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Abstract

In this paper, the Non deterministic Repairable Fault Tree (NdRFT) formalism is proposed: it allows to

model failure modes of complex systems as well as their repair processes. The originality of this formalism

with respect to other Fault Tree extensions is that it allows to face repair strategies optimization problems:

in an NdRFT model, the decision on whether to start or not a given repair action is non deterministic, so

that all the possibilities are left open. The formalism is rather powerful allowing to specify which failure

events are observable, whether local repair or global repair can be applied, and the resources needed to start

a repair action. The optimal repair strategy can then be computed by solving an optimization problem

on a Markov Decision Process (MDP) derived from the NdRFT. A software framework is proposed in

order to perform in automatic way the derivation of an MDP from a NdRFT model, and to deal with the

solution of the MDP.

Keywords. Fault Tree, Optimal repair strategy, Markov Decision Process, Markov Decision Petri Net

1 Introduction

The Fault Trees (FT) [22] are a well-known formalism for the evaluation of dependability of complex systems.

They provide an intuitive representation of the system in terms of its faults, modeling how the combinations

of failure events relative to the components of the system, can cause the failure of the sub-systems or of the

whole system.



Many extensions of this formalism have been proposed in order to enhance the advantages of the FT for

the design and the assessment of the systems (e.g. Dynamic FT [16], Parametric FT [5], etc.). Among these

extensions, in [12] the Repairable FT (RFT) was presented in order to evaluate the effect of different repair

policies on a repairable system.

In this paper, we present a new FT extension, called Non deterministic Repairable Fault Tree (NdRFT)

which has been designed to define and solve repair strategy optimization problems: in an NdRFT model

the possible repair strategies are not predefined; on the contrary, the best strategy, minimizing the failure

probability of the global system, is automatically computed. This is done by defining the NdRFT semantics

in terms of a Markov Decision Process (MDP), a formalism embedding non deterministic and probabilistic

behavior [14, 18], and then solving the optimization problem using the methods available for MDPs.

The generation of the MDP is achieved by an intermediate translation of the NdRFT model into a Markov

Decision Petri Net (MDPN) [3]: this allows to reuse the efficient algorithms devised to derive an MDP from

an MDPN. Moreover a direct translation from NdRFT to MDP requires to implement a mechanism to

combine the failure/repair events of all components into a single complex transition or action: this is already

implemented for MDPN formalism.

The NdRFT formalism allows to express in an elegant way several possible start repair options based on:

1) the concept of “observability” of events (repair actions can only be triggered by observable failures), 2)

the notion of local versus global repair action, 3) the notion of repair supervisor component, in case of global

repair. Very few restrictions are imposed on the scope of repair actions (so that the repair of each basic

component can start based on observations made on different failure events). The NdRFT formalism allows

the modeler to express in a familiar language (NdRFT extends FT) the failure mode and the repair options

in the system; in this way, he avoids to deal with a larger, unstructured and state-level MDP model that is

instead derived from the NdRFT model.

The paper is structured as follows: Sec. 2 presents some related work about FT, tools for FT analysis,

and RFT; in Sec. 3 we provide the formal definition of the NdRFT formalism; Sec. 4 explains how to derive

from a NdRFT model, the corresponding MDPN; in Sec. 5 we present a software framework for the design

and the solution of NdRFT models in order to compute the optimal repair strategy and the corresponding

dependability of the system; finally in section 6, we present and analyze some experimentations.
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2 Related work

2.1 Fault Trees

In the FT formalism, nodes can belong to one of these two categories: events and gates. Events concern the

failure of components, subsystems or of the whole system. We can consider an event as a Boolean variable:

it is initially false and it becomes true when the failure occurs.

An example is shown in Fig. 1.b. The events graphically represented as a rectangle with an attached

circle are called Basic Events (BEs) and model the failure of the components of the system; such events are

stochastic, so their occurrence is ruled by some probability distribution.

The events depicted simply by a rectangle represent the failure of subsystems; we call them Internal

Events (IEs) and they are the output of a gate node. Gates are connected by means of arcs to several input

events and to a unique output event; the effect of a gate is the propagation of the failure to its output event if

a particular combination of its input events occurs. In the standard version of the FT formalism three types

of gate are present and correspond to the AND, OR and ”K out of N” Boolean functions.

Finally, we have a unique event called Top Event (TE), modeling the failure of the whole system. The

FT incorporates a Boolean formula expressing the TE truth value as a function of its variables (BEs).

The analysis of an FT model returns several dependability measures such as the system reliability, the

system minimal cut-sets, the criticality of each component [22]; in particular, the system reliability at time

t is the probability that the system has been working in the time interval (0, t). The most efficient way to

perform the analysis of an FT, consists of generating the Binary Decision Diagram (BDD) [7] representing the

same Boolean formula expressed by the FT: efficient algorithms allow to compute on the BDD the measures

cited above [19].

2.2 Tools for FT analysis

Several software tools support the FT analysis. Some of them can deal with the repair, but they allow only to

model the repair of single components: the repair process is triggered by the component failure and has effect

only on the same component. For instance in the tool ASTRA [13] developed by the European Commission

Joint Research Centre (JRC), one of the parameters of a BE is the time to repair the component whose

failure is modeled by the same BE. In other tools, the time to repair a component is a random variable ruled

by some distribution such as the negative exponential one. This is the case of the following tools where a

repair rate can be associated with a BE: Stars Studio developed by JRC [13], HIMAP [15] by Iowa State

University, Relex [26], FTA-Pro [24] by Dyadem, FaultTree+ [27] by Isograph Software, FTAnalyzer [28] by

Advanced Logistic Development (ALD).
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The SHARPE tool [21] allows hierarchical modeling: the probability to occur of a BE can be set equal

to some measure computed on another kind of model, for instance a Continuous Time Markov Chain

(CTMC) [21]. In this way, the failure and repair mode of a component may be more complex than a simple

transition from the working state to the failure state and vice-versa. In any case, the model representing the

failure and repair mode of the component has to be manually drawn by the modeler. Hierarchical modeling

is possible by means of the HIMAP tool as well [15].

A Dynamic Fault Trees (DFT) [1] is a particular extension of FT where dependencies between BEs can

be set by means of the dynamic gates. The analysis of a DFT model can be performed by conversion into a

Continuous Time Markov Chain (CTMC) [16] and is supported by the tool Galileo [25]. In [6], a DFT model

can include the repair of components, and the analysis of the model is faced in by exploiting Input-Output

Interactive Markov Chains, however each repair action still concerns a single component.

2.3 Repairable Fault Trees

In the literature, the Repairable Fault Tree (RFT) formalism [12] is the only extension of FT that allows

to model the repair of a subsystem when triggered by a specific failure event. This means that the repair

process concerns a set of components instead of a single one. Moreover, in the RFT formalism, the repair

action is not simply ruled by a repair rate, but it is influenced by a repair policy: defining a repair policy in a

RFT model means setting the parameters ruling each aspect of the repair process, such as the mean time to

detect the failure, the mean time to repair a single component or a set of components, the number of repair

facilities, the order of repair of the components. From a RFT model we can compute the system availability

at time t; this means the probability that the system is working at time t.

The RFT differs from the FT, for the introduction of a new primitive called Repair Box (RB) [12] allowing

the model designer to represent the presence of a repair process involving a certain set of components called

basic coverage set (CovBE) of the RB; such action is activated by the occurrence of a specific failure event

called trigger event and concerning a component or a subsystem. The effect of the RB is setting the value

of the BEs in its CovBE to true (working), if their current value is false (failed). Such repair action is

performed according to the repair policy associated with the RB node. Actually, the effect of the RB does

not influence only the BEs in its basic coverage set, but also all the IEs whose value can be expressed by

a Boolean function over a set of BEs including at least one BE in CovBE . In [12], the computation of the

system availability from its RFT model, has been faced by converting the RFT model into a Generalized

Stochastic Petri Net (GSPN).

In the RFT formalism, the repair policy (or strategy) is defined by the modeler and is associated with

the RB primitive; therefore the only way for the modeler to identify the best policy, consists of analyzing
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the system according to several repair policies by constructing several RFT models, and by comparing the

system availability values returned by the RFT models analysis. So, the RFT formalism does not allow to

automatically determine the best repair policy.

The possibility to determine the optimal repair policy given all the repair possibilities, is an issue concern-

ing several fields of engineering. So far, this problem has been usually faced in the literature in analytical ways,

typically in form of operative research problems [8, 23, 20]. The NdRFT formalism presented in this paper,

is an attempt to deal with the problem of optimal repair strategy, by building a graph based model having

an intuitive notation and allowing to model several repair options together with the failure combinations in

the system.

3 Non deterministic RFT

3.1 NdRFT syntax

In this section the formal definition of the NdRFT is provided and commented through an example.

Definition 1 (Non deterministic Repairable FT) An NdRFT is a five-tuple:

S = 〈E ,G,A,R, res0〉

where:

E is the set of events.

