
C[T [k − 1]] + Rank(T [k − 1], i) + bitsext[k] if T [k − 1] = Th+1[m].

Proof. Let α = T [k−1]. Obviously T [k−1, n] is larger than the new suffixes that start with a
character smaller than α (they are C[α]), and is smaller than all new suffixes starting with a

2 It suffice to read Th+1 since, as we shall see, Th and bitsext[jh + 1, jh + m − 1] are used to do the
binary-search at pass h so we just need to keep them in internal memory.



character greater than α. The crucial point is now to compute how many new suffixes T [ℓ, n]
starting with α = T [k − 1] are smaller than T [k − 1, n].

Consider first the case α 6= Th+1[m]. Since T [ℓ] = α 6= Th+1[m] we have that T [ℓ + 1, n]
is also a new suffix and T [ℓ, n] ≺ T [k − 1, n] iff T [ℓ + 1, n] ≺ T [k, n]. Furthermore, T [ℓ] =
T [k − 1] = α so that the sorting of the rows in BWT imply that counting how many new
suffixes starting with α are smaller than T [k − 1, n] is equivalent to counting how many α’s
occur in bwt[1, i]. This is precisely Rank(T [k − 1], i).

Assume now that α = Th+1[m]. Among the new suffixes starting with α there is also the
one starting at position Th+1[m], call it T [ℓ′, n]. We cannot use the above trick to compare
T [k−1, n] with T [ℓ′, n] since T [ℓ′+1, n] coincides with Th · · ·T1 and is therefore an old suffix,
not a new one. However, it is still true that T [ℓ′, n] ≺ T [k − 1, n] iff T [ℓ′ + 1, n] ≺ T [k, n] and
since T [ℓ′ + 1, n] = Th · · ·T1 we know that this holds iff bitsext[k] = 1. ⊓⊔

Using the above lemma—and the fact that we can build a o(m)-bit data structure sup-
porting O(1) time Rank queries over bwt [27]—with a single right-to-left scan of Th · · ·T1 and
bitsext we can compute in O(n) time the same array gap[0, m] of the CF-algorithm, and then
use it to update saext: for i = 0, . . . , m − 1 we simply copy gap[i] old saext values followed
by saint[i + 1]. It is a simple algorithmic exercise to show that we can update saext in place,
without using any additional working space.

During this step we also compute the content of bitsext for the next pass. Recall that at
pass h + 2 we need that bitsext[k] = 1 iff Th+1 · · ·T1 ≺ T [k, n]. To update bitsext, we first
compute the index r1 such that T [saint[r1], n] = Th+1 · · ·T1 (r1 is the rank of Th+1 · · ·T1

among the new suffixes). When we find that there are exactly i new suffixes smaller than
T [k, n] we know that Th+1 · · ·T1 ≺ T [k, n] iff r1 ≤ i so we can write bitsext[k] to disk.

Theorem 2. The new CF-algorithm computes the suffix array in O(n/M) passes over Θ(n log n)
bits of disk data, using n bits of working space. The CPU time is O

(
n2/M

)
. ⊓⊔

Compared to the original CF-algorithm (Theorem 1), our new proposal reduces the work-
ing space (and thus the amount of processed data), and the CPU time, by a logarithmic
factor. We also notice that in the new CF algorithm, and in the derivatives described below,
we scan T and the bitsext array in parallel so we need at least two disks. However, in view of
the lower bounds in Section 5, which hold for a single disk, it is important to point out that
our new CF-algorithm (and its derivatives) can work via sequential scans using only one disk.
This is possible by interleaving T and the bitsext array in a single file. At pass h we interleave
m new bits within the segment Th (so that the portion Tn/m · · ·Th+1 is shifted by m/ log n
words). These new bits together with the bits already interleaved in Th−1 · · ·T1 allow us to
store the portion of the bitsext array that is needed at the next pass.

