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Move-to-Front, Distance Coding, and Inversion Frequencies Revisited∗

Travis Gagie† Giovanni Manzini†

Abstract

Move-to-Front, Distance Coding and Inversion Frequencies are three somewhat related techniques
used to process the output of the Burrows-Wheeler Transform. In this paper we analyze these tech-
niques from the point of view of how effective they are in the task of compressing low-entropy strings,
that is, strings which have many regularities and are therefore highly compressible. This is a non-trivial
task since many compressors have non-constant overheads that become non-negligible when the input
string is highly compressible.

Because of the properties of the Burrows-Wheeler transform, being locally optimal ensures an algo-
rithm compresses low-entropy strings effectively. Informally, local optimality implies that an algorithm
is able to effectively compress an arbitrary partition of the input string. We show that in their original
formulation neither Move-to-Front, nor Distance Coding, nor Inversion Frequencies is locally optimal.
Then, we describe simple variants of the above algorithms which are locally optimal. To achieve lo-
cal optimality with Move-to-Front it suffices to combine it with Run Length Encoding. To achieve
local optimality with Distance Coding and Inversion Frequencies we use a novel “escape and re-enter”
strategy.

1 Introduction

Burrows-Wheeler compression is important in itself and as a key component of compressed full-text
indices [17]. It is therefore not surprising that the theory and practice of Burrows-Wheeler compression
has recently received much attention [6, 8, 9, 11, 12, 13, 14, 16, 15].

In the original Burrows-Wheeler compression algorithm [4] the output of the Burrows-Wheeler Trans-
form (bwt from now on) is processed by Move-to-Front encoding followed by an order-0 encoder. Recently,
[14] has provided a simple and elegant analysis of this algorithm and of the variant in which Move-to-
Front encoding is replaced by Distance Coding. This analysis improves the previous one in [16] and
provides new insight on the Move-to-Front and Distance Coding procedures. In [14] the output size of
Burrows-Wheeler algorithms on input s is bounded by µ|s|Hk(s) + Θ(|s|) for any µ > 1, where Hk is the
k-th order empirical entropy (more details in Sect. 2). We point out that this is a significant bound only
as long as the string s is not too compressible. For highly compressible strings, for example s = abn, we
have |s|Hk(s) = O(log |s|) so the Θ(|s|) term in the above bound becomes the dominant term. In this
case, the bound tells one nothing about how close the compression ratio is to the entropy of the input
string.

The above considerations suggest that further work is required on the problem of designing algorithms
with an output size bounded by λ|s|Hk(s) + Θ(1) where λ > 1 is a constant independent of k, |s|, and
of the alphabet size. We call this an “entropy-only” bound. An algorithm achieving an “entropy-only”
bound guarantees that even for highly compressible strings the compression ratio will be proportional to
the entropy of the input string. Note that the capability of achieving “entropy-only” bounds is one of

∗Partially supported by Italian MIUR Italy-Israel FIRB Project “Pattern Discovery Algorithms in Discrete Structures,
with Applications to Bioinformatics”. A preliminary version of this work has appearead in the Proceedings of the 18th
Symposium on Combinatorial Pattern Matching (CPM ’07).

†Dipartimento di Informatica, Università del Piemonte Orientale, Alessandria, Italy. {travis,manzini}@mfn.unipmn.it.
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the features that differentiate Burrows-Wheeler compression algorithms from the family of Lempel-Ziv
compressors [16].

As observed in [16], the key property for achieving “entropy-only” bounds is that the compression
algorithm used to process the bwt be locally optimal. Informally, a locally optimal algorithm has the
property of being able to compress efficiently an arbitrary partition of the input string (see Definition 2).
Starting from these premises, in this paper we prove the following results:

1. We analyze Move-to-Front (Mtf), Distance Coding (Dc), and Inversion Frequencies Coding (If)—
which is another popular variant of Move-to-Front encoding. We prove that in their original for-
mulation none of these algorithms is locally optimal.

2. We describe simple variants of the above algorithms which are locally optimal. Therefore, when used
together with the bwt these variants achieve “entropy-only” bounds. To achieve local optimality
with Mtf it suffices to combine it with Run Length Encoding. To achieve local optimality with Dc
and If we use an “escape and re-enter” technique.

3. The procedures Mtf, Dc and If all output sequences of positive integers. One can encode these
sequences either using a prefix-free encoding [8] or feed the whole sequence to an Order-0 encoder [4].
Taking advantage of previous results of Burrows-Wheeler compression [14, 15], we are able to provide
a simple analysis for both options.

In terms of “entropy-only” bounds our best result is the bound (2.69+C0)|s|H
∗
k(s)+log |s|+Θ(1) bits

where C0 is a constant characteristic of the Order-0 final encoder (for example C0 ≈ .01 for arithmetic
coding). This bound is achieved by our variant of Distance Coding and it improves the previously known
“entropy-only” bound of (5 + 3C0)|s|H

∗
k(s) + log |s|+ Θ(1) established in [16] for Mtf combined with run

length encoding. At the same time we prove that, under mild assumptions, no compression algorithm
can achieve an “entropy-only” bound of the form λ|s|H∗

0 (s) + Θ(1) for a constant λ ≤ 2.

2 Notation and Background

Let s be a string drawn from the alphabet Σ = {σ1, . . . , σh}. For i = 1, . . . , |s| we write s[i] to denote
the i-th character of s. For each σi ∈ Σ, let ni be the number of occurrences of σi in s. The 0-th order
empirical entropy of the string s is defined as1 H0(s) = −

∑h
i=1(ni/|s|) log(ni/|s|). It is well known that

H0 is the maximum compression we can achieve using a fixed codeword for each alphabet symbol. The
following definition captures the notion of a compressor which is able to achieve H0 up to a constant
overhead per symbol and an additional overhead depending on the alphabet size.

Definition 1 An algorithm A is an order-0 algorithm if for any input string s we have

|A(s)| ≤ |s|H0(s) + C0|s|+ O(h log h) .

where h = |Σ|. The parameter C0 is the per character overhead of A.

Examples of order-0 algorithms are Huffman coding, for which C0 = 1, and Arithmetic coding, for which
in principle the overhead per symbol can be made arbitrarily small (for typical implementations it is
C0 ≈ .01). It is well known that we can achieve a compression ratio better than H0(s) if the codeword
we use for each symbol depends on the k symbols preceding it. In this case, the maximum compression
is bounded by the k-th order entropy Hk(s) (see [16] for the formal definition).

In [14] the authors analyze the original Burrows-Wheeler compressor [4] in which the output of the
bwt is processed by Mtf followed by an order-0 algorithm and they prove a bound of the form

µ|s|Hk(s) + (log(ζ(µ)) + C0)|s|+ log |s|+ O
(

hk+1 log h
)

(1)

1In the following log means log2 and ln denotes the natural logarithm. We assume 0 log 0 = 0.
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where ζ(µ) =
∑

j>0 j−µ is the Riemann zeta function and C0 is the per symbol overhead of the order-0
algorithm. The above bound holds simultaneously for any µ > 1 and k ≥ 0. This means we can get
arbitrarily close to the k-th order entropy for any k ≥ 0. Unfortunately, in (1) there is also a Θ(|s|)
term which becomes dominant when s is highly compressible. For example, for s = σ1σ

n
2 we have

|s|H0(s) = log |s| + O(1). In this case, the bound (1) does not guarantee that the compression ratio is
close to the entropy.

We would be interested, therefore, in proving “entropy-only” bounds of the form λ|s|Hk(s) + Θ(1).
Unfortunately, such bounds cannot be established. To see this, consider the family of strings s = an; we
have |s|H0(s) = 0 for all of them and we cannot hope to compress all strings in this family in Θ(1) space.
For that reason, [16] introduced the notion of 0-th order modified empirical entropy:

H∗
0 (s) =







0 if |s| = 0
(1 + ⌊log |s|⌋)/|s| if |s| 6= 0 and H0(s) = 0
H0(s) otherwise.