G is the set of gates; E ∩ G = ∅. A gate g has a type1 denoted g.type ∈ {and, or}.

A is the set of arcs, a subset of E ×G ∪G × E. For x belonging to E ∪G, we denote x• ≡ {y | (x, y) ∈ A} and

•x ≡ {y | (y, x) ∈ A}. A satisfies:

1. ∀g ∈ G, |g•| = 1 and ∀e ∈ E , |•e| ≤ 1

2. There is exactly one event, denoted ⊤ and called Top Event, s.t. ⊤• = ∅; all other events satisfy

|e•| ≥ 1

3. The set of events can be partitioned into basic events E ≡ {e | •e = ∅} and internal events E ≡ {e |

•e 6= ∅}

4. The (directed) graph induced by A is acyclic.

R is a finite set of repair resource types; res0 ∈ Bag(R) is the multiset of available resources, where Bag(R)

is a generalization of a set, so that it can contain several occurrences of the same element.

Each event is associated with a set of attributes, related to its failure probability and to the definition of the

1Since the proposed optimization method is based on the state space, other gate types could easily be considered, including

dynamic ones: in this paper only and/or gates are considered for the sake of space.
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applicable repair actions. Any event e is either observable (e.obs = true) or non observable (e.obs = false);

only observable events can trigger a repair action.

Moreover, each BE e has the following additional attributes:

1. a fault probability denoted e.fprob ranging over [0, 1];

2. a repair attribute denoted e.rep ∈ {true, false} indicating if the event is repairable or not; if e.rep =

true, e has also a repair probability denoted e.rprob ∈ [0, 1] and a multiset of required resources denoted

e.res ∈ Bag(R).

Finally, each internal observable event e has the following additional attributes:

1. a set of BEs that should be repaired in case of e failure, denoted e.torep such that e′ ∈ e.torep ⇒

e′.rep = true, moreover there is a path from e to e′ according to A;

2. a repair strategy denoted e.str ∈ {global, local}. When the strategy associated with an event is

global, it also has a repair probability denoted e.rprob ∈ [0, 1] and a multiset of required resources denoted

e.res ∈ Bag(R).

Let us comment the above definition by means of the example of Fig. 1 (whose meaning will be explained in

Sec. 6): in the picture the events are depicted in a different way according to their obs and rep attribute values.

Down arrows, labeled with a number, next to BEs indicate their failure probabilities; up arrows, labeled with

a number, next to repairable BEs or to internal events with global strategy, indicate the repair probability.

Basic events A3 and P3 in the example are not repairable. In the NdRFT formalism, the assumption of

discrete time holds: the time to fail (repair) a component is ruled by the geometric distribution having as

parameter the failure (repair) probability (see section 3.3).

The failure of an observable and repairable BE e (e.g. A1) can immediately trigger a repair action of the

component, while the repair of a non observable (but repairable) event e (e.g. A2) can only be triggered by

an observable internal event connected to e (for A2 it can be U2 or TE). Intuitively, observability is related

to the possibility of detecting a failure. In the example of Fig. 1 we have only one type of resource and each

repair action requires only one resource (observe that any local repair action, including the one triggered by

the TE, requires one resource for each BE to be repaired).

The event attribute repair strategy defines the granularity of the repair process triggered by the occurrence

of the (internal) event e: if the repair strategy is global (as for U2 in the example), all the repairable basic

components in e.torep (A2 and P2 in the example) are repaired simultaneously and brought back to the

working state when the global repair process terminates. This means that a global repair process is a unique

repair process (e.g. representing the substitution of a down server with a new server: all components are

substituted at once); while a global repair action is ongoing, the basic components in e.torep cannot be

simultaneously involved in any other repair action (global or local). If instead the repair policy is local (as
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A1 A2 A3

P2P1 P3

TE

U1 U3U2

obs=false, rep=false

obs=false, rep=true
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a) b)
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U1

U2

U3

2 repair resources

Figure 1: a) The block scheme of the AHRS. b) The NdRFT model of the AHRS.

for TE in the example), for each repairable BE component in e.torep, it is possible to decide to repair or not

such component; moreover the single components repair may not start simultaneously (e.g. because there are

not enough resources). A BE can appear in the torep set of several internal events; for example A2 and P2

are in the torep set of both U2 and TE: when a failure has occurred for only one among the two BEs, the

local strategy could be more appropriate, but it can be activated only if TE has occurred already. Otherwise,

if both A2 and P2 failure has occurred, the global repair of U2 may be more convenient. Observe that given

the example NdRFT structure, U2 can immediately witness the failure of one or both events A2 and P2, and

trigger the substitution of both.

3.2 MDP semantics of NdRFT

MDP definition. A (discrete time and finite) MDP is a dynamic system where the transitions between

states follow a two-step process. First, one non deterministically selects an action inside the subset of enabled

actions. Then one samples the new state with respect to a probability distribution depending on the current

state and the selected action. The non deterministic step represents a decision taken by a controller in order

to manage the system, or a behavior triggered by the environment that the system cannot control. Our

approach is based on the former interpretation. The probabilistic step takes into account that the effect of

an action statistically depends on non modeled (or unknown) parameters.

In order to formally define the objective to optimize, one associates a reward with any state and selected

action (the reward can also be interpreted as a cost). The following definition formalizes these concepts.

Definition 2 (Markov Decision Process, MDP:) An MDP M is a four-tuple M = 〈S, A, p, r〉 where:

1. S is a finite set of states,

2. A is a finite set of actions defined as
⋃

s∈S As where As is the set of enabled actions in state s,
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3. ∀s ∈ S, ∀a ∈ As, p(·|s, a) is a (transition) probability distribution over S such that p(s′|s, a) is the

probability to reach s′ from s by triggering action a,

4. ∀s ∈ S, ∀a ∈ As, r(s, a) ∈ IR is the reward associated with state s and action a.

Once an action choice is fixed, the MDP behaves like a Markov chain and different global measures on the

random path can be defined as for example the (discounted) sum of rewards or the average of the rewards.

The goal of the analysis is computing the optimal value of the measure, and when possible, computing the

associated strategy. In finite MDPs, efficient solution techniques have been developed to this purpose [18]

and different tools are based on this theory (see for instance the experiment section).

NdRFT semantics. The semantics of an FT is simply a Boolean formula expressing the TE truth value

as a function of the BEs truth value; the possible (minimal) failure configuration leading to the TE and

their occurrence probability (at time t) can be efficiently computed using a BDD [19] representation of the

FT, without need to develop its dynamic failure behavior. NdRFT semantics instead (as well as RFT one)

requires to explicitly expand and analyze the dynamic behavior of the model since the introduction of the

repair processes adds the possibility for events to switch between the up and down state several times within

a given observation period.

In this paragraph, we will define precisely the dynamic behavior of an NdRFT, which can be described

by an MDP. Let us first define the MDP states:

Definition 3 (MDPNdRFT state) A state ρ of the MDP corresponding to a given NdRFT is a tuple:

ρ = 〈{ste}e∈E , {supe}e∈E〉

where ste = {Up, Down, LocRep, GlobRepu, GlobRepd} represents the state of the component/subsystem

whose failure corresponds to the event e. If ste ∈ {Up, GlobRepu}, then e = false in the fault tree, if

ste = {Up, LocRep, GlobRepd}, then e = true in the fault tree. Only BEs can be in repair state, and

for these events supe represents the supervisor of the repair process: this is the basic event e itself if the

repair action is local, while in case of global repair the supervisor is the internal event that triggered it.

Observe that ste ∈ {Up, Down} ⇔ supe = NULL. The state of the internal events in ρ can only be in

{Up, Down} and it can be derived from the state of the BEs and the FT structure. The initial state ρ0 is:

ρ0 : ∀e ∈ E , st0e = Up ∧ supe = NULL.

Let us define the set Aρ of actions that can be chosen in state ρ: each action a ∈ Aρ is a mapping

E ∪ EGR → {repair, not repair}; in other words an action is a set of decisions on whether a local or global

repair process should start for a given component/subsystem. An action a can be taken in ρ if (1) the

components or subsystems for which a repair action is required are not working (i.e. they are down) and (2)
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there are enough resources to perform all the scheduled repair actions (both those already ongoing in ρ and

the new ones just started as specified by a).

For each state ρ, it is possible to define the multiset resρ of busy resources as: resρ =
∑

e∈sup(E) e.res.

Of course at each time the following condition must be verified: resρ ⊆ res0 that can also be expressed as

∀r ∈ Bag(R), resρ(r) ≤ res0(r), where resi(r) denotes the multiplicity of r in resi.

Once an admissible action a ∈ Aρ is chosen, an intermediate state 〈ρ, a〉 is reached: here a probabil-

ity distribution allows to determine the state change; the probability distribution can be derived from the

probability distribution of failure and repair completion events, as detailed hereafter.

Summarizing, the dynamic of the MDP corresponding to an NdRFT, is defined in terms of two steps:

a non deterministic one (selecting the subset of repair actions that should start) and a probabilistic one

(probabilistically choosing the newly occurred failure events and which among the ongoing repair actions

have completed).

