Dipartimento di Informatica
Universita del Piemonte Orientale “A. Avogadro”
Via Bellini 25/G, 15100 Alessandria
http://www.di.unipmn.it

universita
deghi studi
del piemonte
orientale

Non deterministic Repairable Fault Trees for computing optimal repair strategy

Authors: Marco Beccuti (beccuti@mfn.unipmn.it),
Giuliana Franceschinis (giuliana@mfn.unipmn.it),
Daniele Codetta-Raiteri (raiteri@mfn.unipmn.it),

Serge Haddad (haddad@lsv.ens-cachan.fr).

TECHNICAL REPORT TR-INF-2008-07-05-UNIPMN
(July 2008)



The University of Piemonte Orientale Department of Computer Science Research Technical Reports are available via

2008-04

2008-03

2008-02

2008-01

2007-05

2007-04

2007-03

2007-02

2007-01

2006-03

2006-03

2006-02

2006-01

2005-06

2005-05

2005-04

WWW at URL http://www.di.unipmn.it/.

Plain-text abstracts organized by year are available in the directory

Recent Titles from the TR-INF-UNIPMN Technical Report Series

Reliability and QoS Analysis of the Italian GARR network, Bobbio, A., Terruggia, R., June 2008.
Mean Field Methods in performance analysis, Gribaudo, M., Telek, M., Bobbio, A., March 2008.
Mowve-to-Front, Distance Coding, and Inversion Frequencies Revisited, Gagie, T., Manzini, G., March 2008.

Space-Conscious Data Indexing and Compression in a Streaming Model, Ferragina, P., Gagie, T., Manzini, G.,

February 2008.

Scheduling Algorithms for Multiple Bag-of-Task Applications on Desktop Grids: a Knowledge-Free Approach,
Canonico, M., Anglano, C., December 2007.

Verifying the Conformance of Agents with Multiparty Protocols, Giordano, L., Martelli, A., November 2007.

A fuzzy approach to similarity in Case-Based Reasoning suitable to SQL implementation, Portinale, L., Montani,

S., October 2007.
Space-conscious compression, Gagie, T., Manzini, G., June 2007.

Markov Decision Petri Net and Markov Decision Well-formed Net Formalisms, Beccuti, M., Franceschinis, G.,

Haddad, S., February 2007.
New challenges in network reliability analysis, Bobbio, A., Ferraris, C., Terruggia, R., November 2006.

The Engineering of a Compression Boosting Library: Theory vs Practice in BWT compression, Ferragina, P.,

Giancarlo, R., Manzini, G., June 2006.

A Case-Based Architecture for Temporal Abstraction Configuration and Processing, Portinale, L., Montani, S.,

Bottrighi, A., Leonardi, G., Juarez, J., May 2006.

The Draw-Net Modeling System: a framework for the design and the solution of single-formalism and multi-

formalism models, Gribaudo, M., Codetta-Raiteri, D., Franceschinis, G., January 2006.

Compressing and Searching XML Data Via Two Zips, Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan,
S., December 2005.

Policy Based Anonymous Channel, Egidi, L., Porcelli, G., November 2005.

An Audio-Video Summarization Scheme Based on Audio and Video Analysis, Furini, M., Ghini, V., October
2005.



Contents

1

2

Introduction

Related work

2.1 Fault Trees . . . . . . o o e e e e e e
2.2 Tools for FT analysis . . . . . . . . . . . e
2.3 Repairable Fault Trees . . . . . . . . . . o . e

Non deterministic RFT

3.1 NARFT syntax . . . . . . . e e e e
3.2 MDP semantics of NARFT . . . . . . . . . e
3.3 Discussion . . . . . ... e

Translation from NdRFT to MDPN

4.1 Generating the PR subnet . . . . . . ... L
4.2 Generation of the ND subnet . . . . . . . . ...
4.3 Translation correctness . . . . . . . . . L L e
4.4  An transition priority assignment improving efficiency . . .. ... ... ... ... ... ...

Framework architecture
Experiment results
Conclusion and future work

Markov Decision Petri Net
A.1 MDPN semantiCS. . . . . . . . . . e

TR R

=}

12
13
16
19
23

24

25

28

29



Non deterministic Repairable Fault Trees
for computing optimal repair strategy

Marco Beccuti, Giuliana Franceschinis, Daniele Codetta-Raiteri
Dip. di Informatica, Univ. del Piemonte Orientale
Via Bellini, 25/G
15100 Alessandria, Italy
{beccuti, giuliana, raiteri}@mfn.unipmn.it

Serge Haddad
LSV, ENS Cachan, CNRS
61, avenue du Président Wilson

Cachan, France
haddad@lsv.ens-cachan.fr

Abstract

In this paper, the Non deterministic Repairable Fault Tree (NARFT) formalism is proposed: it allows to
model failure modes of complex systems as well as their repair processes. The originality of this formalism
with respect to other Fault Tree extensions is that it allows to face repair strategies optimization problems:
in an NdRFT model, the decision on whether to start or not a given repair action is non deterministic, so
that all the possibilities are left open. The formalism is rather powerful allowing to specify which failure
events are observable, whether local repair or global repair can be applied, and the resources needed to start
a repair action. The optimal repair strategy can then be computed by solving an optimization problem
on a Markov Decision Process (MDP) derived from the NdRFT. A software framework is proposed in
order to perform in automatic way the derivation of an MDP from a NdRFT model, and to deal with the

solution of the MDP.

Keywords. Fault Tree, Optimal repair strategy, Markov Decision Process, Markov Decision Petri Net

1 Introduction

The Fault Trees (FT) [22] are a well-known formalism for the evaluation of dependability of complex systems.
They provide an intuitive representation of the system in terms of its faults, modeling how the combinations
of failure events relative to the components of the system, can cause the failure of the sub-systems or of the

whole system.



Many extensions of this formalism have been proposed in order to enhance the advantages of the FT for
the design and the assessment of the systems (e.g. Dynamic FT [16], Parametric FT [5], etc.). Among these
extensions, in [12] the Repairable FT (RFT) was presented in order to evaluate the effect of different repair
policies on a repairable system.

In this paper, we present a new FT extension, called Non deterministic Repairable Fault Tree (NdRFT)
which has been designed to define and solve repair strategy optimization problems: in an NdARFT model
the possible repair strategies are not predefined; on the contrary, the best strategy, minimizing the failure
probability of the global system, is automatically computed. This is done by defining the NARFT semantics
in terms of a Markov Decision Process (MDP), a formalism embedding non deterministic and probabilistic
behavior [14, 18], and then solving the optimization problem using the methods available for MDPs.

The generation of the MDP is achieved by an intermediate translation of the NARFT model into a Markov
Decision Petri Net (MDPN) [3]: this allows to reuse the efficient algorithms devised to derive an MDP from
an MDPN. Moreover a direct translation from NARFT to MDP requires to implement a mechanism to
combine the failure/repair events of all components into a single complex transition or action: this is already
implemented for MDPN formalism.

The NdRFT formalism allows to express in an elegant way several possible start repair options based on:
1) the concept of “observability” of events (repair actions can only be triggered by observable failures), 2)
the notion of local versus global repair action, 3) the notion of repair supervisor component, in case of global
repair. Very few restrictions are imposed on the scope of repair actions (so that the repair of each basic
component can start based on observations made on different failure events). The NARFT formalism allows
the modeler to express in a familiar language (NdRFT extends FT) the failure mode and the repair options
in the system; in this way, he avoids to deal with a larger, unstructured and state-level MDP model that is
instead derived from the NdRFT model.

The paper is structured as follows: Sec. 2 presents some related work about FT, tools for FT analysis,
and RFT; in Sec. 3 we provide the formal definition of the NdRFT formalism; Sec. 4 explains how to derive
from a NdRFT model, the corresponding MDPN; in Sec. 5 we present a software framework for the design
and the solution of NARFT models in order to compute the optimal repair strategy and the corresponding

dependability of the system; finally in section 6, we present and analyze some experimentations.



2 Related work

2.1 Fault Trees

In the FT formalism, nodes can belong to one of these two categories: events and gates. Events concern the
failure of components, subsystems or of the whole system. We can consider an event as a Boolean variable:
it is initially false and it becomes true when the failure occurs.

An example is shown in Fig. 1.b. The events graphically represented as a rectangle with an attached
circle are called Basic Fvents (BEs) and model the failure of the components of the system; such events are
stochastic, so their occurrence is ruled by some probability distribution.

The events depicted simply by a rectangle represent the failure of subsystems; we call them Internal
Events (IEs) and they are the output of a gate node. Gates are connected by means of arcs to several input
events and to a unique output event; the effect of a gate is the propagation of the failure to its output event if
a particular combination of its input events occurs. In the standard version of the FT formalism three types
of gate are present and correspond to the AND, OR and "K out of N” Boolean functions.

Finally, we have a unique event called Top Event (T'E), modeling the failure of the whole system. The
FT incorporates a Boolean formula expressing the T'E truth value as a function of its variables (BEs).

The analysis of an FT model returns several dependability measures such as the system reliability, the
system minimal cut-sets, the criticality of each component [22]; in particular, the system reliability at time
t is the probability that the system has been working in the time interval (0,¢). The most efficient way to
perform the analysis of an FT, consists of generating the Binary Decision Diagram (BDD) [7] representing the
same Boolean formula expressed by the FT: efficient algorithms allow to compute on the BDD the measures

cited above [19].

2.2 Tools for FT analysis

Several software tools support the FT analysis. Some of them can deal with the repair, but they allow only to
model the repair of single components: the repair process is triggered by the component failure and has effect
only on the same component. For instance in the tool ASTRA [13] developed by the European Commission
Joint Research Centre (JRC), one of the parameters of a BE is the time to repair the component whose
failure is modeled by the same BE. In other tools, the time to repair a component is a random variable ruled
by some distribution such as the negative exponential one. This is the case of the following tools where a
repair rate can be associated with a BE: Stars Studio developed by JRC [13], HIMAP [15] by Iowa State
University, Relex [26], FTA-Pro [24] by Dyadem, FaultTree+ [27] by Isograph Software, FTAnalyzer [28] by
Advanced Logistic Development (ALD).



The SHARPE tool [21] allows hierarchical modeling: the probability to occur of a BE can be set equal
to some measure computed on another kind of model, for instance a Continuous Time Markov Chain
(CTMC) [21]. In this way, the failure and repair mode of a component may be more complex than a simple
transition from the working state to the failure state and vice-versa. In any case, the model representing the
failure and repair mode of the component has to be manually drawn by the modeler. Hierarchical modeling
is possible by means of the HIMAP tool as well [15].