Finally, we point out that in practice it is not necessary to write the whole bitsext array to
disk. Indeed, fix ℓ > 0 and let w denote the length-ℓ prefix of Th · · ·T1: It is straightforward to
modify the algorithm so that we write the bit bitsext[k] only for those indices k such that the
length-ℓ prefix of T [k, n] coincides with w. This is possible since, when we need to compare
Th · · ·T1 with T [k, n], we have just read the leftmost characters of the latter suffix. Hence,
we can determine the lexicographic ordering of the two suffixes by first comparing w with
the length-ℓ prefix of T [k, n] and only for ties do we need to look at bitsext[k]. Using this
trick with, say, ℓ = 100 is likely to significantly reduce the amount of data written to disk in
practice, even if we may still end up in writing n bits in the worst case.



BWT computation. Because of its very simple structure, it is straightforward to transform
the new CF algorithm into an algorithm for computing the BWT. The key observation is
that the values stored in saext are never used in subsequent computations. Therefore, if we
are interested in the BWT, we can simply replace saext with an array bwtext containing
the BWT characters. Because of the relationship bwt[i] = T [sa[i]− 1], the only change in the
algorithm is that, after the computation of the gap array, we update bwtext as follows: we copy
gap[i] old BWT characters followed by the character T [saint[i + 1] − 1], for i = 0, . . . , m − 1.

Theorem 3. We can compute the BWT in O(n/M) passes over Θ(n) bits of disk data, using
n bits of working space. The CPU time is O

(
n2/M

)
. ⊓⊔

We remark that if we had used the suffix-array construction as an intermediate step to
derive the BWT, then we would have ended up with Θ(n log n) bits of working space, whereas
the input (text) and the output (BWT) now sum up to O(n) bits. Hence Theorem 3 is a key
improvement because now the working space is of the order of input/output space, so in
total O(n) bits instead of the O(n log n) bits required by the suffix-array based approach. In
addition to that, since we access T and bwtext sequentially, we can save further space—and
sequential I/Os— by storing them in compressed form. In fact, at the beginning of pass h+1,
bwtext contains the BWT of Th · · ·T1 so we can expect it too to be highly compressible with
simple algorithms such as MTF and RLE.

Finally, we observe that this I/O-conscious algorithm can be turned into a lightweight
internal memory algorithm with interesting time-space tradeoffs. For example, setting M =
n/ logn we get an internal memory algorithm that runs in O(n log n) time and uses Θ(n)
bits of working space. Setting M = n/ log1+ǫ n, with ǫ > 0, the running time becomes
O

(
n log1+ǫ n

)
and the working space goes down to n + o(n) bits. Note that if we no longer

need the input text T , we can save extra space writing the (partial) BWT over the already
processed portion of text. That is, at the end of pass h, we store bwth = bwt(Th · · ·T1)
in the space originally used for Th · · ·T1. The right-to-left scan of Th · · ·T1 required for the
binary-search steps on saint can be done without any asymptotic slowdown using bwth and a
o(n)-space data structure supporting O(1) Rank queries over bwth (see again [27]). Summing
up, we proved:

Theorem 4. For any ǫ > 0, we can compute the BWT in internal memory in O
(
n log1+ǫ n

)

time, using n + o(n) bits of working space. The BWT can be stored in the space originally
containing the input text. ⊓⊔

The only internal-memory BWT algorithm known in the literature using n + o(n) bits
of working space is [19] which—when restricted to use Θ(n) bits of working space—runs in
O

(
n log2 n

)
time. The algorithm [19] works also for non constant alphabets and can use as

little as Θ(n logn/
√

v) bits of working space with v = O
(
n2/3

)
, running in O(n log n + vn)

worst case time.

Computation of the array Ψ . We use the same framework as above and maintain an array
Ψext that, at the end of pass h + 1, contains the Ψ values for the string Th+1 · · ·T1. Since
the value Ψ [j] refers to the suffix of lexicographic rank j, Ψ values are computed using the
same scheme used for suffix array and BWT values: for i = 0, . . . , m − 1, we first update
gap[i] values in Ψ referring to old suffixes and then compute and write the Ψ value referring
to T [saint[i], n]. We can compute Ψ values for the new suffixes using information available in
internal memory, while for old suffixes we make use of the relationship Ψh+1[j] = Ψh[j] + kj



where kj is the largest integer such that gap[0] + gap[1] + · · ·+ gap[kj ] < Ψh[j] (details in the
full paper). Since each value kj can be computed in O(log M) time with a binary search over
the array whose i-th element is gap[0] + · · · + gap[i], we have the following result.