(2)

Note that if |s| > 0, |s|H∗
0 (s) is at least equal to the number of bits needed to write down the length of s

in binary. The k-th order modified empirical entropy H∗
k is then defined in terms of H∗

0 as the maximum
compression we can achieve by looking at no more than k symbols preceding the one to be compressed.
With a rather complex analysis [16] proves the bound (5+3C0)|s|H

∗
k(s)+log |s|+Θ(1) bits for the output

size of an algorithm described in [4].
This paper is the ideal continuation of [14] and [16]. We analyze the classical Move-to-Front encod-

ing [2], and two popular (and effective) alternatives: Distance Coding [3, 6], and Inversion Frequencies
Coding [1]. We prove that simple variants of these algorithms achieve “entropy-only” bounds of the form
λ|s|H∗

k(s)+log |s|+Θ(1) bits with λ as small as (2.69+C0). At the same time we prove that no algorithm
can achieve a bound of the form λ|s|H∗

0 (s) + Θ(1) bits with λ ≤ 2.
The key tool for the analysis of Move-to-Front and its variants is the notion of local optimality

introduced in [16].

Definition 2 A compression algorithm A is locally λ-optimal if there exists a constant ch such that for
any string s and for any partition s1s2 · · · st of s we have

A(s) ≤ λ

[ t∑

i=1

|si|H
∗
0 (si)

]

+ cht,

where the constant ch depends only on the alphabet size h.

The importance of local optimality stems from the following lemma which establishes that processing
the output of the bwt with a locally optimal algorithm yields an algorithm achieving an “entropy-only”
bound.

Lemma 2.1 ([16]) If A is locally λ-optimal then the bound

|A(bwt(s))| ≤ λ|s|H∗
k(s) + log |s|+ chhk (3)

holds simultaneously for any k ≥ 0.

Note that the term log |s| in (3) is due to the fact that bwt(s) consists of a permutation of s, which
is compressed using A, and an integer in [1, |s|] whose encoding takes 1 + ⌊log |s|⌋ bits. Since log |s| ≤
|s|H∗

0 (s) ≤ |s|H∗
k(s), we could rewrite the right hand size of (3) as (λ + 1)|s|H∗

k(s) + chhk (this justifies
the expression “entropy-only” bound); however, since for most strings it is log |s| ≪ |s|H∗

k(s), keeping
the term log |s| explicit provides a better picture of the performance of bwt-based compressors.
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We conclude this section with two lemmas relating the order zero entropy of a string with its length
and the number of runs in it. Given a string s, a run is a substring s[i]s[i + 1] · · · s[i + k] of identical
symbols, and a maximal run is a run which cannot be extended; that is, it is not a proper substring of a
larger run.

Lemma 2.2 ([15, Sect. 3]) The number of maximal runs in a string s is bounded by 1 + |s|H0(s).

Lemma 2.3 Let s be a string containing runs(s) maximal runs and let α, β and ǫ be positive constants;
then

α log |s|+ βruns(s) ≤ max(α, β + ǫ)|s|H∗
0 (s) + O(1).

Proof: First suppose runs(s) ≤ 2α/ǫ + 2 = O(1); since log |s| ≤ |s|H∗
0 (s) we have

α log |s|+ βruns(s) ≤ α|s|H∗
0 (s) + O(1). (4)

Now suppose runs(s) > 2α/ǫ + 2. This assumption implies that the frequency of the most common
character in s is at most |s| − ⌊runs(s)/2⌋ < |s| −α/ǫ, with equality if and only if all odd-numbered runs
contain the same character and every even-numbered run has length 1. Since H0(s) is minimized when
the distribution of characters is as skewed as possible, we have

|s|H0(s) > (|s| − α/ǫ) log

(
|s|

|s| − α/ǫ

)

+ (α/ǫ) log

(
|s|

α/ǫ

)

≥ (α/ǫ) log

(
|s|

α/ǫ

)

= (α/ǫ) log |s| −O(1) ,

so log |s| ≤ (ǫ/α)|s|H0(s) + O(1). Combining this inequality with Lemma 2.2 we get

α log |s|+ βruns(s) ≤ (β + ǫ)|s|H∗
0 (s) + O(1)

which, together with (4) proves the lemma.

3 Integer and Order-0 encoders

Move-to-Front, Distance Coding, and Inversion Frequencies all output sequences of positive integers.
These sequences are usually compressed using either an order-0 encoder (see Definition 1) or a prefix
free encoding of the integers. Prefix free encoders use a fixed codeword for each integer regardless of its
frequency and are therefore faster and easier to implement. order-0 encoders (especially arithmetic coders)
are slower but usually achieve a significantly better compression. Unfortunately, they are also more
difficult to analyze when used in connection with the bwt. In this section we show that the compression
achieved by a generic order zero encoder can be bounded in terms of the best compression achieved by
a family of integer coders. This result will make it possible to translate compression bounds for integer
coders to compression bounds for order zero encoders.

In the following we denote by Pfx a uniquely decodable encoder of the positive integers (not necessarily
prefix free). Our only assumption is that there exist two positive constants a and b such that for any
positive integer i we have |Pfx(i)| ≤ a log i + b. For example, for γ-coding [7] the above inequality holds
for a = 2 and b = 1. In our analysis we will often make use of the following property.

Lemma 3.1 (Subadditivity) Let a, b be two constants such that for i > 0 it is |Pfx(i)| ≤ a log i + b.
Then, there exists a constant dab such that for any sequence of positive integers x1, x2, . . . , xk we have

∣
∣
∣
∣Pfx

(∑k

j=1
xj

)
∣
∣
∣
∣ ≤

(∑k

j=1
|Pfx(xj)|

)

+ dab.
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Proof: Using elementary calculus it is easy to show that Pfx(x1 + x2) ≤ Pfx(x1) + Pfx(x2) whenever
min(x1, x2) ≥ 2. Hence we only need to take care of the case in which some of the xj’s are 1. For x ≥ 1
we have:

|Pfx(x + 1)| − |Pfx(x)| − |Pfx(1)| = a log(1 + (1/x)) − b (5)

= (a log e) ln(1 + (1/x)) − b

≤ (a log e)/x− b, (6)

where the last inequality holds since t ≥ 0 implies ln(1 + t) ≤ t. Let cab = (a log e)/b. From (5) we
get that x ≥ 1 implies Pfx(x + 1) ≤ Pfx(x) + Pfx(1) + (a − b) and from (6) we get that x ≥ cab implies
Pfx(x + 1) ≤ Pfx(x) + Pfx(1). Combining these inequalities we get

∣
∣
∣
∣Pfx

(∑k

j=1
xj

)
∣
∣
∣
∣ ≤

(∑k

j=1
|Pfx(xj)|

)

+ cab max(a− b, 0),

and the lemma follows with dab = cab max(a− b, 0).

The next lemma, which follows from the analysis in [14], establishes a connection between integer
and order-0 coders by showing that if we feed a sequence of integers to an order-0 encoder the output
is essentially no larger than the output produced by an integer encoder Pfx with parameters a = µ and
b = log(ζ(µ)) + C0 for any µ > 1.

Lemma 3.2 Let Order0 be an order zero encoder with per character overhead C0 and let x1x2 · · · xn be
a sequence of integers such that 1 ≤ xi ≤ h for i = 1, . . . , n. Then, for any µ > 1 we have

|Order0(x1x2 · · · xn)| ≤
∑n

i=1

(

µ log(xi) + log ζ(µ) + C0

)

+ O(h log h) .

Proof: For any µ > 1, consider the probability distribution over the positive integers defined by q(j) =
(ζ(µ) jµ)−1. By the definition of Riemann zeta function it is ζ(µ) =

∑

j>0 j−µ hence
∑

j>0 q(j) = 1. This
implies that nH0(x1 · · · xn) ≤

∑n
i=1 log(q(xi)). By Definition 1 we get

|Order0(x1x2 · · · xn)| ≤ nH0(x1 · · · xn) + nC0 + O(h log h)

≤ −
∑n

i=1
log(q(xi)) + nC0 + O(h log h)

≤
∑n

i=1
(µ log(xi) + log ζ(µ) + C0) + O(h log h) .