A Dynamic Fault Trees (DFT) [1] is a particular extension of FT where dependencies between BEs can
be set by means of the dynamic gates. The analysis of a DF'T model can be performed by conversion into a
Continuous Time Markov Chain (CTMC) [16] and is supported by the tool Galileo [25]. In [6], a DFT model
can include the repair of components, and the analysis of the model is faced in by exploiting Input-Output

Interactive Markov Chains, however each repair action still concerns a single component.

2.3 Repairable Fault Trees

In the literature, the Repairable Fault Tree (RFT) formalism [12] is the only extension of FT that allows
to model the repair of a subsystem when triggered by a specific failure event. This means that the repair
process concerns a set of components instead of a single one. Moreover, in the RFT formalism, the repair
action is not simply ruled by a repair rate, but it is influenced by a repair policy: defining a repair policy in a
RFT model means setting the parameters ruling each aspect of the repair process, such as the mean time to
detect the failure, the mean time to repair a single component or a set of components, the number of repair
facilities, the order of repair of the components. From a RFT model we can compute the system availability
at time ¢; this means the probability that the system is working at time ¢.

The RFT differs from the FT, for the introduction of a new primitive called Repair Boxz (RB) [12] allowing
the model designer to represent the presence of a repair process involving a certain set of components called
basic coverage set (Covpg) of the RB; such action is activated by the occurrence of a specific failure event
called trigger event and concerning a component or a subsystem. The effect of the RB is setting the value
of the BEs in its Covpp to true (working), if their current value is false (failed). Such repair action is
performed according to the repair policy associated with the RB node. Actually, the effect of the RB does
not influence only the BEs in its basic coverage set, but also all the IEs whose value can be expressed by
a Boolean function over a set of BEs including at least one BE in Covgg. In [12], the computation of the
system availability from its RFT model, has been faced by converting the RFT model into a Generalized
Stochastic Petri Net (GSPN).

In the RFT formalism, the repair policy (or strategy) is defined by the modeler and is associated with
the RB primitive; therefore the only way for the modeler to identify the best policy, consists of analyzing



the system according to several repair policies by constructing several RFT models, and by comparing the
system availability values returned by the RFT models analysis. So, the RFT formalism does not allow to
automatically determine the best repair policy.

The possibility to determine the optimal repair policy given all the repair possibilities, is an issue concern-
ing several fields of engineering. So far, this problem has been usually faced in the literature in analytical ways,
typically in form of operative research problems [8, 23, 20]. The NdRFT formalism presented in this paper,
is an attempt to deal with the problem of optimal repair strategy, by building a graph based model having
an intuitive notation and allowing to model several repair options together with the failure combinations in

the system.

3 Non deterministic RFT

3.1 NdRFT syntax

In this section the formal definition of the NdRFT is provided and commented through an example.

Definition 1 (Non deterministic Repairable FT) An NdRFT is a five-tuple:
S=(,G,A R, resp)

where:
& is the set of events.
G is the set of gates; ENG = 0. A gate g has a type' denoted g.type € {and, or}.
A is the set of arcs, a subset of E X GUG x E. For x belonging to £UG, we denote x* = {y | (x,y) € A} and
c={y| (y,z) € A}. A satisfies:

1.VgegG,lg®l =1 andVe e &, |%| <1

2. There is exactly one event, denoted T and called Top Event, s.t. T® = (; all other events satisfy
"] > 1

3. The set of events can be partitioned into basic events £ = {e | *¢ = 0} and internal events £ = {e |
‘e # 0}

4. The (directed) graph induced by A is acyclic.
R is a finite set of repair resource types; resgp € Bag(R) is the multiset of available resources, where Bag(R)
is a generalization of a set, so that it can contain several occurrences of the same element.

Each event is associated with a set of attributes, related to its failure probability and to the definition of the

1Since the proposed optimization method is based on the state space, other gate types could easily be considered, including

dynamic ones: in this paper only and/or gates are considered for the sake of space.



applicable repair actions. Any event e is either observable (e.obs = true) or non observable (e.obs = false);
only observable events can trigger a repair action.
Moreover, each BE e has the following additional attributes:

1. a fault probability denoted e.fprob ranging over [0,1];

2. a repair attribute denoted e.rep € {true, false} indicating if the event is repairable or not; if e.rep =
true, e has also a repair probability denoted e.rprob € [0,1] and a multiset of required resources denoted
e.res € Bag(R).

Finally, each internal observable event e has the following additional attributes:

1. a set of BEs that should be repaired in case of e failure, denoted e.torep such that ¢’ € e.torep =
e’.rep = true, moreover there is a path from e to €' according to A;

2. a repair strategy denoted e.str € {global,local}. When the strategy associated with an event is
global, it also has a repair probability denoted e.rprob € [0,1] and a multiset of required resources denoted

e.res € Bag(R).

Let us comment the above definition by means of the example of Fig. 1 (whose meaning will be explained in
Sec. 6): in the picture the events are depicted in a different way according to their obs and rep attribute values.
Down arrows, labeled with a number, next to BEs indicate their failure probabilities; up arrows, labeled with
a number, next to repairable BEs or to internal events with global strategy, indicate the repair probability.
Basic events A3 and P3 in the example are not repairable. In the NdRFT formalism, the assumption of
discrete time holds: the time to fail (repair) a component is ruled by the geometric distribution having as
parameter the failure (repair) probability (see section 3.3).

The failure of an observable and repairable BE e (e.g. Al) can immediately trigger a repair action of the
component, while the repair of a non observable (but repairable) event e (e.g. A2) can only be triggered by
an observable internal event connected to e (for A2 it can be U2 or TE). Intuitively, observability is related
to the possibility of detecting a failure. In the example of Fig. 1 we have only one type of resource and each
repair action requires only one resource (observe that any local repair action, including the one triggered by
the TE, requires one resource for each BE to be repaired).

The event attribute repair strategy defines the granularity of the repair process triggered by the occurrence
of the (internal) event e: if the repair strategy is global (as for U2 in the example), all the repairable basic
components in e.torep (A2 and P2 in the example) are repaired simultaneously and brought back to the
working state when the global repair process terminates. This means that a global repair process is a unique
repair process (e.g. representing the substitution of a down server with a new server: all components are
substituted at once); while a global repair action is ongoing, the basic components in e.torep cannot be

simultaneously involved in any other repair action (global or local). If instead the repair policy is local (as



. 2 repair resourcey

TE{Al, P1,A2, P2}

(s . ‘
H 5 3 obs=fal se, rep=false |
el | = |
K ' obs=fal se, rep=true |
""""""""""" : Ul us3 ?] B 5
....................... H ;@ obs=true, rep=true
o2 @i |
"""""""""""" i
""""""""""""  0005) 0001} " abontalse |
G| e | |
A3 : Al i [E==m]  obs=true, str=local
‘) 21 ool =0 obsmtrum, strogiom |
a ‘b 03T
: b) 2

Figure 1: a) The block scheme of the AHRS. b) The NARFT model of the AHRS.

for TE in the example), for each repairable BE component in e.torep, it is possible to decide to repair or not
such component; moreover the single components repair may not start simultaneously (e.g. because there are
not enough resources). A BE can appear in the torep set of several internal events; for example A2 and P2
are in the torep set of both U2 and T'E: when a failure has occurred for only one among the two BEs, the
local strategy could be more appropriate, but it can be activated only if T'E has occurred already. Otherwise,
if both A2 and P2 failure has occurred, the global repair of U2 may be more convenient. Observe that given
the example NdRFT structure, U2 can immediately witness the failure of one or both events A2 and P2, and

trigger the substitution of both.

3.2 MDP semantics of NdRFT

MDP definition. A (discrete time and finite) MDP is a dynamic system where the transitions between
states follow a two-step process. First, one non deterministically selects an action inside the subset of enabled
actions. Then one samples the new state with respect to a probability distribution depending on the current
state and the selected action. The non deterministic step represents a decision taken by a controller in order
to manage the system, or a behavior triggered by the environment that the system cannot control. Our
approach is based on the former interpretation. The probabilistic step takes into account that the effect of
an action statistically depends on non modeled (or unknown) parameters.

In order to formally define the objective to optimize, one associates a reward with any state and selected

action (the reward can also be interpreted as a cost). The following definition formalizes these concepts.

Definition 2 (Markov Decision Process, MDP:) An MDP M is a four-tuple M = (S, A,p, r) where:
1. S is a finite set of states,

2. Ais a finite set of actions defined as | J,c g As where A is the set of enabled actions in state s,



3. Vs € S,Va € Ag,p(-|s,a) is a (transition) probability distribution over S such that p(s'|s,a) is the
probability to reach s’ from s by triggering action a,

4. Vs € S,Va € Ag,r(s,a) € R is the reward associated with state s and action a.

Once an action choice is fixed, the MDP behaves like a Markov chain and different global measures on the

random path can be defined as for example the (discounted) sum of rewards or the average of the rewards.
The goal of the analysis is computing the optimal value of the measure, and when possible, computing the
associated strategy. In finite MDPs, efficient solution techniques have been developed to this purpose [18]
and different tools are based on this theory (see for instance the experiment section).
NdRFT semantics. The semantics of an FT is simply a Boolean formula expressing the TE truth value
as a function of the BEs truth value; the possible (minimal) failure configuration leading to the TE and
their occurrence probability (at time t) can be efficiently computed using a BDD [19] representation of the
FT, without need to develop its dynamic failure behavior. NdRFT semantics instead (as well as RET one)
requires to explicitly expand and analyze the dynamic behavior of the model since the introduction of the
repair processes adds the possibility for events to switch between the up and down state several times within
a given observation period.

In this paragraph, we will define precisely the dynamic behavior of an NdRFT, which can be described
by an MDP. Let us first define the MDP states:

Definition 3 (MDP y rrr state) A state p of the MDP corresponding to a given NARFT is a tuple:

p = ({ste}eee, {supe}ece)

where st. = {Up, Down, LocRep, GlobRep,,, GlobRep,} represents the state of the component/subsystem
whose failure corresponds to the event e. If st. € {Up,GlobRep,}, then e = false in the fault tree, if
ste = {Up, LocRep, GlobRepq}, then e = true in the fault tree. Only BEs can be in repair state, and
for these events sup. represents the supervisor of the repair process: this is the basic event e itself if the
repair action is local, while in case of global repair the supervisor is the internal event that triggered it.
Observe that ste € {Up, Down} < sup. = NULL. The state of the internal events in p can only be in
{Up, Down} and it can be derived from the state of the BEs and the FT structure. The initial state py is:
po:Ve € E st =UpAsup. = NULL.