Lemma 2. We can compute the array Ψ in O(n/M) passes over Θ(n log n) bits of disk data,
using n bits of working space. The CPU time is O

(
(n2 log M)/M

)
. ⊓⊔

To reduce the amount of processed data, we observe that although Ψ values are in the range
[1, n], it is well known [27] that the sequence Ψ [1], Ψ [2]−Ψ [1], Ψ [3]−Ψ [2], . . . , Ψ [n]−Ψ [n− 1],
can be represented in Θ(n) bits. Thus, by storing an appropriate encoding of the differences
Ψ [i] − Ψ [i − 1] we can obtain an algorithm that works over a total of O(n) bits.

Theorem 5. We can compute the array Ψ in O(n/M) passes over Θ(n) bits of disk data,
using Θ(n) bits of working space. The CPU time is O

(
(n2 log M)/M

)
. ⊓⊔

Computation of posd. To compute the set posd with a sampling step d = Ω(log n), we
modify our new CF algorithm as follows: instead of storing saext on disk, we store pairs
〈i1, j1〉, 〈i2, j2〉, . . . 〈ik, jk〉 such that saext[iℓ] = jℓ is a multiple of d. The update of the pairs
〈iℓ, jℓ〉 at pass h + 1 is straightforward: the second component does not change, whereas the
value iℓ must be increased by the number of new suffixes which are lexicographically smaller
than iℓ old suffixes. This can be done via a sequential scan of the already computed set of
pairs and of the gap array. Since the set posd contains n/d = O(n/ logn) pairs, we have

Theorem 6. We can compute posd in O(n/M) passes over Θ(n) bits of disk data, using n
bits of working space. The CPU time is O

(
n2/M

)
. ⊓⊔

4 Inversion algorithms

Rather surprisingly, an efficient method to invert the BWT on disk was known long before the
BWT itself was discovered. According to Knuth [22], in about 1967 Hardy proposed a method
to restore the original order of a sequence that has been permuted but whose elements point
to their original successors. This problem is now called list ranking, and inverting the BWT
reduces to it easily: the “successor” of character bwt[i] in T is bwt[Ψ [i]], so we set a pointer
from position i to position Ψ [i]. It is well-known [3] how to do this calculation by deploying
the frequency of each distinct character both in bwt as a whole and in its prefix bwt[1, i].
Therefore, setting up the n “list pointers” takes only two passes over bwt. Then solving the
list-ranking problem on that list, we get the positions in T where each bwt[i] maps to.

The näıve algorithm for list ranking — follow each pointer in turn — is optimal when
the permuted sequence and its pointers fit in memory, but very slow when they do not. List
ranking in external memory has been extensively studied, and Chiang et al. [4] showed how
to reduce this problem to sorting a set of n items (recursively), each of size Θ(log n) bits. If
we invert bwt by turning it into an instance of the list-ranking problem and solve that by
using Chiang et al.’s algorithm, then we end up with a solution requiring Θ(n log n) bits of
disk space. In this section we show how, still using Chiang et al.’s algorithm as a subroutine,
we can invert bwt using sorting and scanning primitives now applied on O(n/ log n) items,
for a total of O(n) bits of disk space. Because no other I/O-conscious approach for BWT
inversion was previously known, we prefer to leave the discussion general enough, and write
sort(x) (resp. scan(x)) to indicate the cost of a sorting (resp. scanning) primitive applied over



x items without detailing the underlying model of computation. This way the reader can then
choose her preferred framework of implementation for our BWT-inversion algorithm, and so
get the corresponding bounds in terms of number of I/Os or passes. We finally point out that
in the full paper we will also show how we can similarly recover T from the array Ψ or from
a compressed index, still taking O(n) bits of total disk space.