The state change induced by each step is defined as follows:

Non Deterministic step: MDP actions. This step comprises a (possibly empty) set of repair start

decisions for BEs and intermediate events triggering a global repair. Each repair must be triggered by (basic

or internal) observable events that are in state Down. For each repair start decision, the supervisor of the

involved event must be specified: it is the event itself in case of local repair, while it is the internal trigger

event for global repair.

The conditions for the two types of state change are:

ste : Down → LocRep: (1) e.obs = true ∧ e.rep = true or (2) ∃e′ : e ∈ e′.torep, ste′ = Down, e′.obs =

true, e′.str = local; in both cases supe = e.

ste : Down → GlobRepd or ste : Up → GlobRepu : ∃e′ : e ∈ e′.torep, ste′ = Down, e′.obs = true, e′.str =

global; in this case the state change must happen simultaneously for every e ∈ e′.torep and then supe = e′.

The set of repair processes chosen to start, defining an action a, lead to the new state 〈ρ, a〉: of course

state 〈ρ, a〉 must be consistent with the requirement res〈ρ,a〉 ⊆ res0.

The possible actions Aρ available in state ρ of the MDP are thus all the legal repair start decision sets

satisfying the conditions and the resource constraints described above.

Probabilistic step. In this step the possible state changes for each BE e are:

ste : Up → Down: with probability e.fprob (or remain in the Up state with probability 1 − e.fprob);

ste : LocRep → Up: with probability 1 − e.rprob (or remain in the LocRep state with probability e.rprob);

ste : GlobRep∗ → Up: with probability 1 − sup(e).rprob (or remain in the GlobRep∗ state with probability

sup(e).rprob): this state change must happen simultaneously for all e′′ ∈ sup(e).torep (it is a single proba-

bilistic choice with synchronous effect on all events involved in the repair action). For any event e that returns

to the Up state, supe is reset to NULL. Hence the probabilistic choice that follows a given non deterministic
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action in the MDP, leading from the intermediate state 〈ρ, a〉 to state ρ′ corresponds to a probabilistic step

as described above: the probability of each step is obtained as the product of the probabilities of each single

event state transition (we recall again that the end of a global repair represents a single event, independently

on how many basic events are involved).

As already remarked above, the states of the internal events are derived from those of the BEs using the

FT structure.

This completes the definition of the MDP underlying a given NdRFT. The optimization problem has the

following goal: minimizing the probability (at time t or in steady state) of being in a state where the TE

failure has occurred. Different goals might be defined as well, e.g. taking into account the cost of repair

actions or the cost of having a system working in a degraded mode.

In practice, the computation of the optimal strategy requires three steps: (1) generation of the MDP from

the NdRFT, (2) analysis of the MDP, (3) presentation of the results in a form that is understandable for the

designer.

These steps can be automatized. The first step can be implemented in two ways: defining an algorithm that

generates the set of reachable states, the corresponding non deterministic actions and consequent probabilistic

state change, or translating the NdRFT in an intermediate model for which the above tasks have already been

defined and implemented. In this paper we propose to use the second approach and provide an algorithm for

translating an NdRFT into a Markov Decision Petri Net (MDPN) [3]. From the MDPN model an MDP can

be automatically derived.

3.3 Discussion

The NdRFT model is a discrete time one. This can be justified by the fact that faults in plants are often

detected at the time a sampling is performed through some sensor: sampling is usually done periodically

according to a synchronous schema. Due to the discrete time assumption, the specification of the failure

and repair process of each (basic) repairable component x is given by probability PFailure(x) and PRepair(x).

PFailure(x) (resp. PRepair(x)) represents the probability that a failure (resp. the end of the repair) occurs at

any (discrete) time step provided the corresponding component is up (resp. is down and under repair). As a

consequence, the time to failure of a component, and its repair time have geometric distribution:

P (T tFe = k) = (1 − PFailure(e))
k−1PFailure(e)

P (repT imee = k) = (1 − PRepair(e))
k−1Prepair(e)

In NdRFT the repair policy is not completely specified (instead, this is the case for RFT): the choice

to repair or not a repairable components fault is non deterministic. This leads to an MDP semantics: as
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a consequence, we can compute the optimal repair strategy minimizing the failure probability of the global

system. Observe that even without taking into account the cost of repair, finding the optimal strategy is not

trivial, since we account for limited repair resources (each repair action can be associated with a multiset of

required resources to complete it).

In the NdRFT we can model processes where the components or the subsystems under repair return

available as soon as possible (maybe in a degraded state) without waiting the repair of all its down BE

components. Moreover, the notion of observability allows to specify when a fault can be detected, and hence

when the corresponding repair activity can start (this generalizes the notion of trigger event).

Finally repair actions may involve common components: this choice increases the flexibility in the choice

among the possible repair strategies that may be pursued, still allowing a simple and clean semantics based

on the notions of observability and of global vs. local repair strategy.

4 Translation from NdRFT to MDPN

In this section we are going to describe how to obtain from an NdRFT model the corresponding MDPN

model. An informal introduction to the MDPN formalism is provided first, then the pattern-based translation

algorithm is presented.

The generation of the MDP from the MDPN model can be performed as described in [3]. The MDP

obtained is solved in order to find the optimal repair strategy (at finite horizon t or in steady state, as

appropriate) and the corresponding Top Event failure probability (or any other dependability measure).

A brief introduction to MDPNs. MDPNs were first introduced in [3] as high level models to specify the

behavior of an MDP. The main features of the high level formalism are the possibility to specify the general

behavior as a composition of the behavior of several components (some of which are controllable 2); moreover

each MDP non deterministic or probabilistic transition can be composed by a set of non deterministic or

probabilistic steps, each one involving a subset of components.

An MDPN model is composed of two parts, both specified using the PN formalism with priorities asso-

ciated with transitions: the PNnd subnet and the PNpr subnet (describing the non deterministic (ND) and

probabilistic (PR) behavior respectively). The two subnets share the set of places, while having disjoint tran-

sition sets. In both subnets the transitions are partitioned into “run” and “stop” subsets, and each transition

has an associated set of components involved in its firing (in the PNnd only controllable components can

be involved). Transitions in PNpr have a “weight” attribute, used to compute the probability of each firing

sequence. Run transition firings represent intermediate steps in a ND/PR transition at the MDP level, while

2A component that is subject to local non deterministic choice will be called controllable component, otherwise it will be

called non controllable component.
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Stop transitions represent the final step in a ND/PR transition, for all components involved in it. An MDPN

model behavior alternates between ND transition sequences and PR transition sequences, initially starting

from a ND state. The PR sequences are determined according to the PNpr structure, start with a PR state

reached by a ND state, and include exactly one stop transition for each component; the ND sequences are

determined by the PNnd structure, start from a ND state reached by a PR state, and include exactly one

stop transition for each controllable component plus a stop “global” transition. The generation of the MDP

corresponding to a given MDPN has been described in [3]: it consists of (1) a composition step, merging the

two subnets in a single net, (2) the generation of the reachability graph RG of the composed net, (3) two

reduction steps transforming each PR and ND sequence in the RG into a single MDP transition.

In the next subsections a pattern based approach to generate a MDPN mimicking the dynamic behavior

of an NdRFT is presented. We introduce the set of repairable basic components: ER = {e ∈ E|e.rep = true},

the set of internal events with global repair strategy EGR = {e ∈ E|e.obs = true ∧ e.str = global} and the

set Comppr = E ∪ EGR of components of the MDPN and the subset Compnd = ER ∪ EGR of controllable

components.

The PNpr and the PNnd are obtained directly from the NdRFT model using a pattern-based approach.

We illustrate the method describing the basic patterns, and how to instantiate and compose them.

4.1 Generating the PR subnet

Fig. 2 shows how each BE can be translated in a PNpr submodel according to their rep attribute: each non

repairable event is translated into subnet A while each repairable event is translated into subnet B. It is easy

to recognize the places that model the state of each (basic) event e labeled UPe, DOWNe and UnderRepaire

(actually when the UnderRepaire is marked, also the DOWNe place is marked, until the repair process

ends). Run and Stop transitions have different icons, so that they can be easily distinguished. Moreover each

transition has a priority (label prioi indicated next to each transition) and a weight, that is renormalized

w.r.t. the set of enabled transitions to obtain a firing probability. At each probabilistic step an Up component

can either remain Up (sequence WorkRe, WorkSe) or go Down (sequence FailRe, FailSe); each transition

participating to this first step involves only one component, namely e. The chosen priority assignment is due

to the way basic event states are propagated to obtain intermediate event states, as will be discussed later. A

Down component can either remain Down (stop transition FailSe) or start its repair (run transition Repair,

either followed by the sequence ContRepRe and ContRepSe, meaning that the repair has not completed in

the current time unit, or by the sequence EndRepRe, EndRepSe if the repair completes). Place Assigne is

set by the PNnd when a decision to repair e is taken. Places AV RESi represent the resources, and they

become available as the repair ends. A token in place NotInvolvede means that the component corresponding
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to the BE is not involved in any repair action. The rprob and fprob attributes associated with the events are

used to properly weight the transitions representing failure and end/continuation of repair actions: fprob is

associated with transition FailRe, 1 − fprob is associated with transition WorkRe, rprob (representing the

probability of continuing to repair) is associated with transition ContRepRe, finally 1 − rprob is associated

with transition EndRepRe.