In the following we will make use also of a compression algorithm that combines the good features of
both integer and order-0 encoders. The reason is that many of the procedures considered in this paper
produce a sequence of positive integers whose size can be as large as the length of the input string s. This
is not a problem when we compress such sequences using a prefix-free integer encoder: these encoders
are able to handle arbitrarily large integers. Unfortunately, this is not longer true if we use an order-0
encoder. Typical order-0 algorithms have an overhead of O(h log h) bits, where h is the size of the input
alphabet (see Definition 1). If we allow the encoding of values as large as |s| such overhead makes the use
of the encoder not profitable. Practitioners are well aware of this phenomenon and circumvent it using
an order-0 algorithm for encoding “small” integers and prefix-free codes for handling the (usually few)
occurrences of large integers. We now describe one of such schemes and we show that it is equivalent to
an integer coder Pfx with parameters a = µ and b = log(ζ(µ)) + C0 + ν for any constants µ > 1 and
ν > 0.
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Recall that δ-coding [7] is a prefix-free encoding of the integers such that for any x > 0 it is |δ(x)| ≤
1 + log x + 2 log(1 + log x). Hence, for any µ > 1 and ν > 0 we can find an integer t such that for x ≥ t
it is

|δ(x)| ≤ µ log(x) + log ζ(µ) + ν − log(2ν/(2ν − 1)). (7)

Given an encoder Order0 with per-character overhead C0 we define a new encoder Order0* that is based
on Order0 but uses δ-coding for encoding the integers larger than t. Given the sequence x1 · · · xn let
y1 · · · yn denote the sequence with all integers greater than t replaced by copies of t and let z1 · · · zℓ be
all the integers at least t. To encode x1 · · · xn the algorithm Order0* encodes y1 · · · yn with Order0 and
z1 · · · zℓ with δ-coding.

Lemma 3.3 Let Order0 be an order zero encoder with per-character overhead C0. For any sequence of
positive integers x1x2 · · · xn and constants µ > 1 and ν > 0 we have

|Order0*(x1x2 · · · xn)| ≤
∑n

i=1

(

µ log(xi) + log ζ(µ) + ν + C0

)

+ O(1) .

Proof: Note that the sequence y1 · · · yn contains only integers between 1 and t. Assign to each integer
j in this range the weight q(j) defined by q(j) = (2νζ(µ)jµ)−1 for j = 1, . . . , t − 1, and q(t) = 1 − 2−ν .
Since

∑t
j=1 q(j) ≤ 1, it is nH0(y1 · · · yn) ≤ −

∑n
i=1 log(q(yi)). We have

|Order0*(x1 · · · xn)| =
ℓ∑

i=1

|δ(zi)| + Order0(y1 · · · yn)

≤
ℓ∑

i=1

|δ(zi)| + nH0(y1 · · · yn) + nC0 + O(t log t)

≤
∑

xi≥t

|δ(xi)| −
n∑

i=1

log(q(yi)) + nC0 + O(t log t)

≤
∑

xi≥t

(

µ log xi + log ζ(µ) + ν − log(2ν/(2ν − 1))
)

+

∑

xi<t

(

µ log xi + log ζ(µ) + ν
)

−
∑

xi≥t

log(q(t)) + nC0 + O(t log t) .

Observing that log(q(t)) = − log(2ν/(2ν − 1)), we conclude that

|Order0*(x1 · · · xn)| ≤
n∑

i=1

(

µ log xi + log ζ(µ) + ν + C0

)

+ O(t log t) .

The thesis follows since t depends only on the constants µ and ν.

4 Local Optimality with Move-to-Front encoding

The Move-to-Front (Mtf) procedure [2, 18] encodes a string by replacing each symbol with the number of
distinct symbols seen since its last occurrence plus one. To this end, Mtf maintains a list of the symbols
ordered by recency of occurrence; when the next symbol arrives the encoder outputs its current rank and
moves it to the front of the list. If the input string is defined over the alphabet Σ we assume that ranks
are in the range [1, h], where h = |Σ|. To completely determine the encoding procedure we must specify
the initial status of the recency list. However, changing the initial status increases the output size by
at most O(h log h) bits so we will add this overhead and ignore the issue. We denote by Mtf + Pfx the
algorithm in which the ranks produced by Mtf are encoded using Pfx. The analysis in [2] implies that for
any string s the output of Mtf + Pfx is bounded by a|s|H0(s) + b|s| bits. The following example shows
that Mtf + Pfx is not locally optimal according to Definition 2.
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Example 1 Consider the string s = σn and the partition consisting of the single element s. We have
Mtf(s) = 1n and |Pfx(Mtf(s))| = |s|b. Since |s|H∗

0 (s) = 1 + ⌊log |s|⌋ it follows that Mtf + Pfx is not locally
optimal. A similar result holds even if we replace Pfx with an order-0 encoder: in that case the output
size is at least C0|s| bits.

The above example shows that if any compressor feeds to the final integer or order-0 encoder Θ(|s|)
symbols, there is no hope of achieving “entropy-only” bounds. This observation suggests the algorithm
Mtf rle that combines Mtf with Run Length Encoding. Assume σ = s[i + 1] is the next symbol to be
encoded. Instead of simply encoding the Mtf rank r of σ, Mtf rle finds the maximal run s[i+1] · · · s[i+ ℓ]
of consecutive occurrences of σ and encodes the pair2 〈r, ℓ〉. We define the algorithm Mtf rle + Pfx as the
algorithm which encodes each such pair with Pfx. Since the Mtf rank r is always greater than one, to
save space we encode each pair as follows: If ℓ = 1, we encode 〈r, ℓ〉 with the codewords 〈Pfx(1),Pfx(r)〉,
while if ℓ > 1 we encode 〈r, ℓ〉 with the codewords 〈Pfx(r),Pfx(ℓ− 1)〉.

Lemma 4.1 Let A0 = Mtf rle + Pfx. For any string s we have

|A0(s)| ≤ 2a|s|H∗
0 (s) + a log ℓ + (2b− a)runs(s) + O(h log h) .

where runs(s) is the number runs in s, and ℓ is the length of the last run.

Proof: Assume H0(s) 6= 0 (otherwise s = σn and the proof follows by an easy computation). Let
〈r1, ℓ1〉, 〈r2, ℓ2〉, . . . , 〈rt, ℓt〉 denote the set of pairs generated by Mtf rle. Because of the way A0 encodes
the pairs 〈rj, ℓj〉’s, if we define |Pfx(0)| to be equal to |Pfx(1)| the encoding of each pair 〈rj , ℓj〉 takes
precisely |Pfx(rj)|+ |Pfx(ℓj − 1)| bits. Hence, we can write

|A0(s)| =
t∑

j=1

(|Pfx(rj)|+ |Pfx(ℓj − 1)|) + O(h log h) .

To bound |A0(s)| we charge each term in the above summation to a character σ ∈ Σ as follows: we charge
the term |Pfx(rj)| to the character forming the j-th run and the term |Pfx(ℓj−1)| to the character forming
the j + 1-st run. Note that this leaves out the last run length ℓt: its corresponding cost |Pfx(ℓt − 1)| is
accounted for explicitly in the statement of the lemma.

For any given character σ let (α1, β1), (α2, β2), . . ., (αk, βk) denote the starting and ending positions
of the runs of σ. For i = 1, . . . , k let 〈r′i, ℓ

′
i〉 denote the pair encoding the run (αi, βi) (so we have

ℓ′i = βi − αi + 1). Finally, let mi denote the length of the run immediately preceding the run (αi, βi).
The total cost charged to σ is therefore

k∑

i=1

|Pfx(r′i)|+ |Pfx(mi − 1)|. (8)

Define β0 = 0. We now show that for i ≥ 1 we have

|Pfx(r′i)|+ |Pfx(mi − 1)| ≤ 2 log(αi − βi−1) + 2b− a. (9)

Assume first mi > 1. Recall r′i is the number of distinct characters in the substring from s[βi−1 + 1] to
s[αi]. If, immediately before s[αi] there is a run of mi equal symbols, we have r′i ≤ αi − βi−1 − (mi − 1).
Hence

|Pfx(r′i)|+ |Pfx(mi − 1)| = a(log(r′i) + log(mi − 1)) + 2b

≤ 2a log((r′i + mi − 1)/2) + 2b

≤ 2a log(αi − βi−1) + 2b− a.

2Here and in the following we use angle brackets to show that certain values form a pair or a triple with a particular
meaning: such brackets are not part of the output.
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If mi = 1, then |Pfx(mi − 1)| = b. Since 2 ≤ r′i ≤ αi − βi−1, we have

|Pfx(r′i)|+ |Pfx(mi − 1)| = a log(r′i) + 2b

≤ 2a log(αi − βi−1) + 2b− a

thus establishing (9). Using (9), the total cost (8) charged to σ can be bounded by

2a [log(α1 − β0) + log(α2 − β1) + · · ·+ log(αk − βk−1)] + k(2b − a) (10)

bits. Summing the cost k(2b − a) over all characters in Σ yields a total of (2b − a) runs(s) bits. To
complete the proof we bound the content of the square brackets in (10). Since log(1) = 0, the content of
the square brackets is equal to

log(α1 − β0) + · · · + log(αk − βk−1) + (β1 − α1 + β2 − α2 + · · ·+ βk − αk) log(1). (11)

The number of logarithms in (11) is
∑k

i=1(βi −αi + 1) which is equal to the number nσ of occurrences of
σ in s. Hence, by Jensen’s inequality, (11) is bounded by

nσ log

(
(α1 − β0) + · · ·+ (αk − βk−1) + (β1 − α1 + · · ·+ βk − αk)

nσ

)

= nσ log((βk − β0)/nσ)

which is at most nσ log(|s|/nσ). Summing nσ log(|s|/nσ) over all σ’s yields |s|H0(s) and the lemma
follows.