Let us define the set A, of actions that can be chosen in state p: each action a € A, is a mapping
EUEqr — {repair,not_repair}; in other words an action is a set of decisions on whether a local or global
repair process should start for a given component/subsystem. An action a can be taken in p if (1) the

components or subsystems for which a repair action is required are not working (i.e. they are down) and (2)



there are enough resources to perform all the scheduled repair actions (both those already ongoing in p and
the new ones just started as specified by a).

For each state p, it is possible to define the multiset res, of busy resources as: res, = ZeEsup(S) e.res.
Of course at each time the following condition must be verified: res, C resy that can also be expressed as
Vr € Bag(R),res,(r) < reso(r), where res;(r) denotes the multiplicity of r in res;.

Once an admissible action a € A, is chosen, an intermediate state (p,a) is reached: here a probabil-
ity distribution allows to determine the state change; the probability distribution can be derived from the
probability distribution of failure and repair completion events, as detailed hereafter.

Summarizing, the dynamic of the MDP corresponding to an NdARFT, is defined in terms of two steps:
a non deterministic one (selecting the subset of repair actions that should start) and a probabilistic one
(probabilistically choosing the newly occurred failure events and which among the ongoing repair actions
have completed).

The state change induced by each step is defined as follows:

Non Deterministic step: MDP actions. This step comprises a (possibly empty) set of repair start
decisions for BEs and intermediate events triggering a global repair. Each repair must be triggered by (basic
or internal) observable events that are in state Down. For each repair start decision, the supervisor of the
involved event must be specified: it is the event itself in case of local repair, while it is the internal trigger
event for global repair.

The conditions for the two types of state change are:

": e € €.torep,ste = Down,e'.obs =

ste : Down — LocRep: (1) e.obs = true A e.rep = true or (2) Je
true, e’.str = local; in both cases sup., = e.
ste : Down — GlobRepy or st, : Up — GlobRep, : Je’ : e € €' .torep, sty = Down, €' .obs = true, e’ .str =
global; in this case the state change must happen simultaneously for every e € ¢’.torep and then sup. = ¢’
The set of repair processes chosen to start, defining an action a, lead to the new state (p,a): of course
state (p,a) must be consistent with the requirement res, oy C reso.
The possible actions A, available in state p of the MDP are thus all the legal repair start decision sets
satisfying the conditions and the resource constraints described above.
Probabilistic step. In this step the possible state changes for each BE e are:
ste : Up — Down: with probability e.fprob (or remain in the Up state with probability 1 — e. fprobd);
ste : LocRep — Up: with probability 1 — e.rprob (or remain in the LocRep state with probability e.rprob);
ste : GlobRep. — Up: with probability 1 — sup(e).rprob (or remain in the GlobRep. state with probability
sup(e).rprob): this state change must happen simultaneously for all e’ € sup(e).torep (it is a single proba-
bilistic choice with synchronous effect on all events involved in the repair action). For any event e that returns

to the Up state, sup, is reset to NULL. Hence the probabilistic choice that follows a given non deterministic

10



action in the MDP, leading from the intermediate state {p,a) to state p’ corresponds to a probabilistic step
as described above: the probability of each step is obtained as the product of the probabilities of each single
event state transition (we recall again that the end of a global repair represents a single event, independently
on how many basic events are involved).

As already remarked above, the states of the internal events are derived from those of the BEs using the

FT structure.

This completes the definition of the MDP underlying a given NARFT. The optimization problem has the
following goal: minimizing the probability (at time ¢ or in steady state) of being in a state where the TE
failure has occurred. Different goals might be defined as well, e.g. taking into account the cost of repair
actions or the cost of having a system working in a degraded mode.

In practice, the computation of the optimal strategy requires three steps: (1) generation of the MDP from
the NdRFT, (2) analysis of the MDP, (3) presentation of the results in a form that is understandable for the
designer.

These steps can be automatized. The first step can be implemented in two ways: defining an algorithm that
generates the set of reachable states, the corresponding non deterministic actions and consequent probabilistic
state change, or translating the NARFT in an intermediate model for which the above tasks have already been
defined and implemented. In this paper we propose to use the second approach and provide an algorithm for
translating an NdRFT into a Markov Decision Petri Net (MDPN) [3]. From the MDPN model an MDP can

be automatically derived.

3.3 Discussion

The NdRFT model is a discrete time one. This can be justified by the fact that faults in plants are often
detected at the time a sampling is performed through some sensor: sampling is usually done periodically
according to a synchronous schema. Due to the discrete time assumption, the specification of the failure
and repair process of each (basic) repairable component z is given by probability Praiiure () and Prepqir ().
Praiture(x) (resp. Prepair(x)) represents the probability that a failure (resp. the end of the repair) occurs at
any (discrete) time step provided the corresponding component is up (resp. is down and under repair). As a
consequence, the time to failure of a component, and its repair time have geometric distribution:
P(TtF. = k) = (1 — Praiture(€))* ! Praiture (€)
P(repTimee = k) = (1 — Prepair(€))* L Prepair(€)

In NdRFT the repair policy is not completely specified (instead, this is the case for RFT): the choice

to repair or not a repairable components fault is non deterministic. This leads to an MDP semantics: as

11



a consequence, we can compute the optimal repair strategy minimizing the failure probability of the global
system. Observe that even without taking into account the cost of repair, finding the optimal strategy is not
trivial, since we account for limited repair resources (each repair action can be associated with a multiset of
required resources to complete it).

In the NdRFT we can model processes where the components or the subsystems under repair return
available as soon as possible (maybe in a degraded state) without waiting the repair of all its down BE
components. Moreover, the notion of observability allows to specify when a fault can be detected, and hence
when the corresponding repair activity can start (this generalizes the notion of trigger event).

Finally repair actions may involve common components: this choice increases the flexibility in the choice
among the possible repair strategies that may be pursued, still allowing a simple and clean semantics based

on the notions of observability and of global vs. local repair strategy.

4 Translation from NdRFT to MDPN

In this section we are going to describe how to obtain from an NdARFT model the corresponding MDPN
model. An informal introduction to the MDPN formalism is provided first, then the pattern-based translation
algorithm is presented.

The generation of the MDP from the MDPN model can be performed as described in [3]. The MDP

obtained is solved in order to find the optimal repair strategy (at finite horizon ¢ or in steady state, as
appropriate) and the corresponding Top Event failure probability (or any other dependability measure).
A brief introduction to MDPNs. MDPNs were first introduced in [3] as high level models to specify the
behavior of an MDP. The main features of the high level formalism are the possibility to specify the general
behavior as a composition of the behavior of several components (some of which are controllable 2); moreover
each MDP non deterministic or probabilistic transition can be composed by a set of non deterministic or
probabilistic steps, each one involving a subset of components.

An MDPN model is composed of two parts, both specified using the PN formalism with priorities asso-
ciated with transitions: the PN"¢ subnet and the PN?" subnet (describing the non deterministic (ND) and
probabilistic (PR) behavior respectively). The two subnets share the set of places, while having disjoint tran-
sition sets. In both subnets the transitions are partitioned into “run” and “stop” subsets, and each transition
has an associated set of components involved in its firing (in the PN™ only controllable components can
be involved). Transitions in PN?" have a “weight” attribute, used to compute the probability of each firing

sequence. Run transition firings represent intermediate steps in a ND /PR transition at the MDP level, while

2A component that is subject to local non deterministic choice will be called controllable component, otherwise it will be

called non controllable component.

12



Stop transitions represent the final step in a ND/PR, transition, for all components involved in it. An MDPN
model behavior alternates between ND transition sequences and PR transition sequences, initially starting
from a ND state. The PR sequences are determined according to the PNP" structure, start with a PR state
reached by a ND state, and include exactly one stop transition for each component; the ND sequences are
determined by the PN™ structure, start from a ND state reached by a PR state, and include exactly one
stop transition for each controllable component plus a stop “global” transition. The generation of the MDP
corresponding to a given MDPN has been described in [3]: it consists of (1) a composition step, merging the
two subnets in a single net, (2) the generation of the reachability graph RG of the composed net, (3) two
reduction steps transforming each PR and ND sequence in the RG into a single MDP transition.

In the next subsections a pattern based approach to generate a MDPN mimicking the dynamic behavior
of an NdRFT is presented. We introduce the set of repairable basic components: £, = {e € E|e.rep = true},
the set of internal events with global repair strategy Eqr = {e € E|e.obs = true A e.str = global} and the
set Comp?” = £ U Eggr of components of the MDPN and the subset Comp™® = £ rUY Ear of controllable
components.

The PNP" and the PN™ are obtained directly from the NdRFT model using a pattern-based approach.

We illustrate the method describing the basic patterns, and how to instantiate and compose them.

4.1 Generating the PR subnet

Fig. 2 shows how each BE can be translated in a PNP" submodel according to their rep attribute: each non
repairable event is translated into subnet A while each repairable event is translated into subnet B. It is easy
to recognize the places that model the state of each (basic) event e labeled UP., DOW N, and Under Repair.
(actually when the UnderRepair. is marked, also the DOW N, place is marked, until the repair process
ends). Run and Stop transitions have different icons, so that they can be easily distinguished. Moreover each
transition has a priority (label prio; indicated next to each transition) and a weight, that is renormalized
w.r.t. the set of enabled transitions to obtain a firing probability. At each probabilistic step an Up component
can either remain Up (sequence WorkR., WorkS,) or go Down (sequence FailR., FailS.); each transition
participating to this first step involves only one component, namely e. The chosen priority assignment is due
to the way basic event states are propagated to obtain intermediate event states, as will be discussed later. A
Down component can either remain Down (stop transition FailS,) or start its repair (run transition Repair,
either followed by the sequence ContRepR. and ContRepS., meaning that the repair has not completed in
the current time unit, or by the sequence EndRepR., EndRepS, if the repair completes). Place Assign, is
set by the PN™@ when a decision to repair e is taken. Places AV_RES; represent the resources, and they

become available as the repair ends. A token in place NotInvolved. means that the component corresponding

13



to the BE is not involved in any repair action. The rprob and fprob attributes associated with the events are
used to properly weight the transitions representing failure and end/continuation of repair actions: fprob is
associated with transition FailR., 1 — fprob is associated with transition WorkR., rprob (representing the
probability of continuing to repair) is associated with transition ContRepR., finally 1 — rprob is associated
with transition EndRepR..