Observe that the only effective conflicts to be resolved on the PNpr model are the following free choice

conflicts: WorkRe vs. FailRe (for each basic event), ContRepRe vs. EndRepRe (for each locally repairable

basic event), plus the free choice conflict ContRepGRe vs. EndRepGRe for each global repair action (whose

translation pattern is commented hereafter). Hence the weight assigned to all other transitions are irrelevant,

since they will eventually fire once enabled (i.e. their firing is not the result of a conflict resolution).

Let us now discuss the translation pattern ensuring the propagation of the state from basic to internal

events, and of the global repair actions, associated with some internal event.

The conversion rule for an AND/OR gate corresponding to a given internal event e is shown in Fig. 3.

Subnets C and E simply model the propagation of the faults from the input events of the gate to its output

event. These patterns are actually “templates” that must be instantiated according to the set of inputs of

the AND/OR gate, which in general includes a subset of internal events, and a subset of basic events. The

components involved in the firing of transition ANDe are all basic events which are the leaves of the subtree

originating in the AND gate. The components involved in the firing of each transition ORi are: the basic

event ej if the input place of ORi is DOWNej
, otherwise, if the input place of ORi is place OUTCOMPek

,

the involved components correspond to the set of basic events which are the leaves of the subtree originating

in the internal event ek. All these “state propagation” transitions are “run” and must fire after all decisions

about occurrence of failures and end of repair have been taken for all basic events (and global repair internal

events), but before the stop transitions have fired for any basic event (in fact all stop transitions have a lower

priority level than the propagation transitions).

Internal events that are not observable or have local repair strategy are translated into these simple

subnets.

Those with a global repair strategy have an additional subnet D (common to both gate types) shown

on the right of Fig. 3: this subnet represents the corresponding global repair process. In particular, place

IdleSupervisore is marked when no global repair process involving the supervisor internal event e has started

yet. The start of a global repair process, represented by the firing of the ”run” transition RepairGe, involving

component e, is enabled when the Assignede place is marked (indicating that the PNnd subnet, in the

previous ND step has decided to assign the required resources for such global repair process, to supervisor e).

The firing of ”stop” transition EndGe, instead, means that no global repair supervised by e will start in the

current time step: observe that this transition has lower priority than RepairGe, hence the repair process
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Figure 2: Conversion of the NdRFT BEs into submodels of PNpr of an MDPN.

starts as soon as the required resources have been assigned to supervisor e. Place UnderRepaire represents

the fact that the global repair process supervised by e is ongoing: if the ”run” transition ContRepGRe fires,

followed by the ”stop” transition ContRepGSe, the repair process will not end in the current time step,

while if the ”run” transition EndRepGRe fires (setting the resources free), followed by the ”stop” transition

EndRepGSe, the global repair process will end in the current time step (all the above mentioned transitions,

involve component e): this triggers the firing of the transitions ResetRei, ResetSei or FreeRei, FreeSei, (all

involving basic component ei in the set of basic events supervised by e in the global repair process) ensuring

that all basic events involved in the repair process are reset to the Up state (place UPei marked) and the

corresponding NotInvolvedei place is marked again.

The translation algorithm visits all the events in the NdRFT and generates for each of them an appropriate

PN submodel (the selection of the appropriate PN submodel follows the indications depicted in the template

figures). Finally all submodels are composed by merging the places with equal label, leading to the whole

probabilistic subnet of the MDPN.

Algorithm 1 shows how to generate the corresponding PNpr from the RNdRFT. The set PNet is used to

store all the PN submodels generated by the algorithm during intermediate steps. In the end it will contain

a single element: the PNpr.

The algorithm visits all the events in the RNdRFT and inserts for each of them an appropriate PN sub-

model in PNet. The selection of the appropriate PN submodel corresponding to the event type is computed
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Figure 3: Conversion of the NdRFT AND/OR gate plus its output event into submodels of PNpr of an

MDPN.

by the function PN(e, type).

Finally the method Compose() substitutes all the submodel in PNet are composed by merging the places

with equal label, leading to the whole probabilistic subnet of the MDPN.

4.2 Generation of the ND subnet

The corresponding PNnd is built from the template subnets depicted in Fig. 4 and 5. The basic idea is that

the PNnd submodel must decide whether a repair action must be started for each down BE and for each

observable internal event which may trigger a global repair process. For any repairable BE e (corresponding

to a controllable component in the MDPN), firing of stop transition NoAssigne, involving only component

e, means that a non repair decision has been taken for event e, while firing of stop transition Assigne, also

involving only component e, corresponds to the opposite decision: observe that the second decision can be

taken only if e is observable and in state Down, the needed resources are available (input places AV RESi

contain enough tokens) and the event is not involved in any global repair process (input place NotInvolvede

marked). The start of local repair actions triggered by a down and observable BEs is modeled by subnet G,

right part. The start of local repair actions triggered by observable internal events is modeled by subnet L,

where it is possible to observe the repetition of subnet G for as many times as the number of local repairs

potentially triggered by the internal event e (the test arcs from place OUTCOMPe to the Assignei transitions

model the fact that the repair can start only if the internal event e is Down). Finally the start of a global
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Algorithm 1: Algorithm for PNpr generation from NdRFT
Class PNpr GeneratePNpr(Class NdRFT S )

Input: S is a NdRFT model

Output: A PNpr model

set PNet= ∅;

set Events= insert events(S);

while Events 6= ∅ do

e =Events.pick();

if (e ∈ E
R
) then PNet.insert(PN(e, B));

else

if (e ∈ E − ER) then PNet.insert(PN(e, A)) else

g =• e;

if (g.type = AND) then

if (e.str = local) then PNet.insert(PN(e, C));

else PNet.insert(PN(e, C + D));

end

else

if (e.str = local) then PNet.insert(PN(e, E));

else PNet.insert(PN(e, E + D));

end

end

end

end

PNet.Compose();

return PNet.pick();

repair action triggered by an internal event e is modeled by subnet I: it is possible to observe that a global

repair process requires a single set of resources, starts for the set of supervised BEs as a whole, and requires

that none of the supervised BEs be involved in any other repair process; on the other hand a local repair

action triggered by an internal event e may start in different time steps for each basic event supervised by e

(as long as e is still down and the conditions to start the local repair are satisfied). The two stop transitions

Assigne and NoAssigne represent the two possible choices: each of them involves only component e.

Subnet H (as well as the RUNGLe transition in subnet L) is needed for technical reasons: it is used to

”clear” the state of the internal events which must be recomputed at the end of each probabilistic step (after

all fail/repair choices have been taken for all BEs and the continue/end of repair choices have been taken for

all ongoing global repairs).

Again the final PNnd submodel is obtained by properly composing the subnets generated for each event

in the NdRFT and the special transition StopGL (subnet M) used to conclude the non deterministic phase of

the global system. It is worth noting that during the composition phase the places and the transitions with

the same name are merged.

Finally in order to analyze the MDPN model, one has to define its reward functions. They are defined as

follows: rs(TE) = −1 otherwise 0; ∀t ∈ T nd, rt(t) = 0; rg = sum(rs, rt).
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Figure 4: Conversion of the NdRFT BEs into submodels of PNnd of an MDPN.

Figure 5: Conversion of the NdRFT gate into submodels of PNnd of an MDPN.

This means that a negative reward (corresponding to a penalty) is associated with each state where the

TE is Down. All other states and all actions have reward of 0. This means that every time unit spent in

a state where TE is Down gives a penalty of -1. The optimization problem hence consists in finding the

strategy that maximizes the reward (i.e. that minimizes the penalty).

More complex reward structures can be naturally devised to take into account the cost of repair actions,

as well as the penalties due to the fact that the system is in a degraded state (the system is up but some

subsystem is down, e.g. corresponding to a system with degraded performance).

Algorithm 2 shows how to generate the corresponding PNnd from the RNdRFT..

In the same way, as in the algorithm 2, the set PNet is used to store all the PN submodels generated

by the algorithm during intermediate steps, and the function PN(e, type) is used to select the appropriate

PN submodel corresponding to the event type.
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Algorithm 2: Algorithm for PNnd generation from RNdRFT

Class PNnd GeneratePNnd(Class NdRFT S)

Input: S is a NdRFT model

Output: A PNnd model

set PN=∅;

set Events=insert events(S);

while Events 6= ∅ do

e =Events.pick();

if (e ∈ ER and e.obs) then PNet.insert(PN(e, G));

else

if e ∈ E then

if (!e.obs) then PNet.insert(PN(e, H));

else

if (e.obs and e.str = global) then PNet.insert(PN(e, I));

else PNet.insert(PN(e, L));

end

end

end

end

PNet.insert(PN(NULL,STOPGL));

PNet.Compose();

return PNet.pick();

4.3 Translation correctness

Let us prove that the MDPN obtained by applying the above translation procedure produces a Reachability

Graoh (RG) from which it is possible to derive the MDP corresponding to the NdRFT semantics, defined in

Section 3.2.