Since the length of the last run is bounded by |s|, combining Lemmas 4.1 and 2.3 we get

Corollary 4.2 Let A0 = Mtf rle + Pfx. For any string s and ǫ > 0 we have

|A0(s)| ≤ max(3a, a + 2b + ǫ)|s|H∗
0 (s) + O(h log h) .

Theorem 4.3 The algorithm A0 = Mtf rle + Pfx is locally max(3a, a + 2b + ǫ)-optimal for any ǫ > 0.

Proof: By Corollary 4.2 it suffices to prove that

|A0(s1s2)| ≤ |A0(s1)|+ |A0(s2)|+ O(h log h).

To prove this inequality observe that compressing s2 independently of s1 changes the encoding of the Mtf
rank only of the first occurrence of each character in s2. This gives a O(h log h) overhead. In addition,
there could be a run of equal characters crossing the boundary between s1 and s2. In this case the length
of the first part of the run will be encoded in s1 and the length of the second part in s2. By Lemma 3.1
this produces an O(1) overhead and the theorem follows.

Using Lemma 3.3, we can extend the above theorem to the case in which the output of Mtf rle is com-
pressed with the algorithm Order0* described at the end of Section 3. Recall that Order0* combines δ
coding with an order-0 encoder with per-symbol overhead C0.

Theorem 4.4 The algorithm Mtf rle + Order0* is locally (4.40 + C0)-optimal.

Proof: By Lemma 3.3 we know that for any µ > 1 and ν > 0 the output of Order0* on input Mtf rle(s)
is bounded by the output of an integer coder with parameters a = µ and b = log(ζ(µ)) + ν + C0. The
thesis follows by Theorem 4.3 taking µ = 22/15 and ν = ǫ = 0.001.

Corollary 4.5 For any string s and k ≥ 0 we have

|Order0*(Mtf rle(bwt(s)))| ≤ (4.40 + C0)|s|H
∗
k(s) + log |s|+ O

(

hk+1 log h
)

.

Proof: Immediate by Theorem 4.4 and Lemma 2.1.
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Procedure Distance Coding

1. Write the first character in s;

2. for each other character σ ∈ Σ, write the distance to the first σ in s, or 1 if σ does not occur (notice no
distance is 1, because we do not reconsider the first character in s);

3. for each maximal run of a character σ, write the distance from the ending position of that run to the starting
position of the next run of σ’s, or 1 if there are no more σ’s (again, no distance is 1);

4. encode the length ℓ of the last run in s.

Figure 1: Distance coding of a string s over the alphabet Σ = {σ1, . . . , σh}.

5 Local Optimality with Distance Coding

Distance Coding (Dc) is an encoding procedure which is relatively little-known, probably because it was
originally described only on a Usenet post [3]. Recently, [14] has proven that processing bwt(s) with Dc
followed by an order-0 encoder produces an output bounded by 1.7286|s|Hk(s)+C0|s|+o(|s|) bits. Using
Lemma 2.2, the analysis in [14] can be easily refined to get the bound (1.7286 + C0)|s|Hk(s) + o(|s|) bits.
Note that this is not an “entropy-only” bound because of the presence of the o(|s|) term.

The basic idea of Dc is to encode the starting position of each maximal run. The details of the
algorithm are given in Figure 1. Note that Dc does not encode the length of the runs since the ending
position of the current run is determined by the starting position of the next run. The distance between
two characters is defined as the number of characters between them plus one (so the distance is one if
the two characters are consecutive). The distance of a character from the beginning of s is defined as the
number of characters preceding it plus one (so the distance is one for the first character of the string s).
We define Dc + Pfx as the algorithm in which the integers produced by Dc are encoded using Pfx.

Lemma 5.1 Let A1 = Dc + Pfx. For any string s and for any ǫ > 0 we have

|A1(s)| ≤ max(2a, a + b + ǫ)|s|H∗
0 (s) + O(h).

Proof: Assume H0(s) 6= 0 (otherwise s = σn and the proof follows by an easy computation). Writing
the first character in s takes O(log h) bits; we write h copies of 1 while encoding s (or h + 1 if the first
character is a 1), which takes O(h) bits. Writing the length of the last run takes |Pfx(ℓ)| which is at most
a log ℓ+ b bits. We are left with the task of bounding the cost of encoding: 1) the starting position of the
first run of each character, 2) the distances between the ending position of a run and the starting position
of the next run of the same character. We account these costs separately for each σ ∈ Σ. Let (α1, β1),
(α2, β2), . . ., (αk, βk) denote the starting and ending positions of the runs of σ. Dc encodes these runs
with the sequence of codewords

Pfx(α1),Pfx(α2 − β1),Pfx(α3 − β2), . . . ,Pfx(αk − βk−1)

whose overall size is bounded by (setting β0 = 0)

a [log(α1 − β0) + log(α2 − β1) + · · · + log(αk − βk−1)] + bk (12)

bits. Summing the above term over all σ and reasoning as in the proof of Lemma 4.1 (compare (12)
with (10)) we get

|A1(s)| ≤ a log ℓ + a|s|H0(s) + b runs(s) + O(h),

where runs(s) is the number of runs in s. The thesis follows by Lemma 2.3.

Unfortunately, the following example shows that Dc + Pfx is not locally optimal.
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Example 2 Consider the partition s = s1s2s3 where

s1 = s3 = σ1σ2 · · · σh, s2 = σn
2 .

We have
∑2h

i=1 |si|H
∗
k(si) = log n + O(h log h), whereas Dc + Pfx produces an output of size Θ(h log n).

To see this, observe that for each character σ 6= σ2 it has to write a distance greater than n.

The above example suggests that to achieve local optimality with Dc we should try to avoid the encoding
of “long jumps”. To this end, we introduce Distance Coding with escapes (Dc esc). The main difference
between Dc and Dc esc is that, whenever Dc would write a distance, Dc esc compares the cost of writing
that distance to the cost of escaping and re-entering later, and does whichever is cheaper.

Whenever Dc would write 1, Dc esc writes 〈1, 1〉; this lets us use 〈1, 2〉 as a special re-entry sequence.
To escape after a run of σ’s, we write 〈1, 1〉; to re-enter at the the next run of σ’s, we write 〈1, 2, ℓ, σ〉,
where ℓ is the length of the preceding run (necessarily of some other character). To see how Dc esc works
suppose we are encoding the string

s = · · · σj
1 σk

2 σℓ
3 σm

1 · · · .

When Dc reaches the run σj
1 it encodes the value k + ℓ + 1 which is the distance from the last σ1 in σj

1 to
the first σ1 in σm

1 . Instead, Dc esc compares the cost of encoding k + ℓ + 1 with the cost of encoding an
escape (sequence 〈1, 1〉) plus the cost of re-entering. In this case the re-entry sequence would be written
immediately after the code associated with the run σℓ

3 and would consist of the sequence 〈1, 2, ℓ, σ1〉.
When the decoder finds such sequence it knows that the current run (in this case of σ3’s) will only last
for ℓ characters and, after that, there is a run of σ1’s. (Recall that Dc only encodes the starting position
of each run: the end of the run is induced by the beginning of a new run. When we re-enter an escaped
character we have to provide explicitly the length of the ongoing run).

Notice we do not distinguish between instances in which 〈1, 1〉 indicates a character does not occur,
cases in which it indicates a character does not occur again, and cases in which it indicates an escape;
we view the first two types of cases as escapes without matching re-entries.

Lemma 5.2 Let A1 = Dc + Pfx and let A2 = Dc esc + Pfx. For any string s and for any partition
s = s1, . . . , st

|A2(s)| ≤
t∑

i=1

|A1(si)|+ O(ht log h).

Proof: We consider the algorithm Dc esc* that, instead of choosing at each step whether to escape
or not, escapes if and only if the current distance crosses the boundary between two different partition
elements. That is, Dc esc* uses the escape sequence every time it encodes the distance between a run
ending in si and a run starting in sj with j > i. Let A∗

2 = Dc esc* + Pfx. Since Dc esc always performs
the most economical choice, we have |A2(s)| ≤ |A

∗
2(s)|; we prove the lemma by showing that

|A∗
2(s)| ≤

t∑

i=1

|A1(si)|+ O(ht log h).