Let us now concentrate on BWT-inversion. Our algorithm works in O(log n) rounds, each
working on three files: the first file contains a set S of n/ logn substrings of T , non-overlapping
and whose length increases as the algorithm proceeds with its rounds; the second file contains
one triple per substring of S, each consisting of (i) a pointer to that substring, (ii) a pointer
to a position of bwt whose character follows that substring in T , and (iii) one single character
(eventually the one of (ii)); finally, the third file contains the bwt plus a n-bit array bwtMark

which marks the characters of bwt already appended to some substring of S. The overall space
taken by these three files is O(n) bits.

The main idea underlying our algorithm is to cover T by the substrings of S, avoiding
their overlapping. The substrings of S consist initially of the characters which occupy the
first n/ logn positions of bwt; then, they are extended one character after the other along
the O(log n) rounds, always taking care that they do not overlap. If, at some round, c of
those substrings become adjacent in T , they are merged together to form one single longer
substring which is then inserted in S, and those c constituting substrings are deleted. The
algorithm preserves the condition |S| = n/ logn, by selecting (c − 1) new substrings which
are inserted in S and consist of one single character not already belonging to any substring of
S. This is easily done by scanning bwt and bwtMark and taking the first (c− 1) characters of
bwt which result unmarked in bwtMark. Keep in mind that any time a character is appended
to a substring, its corresponding bit in bwtMark is set to 1.

It is not difficult to maintain the invariant at each round by using the above three files and
by adopting a constant number of sort/scan primitives over O(n) bits, and thus n/ logn words.
Precisely, a round of the algorithm is implemented as follows. We sort the triples according to
their second component (i.e. position in bwt of their following character in T ) and then scan
them and bwt simultaneously. Whenever we reach a character in bwt which is pointed by some
triple (i.e. follows the substring of S corresponding to that triple), then we copy this character
in the (third component of the) triple and then update its second component to make it point
to the position in bwt of the new character’s successor in T .3 When we are finished scanning
bwt, we sort the triples by their first component (substring), and then scan S and the triples
simultaneously in order to append the new (single) characters to the substrings of S. We then
re-sort the triples by their second component (i.e., the positions in bwt to which they point),
and scan them and bwtMark simultaneously to mark bwtMark[i] if position i is pointed to by
some triple. All these steps have cost O(scan(n/ logn) + sort(n/ log n)). The pseudo-code of
a round is given in Figure 3.

The two major difficulties we face now are, first, that the starting position of a substring
in bwt does not tell anything about its position in T ; second, that the first n/ log n characters
in bwt will usually not be spread evenly throughout T . Therefore, we will eventually need to
sort the substrings and, in the meantime, we need to prevent them overlapping. The first of
these problems is easier, and will help us with the second. Assume that, after the last round,
the substrings cover T and do not overlap. Because the first character in each substring is
the successor in T of the last character in some other substring (we consider T [1] to be T [n]’s
successor), we can sort the substrings by list ranking, as follows. We store with each of the

3 This can be done by keeping track of distinct characters’ frequencies in bwt as we go.



At the beginning of the round:

– S contains n/ log n non-overlapping substrings of T ;
– each triple points to a substring and the character in bwt that follows that substring in T ;
– each bit in the bit-array is 1 if the corresponding character is already in a substring or pointed

to by a triple.

1. Simultaneously scan bwt and triples to copy characters to be appended into triples, and set
triples’ pointers to characters’ successors.

2. Sort the triples by their pointers to substrings. Simultaneously scan bwt and S to append char-
acters.

3. Re-sort the triples by their pointers into bwt. Simultaneously scan bwtMark and the triples to set
the bits corresponding to characters that will be appended in the next round.

4. Extract the n/ log n pairs of pointers and sort the substrings by list ranking. Merge adjacent
substrings. Insert each merged substring into S and delete its c constituent substrings; choose
c − 1 characters unmarked in bwtMark and start c − 1 new substrings and triples.