To this purpose we must define maximal non deterministic or probabilistic firing sequences of a MDPN.

Definition 4 A maximal non deterministic firing sequence (MNDFS) is characterized by the following prop-

erties: (1) it starts either in the initial state or in a state reached by a maximal probabilistic firing sequence,

(2) it contains exactly one stop transition for each controllable component, and one ”global” stop transition.

Definition 5 A maximal probabilistic firing (MPRFS) sequence is characterized by the following properties:

(1) it starts in a state reached by a maximal non deterministic firing sequence, (2) it contains exactly one

stop transition for each component.

In the sequel the correspondence between MDPN and MDP states as well as the correspondence between

MNDFS and MPRFS in the MDPN and MDP actions and probabilistic transitions are stated and proven.

MDPN states vs. MDP states First of all we need to define the correspondence between a subset of

states appearing in the RG of the MDPN (both those reached immediately after the firing of a MPRFS and

those reached immediately after a MNDFS, i.e. an action) and the MDP states.
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The state of each BE e (Up, Down, LocRep, GlobRep∗) is represented by the following places:

• ste = Up if place UPe is marked;

• ste = Down if place DOWNe is marked and place NotInvolvede is marked;

• ste = LocRep if place UnderRepaire is marked;

• ste = GlobRepd (ste = GlobRepu) when place DOWNe (UPe) is marked, placesUnderRepaire and

NotInvolvede are not marked; in this case there must exist exactly one internal event e′ s.t. e′.obs =

trueande′.str = globalande ∈ e′.torep and place UnderRepaire′ is marked, so that supe = e′.

The Up/Down state of internal events are derived according to the FT structure (represented by subnets C

and E in Fig.3): an IE e is Down if place OUTCOMPe is marked at the end of a MPRFS.

It is thus possible to establish a correspondence between each non deterministic marking m (reached

immediately after the firing of a maximal probabilistic transition sequence) of the MDPN and a state ρ of

the MDP: we use the notation mρ to indicate a non deterministic marking of the MDPN corresponding to

state ρ of the MDP. Similarly it is possible to establish a correspondence between each intermediate state

〈ρ, a〉 of the MDP and a marking m′ reached immediately after the firing of a maximal non deterministic

transition sequence of the MDPN. The set of resources in use, expressed by resρ in the MDP, is represented

in the MDPN by resource-indexed places AV RESr: the initial marking of AV RESr corresponds to the

multiplicity of resource r in res0, while the set resρ of resources in use in state ρ corresponds to: resρ(r) =

res0(r) − mρ(AV RESr).

The initial marking, corresponding to the initial MDP state, has one token in each place UPe and as many

tokens as the number of available resources of type r in places AV RESr.

In order to prove that the translation is correct, we have to show that there is a one to one correspondence

between the actions a ∈ Aρ and the MNDFS σa enabled in mρ, that the intermediate state 〈ρ, a〉 corresponds

to the marking m〈ρ,a〉 reached by firing σa in mρ. Moreover there is a correspondence between the states

reachable from the intermediate state 〈ρ, a〉 and those reachable from m〈ρ,a〉 through some MPRFS, finally

the probability of transition 〈ρ, a〉 → ρ′ is equal to the sum of probabilities associated with the set of MPRFS

leading from m〈ρ,a〉 to mρ′ .

MDPN non deterministic sequences vs. MDP actions From a non deterministic state of the MDPN,

one or more alternative MNDFS may fire, each comprising exactly one stop transition for each controllable

component (BE repairable event or IE event with global repair strategy) plus one global stop transition: the

combination of all stop transitions in each MNDFS defines a possible action at the MDP level, corresponding
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to the set of decisions - start repair of component e (”stop” transition Assigne) or do not start repair of

component e (”stop” transition NoAssigne) - for each controllable component.

The set of decisions characterizing a specific action a causes a state change (corresponding to the Non

Deterministic step described in Section 3.2) witnessed by the marking of the Assignede places in the MDPN

at the end of the corresponding MNDFS σa. It is easy to see that the conditions expressed in Section 3.2 for

moving a BE e from the Down state to the LocRep state or for moving a set of BE to their current state

to the GlobRep∗ state (provided they are in the torep set of a Down IE e′) correspond to the conditions for

firing transitions Assigne or Assigne′ in the PNnd subnet.

In fact, if we consider subnet G in Figure 4, corresponding to an observable and repairable BE e, a decision

to start (local) repair may be taken if (1) e is in state Down, (2) the required resources are available, and

(3) the component is not yet involved in any other repair action. As an alternative, if the BE e is repairable

but not observable, and it is in the torep set of some internal event e′ with local repair strategy, then the

local repair can start if (1) both the BE e and the internal event e′ are Down, (2) the required resources are

available, and (3) e is not yet involved in any other repair action: this is modeled by subnet L in Figure 5.

The state change from state Down to state GlobRep∗ instead is modeled by subnet I in Figure 5, and

corresponds to the firing of the stop transition Assigne where e is an observable internal event with associated

global repair strategy: this transition may occur only when IE e is in state Down, the resources needed for

the global repair are all available, and none of the BE in e.torep are involved in any other repair process

(places NotInvolvedei marked). Observe that the start of global repair for internal event e actually causes

all the BEs in e.torep to switch to the GlobRep∗ state simultaneously.

Since a decision is necessarily taken for any controllable component (exactly one stop transition must fire

for each controllable component in any MNDFS), and since for each controllable event is always possible to

take a NoAssign decision, and if the state allows so it is also possible to take the alternative Assign decision,

then all possible combination of start/do not start repair decisions corresponding to the allowed actions in

the MDP can be obtained, and due to the conditions on the Assign transitions no combination of decisions

corresponding to an impossible action can be fired in the MDPN.

MDPN probabilistic sequences vs. MDP probabilistic state change following an action After

each MDP action a probabilistic state change occurs: in the MDPN this corresponds to the MPRFS that

may follow a MNDFS. The probability of each path is obtained as the product of the probability associated

with each transition in the path. Observe that a probabilistic path can be described as the interleaving of

several subpaths, one for each component e represented in the MDPN, and ending with a stop transition

involving e. The transitions firing in each subpath depend on the initial status of the component:

• if e is Up (place UPe marked) and not involved in any global repair action (place NotInvolvede marked)
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then either the subpath contains the sequence WorkRe, WorkSe, or it contains the sequence FailRe,

FailSe: the former doesn’t cause a state change for e, while the second corresponds to a change from

Up to Down. Observe that if e is Up but it is involved in a global repair process, then the subpath

for e depends on the probabilistic evolution of its supervisor, hence this case will be discussed together

with such evolution;

• if e is Down (place DOWNe marked) and not involved in any repair action (place NotInvolvede

marked), the subpath shall include only the stop transition FailSe, which does not cause any state

change (e remains Down);

• if e is in state LocRep, which includes also the case of place Assignede just marked by the last non

deterministic sequence (hence allowing run transition Repaire to fire thus marking the UnderRepaire

place) then either the repair process continues (sequence ContRepRe,ContRepSe), thus leaving the

component in the LocRep state, or the repair process ends (sequence EndRepRe,EndRepSe), which

causes e to come back to the Up state;

• global repair processes influence the state of the supervised basic events; if a given internal event e′

with global repair strategy is Down, and the basic events in e′.torep are non involved in any repair

process, it can be assigned the resources for the corresponding global repair to start (place Assignede′

marked at the end of a MNDFS): as a consequence the global repair process can start (transition

RepairGe′ , marking the place UnderRepaire′), causing a state change of the BEs in e′.torep to GlobRep∗

(where ∗ stands for u or d depending on the previous BE status). As in the case of local repair, the

GlobRep state is an intermediate one, which can become stable if the repair does not end in the current

time step (transitions ContRepGRe′ , ContRepGSe′), while in case the repair process ends (transitions

EndRepGRe′ , EndRepGSe′) then all the BEs supervised by e′ are reset to the Up state: this is achieved

by firing the transitions ResetRei, ResetSei, or transitions FreeRei, FreeSei (the last two transitions

fire in case UPei
is already marked, to reset the marking of NotInvolvedei). Observe that in any case

all BEs supervised by e′ switch from to GlobRep∗ simultaneously, and from GlobRep∗ to Up (or from

Down to Up, if the repair process lasts only one time step) simultaneously.