Clearly Dc esc* escapes at most th times. The parts of an escape/re-enter sequence that cost Θ(1) (that
is, the codewords for 〈1, 1〉, 〈1, 2〉 and the encoding of the escaped character σ) are therefore included in
the O(ht log h) term. Thus, for each escape sequence we only have to take care of the cost of encoding of
the value ℓ that provides the length of the run immediately preceding the re-entry point. We now show
that the cost of encoding the run lengths ℓs is bounded by costs paid by Dc and not paid by Dc esc*. Let
σ denote the escaped character. Let sj denote the partition element containing the re-entry point and
let m denote the position in sj where the new run of σ’s starts (that is, at position m of sj there starts
a run of σ’s; the previous one ended in some si with i < j so Dc esc* escaped σ and is now re-entering).
Let σp denote the character immediately preceding the re-entry point: with our notation we have that
the re-entry point is preceded by the run σℓ

p. We consider two cases:
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ℓ ≤ m. In this case the run σℓ
p starts within sj. This implies that the cost |Pfx(ℓ)| paid by Dc esc* is no

greater than the cost |Pfx(m)| paid by Dc for encoding the first position of σ in sj.

ℓ > m. In this case the run σℓ
p starts in a partition element preceding sj. Let m′ = ℓ−m. If m′ < |sj−1|

the run σℓ
p starts within sj−1. Under this assumption, by Lemma 3.1 the cost |Pfx(ℓ)| paid by

Dc esc* is at most dab plus the cost |Pfx(m)| paid by Dc for encoding the first position of σ in sj,
plus the cost |Pfx(m′)| paid by Dc to encode the length of the last run in sj−1. If m′ > |sj−1| then
the run σℓ

p spans several partition elements sj−k, sj−k+1, . . . , sj. In this case, again by Lemma 3.1,
the cost |Pfx(ℓ)| is bounded by dab plus the cost paid by Dc for encoding the following items: 1)
the last run in sj−k, 2) the last (and only) run in sj−k+1, . . . , sj−1, 3) the first position of σ in sj.

Combining Lemma 5.2 with Lemma 5.1 we immediately get

Theorem 5.3 The algorithm A2 = Dc esc + Pfx is locally max(2a, a + b + ǫ)-optimal for any ǫ > 0.

We now consider the case in which the output of Dc esc is compressed with the encoder Order0*. The
main tool for our analysis will be again Lemma 3.3 that establishes a relationship between the output
size of Order0* of that of an integer coder. However, there is the technical difficulty that for a generic
order zero encoder we do not necessarily have the concept of codeword assigned to each input symbol:
the concept of codeword is well defined for example for Huffman coding but not for Arithmetic coding.
This could be a problem for the algorithm Dc esc that, in order to decide whether to escape or not, has
to compare the cost of encoding two different set of symbols.

Theorem 5.4 The algorithm Dc esc + Order0* is locally (2.94 + C0)-optimal.

Proof: Fix µ > 1 and ν > 0. Let Pfxµ ν be the (ideal) integer coder such that |Pfxµ ν(i)| = µ log i +
log(ζ(µ))+ν+C0. Let Dc escµ ν denote the algorithm that decides whether to escape or not on the basis of
the costs given by Pfxµ ν . By Theorem 5.3 Dc escµ ν +Pfxµ ν is locally max(2µ, µ+log(ζ(µ))+ν + ǫ+C0)-
optimal for any ǫ > 0. Since by Lemma 3.3 |Order0*(Dc escµ ν(s))| ≤ |Pfxµ ν(Dc escµ(s))| the local
optimality result stated in Theorem 5.3 holds for Dc escµ ν +Order0* as well. The theorem follows taking
µ = 1.47 and ν = ǫ = 0.001.

5.1 Using an explicit escape symbol

We now show how to improve the performance of Dc esc by using a special escape symbol to introduce
escape/re-enter sequences. The rationale is that escape/re-enter sequences are relatively rare so it pays
to use a special low-probability symbol for them. The escape symbol will be used also by our variant of
the Inversion Frequencies algorithm.

Lemma 5.5 Let Pfx be a code for the integers such that for i > 0 it is |Pfx(i)| ≤ a log i + b. For any
δ > 0 there exists a code Pfx(δ) such that: 1) for i > 0 it is |Pfx(δ)(i)| ≤ (1 + δ)(a log i) + b, 2) in addition
to the positive integers Pfx(δ) can encode a special escape symbol esc.

Proof: Given δ > 0 let iδ denote the smallest integer such that log(i + 1) ≤ (1 + δ) log i. We define the
code Pfx(δ) as follows: Pfx(δ)(esc) = Pfx(iδ) and

Pfx(δ)(i) =

{
Pfx(i) for i < iδ,
Pfx(i + 1) for i ≥ iδ.

The lemma follows since the concavity of log x ensures |Pfx(δ)(i)| ≤ (1 + δ)(a log i) + b for any i > 0.

11



Let Esc1 denote the procedure that given a sequence of positive integers replaces every occurrence of
1 with the symbol esc. For example: Esc1(2113314) = 2 esc esc 3 3 esc 4. Let B2 = Dc esc + Esc1 + Pfx(δ).
Note that in B2 every occurrence of the symbol 1 produced by Dc esc is eventually encoded with the
codeword Pfx(δ)(esc). We assume that Dc esc assigns the cost |Pfx(δ)(esc)| to the symbol 1 when it has
to decide whether to escape or not.

Lemma 5.6 For any positive constants ǫ, δ, the algorithm B2 = Dc esc+Esc1+Pfx(δ) is locally λ-optimal
with λ = max(2a′, a′ + b + ǫ), a′ = a(1 + δ).

Proof: Let B1 = Dc + Esc1 + Pfx(δ). Since Dc outputs the symbol 1 at most 2h times, replacing it with
esc introduces a O(h) overhead. Replacing Pfx with Pfx(δ) introduces a multiplicative overhead of (1+ δ)
to each log term, repeating the proof of Lemma 5.1 we get

|B1(s)| ≤ max(2a′, a′ + b + ǫ)|s|H∗
0 (s) + O(h). (13)

Consider now B∗
2 = Dc esc* + Esc1 + Pfx(δ), where Dc esc* is defined as in the proof of Lemma 5.2.

Reasoning as in Lemma 5.2 we have that for any partition s = s1 · · · st

|B2(s)| ≤ |B
∗
2(s)| ≤

t∑

i=1

|B1(si)| + O(ht log h)

where the second inequality follows by the fact that Dc esc* outputs the esc symbol at most O(ht) times.
The lemma follows combining the above inequality with (13).

Theorem 5.7 The algorithm Dc esc + Esc1 + Order0* is locally (2.69 + C0)-optimal.

Proof: Fix µ > 1 and ν > 0. Let Pfxµ ν be the (ideal) coder for the set {2, 3, . . .} such that |Pfxµ ν(i)| =

µ log i + log(ζ(µ) − 1) + ν + C0, and let Pfx
(δ)
µ ν be the coder obtained applying Lemma 5.5. Note that

Pfx
(δ)
µ ν can encode only symbols over the set Σ′ = {esc} ∪ {2, 3, 4, . . . , } but this is fine since the string

Esc1(Dc esc(s)) does not contain the symbol 1. By Lemma 5.6, for any ǫ, δ > 0, the algorithm Dc esc +

Esc1 + Pfx
(δ)
µ ν is λ-optimal with λ = max(2µ(1 + δ), µ(1 + δ) + log(ζ(µ) − 1) + ν + C0 + ǫ). Reasoning

as in the proof of Lemma 3.3 we have that replacing Pfx
(δ)
µ ν with Order0* can only reduce the output

size so the local optimality result holds for Order0* as well. The theorem follows taking µ = 1.343, and
ν = ǫ = δ = 0.001.

Corollary 5.8 For any string s and k ≥ 0 we have

|Order0*(Esc1(Dc esc(bwt(s))))| ≤ (2.69 + C0)|s|H
∗
k(s) + log |s|+ O

(

hk+1 log h
)

.

Proof: Immediate by Theorem 5.7 and Lemma 2.1.