Fig. 3. A round of the inversion algorithm.

n/ logn substrings the positions in bwt of its first character and its last character’s successor in
T . We use these n/ log n pairs of pointers to set up a list, then solve the list-ranking problem on
them in order to find the substrings’ order in T taking cost O(scan(n/ logn) + sort(n/ log n)).4

The second difficulty we face is preventing the substrings overlapping during the rounds:
if we simply stop appending to some substrings, because the characters we would append are
already in other substrings, then the number of characters we append per round decreases and
we may use more than O(log n) rounds; on the other hand, if we start new substrings without
reducing the number of old ones, then we may store more than O(n/ log n) substrings and
so, because each has two Θ(log n)-bit pointers, use more than O(n) bits of disk space. Our
solution is to sort the substrings by list ranking (as described above) during every round, to
find maximal sequences of adjacent substrings; we merge adjacent substrings into one longer
substring, which is inserted in S, and delete the others; pointers can be easily kept correctly.
Again, these steps take a cost of O(scan(n/ logn) + sort(n/ log n)). We notice that if c − 1
substrings have been dropped, then we need to start c − 1 new substrings (of one character
each), so that we again have |S| = n/ logn. To achieve this, we choose c− 1 characters in bwt

that are not marked in bwtMark and thus do not belong yet to any substring of S. Each of
these characters will form a new substring of S. This completes the round.

Theorem 7. Given bwt, we recover the original text T with a cost O((log n) sort(n/ log n))
and using Θ(n) bits of total disk space.

Proof. At each round, n/ logn new characters are appended to the substrings of S. These
substrings are guaranteed not to overlap. Since T consists of n characters, we are guaranteed
that O(log n) rounds suffice to append all characters in T to S’s substrings. ⊓⊔

4 In the full paper we will explain how we use Chiang et al.’s algorithm to actually sort the sub-
strings, rather than just determine their order. Our idea is to break each substring after every
log n characters, so each piece fits in O(1) words, and add temporary pointers between consecutive
pieces of each substring (notice there are still O(n/ log n) pieces).



Recall that, in our model, sort(x) takes O(x/M) passes on one disk and O(log x) passes on
two or more disks. Hence our BWT inversion algorithm takes O(n/M) passes on one disk and
O(log2 n) passes on two or more disks.

5 Lower bounds

Our algorithms to compute or invert the bwt have a product “memory’s size × number
of passes” which is O(n log n) bits. We prove in this section that we cannot reduce them to
o(n/ logn) bits via any algorithm that uses only one single disk (accessed sequentially). Hence
our algorithms are an O(log2 n)-factor from the optimal.

We prove the lower bound indirectly by considering the compression possible with the
BWT. [23] shows that, by applying MTF+RLE and Arithmetic coding to bwt, we can encode
T in (5 + ǫ)nH∗

k(T ) + O
(
σk

)
bits for all k simultaneously and ǫ ≈ 0.03, where H∗

k (T ) is the
kth-order modified empirical entropy of T and σ = |Σ| is the alphabet size. We can encode
and decode with MTF+RLE and Arithmetic coding using one disk, O(log n) bits of memory
and one scan. Therefore, a lower bound on what we need to encode T in, or decode it from,
O

(
nH∗

k(T ) + σk
)

bits, implies the same lower bound on the what we need to compute or
invert bwt.

Let us denote by A a P -pass lossless compression algorithm that uses M̂ bits of memory.
We first give a simple proof that, if P × M̂ = o(n), there exist periodic strings with period
o(n) that A does not compress well. We then refine our argument to show there exist strings
with low empirical entropy that A does not compress well. A symmetric argument, which we
will include in the full paper, shows that, for any lossless decompression algorithm, there are
strings we cannot decode from any encoding whose length is O

(
nH∗

k(T ) + σk
)
. Without loss

of generality, we restrict our attention to binary strings, i.e., σ = 2.
Consider the simple case in which P = 1; let Conf(T [1, i]) denote A’s memory configuration

after reading T [1, i], and let Out(T [i, j]) denote A’s output while reading T [i, j].

Lemma 3. We can compute T [i, j] from 〈Conf(T [1, i − 1]), Out(T [i, j]), Conf(T [1, j])〉.