Observe that the only effective conflicts to be resolved on the PNP™ model are the following free choice
conflicts: WorkR, vs. FailR. (for each basic event), ContRepR,. vs. EndRepR, (for each locally repairable
basic event), plus the free choice conflict ContRepGR, vs. EndRepGR, for each global repair action (whose
translation pattern is commented hereafter). Hence the weight assigned to all other transitions are irrelevant,
since they will eventually fire once enabled (i.e. their firing is not the result of a conflict resolution).

Let us now discuss the translation pattern ensuring the propagation of the state from basic to internal
events, and of the global repair actions, associated with some internal event.

The conversion rule for an AND/OR gate corresponding to a given internal event e is shown in Fig. 3.
Subnets C and E simply model the propagation of the faults from the input events of the gate to its output
event. These patterns are actually “templates” that must be instantiated according to the set of inputs of
the AND/OR gate, which in general includes a subset of internal events, and a subset of basic events. The
components involved in the firing of transition AN D, are all basic events which are the leaves of the subtree
originating in the AND gate. The components involved in the firing of each transition OR; are: the basic
event e; if the input place of OR; is DOW N, otherwise, if the input place of OR; is place OUTCOMF,,,
the involved components correspond to the set of basic events which are the leaves of the subtree originating
in the internal event ej. All these “state propagation” transitions are “run” and must fire after all decisions
about occurrence of failures and end of repair have been taken for all basic events (and global repair internal
events), but before the stop transitions have fired for any basic event (in fact all stop transitions have a lower
priority level than the propagation transitions).

Internal events that are not observable or have local repair strategy are translated into these simple
subnets.

Those with a global repair strategy have an additional subnet D (common to both gate types) shown
on the right of Fig. 3: this subnet represents the corresponding global repair process. In particular, place
IdleSupervisor, is marked when no global repair process involving the supervisor internal event e has started
yet. The start of a global repair process, represented by the firing of the "run” transition RepairG,, involving
component e, is enabled when the Assigned. place is marked (indicating that the PN"¢ subnet, in the
previous ND step has decided to assign the required resources for such global repair process, to supervisor e).
The firing of "stop” transition EndG., instead, means that no global repair supervised by e will start in the

current time step: observe that this transition has lower priority than RepairG., hence the repair process

14



Basic component e B A Up
%l e.rep=true FailR, Fz_ail s,
i} - i quke lpno4 prio,
e.rep=false prio, 1 A
Tmp, l
O DOWN;; DownW,
v Works, _
— prio, Assigned,
Repair_y
prio, (=11
UnderRepair,
4—
ContRep,
EndRepR i
e
__[Probabilistic Transition types 6 ,,,,,,,,,,,,, é O Repairede OTempe
=1 Trune AV_RES, AV_RES, |, + ContRepS
| EndRepS, prio, ¢
— Tstop™ (@) Notinvolved, | prio, 1

Figure 2: Conversion of the NARFT BEs into submodels of PNP" of an MDPN.

starts as soon as the required resources have been assigned to supervisor e. Place Under Repair. represents
the fact that the global repair process supervised by e is ongoing: if the "run” transition ContRepG R, fires,
followed by the ”stop” transition ContRepGS., the repair process will not end in the current time step,
while if the ”run” transition EndRepGR, fires (setting the resources free), followed by the ”stop” transition
EndRepGS., the global repair process will end in the current time step (all the above mentioned transitions,
involve component ¢e): this triggers the firing of the transitions ResetR.;, ResetS.; or FreeRe;, FreeSe;, (all
involving basic component ¢; in the set of basic events supervised by e in the global repair process) ensuring
that all basic events involved in the repair process are reset to the Up state (place U P.; marked) and the
corresponding NotInvolved,; place is marked again.

The translation algorithm visits all the events in the NARFT and generates for each of them an appropriate
PN submodel (the selection of the appropriate PN submodel follows the indications depicted in the template
figures). Finally all submodels are composed by merging the places with equal label, leading to the whole
probabilistic subnet of the MDPN.

Algorithm 1 shows how to generate the corresponding PNP" from the RNdRFT. The set PNet is used to
store all the PN submodels generated by the algorithm during intermediate steps. In the end it will contain
a single element: the PNP".

The algorithm visits all the events in the RNdRFT and inserts for each of them an appropriate PN sub-
model in PNet. The selection of the appropriate PN submodel corresponding to the event type is computed

15



Assigned, Down,, DownW,

e.obs=false or e. iyﬁ e.str=global IdIeSuperwsor O Reset,
RepairG, ”\X prio,

pr|o
OUTCOMPJ Down, Temp,  Notinvolved,,
EndG ?Resets

prio,
UnderRepalr ro FreeS

9 >
5 + v O UP l:%”o
? ContRepG,  |EndRepGR,
() ouTcomp, D prio, prio,

=]

bs=fal . | Downe DownW,_
e.obs=false or e.str=local ﬁ
El e.str=global L O ResetR,_|
ContRepGS, O::. \4 prio,

E eJ BE e ¢
Tem

prio, .
OUTCOMP, DOWN, Repaired, o s e
otinvolved,
or, ()~ O‘ ' Resets,,
prio oR | 4 N EndRepGS,

%nol Tmp Q:;S
up

en EFIO

,,,,,, n + AV_RES, AV_RES, prio,

()outcomp,

e}
=
o
3
——

Figure 3: Conversion of the NdRFT AND/OR gate plus its output event into submodels of PNP" of an
MDPN.

by the function PN (e, type).
Finally the method Compose() substitutes all the submodel in PNet are composed by merging the places
with equal label, leading to the whole probabilistic subnet of the MDPN.

4.2 Generation of the ND subnet

The corresponding PN™ is built from the template subnets depicted in Fig. 4 and 5. The basic idea is that
the PN™@ submodel must decide whether a repair action must be started for each down BE and for each
observable internal event which may trigger a global repair process. For any repairable BE e (corresponding
to a controllable component in the MDPN), firing of stop transition NoAssign., involving only component
e, means that a non repair decision has been taken for event e, while firing of stop transition Assign., also
involving only component e, corresponds to the opposite decision: observe that the second decision can be
taken only if e is observable and in state Down, the needed resources are available (input places AV_RES;
contain enough tokens) and the event is not involved in any global repair process (input place NotInvolved,
marked). The start of local repair actions triggered by a down and observable BEs is modeled by subnet G,
right part. The start of local repair actions triggered by observable internal events is modeled by subnet L,
where it is possible to observe the repetition of subnet G for as many times as the number of local repairs
potentially triggered by the internal event e (the test arcs from place OUTCOM P, to the Assign.; transitions

model the fact that the repair can start only if the internal event e is Down). Finally the start of a global

16



Algorithm 1: Algorithm for PNP" generation from NdRFT
Class PNP" GeneratePNP"(Class NdRFT S )
Input: S is a NdRFT model
Output: A PN?" model
set PNet= (J;

set Events= insert_events(S);

while Ewvents # () do

e =Events.pick();

if (e € £;) then PNet.insert(PN (e, B));

else

if (e € £ — £) then PNet.insert(PN (e, A)) else
g="¢

if (g.type = AND) then

if (e.str = local) then PNet.insert(PN (e, C));
else PNet.insert(PN (e, C + D));

end

else
if (e.str = local) then PNet.insert(PN (e, E));

else PNet.insert(PN (e, E + D));

end

end

end

end
PNet.Compose();
return PNet.pick();

repair action triggered by an internal event e is modeled by subnet I: it is possible to observe that a global
repair process requires a single set of resources, starts for the set of supervised BEs as a whole, and requires
that none of the supervised BEs be involved in any other repair process; on the other hand a local repair
action triggered by an internal event e may start in different time steps for each basic event supervised by e
(as long as e is still down and the conditions to start the local repair are satisfied). The two stop transitions
Assigne and NoAssign, represent the two possible choices: each of them involves only component e.

Subnet H (as well as the RUNGL, transition in subnet L) is needed for technical reasons: it is used to
7clear” the state of the internal events which must be recomputed at the end of each probabilistic step (after
all fail/repair choices have been taken for all BEs and the continue/end of repair choices have been taken for
all ongoing global repairs).

Again the final PN™ submodel is obtained by properly composing the subnets generated for each event
in the NdRFT and the special transition StopGL (subnet M) used to conclude the non deterministic phase of
the global system. It is worth noting that during the composition phase the places and the transitions with
the same name are merged.

Finally in order to analyze the MDPN model, one has to define its reward functions. They are defined as

follows: rs(TE) = —1 otherwise 0; V¢ € T"? rt(t) = 0; ry = sum(rs,rt).

17



Basic component
P e.obs= true and

O

e.obs= false and
e.repair=true

___|Probabilistic Transition types
| (o] i

Trun

TstopP

e.repair=true G AV_RES, AV _RES,
> DOWN, ()

YH

L Notlnvolved
N — mme—(@ °
pr?o ssign, NoAssign, Assign,

3 prio, prio,
Assigned,

Figure 4: Conversion of the NARFT BEs into submodels of PN of an MDPN.

e.obs= false

OUTCOMPQ?

= /

G
: El ORatE:N[iF|

e.obs= true and e.srt=global

e

RUNGL, & BEe e BEe,
prio, e.obs= true and e.str:locall
L
AV_ RES \ DOWN,,

Ansg 10N, Notlinvolved, Assign,, . Notlnvolveden
P @ prio, «—
Assw OUTCOMP, L
ASS|gned
NQASS'Q” ErLIJONGL NOASSIgn
p”03 Lo pnoﬂloAsswgnen

outcomp, (&S .
CET Notinvolved,,
NOASS'Q” RL.JNGLG iAsslgn i
prio 110, pr|o Notinvolved,
M
|
STOPGL
prio,

Figure 5: Conversion of the NARFT gate into submodels of PN"? of an MDPN.

This means that a negative reward (corresponding to a penalty) is associated with each state where the
TFE is Down. All other states and all actions have reward of 0. This means that every time unit spent in
a state where T'E is Down gives a penalty of -1. The optimization problem hence consists in finding the
strategy that maximizes the reward (i.e. that minimizes the penalty).

More complex reward structures can be naturally devised to take into account the cost of repair actions,

as well as the penalties due to the fact that the system is in a degraded state (the system is up but some

subsystem is down, e.g. corresponding to a system with degraded performance).