It may be the case that while a global repair process is ongoing, some of the BEs in e′.torep that were

not faulty, fail in the current time step (transitions FailRei
, FailSei

may fire if the choice of continuing

the repair supervised by e′ has already been taken, i.e. if transitions ContRepGRe′ , which has priority

prio5 has already fired). In this case their state changes from Up to GlobRepd (with a not observable

passage through the Down state), and will be reset to the Up state as soon as the global repair process

ends (which might happen in the same time unit).
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Observe that the possible state changes described above for each component, are exactly the same illus-

trated in the probabilistic step of the MDP semantics of the NdRFT (see Section 3.2).

The probability of each possible MPRFS is obtained as a product of the normalized weight of the enabled

transitions. Observe that transitions corresponding to different components are never in conflict (the failure or

end-repair choice of one component cannot influence the choice of any other component, by construction): this

means that independently on the chosen interleaving order of the components, the overall probability moving

from a given marking m to a new marking m′ only depends on the failure probability of the Up components,

and end-repair probability of the components under repair. If the priorities are set so that a specific order is

forced in the MDPN there will be a single MPRFS leading from a given state m (corresponding to a MDP

intermediate state 〈ρ, a〉) to a new marking m′ (corresponding to a MDP state ρ′), and its probability will

be exactly the same as that of the probabilistic step from 〈ρ, a〉 to ρ′. If instead priorities are set so that

alternative interleavings may be chosen, leading from m to m′, the final result will not change: indeed it is

easy to show that the sum of the probabilities of the set of MPRFS leading from m to m′ can be expressed

as the product of the probabilities of the choices taken in each component (which are necessarily the same

since the initial and final markings are the same) multiplied by a summation of probabilitites that sum up to

one (these are the relative weights of the possible interleaving, which eventually converge to the same final

state).

Finally observe that each MPRFS comprises a subsequence of ANDe and ORe transitions, which are

needed to propagate the correct Up or Down state (place OUTCOMPe unmarked or marked respectively)

of all IEs. This subsequence is deterministic (although different interleavings could be possible depending on

the priority assignment) since it depends only on the state of the BEs, and hence it contributes as a factor 1

to the probability product. Observe that the priorities of these transitions are set so that they are fired after

all probabilistic choices have been made, but before the firing of the stop transitions of all components.

This completes the proof. In fact, from the initial marking the set of possible actions in the MDP are

in one to one correspondence with the MNDFS of the MDPN, the reached intermediate states are in one to

one correspondence, and from these the same probabilistic state changes may occur, leading to corresponding

new states. This also indicates how the MDP can be derived from the MDPN RG, only the markings from

which maximal firing sequences are originated are kept, and the maximal firing sequences are substituted

with the corresponding transitions in the MDP.

4.4 An transition priority assignment improving efficiency

In this subsection we will propose a method to associate priorities with the MDPN transitions, in order to

reduce the possible interleavings corresponding to the same MPRFS or MNDFS: this improves the efficiency
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of the method since it produces a reduction of the number of states of RG3.

The method requires to fix a strict total order on the NdRFT events that must be compatible with the

partial order induced by the NdRFT structure that is based on the dependencies: the TE is the lowest among

all the events and two events are in relation e < e′ if e′ is in the subtree of e. For any basic event e it cannot

be in relation e < e′ w.r.t. any other internal event e′. The total order can be specified through an injective

function (ord : E → IN) so that ∀e, e′e < e′ ⇒ ord(e) < ord(e′).

Hence the priority assignment for the PR subnet is defined as follows:

• ∀te ∈ Tstoppr ⇒ priote
= ord(e), where e is an event in Comppr

• ∀te ∈ Trunpr ⇒ priote
= ord(e) + |Comppr|, where e is an NdRFT event.

Observe that since the basic events have surely an higher ord(e) value with respect to all internal events,

the transitions that are used to update the state of the internal events will fire after all fail/do not fail and

conclude repair/continue repair decisions have been taken for all basic events.

A similar priority assignment method is adopted for the ND subnet.

• ∀te ∈ Tstopnd ⇒ priote
= ord(e), where e is an event in Compnd;

• STOPGL ⇒ prioSTOPGL = Maxe∈E(ord(e)) + 1 ;

• ∀RunGLe, RunGLe′ ∈ Trunnd ⇒ prioRunGLe
, prioRunGLe′

> Maxe∈E(ord(e)) + 1 ∧ prioRunGLe
6=

prioRunGLe′
.

The experiments presented in Sec. 6 have been performed applying the priority assignment method de-

scribed above.

5 Framework architecture

The architecture of our framework for the NdRFT design and solution, is depicted in Fig. 6 and extends

the one presented in [2], by introducing the new module NdRFT2MDPN able to convert an NdRFT model

into MPDN, according to the conversion rules defined in Sec. 4. The solution process of an NdRFT model

comprises five steps:

1. The NdRFT model drawn by the user by means of Draw-Net [11], is stored in a XML file (.mdl) and

becomes the input of NdRFT2MDPN. The resulting MDPN model consists of two separate Petri Nets (PN):

3Observe that the assignment of a different priority level to a pair of transitions that cannot be in conflict is irrelevant; on the

other hand if the transitions are potentially in conflict then their priority assignment can constrain the set of possible strategies

that will be considered at the MDP level and may exclude the optimal one.
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Figure 6: Framework architecture.

the probabilistic PN (Npr) and the non deterministic PN (Nnd); each of these nets is stored in a couple of

files (.net, .def) according to the GreatSPN [10] file format.

2. The Npr and the Nnd models are composed by place merging; this is done by means of the algebra

tool [10]. The result of this step is a Petri Net (PN).

3. The PN is the input of WN(S)RG generating the Reachability Graph (RG) [9]. The resulting graph is

stored in a specific file (.srg).

4. From the graph obtained in step 3, an MDP is derived by means of the RG2MDP converter.

5. The obtained MDP is stored in an XML file which is in turn processed by the MDPSolver producing

the optimal repair strategy. According to such strategy the system unavailability can be computed. Both

results can be visualized by Draw-Net.

6 Experiment results

The example we report is inspired to the Active Heat Rejection System (AHRS) presented in [1]. The block

scheme of our version of the AHRS’s architecture is depicted in Fig. 1.a: the system is composed by three

redundant thermal rejection units U1, U2 and U3. U1 is composed by the heat source A1 and the power

source P1. Similarly, U2 is composed by A2 and P2, while U3 by A3 and P3.
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Fig. 1.b shows the NdRFT model for the AHRS system; the failure probability (↓) and the repair probabil-

ity (↑) of each basic component are shown in the same figure. The unit U1 fails if its heat source A1 is failed

or if its power source P1 is failed. Similarly, the failure of U2 and U3 is due to the failure of their respective

heat source or power source. The failure of the whole system (TE) occurs if all the thermal rejection units

are failed.

The NdRFT model in Fig. 1.b shows that in our version of the AHRS, several components are repairable

(A1, P1, A2, P2), whereas their failure can be observable or not. Two repair processes can be activated: 1)

a global repair process in case of failure of U2 and involving the components A2 and P2; 2) a local repair

process in case of the system failure (TE) and involving the components A1, P1, A2 and P2. In case of

global repair, one repair resource is used to repair the subsystem; in case of local repair instead, one resource

has to be dedicated to the repair of each component of the system. We suppose that in our case study, two

repair resources are available (Fig. 1). One resource is used for the global repair of U2: while such repair

process is running, the local repair of the system (TE) may start but in this case, it can exploit only one

resource because the other one is already is used in the global repair of U2. So only one component (A1

or P1) could be locally repaired during the global repair of U2. If instead the local repair of the system

starts while the global repair of U2 is not running, then the local repair can exploit both resources and two

components among A1, P1, A2, P2 can be repaired at the same time. In this case, during the local repair of

the system, the global repair of U2 can not run since all the resources are already in use.

The RG of the MDPN model obtained by the NdRFT in Fig. 1.b has 11.515 states; while the underlying

MDP has 389 states. This difference in terms of number of states between the RG of the MDPN4 and the

obtained MDP is due to the fact that the MDPN formalism gives a macroscopic view of probabilistic and

non deterministic behaviors of the system. In other words, at MDPN level, complex non deterministic and

probabilistic behaviors are expressed as a composition of simpler non deterministic or probabilistic steps, that

will be reduced to a single step in the final MDP.

Since the non repairable components (A3 and P3) cannot induce directly the failure of the global system,

we can compute the average reward and the optimal strategy of the underlying MDP at infinite horizon.

Observe that defining the optimal strategy for this model is not trivial: for instance when all the basic events

are down then the optimal strategy suggests us to repair P1 with a local repair action, while A2, P2 with

a global repair action. This is justified by the fact that the global repair action of A2, P2 needed only one

resource. Instead when A1, P1, P2 and P3 are down, it suggests to repair P1 and P2 with a local repair

action. The choice to repair locally P2 is justified by the fact that in this case the probability to repair

the component (1 − P2.rprob) in one time unit is greater than that associated with the global repair action

(1 − U2.rprob).