Proof. By contradiction. Assume there is another string T ′ that takes A between Conf(T [1, i−
1]) and Conf(T [1, j]) while causing it to output Out(T [i, j]). Then A(T [1, i−1] T ′ T [j+1, n]) =
A(T [1, n]), contradicting the assumption that A is lossless. ⊓⊔

Let Kolm(T [i, j]) denote the Kolmogorov complexity of T [i, j], i.e., the minimum number of
bits needed to store T [i, j]. Notice Lemma 3 has the following corollary.

Corollary 1. |Out(T [i, j])| ≥ Kolm(T [i, j])− 2M̂ − O(1). ⊓⊔

Now suppose P > 1; let Confp(T [1, i]) denote A’s memory configuration after reading T [1, i]
in the pth pass, and let Outp(T [i, j]) denote A’s output while reading T [i, j] in the pth pass.
Generalizing our arguments, we obtain the results (which do not hold for more than one disk).

Lemma 4. We can compute T [i, j] from 〈Conf1(T [1, i− 1]), Out1(T [i, j]), Conf1(T [1, j]), . . . ,
ConfP (T [1, i − 1]), OutP (T [i, j]), ConfP (T [1, j])〉. ⊓⊔

Corollary 2. If P × M̂ = o(Kolm(T [i, j])), then
∑P

i=1
|Outi(T [i, j])| = Ω(Kolm(T [i, j])). ⊓⊔

Lemma 5. If P × M̂ = o(n) then, for any P -pass algorithm A that uses M̂ bits of memory,
there exist periodic strings with period o(n) that A does not compress well.



Proof. Suppose T consists of repetitions of a randomly chosen string s whose length is in
[ω(P × M̂ ), o(n)]. Since s is randomly chosen, with high probability Kolm(s) = Θ(|s|) =

ω(P × M̂ ). Therefore, by Corollary 2, with high probability we output Ω(|s|) bits for every
copy of s in T , that is, Ω(n) bits in total. On the other hand, since T is periodic, we can store
it as an encoding of n plus one explicit copy of s, which takes o(n) bits. ⊓⊔

To refine our argument, we use properties of kth-order De Bruijn sequences, which are
binary sequences containing every possible k-tuple exactly once. By definition, such a sequence
has length 2k + k− 1, the same first and last k− 1 bits, and kth-order (unmodified) empirical
entropy equal to 0.5 Therefore, if T consists of repetitions of the first 2k bits of such a
sequence, then occurrences of the same k-tuple are always followed by the same bit and
so, by the definition of (modified) empirical entropy H∗

k (T ) [23], we have that nH∗

k(T ) +

O(2k) = nHk(T ) + O(2k log(n/2k)) = O(2k log n). There are 22
k−1

possible kth-order De
Bruijn sequences, so with high probability a randomly chosen one has Kolmogorov complexity
Θ

(
2k

)
, i.e., proportional to its length.

Lemma 6. If P ×M̂ = o(n/ logn), for any P -pass algorithm A using M̂ bits of memory does
exist a string T that A encodes in Ω(n) bits even though nH∗

k (T )+ O(2k) = o(n) for some k.

Proof. Let k be a function of n such that 2k ∈ [ω(P M̂ ), o(n/ log n)]. Suppose T consists of
repetitions of the first 2k bits s of a randomly chosen De Bruijn sequence. By Corollary 2
and the properties of De Bruijn sequences, with high probability we output Ω

(
2k

)
bits for

every copy of s in T , that is, Ω(n) bits in total. On the other hand, nH∗

k(T ) + O
(
2k

)
=

O
(
2k log n

)
= o(n). ⊓⊔

The proof of Lemma 6 says that we must output many bits while encoding each copy of s
in T . In the full paper we will turn the proof around and show that we must also read many
bits while decoding one, which yields the following lemma.

Lemma 7. If P × M̂ = o(n/ log n), for any P -pass decompression algorithm using M̂ bits of
memory, there exist a string T and a value k such that this algorithm cannot recover T from
any encoding of at most O

(
nH∗

k (T ) + 2k
)

bits. ⊓⊔

As we noted above, these two lemmas immediately give us the following theorem.

Theorem 8. In the worst case, we can neither compute nor invert bwt when the product of
the memory’s size in bits and the number of passes is o(n/ log n). ⊓⊔
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