Algorithm 2 shows how to generate the corresponding PN™? from the RNdRFT..

In the same way, as in the algorithm 2, the set PNet is used to store all the PN submodels generated
by the algorithm during intermediate steps, and the function PN (e, type) is used to select the appropriate

PN submodel corresponding to the event type.

18




Algorithm 2: Algorithm for PN™¢ generation from RNdRFT
Class PN™? GeneratePN™?(Class NARFT S)
Input: S is a NARFT model
Output: A PN"? model
set PN=0;

set Events=insert_events(S);

while Events # () do
e =Events.pick();

if (e € £, and e.obs) then PNet.insert(PN (e, G));
else

if e € € then
if (le.obs) then PNet.insert(PN (e, H));

else
if (e.obs and e.str = global) then PNet.insert(PN (e, I));

else PNet.insert(PN (e, L));

end

end

end

end

PNet.insert(PN(NULL, STOPGL));
PNet.Compose();

return PNet.pick();

4.3 Translation correctness

Let us prove that the MDPN obtained by applying the above translation procedure produces a Reachability
Graoh (RG) from which it is possible to derive the MDP corresponding to the NdRFT semantics, defined in
Section 3.2.

To this purpose we must define mazimal non deterministic or probabilistic firing sequences of a MDPN.

Definition 4 A mazimal non deterministic firing sequence (MNDFS) is characterized by the following prop-
erties: (1) it starts either in the initial state or in a state reached by a mazximal probabilistic firing sequence,

it contains exactly one stop transition for each controllable component, and one "global” stop transition.
2) it contai tl top t it h trollabl t, and "global” stop t it

Definition 5 A mazimal probabilistic firing (MPRFS) sequence is characterized by the following properties:
(1) it starts in a state reached by a mazximal non deterministic firing sequence, (2) it contains exactly one

stop transition for each component.

In the sequel the correspondence between MDPN and MDP states as well as the correspondence between

MNDFS and MPREFS in the MDPN and MDP actions and probabilistic transitions are stated and proven.

MDPN states vs. MDP states First of all we need to define the correspondence between a subset of
states appearing in the RG of the MDPN (both those reached immediately after the firing of a MPRFS and
those reached immediately after a MNDFS, i.e. an action) and the MDP states.

19



The state of each BE e (Up, Down, LocRep, GlobRep.) is represented by the following places:
e st, = Up if place UP, is marked;

e st, = Down if place DOW N, is marked and place NotInvolved, is marked;

e st, = LocRep if place Under Repair, is marked;

e ste = GlobRepy (ste = GlobRep,,) when place DOW N, (UP,) is marked, placesUnder Repair, and
NotInvolved, are not marked; in this case there must exist exactly one internal event ¢’ s.t. €’.obs =

trueande’.str = globalande € €’ .torep and place Under Repaire: is marked, so that sup. = €.

The Up/Down state of internal events are derived according to the FT structure (represented by subnets C
and E in Fig.3): an IE e is Down if place OUTCOM P, is marked at the end of a MPRFS.

It is thus possible to establish a correspondence between each non deterministic marking m (reached
immediately after the firing of a maximal probabilistic transition sequence) of the MDPN and a state p of
the MDP: we use the notation m, to indicate a non deterministic marking of the MDPN corresponding to
state p of the MDP. Similarly it is possible to establish a correspondence between each intermediate state
{p,a) of the MDP and a marking m’ reached immediately after the firing of a maximal non deterministic
transition sequence of the MDPN. The set of resources in use, expressed by res, in the MDP, is represented
in the MDPN by resource-indexed places AV_RFES,.: the initial marking of AV_RFES,. corresponds to the
multiplicity of resource r in resg, while the set res, of resources in use in state p corresponds to: res,(r) =
reso(r) —my(AV_RES,).

The initial marking, corresponding to the initial MDP state, has one token in each place U P, and as many
tokens as the number of available resources of type r in places AV_RES,..

In order to prove that the translation is correct, we have to show that there is a one to one correspondence
between the actions a € A, and the MNDFS o, enabled in m,,, that the intermediate state (p, a) corresponds

to the marking m reached by firing o, in m,. Moreover there is a correspondence between the states

pya)
reachable from the intermediate state (p,a) and those reachable from m, .y through some MPRFS, finally
the probability of transition (p,a) — p’ is equal to the sum of probabilities associated with the set of MPRFS

leading from Mp,ay L0 My

MDPN non deterministic sequences vs. MDP actions From a non deterministic state of the MDPN,
one or more alternative MNDFS may fire, each comprising exactly one stop transition for each controllable
component (BE repairable event or TE event with global repair strategy) plus one global stop transition: the

combination of all stop transitions in each MNDFS defines a possible action at the MDP level, corresponding

20



to the set of decisions - start repair of component e ("stop” transition Assign.) or do not start repair of
component e ("stop” transition NoAssign.) - for each controllable component.

The set of decisions characterizing a specific action a causes a state change (corresponding to the Non
Deterministic step described in Section 3.2) witnessed by the marking of the Assigned, places in the MDPN
at the end of the corresponding MNDFS o,. It is easy to see that the conditions expressed in Section 3.2 for
moving a BE e from the Down state to the LocRep state or for moving a set of BE to their current state
to the GlobRep, state (provided they are in the torep set of a Down IE ¢’) correspond to the conditions for
firing transitions Assign. or Assign. in the PN™? subnet.

In fact, if we consider subnet G in Figure 4, corresponding to an observable and repairable BE e, a decision
to start (local) repair may be taken if (1) e is in state Down, (2) the required resources are available, and
(3) the component is not yet involved in any other repair action. As an alternative, if the BE e is repairable
but not observable, and it is in the torep set of some internal event e’ with local repair strategy, then the
local repair can start if (1) both the BE e and the internal event e’ are Down, (2) the required resources are
available, and (3) e is not yet involved in any other repair action: this is modeled by subnet L in Figure 5.

The state change from state Down to state GlobRep, instead is modeled by subnet I in Figure 5, and
corresponds to the firing of the stop transition Assign. where e is an observable internal event with associated
global repair strategy: this transition may occur only when IE e is in state Down, the resources needed for
the global repair are all available, and none of the BE in e.torep are involved in any other repair process
(places NotInvolved,; marked). Observe that the start of global repair for internal event e actually causes
all the BEs in e.torep to switch to the GlobRep. state simultaneously.

Since a decision is necessarily taken for any controllable component (exactly one stop transition must fire
for each controllable component in any MNDFS), and since for each controllable event is always possible to
take a NoAssign decision, and if the state allows so it is also possible to take the alternative Assign decision,
then all possible combination of start/do not start repair decisions corresponding to the allowed actions in
the MDP can be obtained, and due to the conditions on the Assign transitions no combination of decisions

corresponding to an impossible action can be fired in the MDPN.

MDPN probabilistic sequences vs. MDP probabilistic state change following an action After
each MDP action a probabilistic state change occurs: in the MDPN this corresponds to the MPRFS that
may follow a MNDFS. The probability of each path is obtained as the product of the probability associated
with each transition in the path. Observe that a probabilistic path can be described as the interleaving of
several subpaths, one for each component e represented in the MDPN, and ending with a stop transition

involving e. The transitions firing in each subpath depend on the initial status of the component:

e if e is Up (place U P. marked) and not involved in any global repair action (place NotInvolved, marked)

21



then either the subpath contains the sequence WorkR., WorkS,, or it contains the sequence FailR,,
FailS,: the former doesn’t cause a state change for e, while the second corresponds to a change from
Up to Down. Observe that if e is Up but it is involved in a global repair process, then the subpath
for e depends on the probabilistic evolution of its supervisor, hence this case will be discussed together

with such evolution;

if e is Down (place DOW N, marked) and not involved in any repair action (place NotlInvolved,
marked), the subpath shall include only the stop transition FailS., which does not cause any state

change (e remains Down);

if e is in state LocRep, which includes also the case of place Assigned. just marked by the last non
deterministic sequence (hence allowing run transition Repair. to fire thus marking the Under Repair,
place) then either the repair process continues (sequence ContRepR.,ContRepS,), thus leaving the
component in the LocRep state, or the repair process ends (sequence EndRepR.,EndRepS.), which

causes e to come back to the Up state;

global repair processes influence the state of the supervised basic events; if a given internal event e’
with global repair strategy is Down, and the basic events in e’.torep are non involved in any repair
process, it can be assigned the resources for the corresponding global repair to start (place Assigned,s
marked at the end of a MNDFS): as a consequence the global repair process can start (transition
RepairG., marking the place Under Repair,:), causing a state change of the BEs in €’ .torep to GlobRep.
(where * stands for u or d depending on the previous BE status). As in the case of local repair, the
GlobRep state is an intermediate one, which can become stable if the repair does not end in the current
time step (transitions ContRepGR.:, ContRepGS,), while in case the repair process ends (transitions
EndRepGR., EndRepGS,) then all the BEs supervised by e’ are reset to the Up state: this is achieved
by firing the transitions ResetR.;, ResetS.;, or transitions FreeR.;, FreeSe; (the last two transitions
fire in case UP,, is already marked, to reset the marking of NotInvolved,;). Observe that in any case
all BEs supervised by e’ switch from to GlobRep, simultaneously, and from GlobRep, to Up (or from

Down to Up, if the repair process lasts only one time step) simultaneously.

It may be the case that while a global repair process is ongoing, some of the BEs in €’.torep that were
not faulty, fail in the current time step (transitions FailR.,, FailS., may fire if the choice of continuing
the repair supervised by ¢’ has already been taken, i.e. if transitions Cont RepGR./, which has priority
prios has already fired). In this case their state changes from Up to GlobRep, (with a not observable
passage through the Down state), and will be reset to the Up state as soon as the global repair process

ends (which might happen in the same time unit).

22



Observe that the possible state changes described above for each component, are exactly the same illus-
trated in the probabilistic step of the MDP semantics of the NARFT (see Section 3.2).