4We recall that the RG of the MDPN model is used in the reduction step for obtaining the MDP as described in [3]
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Figure 7: TE probability at time t increasing the t values (0 ≤ t ≤ 4500)

Table 1: Experiments increasing the example size

RG RRG MDP

Com. St. Time St. St. Time

1,1,1 11.515 1s 5.262 389 0

2,1,1 50.844 7s 21.094 937 6s

2,2,1 921.354 167s 401.350 7.754. 1.630s

2,2,2 16.841.490 ≈23h 6.048.310 32.558 ≈4h

Using priorities among the transitions

1,1,1 3.189 0 1.572 389 0

2,1,1 35.555 8s 11.581 937 4s

2,2,1 453.257 145s 147.716 7.754 1.614s

2,2,2 2.919.999 ≈2h 1.048.310 32.558 7.006s

Moreover we have computed the TE probability in steady state, solving the DTMC obtained from the

underlying MDP fixing the action to take in every state according to the performed optimal strategy. In

particular we have obtained that the TE probability of this model in steady state is 0.0151943. We have also

studied the TE probability at time t, so that we have observed that this probability converges to the steady

state probability. TE probability at time 4300 is equal to TE probability in steady state as shown in Fig. 7.

Finally the Tab. 1 shows some experiments performed increasing the dimension of our example. Practically

we have replicated the subtrees of the NdRFT model in Fig. 1.b. For instance, in Tab. 1, 2, 2, 2 means that we

have duplicated the subtrees rooted in U1, U2, U3 respectively, while 1, 1, 2 means that we have duplicated

only the subtree of U3.

The computation has been performed with an INTEL Centrino DUO 2.7 of 2Gb memory capacity. In

27



particular the first column shows the model complexity, the second and the third one the RG number of

states and its computation time, the fourth the RRG number of states, and the last two columns the MDP

number of states and its generation and solution time.

These results show that state space grows very fast (the state space explosion problem), so that the model

becomes quickly intractable. A further reduction of the number of states for this model can be achieved

associating different priorities with the system transitions such that the number of possible interleavings of

the non deterministic/probabilistic actions in each path are reduced (see the results in second part of Tab. 1).

It is important to observe that a different priority level can be set up only among independent actions; in

fact if the actions are not independent then all the priority can constrain the set of policies to be considered

(and may exclude the optimal one).

Another possible way to mitigate the state space explosion problem consists in translating the NdRFT

model into a Markov Decision Well-formed Net model (MDWN) [3]. From a MDWN, a reduced MDP can

be obtained, and provides the optimal strategy equivalent to the one given by the not reduced MDP.

7 Conclusion and future work

We have defined a new FT extension called NdRFT that allows to model failure modes of complex systems

as well as their repair processes. The originality of this formalism with respect to other proposals is that it

allows to manage repair strategies optimization problems. This is done by defining the NdRFT semantics in

terms of an MDP and then solving the optimization problem using the techniques available for MDPs. The

generation of the MDP is achieved by an intermediate translation of the NdRFT model into an MDPN, so

that we can reuse the efficient algorithms devised to derive an MDP from an MDPN. We have also highlighted

that NdRFT allows to express in an elegant way several possible repair start options based on the following

concepts: observability of events, the notion of local versus global repair action, the notion of repair supervisor

component in case of global repair.

A possible future work is extending the NdRFT, so that the modeler can directly define more complex

reward functions, for instance considering the cost of repair actions, or the penalties due to the fact that the

system is in a degraded state (the system is up, but some subsystem is down, e.g. corresponding to a system

with degraded performance).

Another future work in order to mitigate the well-known state space explosion problem in the final

MDP, consists in translating the NdRFT model into a MDWN instead of an MDPN. In fact for MDWN,

an efficient analysis technique taking advantage from the intrinsic symmetries of the system, is developed:

from an MDWN it is possible to derive a Symbolic Reachability Graph [9], and from it a reduced MDP can

be obtained. This allows a computational cost reduction, but the optimal strategy computed on the reduced
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MDP is equivalent to the one computed on the ordinary MDP. This possibility is useful when the system is

characterized by symmetries and redundancies in its structure.

Observe that the NdRFT formalism could be extended by considering dynamic gates [16], which allow to

express functional and temporal dependencies among component failures, as well as repair resources preemp-

tion.
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A Markov Decision Petri Net

A Markov Decision Petri Net MN is composed by two different parts (i.e. two extended Petri nets): the

probabilistic one Npr and the non deterministic one Nnd called the decision maker ; it is thus possible to

clearly distinguish and design the probabilistic behavior of the system and the non deterministic one. The

probabilistic part models the probabilistic behavior of the system and can be seen as composition of a set of

n components (Comppr) that can interact; instead the non deterministic part models the non deterministic

behavior of the system where the decisions must be taken (we shall call this part the decision maker). Hence

the global system behavior can be described as an alternating sequence of probabilistic and non deterministic

phases.

The probabilistic behavior of a component is characterized by two different types of transitions Trunpr

and Tstoppr. The Trunpr transitions represent intermediate steps in a probabilistic behavior phase and can

involve several components (synchronized through that transition), while the Tstoppr ones always represent

the final step of the probabilistic phase of at least one component.

In the non deterministic part, the decisions can be defined at the system level (transitions of T nd
g ) or

at the component level (transitions of T nd
l ). The sets T nd

g and T nd
l are again partitioned in Trunnd

g and

Tstopnd
g , and Trunnd

l and Tstopnd
l with the same meaning. The decision maker does not necessarily control

every component and may not take global decisions. Thus the set of controllable “components” Compnd is

a subset of Comppr ⊎ {ids} where ids denotes the whole system.

The probabilistic net is enlarged with a mapping weight associating a weight with every transition in

order to compute the probabilistic choice between transitions enabled in a marking. Furthermore it includes

a mapping act which associates to every transition the subset of components that (synchronously) trigger the

transition. The non deterministic net is enlarged with a mapping obj which associates with every transition
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the component which is involved by the transition. The following definition summarizes and formalizes this

presentation.

Definition 6 (Markov Decision Petri Net (MDPN)) A Markov Decision Petri Net (MDPN) is a tuple

MN = 〈Comppr, Compnd, Npr, Nnd〉 where:

• Comppr is a finite non empty set of components;

• Compnd ⊆ Comppr ⊎ {ids} is the non empty set of controllable components;

• Npr is defined by a PN with priorities [17] 〈P, T pr, Ipr, Opr , Hpr, priopr , m0〉, a mapping weight: T pr →

R and a mapping act: T pr → 2Comppr

. Moreover T pr = Trunpr ⊎ Tstoppr

• Nnd is defined by a PN with priorities 〈P, T nd, Ind, Ond, Hnd, priond, m0〉 and a mapping obj: T nd →

Compnd. Moreover T nd = Trunnd ⊎ Tstopnd.

Furthermore, the following constraints must be fulfilled:

• T pr ∩ T nd = ∅. A transition cannot be non deterministic and probabilistic.

• ∀id ∈ Comppr, ∃C ⊆ Comppr, s.t. id ∈ C and act−1({C}) ∩ Tstoppr 6= ∅. Every component must

trigger at least one final probabilistic transition.

• ∀id ∈ Compnd, obj−1({id}) ∩ Tstopnd 6= ∅. Every controllable component must be the object of at least

one final non deterministic transition.

Note that the probabilistic part and the decision maker share the same set of places and the same initial

marking. Let us now introduce the rewards associated with the MDPN net. As will be developed later, an

action of the decision maker corresponds to a sequence of transition firings starting from some marking. We

choose to specify a reward by first associating with every marking m a reward rs(m), with every transition t

a reward rt(t) and then by combining them with an additional function rg (whose first parameter is a state

reward and the second one is a reward associated with a sequence of transition firings). The requirement on

its behavior given in the next definition will be explained when presenting the semantics of a MDPN.

Definition 7 (MDPN reward functions) Let MN be a MDPN. Then its reward specification is given

by:

• rs : N
P → R which defines for every marking its reward value.

• rt : T nd → R which defines for every transition its reward value.

• rg : R × R → R, not decreasing w.r.t its second parameter.
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Figure 8: Arcs connecting the places Stoppr
i , Runnd

i and the transition PrtoNd; arcs connecting the places

Stopnd
i , Runnd

i and the transition NdtoPr

A.1 MDPN semantics.

The MDPN semantics is given in three steps. First, one composes the probabilistic part and the decision

maker in order to derive a unique PN. Then one generates the (finite) reachability graph (RG) of the PN. At

last, one produces an MDP from it.