6 Local Optimality with Inversion Frequencies Coding

Inversion Frequencies (If for short) is a coding strategy proposed in [1] as an alternative to Mtf. Given
a string s over an ordered alphabet Σ = {σ1, σ2, . . . , σh}, in its original formulation If works in h − 1
phases. In the i-th phase If encodes the distance between every pair of consecutive occurrences of σi: in
the computation of such distances If ignores the characters smaller than σi. In other words, in the i-th
phase If conceptually builds the string s(i) removing from s the characters smaller than σi and encodes
the distances between consecutive occurrences of σi in s(i). Note that there is no need to encode the
occurrences of σh. The output of If consists of the concatenation of the output of the single phases
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Inversion Frequencies with Run-Length Encoding (If rle)

1. Write h = |Σ| bits to indicate which characters are actually present in s (from now on we assume all characters
are present);

2. For i = 1, . . . , h − 1: write the number ℓi of characters greater than σi preceding the first occurrence of σi

in s; if ℓi = 0 write esc instead.

3. Set j = 1 and repeat until j ≤ |s|:

(a) Let σi = s[j]. Let s[m] be the first occurrence of a symbol greater than σi to the right of s[j], and let
s[p] be the first occurrence of the symbol σi to the right of s[m].

(b) Write the pair 〈k, ℓ〉 where k is the number of occurrences of σi in s[j] · · · s[m− 1] and ℓ is the number
of occurrences of symbols greater than σi in s[m] · · · s[p− 1].

(c) Set j to be the next position in s containing a character different from σi and σh.

4. Write the pair 〈esc, esc〉.

Figure 2: Inversion Frequencies with Run Length Encoding.

prefixed by an encoding of the number of occurrences of each symbol σi (this information is needed by
the decoder to figure out when a phase is complete). For example, if s = σ2σ2σ1σ3σ3σ1σ3σ1σ3σ2, the
first phase encodes the occurrences of σ1, producing the sequence 〈3, 3, 2〉, and the second phase encodes
the occurrences of σ2, producing the sequence 〈1, 1, 5〉. The output of If is an encoding of the number of
occurrences of σ1, σ2, and σ3 (3, 3, and 4 in our example), followed by the sequence 〈3, 3, 2, 1, 1, 5〉.

Recently, [10, Sect. 3.2] has shown that If is equivalent to coding the string s with a skewed wavelet
tree combined with Gap Encoding. The analysis in [10] shows that, if the alphabet is reordered so that
σh is the most frequent symbol (so that it gets encoded for free), the output of If + Pfx is bounded by

|Pfx(If(s))| ≤ max(a, b)|s|H0(s) + (|Σ|+ a) log |s|+ O(1).

Unfortunately, the following example shows that If is not locally optimal.

Example 3 Consider the partition s = s1s2 where s1 = σn
1 , s2 = σn

2 . We have |s1|H
∗
0 (s1)+ |s2|H

∗
0 (s2) =

O(log n), whereas, no matter how we order the alphabet |Pfx(If(s))| = Θ(n).

We now describe two variants of the basic If procedure and we prove that the second variant is locally
optimal. The first variant, called Inversion Frequencies with Run Length Encoding (If rle), will serve only
as an intermediate step, but it is already much more efficient than If. In addition, If rle does a single pass
working on all characters simultaneously instead of doing h− 1 passes as If.

If rle produces a sequence over the set {esc} ∪ {1, 2, . . .} so its output will be encoded using the Pfx(δ)

encoder described in Lemma 5.5. The outline of the procedure If rle is described in Figure 2. Note that in
the main body of If rle (Step 3) we are essentially encoding the following information: “starting from the
current character σi = s[j] there are k occurrences of σi before we reach the first character greater than
σi; after that there are ℓ characters greater than σi before we find another occurrence of σi”. Note also
that, similarly to If, the procedure If rle does not encode explicitly any information about the occurrences
of σh. In Step 3a we are assuming that the characters s[p] and s[m] always exist: this is not the case for
the last run of each character that consequently requires a slightly different encoding. Here is how it is
done. If s[p] does not exist (there are no occurrences of σi to the right of s[m]), then If rle writes the pair
〈k, ℓ〉, where ℓ is equal to the number of characters greater than σi in s[m] · · · s[n]. If s[m] does not exist
(there are no characters greater than σi to the right of s[j]) If rle writes the pair 〈k, esc〉.

The procedure for decoding the output of If rle is shown in Figure 3. The decoder maintains two
arrays To be written[1, . . . , h − 1] and To be skipped[1, . . . , h − 1] such that To be written[i] stores how
many σi’s have to be written before we find a character greater than σi and To be skipped[i] stores how
many characters greater than σi there are between the end of the current run of σi’s and the next one
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Decoding Procedure for If rle

1. Read h = |Σ| bits to determine which characters are actually present in s (from now on we assume all
characters are present);

2. For i = 1, . . . , h − 1, read ℓi and set To be skipped[i] ← ℓi and To be written[i] ← 0 (if ℓi = esc set
To be skipped[i]← 0 instead);

3. Repeat until the pair 〈esc, esc〉 has been read:

(a) let i be the smallest index such that To be skipped[i] = 0, read the next pair 〈k, ℓ〉 and set
To be written[i]← k, To be skipped[i]← ℓ (if all To be skipped[i] are nonzero do nothing);

(b) let i be the smallest index such that To be written[i] 6= 0; if all To be written[i] are zero let i = h;

(c) write σi to the output file;

(d) for j = 1, 2, . . . , i− 1 set To be skipped[j]← To be skipped[j]− 1;

Figure 3: Decoding procedure for Inversion Frequencies with Run Length Encoding .

(again runs and distances for σi are defined ignoring smaller characters). For a single character σi the
decoding procedure works as follows. Until To be written[i] > 0 the decoder outputs σi and decreases
To be written[i] by one. When To be written[i] reaches zero the decoder decreases To be skipped[i] by
one each time it outputs a character greater than σi. When also To be skipped[i] reaches zero the
decoder needs new instructions for σi so it reads a new pair 〈k, ℓ〉 from the compressed file and sets
To be written[i] ← k and To be skipped[i] ← ℓ. The actual decoding procedure is more complex since
it has to work on all characters σ1, . . . , σh at the same time. So it is often the case that more than one
To be written[i] is greater than zero: in this case the smallest i wins. The reason is that, if i < j, the
encoding of σj ignores the occurrences of σi so σi must take precedence. Note that the decoder outputs a
character σh every time To be skipped[j] > 0 for every j < h. The last run of each character is handled
as follows. If the decoder reads the pair 〈k, esc〉 it sets To be written[i] ← k and To be skipped[i]←∞:
this means that there are k more occurrences of σi and no more.

Despite our care in designing If rle the following example shows that the combination If rle+ Pfx(δ) is
still not locally optimal.

Example 4 Consider the partition s = s1s2 · · · s2h where

s1 = σ1σ2 · · · σh s2 = σn
1 s3 = s1 s4 = σn

2 s5 = s1 s6 = σn
3

and so on up to s2h = σn
h . We have

∑2h
i=1 |si|H

∗
0 (si) = O(h log n), whereas, no matter how we order the

alphabet Pfx(δ)(If rle(s)) = O
(

h2 log n
)

.

An obvious inefficiency of If rle is that sometimes we are forced to pay the cost of a “long jump” many
times. Consider the string: s = σ1σ2σ

n
3 σ2σ1. Assuming σ1 < σ2 < σ3 we see that If rle pays a O(log n)

cost for the encoding of both σ1 and σ2 because of the presence of the σn
3 substring. We now propose

an escape and re-enter mechanism that essentially guarantees that in the above situation we pay the
O(log n) cost at most once.

The new algorithm, called Inversion Frequencies with RLE and Escapes (If rle esc), works as follows.
Assume that s[j] = σi is the next character to be encoded, and let s[m], s[p], k, and ℓ be defined as for
the algorithm If rle. Moreover, let o denote the largest index such that m < o < p and s[o − 1] > s[o]
(o does not necessarily exist). If o does not exist, If rle esc behaves as If rle and outputs the pair 〈k, ℓ〉.
If o exists, If rle esc chooses the most economical option between 1) encoding 〈k, ℓ〉 and 2) escaping σi

(which means encoding the pair 〈k, esc〉) and re-entering it at the position o. It is possible to re-enter at
o since the condition s[o− 1] > s[o] implies that when the decoder reaches the position o it will need to
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read new data from the compressed file3. The code for re-entering is the triple 〈esc, ℓ′ + 1, σi〉, where ℓ′

is the number of characters greater than σi in s[o] · · · s[p − 1]: we encode ℓ′ + 1 since it is possible that
ℓ′ = 0. Note however that ℓ′ + 1 is never larger than the value ℓ that would have been written if we had
not escaped. After reading the re-enter triple 〈esc, ℓ′ + 1, σi〉, the decoder sets To be written[i] = 0 and
To be skipped[i] = ℓ′ and reads the next pair from the compressed file (that would be the To be written,
To be skipped pair for s[o] unless there is another re-enter sequence).