The probability of each possible MPRFS is obtained as a product of the normalized weight of the enabled
transitions. Observe that transitions corresponding to different components are never in conflict (the failure or
end-repair choice of one component cannot influence the choice of any other component, by construction): this
means that independently on the chosen interleaving order of the components, the overall probability moving
from a given marking m to a new marking m’ only depends on the failure probability of the Up components,
and end-repair probability of the components under repair. If the priorities are set so that a specific order is
forced in the MDPN there will be a single MPRFS leading from a given state m (corresponding to a MDP
intermediate state (p,a)) to a new marking m’ (corresponding to a MDP state p'), and its probability will
be exactly the same as that of the probabilistic step from (p,a) to p’. If instead priorities are set so that
alternative interleavings may be chosen, leading from m to m/, the final result will not change: indeed it is
easy to show that the sum of the probabilities of the set of MPRFS leading from m to m’ can be expressed
as the product of the probabilities of the choices taken in each component (which are necessarily the same
since the initial and final markings are the same) multiplied by a summation of probabilitites that sum up to
one (these are the relative weights of the possible interleaving, which eventually converge to the same final
state).

Finally observe that each MPRFS comprises a subsequence of AND, and OR, transitions, which are
needed to propagate the correct Up or Down state (place OUTCOM P, unmarked or marked respectively)
of all IEs. This subsequence is deterministic (although different interleavings could be possible depending on
the priority assignment) since it depends only on the state of the BEs, and hence it contributes as a factor 1
to the probability product. Observe that the priorities of these transitions are set so that they are fired after
all probabilistic choices have been made, but before the firing of the stop transitions of all components.

This completes the proof. In fact, from the initial marking the set of possible actions in the MDP are
in one to one correspondence with the MNDFS of the MDPN, the reached intermediate states are in one to
one correspondence, and from these the same probabilistic state changes may occur, leading to corresponding
new states. This also indicates how the MDP can be derived from the MDPN RG, only the markings from
which maximal firing sequences are originated are kept, and the maximal firing sequences are substituted

with the corresponding transitions in the MDP.

4.4 An transition priority assignment improving efficiency

In this subsection we will propose a method to associate priorities with the MDPN transitions, in order to

reduce the possible interleavings corresponding to the same MPRFS or MNDFS: this improves the efficiency

23



of the method since it produces a reduction of the number of states of RG3.

The method requires to fix a strict total order on the NARFT events that must be compatible with the
partial order induced by the NdARF'T structure that is based on the dependencies: the TE is the lowest among
all the events and two events are in relation e < €’ if €’ is in the subtree of e. For any basic event e it cannot
be in relation e < €’ w.r.t. any other internal event e’. The total order can be specified through an injective
function (ord : £ — IN) so that Ve, e’e < ¢’ = ord(e) < ord(e’).

Hence the priority assignment for the PR subnet is defined as follows:
o Vi, € Tstop?” = prios, = ord(e), where e is an event in CompP”
o Vi, € TrunP” = prio;, = ord(e) + |CompP"|, where e is an NdRFT event.

Observe that since the basic events have surely an higher ord(e) value with respect to all internal events,
the transitions that are used to update the state of the internal events will fire after all fail/do not fail and
conclude repair/continue repair decisions have been taken for all basic events.

A similar priority assignment method is adopted for the N D subnet.
o Vt. € Tstop™® = prio;, = ord(e), where e is an event in Comp™?;
e STOPGL = priostopar = Mazecg(ord(e)) +1 ;

e YRunGL., RunGL. € Trun™ = PriORunGL. s PTIORunGL,, > Mazeeg(ord(e)) + 1 A prioruncr. #

priORunGLe/ .

The experiments presented in Sec. 6 have been performed applying the priority assignment method de-

scribed above.

5 Framework architecture

The architecture of our framework for the NdRFT design and solution, is depicted in Fig. 6 and extends
the one presented in [2], by introducing the new module NdRFT2MDPN able to convert an NdRFT model
into MPDN;, according to the conversion rules defined in Sec. 4. The solution process of an NARFT model
comprises five steps:

1. The NdRFT model drawn by the user by means of Draw-Net [11], is stored in a XML file (.mdl) and
becomes the input of NdRFT2MDPN. The resulting MDPN model consists of two separate Petri Nets (PN):

30Observe that the assignment of a different priority level to a pair of transitions that cannot be in conflict is irrelevant; on the
other hand if the transitions are potentially in conflict then their priority assignment can constrain the set of possible strategies

that will be considered at the MDP level and may exclude the optimal one.

24



MDP Optimal Optimal
{.xml) Strategy Average
Reward

NARET 1 | Solution Managerl 5 6

.mdl 4
["‘/ 2 3 8 Reward MDPSolver

MDP
NdRFT2MDPN RGovor | O
Nnd
(.net,.def) Configuration net RG
- (.net,.def) (-srg)
PN
(et cef) Great 8 (net,.den  |GIeat &
— 20 > g
algebra (WN(S)RG)

Figure 6: Framework architecture.

the probabilistic PN (NP") and the non deterministic PN (N"?); each of these nets is stored in a couple of
files (.net, .def) according to the GreatSPN [10] file format.

2. The NP" and the N™ models are composed by place merging; this is done by means of the algebra
tool [10]. The result of this step is a Petri Net (PN).

3. The PN is the input of WN(S)RG generating the Reachability Graph (RG) [9]. The resulting graph is
stored in a specific file (.srg).

4. From the graph obtained in step 3, an MDP is derived by means of the RG2MDP converter.

5. The obtained MDP is stored in an XML file which is in turn processed by the MDPSolver producing
the optimal repair strategy. According to such strategy the system unavailability can be computed. Both

results can be visualized by Draw-Net.

6 Experiment results

The example we report is inspired to the Active Heat Rejection System (AHRS) presented in [1]. The block
scheme of our version of the AHRS’s architecture is depicted in Fig. 1.a: the system is composed by three
redundant thermal rejection units U1, U2 and U3. U1 is composed by the heat source Al and the power
source P1. Similarly, U2 is composed by A2 and P2, while U3 by A3 and P3.

25



Fig. 1.b shows the NdRFT model for the AHRS system; the failure probability (]) and the repair probabil-
ity (1) of each basic component are shown in the same figure. The unit U1 fails if its heat source Al is failed
or if its power source P1 is failed. Similarly, the failure of U2 and U3 is due to the failure of their respective
heat source or power source. The failure of the whole system (TE) occurs if all the thermal rejection units
are failed.

The NdRFT model in Fig. 1.b shows that in our version of the AHRS, several components are repairable
(A1, P1, A2, P2), whereas their failure can be observable or not. Two repair processes can be activated: 1)
a global repair process in case of failure of U2 and involving the components A2 and P2; 2) a local repair
process in case of the system failure (T'E) and involving the components Al, P1, A2 and P2. In case of
global repair, one repair resource is used to repair the subsystem; in case of local repair instead, one resource
has to be dedicated to the repair of each component of the system. We suppose that in our case study, two
repair resources are available (Fig. 1). One resource is used for the global repair of U2: while such repair
process is running, the local repair of the system (T'E) may start but in this case, it can exploit only one
resource because the other one is already is used in the global repair of U2. So only one component (Al
or P1) could be locally repaired during the global repair of U2. If instead the local repair of the system
starts while the global repair of U2 is not running, then the local repair can exploit both resources and two
components among Al, P1, A2, P2 can be repaired at the same time. In this case, during the local repair of
the system, the global repair of U2 can not run since all the resources are already in use.

The RG of the MDPN model obtained by the NdRFT in Fig. 1.b has 11.515 states; while the underlying
MDP has 389 states. This difference in terms of number of states between the RG of the MDPN* and the
obtained MDP is due to the fact that the MDPN formalism gives a macroscopic view of probabilistic and
non deterministic behaviors of the system. In other words, at MDPN level, complex non deterministic and
probabilistic behaviors are expressed as a composition of simpler non deterministic or probabilistic steps, that
will be reduced to a single step in the final MDP.

Since the non repairable components (A3 and P3) cannot induce directly the failure of the global system,
we can compute the average reward and the optimal strategy of the underlying MDP at infinite horizon.
Observe that defining the optimal strategy for this model is not trivial: for instance when all the basic events
are down then the optimal strategy suggests us to repair P1 with a local repair action, while A2, P2 with
a global repair action. This is justified by the fact that the global repair action of A2, P2 needed only one
resource. Instead when Al, P1, P2 and P3 are down, it suggests to repair P1 and P2 with a local repair
action. The choice to repair locally P2 is justified by the fact that in this case the probability to repair
the component (1 — P2.rprob) in one time unit is greater than that associated with the global repair action

(1 = U2.rprob).

4We recall that the RG of the MDPN model is used in the reduction step for obtaining the MDP as described in [3]

26



0.018

TE probability at time 1 =—f—
E probability in steady state =

0.016 |

0.014 |

0.012 |

0.01 F

0.008 |

TE probability

0.006 |

0.004 |

0.002 |

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time

Figure 7: TE probability at time t increasing the t values (0 <t < 4500)

Table 1: Experiments increasing the example size

RG RRG MDP
Com. St. | Time St. St. Time
1,1,1 11.515 1s 5.262 389 0
2,1,1 50.844 7s 21.094 937 6s
2,2,1 921.354 167s 401.350 | 7.754. | 1.630s
2,2,2 | 16.841.490 | ~23h | 6.048.310 | 32.558 ~4h
Using priorities among the transitions
1,1,1 3.189 0 1.572 389 0
2,1,1 35.555 8s 11.581 937 4s
2,2,1 453.257 145s 147.716 7.754 | 1.614s

2,2,2 2.919.999 ~2h | 1.048.310 | 32.558 | 7.006s

Moreover we have computed the T'E probability in steady state, solving the DTMC obtained from the
underlying MDP fixing the action to take in every state according to the performed optimal strategy. In
particular we have obtained that the T'E probability of this model in steady state is 0.0151943. We have also
studied the T'FE probability at time t, so that we have observed that this probability converges to the steady
state probability. T'E probability at time 4300 is equal to T E probability in steady state as shown in Fig. 7.

Finally the Tab. 1 shows some experiments performed increasing the dimension of our example. Practically
we have replicated the subtrees of the NARFT model in Fig. 1.b. For instance, in Tab. 1, 2,2, 2 means that we
have duplicated the subtrees rooted in U1, U2, U3 respectively, while 1, 1,2 means that we have duplicated
only the subtree of U3.

The computation has been performed with an INTEL Centrino DUO 2.7 of 2Gb memory capacity. In

27



particular the first column shows the model complexity, the second and the third one the RG number of
states and its computation time, the fourth the RRG number of states, and the last two columns the MDP
number of states and its generation and solution time.

These results show that state space grows very fast (the state space explosion problem), so that the model
becomes quickly intractable. A further reduction of the number of states for this model can be achieved
associating different priorities with the system transitions such that the number of possible interleavings of
the non deterministic/probabilistic actions in each path are reduced (see the results in second part of Tab. 1).
It is important to observe that a different priority level can be set up only among independent actions; in
fact if the actions are not independent then all the priority can constrain the set of policies to be considered
(and may exclude the optimal one).