From MDPN to PN. First we explain the semantics of additional places Stoppr
i , Runpr

i , Stopnd
i , Runnd

i ,

Stopnd
0 and Runnd

0 and additional non deterministic transitions PrtoNd and NdtoPr. Places Stoppr
i , Runpr

i ,

Stopnd
i , Runnd

i , Stopnd
0 and Runnd

0 regulate the interaction among the components, the global system and

the decision maker. There are places Runpr
i , Stoppr

i for every component i, while we insert the places

Runnd
0 and Stopnd

0 if the decision maker takes same global decision and the pair of places Runnd
i and Stopnd

i

for every controllable component i ∈ Compnd. Non deterministic transitions PrtoNd and NdtoPr ensure

that the decision maker takes a decision for every component in every time unit: the former triggers a non

deterministic phase when all the components have finished their probabilistic phase whereas the latter triggers

a probabilistic phase when the decision maker has taken final decisions for every controllable component.

The scheme describing how these additional items are connected together and with the nets of the MDPN

is shown in Fig. 8. The whole PN N comp = 〈P comp, T comp, Icomp, Ocomp, Hcomp, priocomp, mcomp
0 〉 related to

a MDPN MN is defined below.

• P comp = P ⊎i∈Comppr
{Runpr

i , Stoppr
i } ⊎i∈Compnd

{Runnd
i , Stopnd

i }
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• T comp = T pr ⊎ T nd ⊎ {PrtoNd, NdtoPr}

• The incidence matrices of N comp are defined by:

– ∀p ∈ P, t ∈ T nd,

Icomp(p, t) = Ind(p, t), Ocomp(p, t) = Ond(p, t), Hcomp(p, t) = Hnd(p, t)

– ∀p ∈ P, t ∈ T pr,

Icomp(p, t) = Ipr(p, t), Ocomp(p, t) = Opr(p, t), Hcomp(p, t) = Hpr(p, t)

– ∀t ∈ Tstoppr s.t. i ∈ act(t) : Icomp(Runpr
i , t) = Ocomp(Stoppr

i , t) = 1

– ∀t ∈ Trunpr s.t. i ∈ act(t) : Icomp(Runpr
i , t) = Ocomp(Runpr

i , t) = 1

– ∀t ∈ Tstopnd s.t. i ∈ act(t) : Icomp(Runnd
i , t) = Ocomp(Stopnd

i , t) = 1

– ∀t ∈ Trunnd s.t. i ∈ act(t) : Icomp(Runnd
i , t) = Ocomp(Runnd

i , t) = 1

– ∀i ∈ Comppr : Icomp(Stoppr
i , P rtoNd) = Ocomp(Runpr

i , NdtoPr) = 1

– ∀i ∈ Compnd : Icomp(Stopnd
i , NdtoPr, ) = Ocomp(Runnd

i , P rtoNd) = 1

– for all I(p, t), O(p, t), H(p, t) not previously defined,

Icomp(p, t) = Ocomp(p, t) = 0, Hcomp(p, t) = ∞;

• ∀t ∈ T nd, prio(t) = priond(t), ∀t ∈ T pr, prio(t) = priopr(t),

prio(PrtoNd) = prio(NdtoPr) = 1, (actually these values are irrelevant)

• ∀p ∈ P, mComp
0 (p) = m0(p), mComp

0 (Runnd
i ) = 1,

mComp
0 (Stopnd

i ) = mComp
0 (Runpr

i ) = mComp
0 (Stoppr

i ) = 0.

RG semantics and transitions sequence reward. Considering the RG obtained from the PN we observe

that the reachability set (RS) can be partitioned into two subsets: the non deterministic states (RSnd), in

which only non deterministic transitions are enabled, and the probabilistic states (RSpr), in which only

probabilistic transitions are enabled. By construction, the PN obtained from a MDPN can never reach a

state enabling both nondeterministic and probabilistic transitions. A probabilistic transition can be enabled

only if there is at least one place Runpr
i with m(Runpr

i ) > 0, while a non deterministic transition can be

enabled only if there is at least one place Runnd
i with m(Runnd

i ) > 0. Initially only Runnd
i places are marked.

Then only when all the tokens in the Runnd
i places have moved to the Stopnd

i places (through the firing of

some transition in Tstopnd), the transition NdtoPr can fire, removing all tokens from the Stopnd
i places and

putting one token in every Runpr
i place. Similarly, transition PrtoNd is enabled only when all tokens have

moved from the Runpr
i to the Stoppr

i places; the firing of PrtoNd brings the tokens back in each Runnd
i place.

Thus places Runpr
i and places Runnd

i cannot be simultaneously marked.
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Observe that any path in the RG can be partitioned into (maximal) sub-paths leaving only states of

the same type, so that each path can be described as an alternating sequence of non deterministic and

probabilistic sub-paths. Each probabilistic sub-path can be substituted by a single “complex” probabilistic

step and assigned a probability based on the weights of the transitions firing along the path. The non

deterministic sub-paths can be interpreted according to different semantics (see [4] for a detailed discussion).

Here we select the following semantics: a path through non deterministic states is considered as a single

complex action and the only state where time is spent is the first one in the sequence (that is the state

that triggers the “complex” decision multi-step). So only the first state in each path will appear as a state

in the MDP (the other states in the path are vanishing, borrowing the terminology from the literature on

generalized stochastic Petri nets).

Let us now define the reward function for a sequence of non deterministic transitions, σ ∈ (T nd)∗; abusing

notation we use the same name rt() for the reward function for single transitions and for transition sequences.

The following definition rt(σ) assumes that the firing order in such a sequence is irrelevant w.r.t. the reward

which is consistent with an additive interpretation when several decisions are taken in one step.

Definition 8 (Transition sequence reward rt(σ)) The reward for a non deterministic transition sequence

is defined as follows:

rt(σ) =
∑

t∈T nd rt(t)|σ|t

where |σ|t is the number of occurrences of non deterministic transition t in σ.

Generation of an MDP given a RG of a MDPN and the reward structure. The MDP can be

obtained from the RG of the PN model in two steps: (1) build from the RG the RGnd such that given any

non deterministic state nd and any probabilistic state pr all maximal non deterministic sub-paths from nd to

pr are reduced to a single non deterministic step; (2) build the RGMDP (i.e., a MDP) from the RGnd such

that given any non deterministic state nd and any probabilistic state pr, all maximal probabilistic sub-paths

from pr to nd are substituted by a single probabilistic step. Finally derive the MDP reword from rs,rt and

rg functions.

Let nd be a non deterministic state reached by a probabilistic transition (such states will be the non

deterministic states of RGnd). We focus on the subgraph “rooted” in nd and obtained by the maximal non

deterministic paths starting from nd. Note that the probabilistic states occurring in this subgraph are terminal

states. If there is no finite maximal non deterministic sub-paths starting from nd then no probabilistic phase

can follow. So the construction is aborted. Otherwise, given every probabilistic state pr of the subgraph, one

wants to obtain the optimal path σnd,pr from nd to pr w.r.t. the reward. Once for every such pr, this path

is computed, in RGnd an arc is added from nd to pr labeled by σnd,pr. The arcs starting from probabilistic

states are unchanged in RGnd.
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Thus the building of RGnd depends on whether the optimization problem is a maximization or a min-

imization of the reward. We only explain the minimization case (the other case is similarly handled). We

compute such a sequence using the Bellman and Ford (BF) algorithm for a single-source shortest paths in a

weighted digraph where the transition reward is the cost function associated with the arcs. This algorithm is

sound due to our (cumulative) definition for rewards of transition sequences. Note that if the BF algorithm

finds a negative loop (i.e., where the reward function decreases), the translation is aborted. Indeed the

optimal value is then −∞ and there is no optimal sequence: this problem must be solved at the design level.

We now explain how to transform RGnd into the MDP RGMDP . Given a probabilistic state pr and a

non deterministic state nd we want to compute the probability to reach nd along probabilistic sub-paths.

Furthermore, the sum of these transition probabilities over non deterministic states must be 1. So if in

RGnd, there is a terminal strongly connected component composed by only probabilistic states, we abort the

construction. The checked condition is necessary and sufficient according to Markov chain theory. Otherwise,

we obtain the transition probabilities using two auxiliary matrices. P(pr,pr), a square matrix indexed by

the probabilistic states, denotes the one-step probability transitions between these states and P(pr,nd), a

matrix whose rows are indexed by the probabilistic states and columns are indexed by non deterministic

states, denotes the one-step probability transitions from probabilistic states to non deterministic ones. Let

us describe how these transition probabilities are obtained. These probabilities are obtained by normalizing

the weights of the transitions enabled in pr. Now again, according to Markov chain theory, matrix P =

(Id − P(pr,pr))−1 ◦ P(pr,nd), where Id is the identity matrix represents the searched probabilities. A similar

transformation is performed in the framework of stochastic Petri nets with immediate transitions (see [17]

for the details).

Finally in the MDP, the probability distribution p(·|nd, σ) associated with state nd and (complex) action

σ, assuming nd
σ

−→ pr, is given by the row vector P[pr, ·] and the reward function for every pair of state and

action is defined by the following formula: r(nd, σ) = rg(rs(nd), rt(σ)). Since rg is not decreasing w.r.t. its

second parameter, the optimal path w.r.t. rt found applying the Bellman and Ford algorithm is also optimal

w.r.t. rg(rs(nd), rt(·)).
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