Example 5 Consider the string s = · · · σ1σ
2
2σ

3
3σ

n
4 σ4

2σ3σ1σ
5
2 · · · over the alphabet Σ = {σ1, σ2, σ3, σ4}. If

n is sufficiently large If rle esc escapes the characters σ1 and σ3 and produces the output

· · · 〈1, esc〉
︸ ︷︷ ︸

σ1

〈2, n + 3〉
︸ ︷︷ ︸

σ2
2

〈3, esc〉
︸ ︷︷ ︸

σ3
3

〈esc, 6, σ1〉
︸ ︷︷ ︸

σ1 re-enter

〈esc, 1, σ3〉
︸ ︷︷ ︸

σ3 re-enter

〈4, 1〉
︸ ︷︷ ︸

σ4
2

· · ·

(recall σ4’s occurrences are not explicitly encoded). Notice If rle esc cannot escape σ2 since between the
runs σ2

2 and σ4
2 there is no position o such that s[o− 1] > s[o].

Notice If rle esc does not distinguish between cases in which 〈k, esc〉 indicates a character does not
occur again, as in If rle, and cases in which it indicates an escape sequence: the former is seen as an
escape without matching re-enter. Note also that the decoder can always distinguish a re-enter sequence
from a normal pair 〈k, ℓ〉, an escape/end-of-character pair 〈k, esc〉, and an end-of-file pair 〈esc, esc〉.

We define If rle esc + Pfx(δ) as the algorithm that encodes the output of If rle esc with Pfx(δ). For the
analysis of If rle esc + Pfx(δ) we need two preliminary lemmas.

Lemma 6.1 Let z be a binary string of the form z = 0ℓ11ℓ2 · · · σℓm , where σ = 0 if m is odd, and σ = 1
if m is even. Define

RLE(z) =
m∑

i=1

|Pfx(δ)(ℓi)|;

if |Pfx(δ)(ℓ)| ≤ (1 + δ)(a log ℓ) + b as in Lemma 5.5, then setting a′ = a(1 + δ) we have

RLE(z) ≤ a′|z|H0(z) + a′ log ℓm + bm.

Proof: Assume 1 is the less frequent symbol (otherwise the proof is symmetrical) and let n1 denote the
number of occurrences of 1 in z. We distinguish three cases according to the size of n1.

Case n1 = 0. We have m = 1, z = 0ℓ1 and RLE(z) = |Pfx(δ)(ℓ1)| ≤ a′ log ℓ1 + b.

Case 1 ≤ n1 ≤ (|z|/e). We prove that RLE(z) =
∑m

i=1 |Pfx(δ)(ℓi)| ≤ a′|z|H0(z) + bm assuming that
m is even. If m is odd, the cost |Pfx(δ)(ℓm)| of the last run is accounted for explicitly in the statement of
the lemma. We have

RLE(z) =
m∑

i=1

|Pfx(δ)(ℓi)| ≤
m∑

i=1

a′ log ℓi + bm. (14)

Let t denote the number of nonzero logarithms in (14) (that is, we do not count the logarithms for which
ℓi = 1). We show that t ≤ n1 by charging each nonzero logarithm to a different 1 in z as follows. For
k = 1, . . . ,m/2, if ℓ2k > 1 we charge both log(ℓ2k−1) and log(ℓ2k) to the the ones in 1ℓ2k ; if ℓ2k = 1 then
log(ℓ2k) is zero and we charge log(ℓ2k−1) to the single 1 in 1ℓ2k . Using Jensen’s inequality and the fact
that the function x log(|z|/x) is increasing for x ≤ n1 ≤ (|z|/e) we get

m∑

i=1

log(ℓi) =
∑

ℓi>1

log(ℓi) ≤ t log

(∑

ℓi>1 ℓi

t

)

≤ t log(|z|/t) ≤ n1 log(|z|/n1) ≤ |s|H0(s).

Combining the above inequality with (14) yields the thesis.

3Let s[o] = σe. The decoder cannot output s[o − 1] > σe unless To be written[e] = 0. This implies that in order to write
s[o] = σe the decoder needs to read a new To be written[e] value from the compressed file.
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Case (|z|/e) < n1 ≤ (|z|/2). From Jensen’s inequality we get

m∑

i=1

|Pfx(δ)(ℓi)| =
m∑

i=1

a′ log ℓi + bm ≤ a′m log(|z|/m) + bm

Since the function x log(|z|/x) has its maximum for x = (|z|/e) the above inequality becomes

m∑

i=1

|Pfx(δ)(ℓi)| ≤ a′|z|(log e)/e + bm.

The lemma follows since the hypothesis (|z|/2) ≥ n1 > (|z|/e) implies |z|H0(z) ≥ |z|(log e)/e.

Lemma 6.2 For i = 1, 2, . . . , h−1 let z(i) denote the binary string obtained from s deleting all characters
smaller than σi, replacing the occurrences of σi with 1, and replacing the occurrences of characters greater
than σi with 0. We have

h−1∑

i=1

|z(i)|H0(z
(i)) = |s|H0(s). (15)

Proof: For i = 1, 2, . . . , h let ni denote the number of occurrences of σi in s and let wi = ni + · · · + nh.
Note that |z(i)| = ni + wi+1 = wi. We have

h−1∑

i=1

|z(i)|H0(z
(i)) =

h−1∑

i=1

[ni log (wi/ni) + wi+1 log (wi/wi+1)]

=
h−1∑

i=1

[wi log(wi)− ni log(ni)− wi+1 log(wi+1)]

= w1 log(w1)−
h−1∑

i=1

ni log(ni) − wh log(wh)

= |s| log |s| −
h∑

i=1

ni log(ni) = |s|H0(s).

Theorem 6.3 For every ǫ, δ > 0 the algorithm A3 = If rle esc + Pfx(δ) is locally λ-optimal for λ =
max(4a′, a′ + b + ǫ), where a′ = a(1 + δ).

Proof: We need to show that for any partition s = s1s2 · · · st we have

|A3(s)| ≤ max(4a′, a′ + b + ǫ)
t∑

i=1

|si|H
∗
0 (si) + O(th log h) . (16)

We consider the algorithm If rle esc* that, instead of choosing at each step whether to escape or not,
escapes the symbol σi only if the characters s[m] and s[p] belongs to two different partition elements
(recall that whether If rle esc* actually escapes depends on the existence of a position o, such that
m < o < p and s[o − 1] > s[o]). Let A∗

3 = If rle esc* + Pfx(δ). Since If rle esc always performs the most
economical choice, we have |A3(s)| ≤ |A

∗
3(s)|. We prove the theorem by showing that (16) holds with

A3(s) replaced by A∗
3(s).

For i = 1, . . . , h−1, let s(i) denote the string obtained removing from s the characters smaller than σi.
If in s(i) we replace σi with 1 and σi+1, . . . , σh with 0 we get precisely the string z(i) defined in Lemma 6.2.
Let RLE be defined as in Lemma 6.1. We preliminary prove that

|A∗
3(s)| ≤

h−1∑

i=1

RLE(z(i)) + O(th log h) . (17)
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To prove this, we first consider If rle and we show that, apart from O(h) bits at Step 1, its output consists
precisely of the lengths of the runs of zeros and ones in z(i) for i = 1, . . . , h− 1. Consider for example the
encoding of the character σi. At Step 2 If rle encodes the number ℓi of characters greater than σi preceding
the first occurrence of σi in s: this is precisely the length of the first run of 0’s in z(i). Then, each pair
〈k, ℓ〉 written at Step 3 represents a run of σi in s(i)—corresponding to a runs of 1’s in z(i)—followed by a
run of characters greater than σi—corresponding to a run of 0’s in z(i). For the algorithm If rle esc* the
only difference is that, because of the escape mechanism, a length-ℓ run of zeros4 crossing the boundary
of two partition elements is sometimes encoded with an escape pair 〈k, esc〉 later followed by the re-enter
triple 〈esc, ℓ′ + 1, σi〉. Since If rle esc* escapes at most th times, the parts of an escape/re-enter sequence
that use O(1) bits are included in the O(th log h) term. Since, by construction, we have 1 + ℓ′ ≤ ℓ we
conclude that (17) holds.