Another possible way to mitigate the state space explosion problem consists in translating the NdRFT
model into a Markov Decision Well-formed Net model (MDWN) [3]. From a MDWN, a reduced MDP can
be obtained, and provides the optimal strategy equivalent to the one given by the not reduced MDP.

7 Conclusion and future work

We have defined a new FT extension called NdRFT that allows to model failure modes of complex systems
as well as their repair processes. The originality of this formalism with respect to other proposals is that it
allows to manage repair strategies optimization problems. This is done by defining the NARFT semantics in
terms of an MDP and then solving the optimization problem using the techniques available for MDPs. The
generation of the MDP is achieved by an intermediate translation of the NARFT model into an MDPN, so
that we can reuse the efficient algorithms devised to derive an MDP from an MDPN. We have also highlighted
that NdRFT allows to express in an elegant way several possible repair start options based on the following
concepts: observability of events, the notion of local versus global repair action, the notion of repair supervisor
component in case of global repair.

A possible future work is extending the NdRFT, so that the modeler can directly define more complex
reward functions, for instance considering the cost of repair actions, or the penalties due to the fact that the
system is in a degraded state (the system is up, but some subsystem is down, e.g. corresponding to a system
with degraded performance).

Another future work in order to mitigate the well-known state space explosion problem in the final
MDP, consists in translating the NdRFT model into a MDWN instead of an MDPN. In fact for MDWN,
an efficient analysis technique taking advantage from the intrinsic symmetries of the system, is developed:
from an MDWN it is possible to derive a Symbolic Reachability Graph [9], and from it a reduced MDP can

be obtained. This allows a computational cost reduction, but the optimal strategy computed on the reduced

28



MDP is equivalent to the one computed on the ordinary MDP. This possibility is useful when the system is
characterized by symmetries and redundancies in its structure.

Observe that the NARFT formalism could be extended by considering dynamic gates [16], which allow to
express functional and temporal dependencies among component failures, as well as repair resources preemp-

tion.

Acknowledgments The activity of M. Beccuti, G. Franceschinis and D. Codetta-Raiteri has been partially
supported by the EU-Project CRUTIAL IST-2004-27513.

The activity of S. Haddad has been partially supported by Galileo project n. 17599NB and ANR project
Checkbound ANR-06-SETI-002.

A Markov Decision Petri Net

A Markov Decision Petri Net MAN is composed by two different parts (i.e. two extended Petri nets): the
probabilistic one NP" and the non deterministic one N™? called the decision maker; it is thus possible to
clearly distinguish and design the probabilistic behavior of the system and the non deterministic one. The
probabilistic part models the probabilistic behavior of the system and can be seen as composition of a set of
n components (Comp?P") that can interact; instead the non deterministic part models the non deterministic
behavior of the system where the decisions must be taken (we shall call this part the decision maker). Hence
the global system behavior can be described as an alternating sequence of probabilistic and non deterministic
phases.

The probabilistic behavior of a component is characterized by two different types of transitions Trun?”
and T'stopP”. The TrunP” transitions represent intermediate steps in a probabilistic behavior phase and can
involve several components (synchronized through that transition), while the T'stop?” ones always represent
the final step of the probabilistic phase of at least one component.

In the non deterministic part, the decisions can be defined at the system level (transitions of Tg"d) or

nd

9 and

at the component level (transitions of Tl”d). The sets Tg”d and Tl”d are again partitioned in Trun
Tstopz'd, and Trun?d and Tstop{”i with the same meaning. The decision maker does not necessarily control
every component and may not take global decisions. Thus the set of controllable “components” Comp™® is
a subset of Comp?” W {ids} where ids denotes the whole system.

The probabilistic net is enlarged with a mapping weight associating a weight with every transition in
order to compute the probabilistic choice between transitions enabled in a marking. Furthermore it includes

a mapping act which associates to every transition the subset of components that (synchronously) trigger the

transition. The non deterministic net is enlarged with a mapping obj which associates with every transition

29



the component which is involved by the transition. The following definition summarizes and formalizes this

presentation.

Definition 6 (Markov Decision Petri Net (MDPN)) A Markov Decision Petri Net (MDPN) is a tuple
MN = (CompP", Comp™®, NP" N"¥) where:

CompP" is a finite non empty set of components;

o Comp™® C CompP" W {ids} is the non empty set of controllable components;

NP" is defined by a PN with priorities [17] (P, TP, IP" OP" HP" prio’”, mg), a mapping weight: TP" —

R and a mapping act: TP" — 2Comp™ = NMoreover TP™ = Trun®” W T'stopP”

N™ s defined by a PN with priorities (P, T", 1", O™ H" prio™ mg) and a mapping obj: T™ —

Comp™®. Moreover T™ = Trun™® v Tstop™®.
Furthermore, the following constraints must be fulfilled:
o TP"NT"™ = (). A transition cannot be non deterministic and probabilistic.

e Vid € CompP™,3C C Comp?", s.t. id € C and act= ({C}) N Tstop?” # (). Every component must

trigger at least one final probabilistic transition.

e Vid € Comp™, obj~'({id}) N Tstop™® # (). Every controllable component must be the object of at least

one final non deterministic transition.

Note that the probabilistic part and the decision maker share the same set of places and the same initial
marking. Let us now introduce the rewards associated with the MDPN net. As will be developed later, an
action of the decision maker corresponds to a sequence of transition firings starting from some marking. We
choose to specify a reward by first associating with every marking m a reward rs(m), with every transition ¢
a reward rt(t) and then by combining them with an additional function rg (whose first parameter is a state
reward and the second one is a reward associated with a sequence of transition firings). The requirement on

its behavior given in the next definition will be explained when presenting the semantics of a MDPN.

Definition 7 (MDPN reward functions) Let MN be a MDPN. Then its reward specification is given
by:

e rs: NP — R which defines for every marking its reward value.
o rt: T" — R which defines for every transition its reward value.

e rg: R xR — R, not decreasing w.r.t its second parameter.

30



! ! |_ - trung® o ; .
' I
: I |Runnd I Stopng ! :
! tstop |
; Stoper IR nd s - Rune
1 ! u ncont I StOp cont| 1 1 1
( Y—-: »O
! ! Runnd trun”d | Runer 1

cont

L Stopr |, ! !
: Oj tstopnd : ' '
5 iPrtoNd 1, | |
| Stoppr | Run"d Stopzont : RUI’]I:]" :

|~
I
I
.
(%]
gl
o
S
el
.
I
I

Figure 8: Arcs connecting the places Stop!”, Run?® and the transition PrtoNd; arcs connecting the places

Stop?®, Run?® and the transition NdtoPr

A.1 MDPN semantics.

The MDPN semantics is given in three steps. First, one composes the probabilistic part and the decision
maker in order to derive a unique PN. Then one generates the (finite) reachability graph (RG) of the PN. At

last, one produces an MDP from it.

From MDPN to PN. First we explain the semantics of additional places Stop?”, Run!", Stop?®, Run?¢,
Stopp? and Runp?and additional non deterministic transitions PrtoNd and NdtoPr. Places Stop?”, Run?",
StopP?®, Run??, Stopj? and Runf? regulate the interaction among the components, the global system and
the decision maker. There are places Run!”, Stop!” for every component i, while we insert the places
Runy® and Stopp? if the decision maker takes same global decision and the pair of places Run?? and Stop}?
for every controllable component i € Comp™®. Non deterministic transitions PrtoNd and NdtoPr ensure
that the decision maker takes a decision for every component in every time unit: the former triggers a non
deterministic phase when all the components have finished their probabilistic phase whereas the latter triggers
a probabilistic phase when the decision maker has taken final decisions for every controllable component.
The scheme describing how these additional items are connected together and with the nets of the MDPN
is shown in Fig. 8. The whole PN N¢™mP = (pcomp comp [comp (Qcomp FCOmp prjocomp mi@™P) related to

a MDPN MW\ is defined below.

o PP = P Wiccomp,, {Runt”, Stop!"} Wiccomp,.4 {Run?, Stopi}

31



o Teomr = TP Ty { PrtoNd, NdtoPr}
e The incidence matrices of NP are defined by:

— Vpe P teT,
Icomp(p7 t) — Ind(p’ t), Ocomp(p7 t) _ Ond (p7 t), Hcomp(p’ t) _ Hnd(p’ t)

- Vpe Ptelr,
Ieom?(p,t) = I"" (p, t), O“"P(p,t) = OP"(p, 1), H*"P(p,t) = H™" (p, 1)

— Vt € T'stopP” s.t. i € act(t) : I°°"P(Runl” t) = O“™P(Stopl” ,t) =1

— Vt € TrunP” s.t.i € act(t) : [P (Runt”,t) = O“°™P(Runt" t) = 1

— Vt € Tstop™® s.t. i € act(t) : I°°™P(Runl?, t) = O™"P(Stop??,t) = 1
— Vt € Trun™ s.t.i € act(t) : I°°7P(Run?,t) = O°™P(Run?? t) = 1
— Vi € Compyp, : I°°P(Stopl”, PrtoNd) = O™ (Runl”, NdtoPr) = 1
— Vi € Comppa : I°°™P(Stop?, NdtoPr,) = O™ (Run?®, PrtoNd) = 1

— for all I(p,t),O(p,t), H(p,t) not previously defined,
100 (p, 1) = O (p, 1) = 0, HE™(p, 1) = oo

o Vt € T prio(t) = prio™(t), ¥Vt € TP", prio(t) = prioP (t),
prio(PrtoNd) = prio(NdtoPr) = 1, (actually these values are irrelevant)

e Vpe P, mgomp(p) = mo(p), mgomp(Run?d) =1,

mgomp(Stopfd) = mgomp(Runfr) = mgomp(Stopfr) =0.

RG semantics and transitions sequence reward. Considering the RG obtained from the PN we observe
that the reachability set (RS) can be partitioned into two subsets: the non deterministic states (RSpq), in
which only non deterministic transitions are enabled, and the probabilistic states (RSp,), in which only
probabilistic transitions are enabled. By construction, the PN obtained from a MDPN can never reach a
state enabling both nondeterministic and probabilistic transitions. A probabilistic transition can be enabled
only if there is at least one place Run!” with m(Run") > 0, while a non deterministic transition can be
enabled only if there is at least one place Run?® with m(Run??) > 0. Initially only Run?? places are marked.
Then only when all the tokens in the Run?? places have moved to the Stop?® places (through the firing of
some transition in T'stop™®), the transition NdtoPr can fire, removing all tokens from the Stop?d places and
putting one token in every Run?" place. Similarly, transition PrtoNd is enabled only when all tokens have
moved from the Run?" to the Stop!” places; the firing of PrtoNd brings the tokens back in each Runl' place.