For i = 1, . . . , h − 1, the partition s = s1 · · · st naturally induces the partitions s(i) = s
(i)
1 · · · s

(i)
t and

z(i) = z
(i)
1 · · · z

(i)
t . By Lemma 3.1 we get

RLE(z(i)) ≤
t∑

j=1

RLE(z
(i)
j ) + O(t) . (18)

Assume now that every partition element sj contains every character σi ∈ Σ. Under this assumption

H0(z
(i)
j ) = H∗

0 (z
(i)
j ). By Lemmas 6.1 and 2.3, for any ǫ > 0 we have

RLE(z
(i)
j ) ≤ max(2a′, a′ + b + ǫ)|z

(i)
j |H0(z

(i)
j ) + O(1). (19)

Combining (17) with (18) and (19) and Lemma 6.2 we get

|A∗
3(s)| ≤

h−1∑

i=1

t∑

j=1

RLE(z
(i)
j ) + O(th log h)

≤
h−1∑

i=1

t∑

j=1

max(2a′, a′ + b + ǫ)|z
(i)
j |H0(z

(i)
j ) + O(th log h)

≤ max(2a′, a′ + b + ǫ)
t∑

j=1

h−1∑

i=1

|z
(i)
j |H0(z

(i)
j ) + O(th log h)

≤ max(2a′, a′ + b + ǫ)
t∑

j=1

|sj |H0(sj) + O(th log h)

that implies (16). In the general case, in which some sj does not contain all the characters of Σ, the above
argument does not hold. To see this, assume that sj does not contain σi but does contain a character σk

with k > i. In this case we have z
(i)
j = 0ℓ, hence H0(z

(i)
j ) = 0 and (19) does not hold.

To complete the proof we need to take into account the benefits of the escape mechanism. We say that

a character σi is escaped in sj if the following conditions hold: 1) z
(i)
j = 0ℓ, 2) the last run of σi’s before

the beginning of sj produces and escape sequence, 3) the corresponding re-entry point is at a position s[o]
which is after the end of sj. The crucial observation is that if σi is escaped in sj the algorithm If rle esc*

does not “pay” for the encoding of z
(i)
j . To see this, observe that z

(i)
j = 0ℓ is a substring of a larger run

0m in z(i). Because of the escape mechanism instead of the length m If rle esc* encodes a length m′ with

m′ ≤ m − ℓ so z
(i)
j is encoded essentially for free. For this reason, if we define Uj ⊆ Σ as the set of

4Only runs of zeros are escaped by If rle esc*. Indeed, when we escape σi we are trying to reduce the cost of encoding a
run of characters greater than σi and such characters are represented by zeros in z

(i).
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characters that are not escaped in sj, we have

|A∗
3(s)| ≤

t∑

j=1

∑

i∈Uj

RLE(z
(i)
j ) + O(th log h) (20)

We conclude the proof by showing that for j = 1, . . . , t

∑

i∈Uj

RLE(z
(i)
j ) ≤ max(4a′, a′ + b + ǫ)|sj |H

∗
0 (sj) + O(1) (21)

which combined with (20) proves (16). To prove (21) we consider the characters σi ∈ Uj for which the

string z
(i)
j is non empty but H0(z

(i)
j ) = 0 (in other words z

(i)
j is equal to 0ℓ or 1ℓ with ℓ > 0).

Our first observation is that there can be at most one character σi ∈ Uj such that z
(i)
j = 0ℓ. The

reason is that if for both σi, σk we have H0(z
(i)
j ) = 0ℓ and H0(z

(k)
j ) = 0m one of them—the one which

occurs later after the end of sj—will be certainly escaped. The second observation is that there can be

at most one character σi such that z
(i)
j = 1ℓ. The reason is that z

(i)
j = 1ℓ if and only if i < h and σi is

the largest character appearing in sj. We conclude that the contribution to the summation in (21) of the

strings z
(i)
j with H0(z

(i)
j ) = 0 is bounded by 2Pfx(δ)(|sj |) ≤ 2a′ log(|sj |) + 2b. Let Wj ⊆ Σ be the set of

characters σi such that H0(z
(i)
j ) 6= 0. If Wj is empty, then

∑

i∈Uj
RLE(z

(i)
j ) = 2a′ log(|sj|) + 2b and (21)

holds. If Wj is not empty, using Lemmas 6.1 and 2.3 and the fact that for the smallest i in Wj we have

|z
(i)
j | = |sj| we get that for any ǫ > 0

∑

i∈Uj

RLE(z
(i)
j ) ≤

∑

i∈Wj

RLE(z
(i)
j ) + 2a′ log(|sj|) + 2b

≤
∑

i∈Wj

(

a′|z
(i)
j |H0(z

(i)
j ) + a′ log(|z

(i)
j |) + b runs(z

(i)
j )

)

+ 2a′ log(|sj |) + 2b

≤
∑

i∈Wj

(

a′|z
(i)
j |H0(z

(i)
j ) + 3a′ log(|z

(i)
j |) + b runs(z

(i)
j )

)

+ 2b

≤
∑

i∈Wj

(

max(4a′, a′ + b + ǫ)|z
(i)
j |H0(z

(i)
j )

)

+ O(1)

= max(4a′, a′ + b + ǫ)|sj|H0(sj) + O(1)

as claimed.

Repeating verbatim the proof of Theorem 5.4 with µ = 1.105, ν = ǫ = δ = 0.001, we get a bound for the
output size of If rle esc followed by Order0*.

Theorem 6.4 The algorithm If rle esc + Order0* is locally (4.45 + C0)-optimal.

Corollary 6.5 For any string s and k ≥ 0 we have

|Order0*(If rle esc(bwt(s)))| ≤ (4.45 + C0)|s|H
∗
k(s) + log |s|+ O

(

hk+1 log h
)

.

Proof: Immediate by Theorem 6.4 and Lemma 2.1.

18



7 Lower bound for entropy-only compressors

In this section we show that any algorithm A achieving an “entropy-only” bound cannot compress every
string s in less than 2|s|H∗

0 (s) + Θ(1) bits. We prove this result assuming only that A is non-singular,
that is, for any pair of strings s1 6= s2 we have A(s1) 6= A(s2).

Theorem 7.1 If A is a non-singular compressor, then the bound

|A(s)| ≤ λ|s|H∗
0 (s) + η for every string s

can only hold with a constant λ ≥ 2.

Proof: For i = 1, 2, . . . let Ti denote the set of binary strings such that s ∈ Ti if and only if 2i−1 < |s| ≤ 2i

and s contains exactly one 1 and (|s| − 1) 0’s. Elementary calculus shows that

|Ti| =
2i(2i + 1)

2
−

2i−1(2i−1 + 1)

2
≥

3

8
· 4i. (22)

In addition, recalling that t ≥ 1 implies (1 + 1
t
)t < e, for s ∈ Ti it is

|A(s)| ≤ λ|s|H∗
0 (s) + η

= λ
(

log |s|+ (|s| − 1) log
(

|s|
|s|−1

))

+ η

≤ λ(log 2i + log e) + η

= λ i + η′ (23)

with η′ = η + λ log e. Since there are at most 2z+1 − 1 distinct binary codewords of length at most z, we
have that less than

2λi+η′+1 = 2η′+1(2λ)i (24)

are available for encoding the strings in Ti. Comparing (22) and (24) implies that, for sufficiently large
i, if every s ∈ Ti must get a different codeword we must have 2λ ≥ 4 and therefore λ ≥ 2.

If, addition to non-singularity, we require that A be prefix-free, that is for s1 6= s2, A(s1) is not a prefix
of A(s2), then also a multiplicative constant λ = 2 is not admissible.

Theorem 7.2 If A is a prefix-free compressor, then the bound

|A(s)| ≤ λ|s|H∗
0 (s) + η for every string s

can only hold with a constant λ > 2.

Proof: Let Ti be defined as in the proof of Theorem 7.1. Since A defines a prefix free encoding of the
strings in the set ∪i≥1Ti, by the extended Kraft’s inequality [5, Theorem 5.2.2] we must have

∑

i≥1

∑

s∈Ti

2−|A(s)| ≤ 1. (25)

By (23) and (25) we get

∑

i≥1

∑

s∈Ti

2−|A(s)| ≥
∑

i≥1
2−λi−η′

|Ti| ≥
∑

i>0

2−η′ 3

8

( 4

2λ

)i
.

Hence, to satisfy (25) we must have λ > 2 as claimed.
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