Thus places Run!” and places Run?d cannot be simultaneously marked.

32



Observe that any path in the RG can be partitioned into (maximal) sub-paths leaving only states of
the same type, so that each path can be described as an alternating sequence of non deterministic and
probabilistic sub-paths. Each probabilistic sub-path can be substituted by a single “complex” probabilistic
step and assigned a probability based on the weights of the transitions firing along the path. The non
deterministic sub-paths can be interpreted according to different semantics (see [4] for a detailed discussion).
Here we select the following semantics: a path through non deterministic states is considered as a single
complex action and the only state where time is spent is the first one in the sequence (that is the state
that triggers the “complex” decision multi-step). So only the first state in each path will appear as a state
in the MDP (the other states in the path are vanishing, borrowing the terminology from the literature on
generalized stochastic Petri nets).

Let us now define the reward function for a sequence of non deterministic transitions, o € (7"%)*; abusing
notation we use the same name rt() for the reward function for single transitions and for transition sequences.
The following definition rt(o) assumes that the firing order in such a sequence is irrelevant w.r.t. the reward

which is consistent with an additive interpretation when several decisions are taken in one step.

Definition 8 (Transition sequence reward rt(c)) The reward for a non deterministic transition sequence
is defined as follows:
(o) = YLieqna rt(t)|ols

where |ol; is the number of occurrences of non deterministic transition t in o.

Generation of an MDP given a RG of a MDPN and the reward structure. The MDP can be
obtained from the RG of the PN model in two steps: (1) build from the RG the RG,,q such that given any
non deterministic state nd and any probabilistic state pr all maximal non deterministic sub-paths from nd to
pr are reduced to a single non deterministic step; (2) build the RGypp (i-e., a MDP) from the RG, 4 such
that given any non deterministic state nd and any probabilistic state pr, all maximal probabilistic sub-paths
from pr to nd are substituted by a single probabilistic step. Finally derive the MDP reword from rs,rt and
rg functions.

Let nd be a non deterministic state reached by a probabilistic transition (such states will be the non
deterministic states of RG,q). We focus on the subgraph “rooted” in nd and obtained by the maximal non
deterministic paths starting from nd. Note that the probabilistic states occurring in this subgraph are terminal
states. If there is no finite maximal non deterministic sub-paths starting from nd then no probabilistic phase
can follow. So the construction is aborted. Otherwise, given every probabilistic state pr of the subgraph, one
wants to obtain the optimal path 0,4, from nd to pr w.r.t. the reward. Once for every such pr, this path
is computed, in RGpq an arc is added from nd to pr labeled by ¢,4,-. The arcs starting from probabilistic

states are unchanged in RG,q.

33



Thus the building of RG,,4 depends on whether the optimization problem is a maximization or a min-
imization of the reward. We only explain the minimization case (the other case is similarly handled). We
compute such a sequence using the Bellman and Ford (BF) algorithm for a single-source shortest paths in a
weighted digraph where the transition reward is the cost function associated with the arcs. This algorithm is
sound due to our (cumulative) definition for rewards of transition sequences. Note that if the BF algorithm
finds a negative loop (i.e., where the reward function decreases), the translation is aborted. Indeed the
optimal value is then —oco and there is no optimal sequence: this problem must be solved at the design level.

We now explain how to transform RG,, into the MDP RGj;pp. Given a probabilistic state pr and a
non deterministic state nd we want to compute the probability to reach nd along probabilistic sub-paths.
Furthermore, the sum of these transition probabilities over non deterministic states must be 1. So if in
RG,,4, there is a terminal strongly connected component composed by only probabilistic states, we abort the
construction. The checked condition is necessary and sufficient according to Markov chain theory. Otherwise,
we obtain the transition probabilities using two auxiliary matrices. P®"P") a square matrix indexed by
the probabilistic states, denotes the one-step probability transitions between these states and P®mnd) o
matrix whose rows are indexed by the probabilistic states and columns are indexed by non deterministic
states, denotes the one-step probability transitions from probabilistic states to non deterministic ones. Let
us describe how these transition probabilities are obtained. These probabilities are obtained by normalizing
the weights of the transitions enabled in pr. Now again, according to Markov chain theory, matrix P =
(Id — P@rrr))=1 o P(Prnd) wwhere Id is the identity matrix represents the searched probabilities. A similar
transformation is performed in the framework of stochastic Petri nets with immediate transitions (see [17]
for the details).

Finally in the MDP, the probability distribution p(:|nd, o) associated with state nd and (complex) action
o, assuming nd —> pr, is given by the row vector P[pr, -] and the reward function for every pair of state and
action is defined by the following formula: r(nd, o) = rg(rs(nd),rt(c)). Since rg is not decreasing w.r.t. its
second parameter, the optimal path w.r.t. rt found applying the Bellman and Ford algorithm is also optimal

w.r.t. rg(rs(nd),rt(-)).

References

[1] T. Assaf and J. B. Dugan. Diagnostic Expert Systems from Dynamic Fault Trees. In Annual Reliability
and Maintainability Symposium 2004 Proceedings, pages 444-450, Los Angeles, CA USA, January 2004.

[2] M. Beccuti, D. Codetta-Raiteri, G. Franceschinis, and S. Haddad. A framework to design and solve

Markov Decision Well-formed Net models. In Int. Conf. on Quantitative Fvaluation of Systems, pages

34



[11]

[12]

[13]

165-166, Edinburgh, Scotland, UK, September 2007.

M. Beccuti, G. Franceschinis, and S. Haddad. Markov Decision Petri Net and Markov Decision Well-
Formed Net Formalisms. Lecture Notes in Computer Science, 4546:43-62, 2007.

M. Beccuti, G. Franceschinis, and S. Haddad. Markov Decision Petri Net and Markov Decision Well-
formed Net formalisms. Technical Report TR-INF-2007-02-01, Dipartimento di Informatica, Universita
del Piemonte Orientale, 2007. http://www.di.unipmn.it/Tecnical-R.

A. Bobbio, G. Franceschinis, R. Gaeta, and G. Portinale. Parametric fault tree for the dependability
analysis of redundant systems and its high-level Petri net semantics. IEEE Transactions on Software

Engineering, 29(3):270-287, March 2003.

H. Boudali, P. Crouzen, and M. Stoelinga. Dynamic Fault Tree Analysis Using Input/Output Interactive
Markov Chains. In Int. Conf. on Dependable Systems and Networks, pages 708-717, June 2007.

R. E. Bryant. Symbolic Boolean manipulation with Ordered Binary Decision Diagrams. ACM Computing
Surveys, 24:293-318, 1992.

L.T. Castroa and E.L. Sanjuan. An optimal repair policy for systems with a limited number of repairs.

European Journal of Operational Research, 187(1):84-97, May 2008.

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-formed coloured nets for

symmetric modelling applications. IEEE Transactions on Computers, 42(11):1343-1360, nov 1993.

G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7: Graphical Editor and Analyzer
for Timed and Stochastic Petri Nets. Performance Fvaluation, special issue on Performance Modeling

Tools, 24(1-2):47-68, November 1995.

D. Codetta-Raiteri, G. Franceschinis, and M. Gribaudo. Defining formalisms and models in the Draw-Net
Modelling System. In Int. Workshop on Modelling of Objects, Components and Agents, pages 123-144,
Turku, Finland, June 2006.

D. Codetta-Raiteri, G. Franceschinis, M. Iacono, and V. Vittorini. Repairable Fault Tree for the auto-
matic evaluation of repair policies. In Int. Conf. on Dependable Systems and Networks, pages 659—668,

Florence, Italy, June 2004.

S. Contini. ASTRA - Advanced Software Tool for Reliability Analysis, Theoretical Manual. FEuro-
pean Commission Joint Research Centre (JRC), Ispra, Italy, http://www.jrc.ec.europa.eu, 1999. EUR
18727en.

35



[14] H. Howard. Dynamic Programming and Markov Process. MIT Press, 1960.

[15] G. Krishnamurthi, A. Gupta, and A. K. Somani. HIMAP: Architecture, Features, and Hierarchical
Model Specification Techniques. Lecture Notes in Computer Science, 1469:348-351, 1998.

[16] R. Manian, D.W. Coppit, K.J. Sullivan, and J.B. Dugan. Bridging the Gap Between Systems and
Dynamic Fault Tree Models. In Annual Reliability and Maintainability Symposium, pages 105-111,
1999.

[17] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with Generalized
Stochastic Petri Nets. Wiley Series in Parallel Computing, John Wiley and Sons, 1995. Download

http://www.di.unito.it /~greatspn.

[18] M. Puterman. Markov decision processes : Discrete Stochastic Dynamic Programming. John Wiley &

Sons, 1994.

[19] A. Rauzy. New Algorithms for Fault Trees Analysis. Reliability Engineering and System Safety,
05(59):203-211, 1993.

[20] R. Righter. Optimal maintenance and operation of a system with backup components. Probability in

the Engineering and Informational Sciences, 16(3):339-349, 2002.

[21] R. A. Sahner, K. S. Trivedi, and A. Puliafito. Performance and Reliability Analysis of Computer Systems;
An Ezxample-based Approach Using the SHARPE Software Package. Kluwer Academic, 1996.

[22] W.G. Schneeweiss. The Fault Tree Method. LiLoLe Verlag, 1999.

[23] G. J. Wang and Y. L. Zhang. Optimal periodic preventive repair and replacement policy assuming
geometric process repair. IEEE Transactions on Reliability, 55(1):118-122, March 2006.

[24] FTA-Pro tool’s web page. http://www.dyadem.com/products/ftapro/index.php.

[25] Galileo tool’s web page. http://www.cs.virginia.edu/~ftree/.

[26] Relex tools’ web page. http://www.relex.com/products/ftaeta.asp.

[27] Web page of the FaultTree+ tool by Isograph Software. http://www.isograph.com/faulttree.htm.

[28] Web  page of the FTAnalyzer tool by Advanced Logistic Development (ALD).
http://www.ald.co.il/products/FTAnalyzer.html.

36



