
Dipartimento di Informatica
Università del Piemonte Orientale “A. Avogadro”

Via Bellini 25/G, 15100 Alessandria
http://www.di.unipmn.it

Low-Memory Adaptive Prefix Coding
Author: Travis Gagie (travis@mfn.unipmn.it) and

Yakov Nekrich (yasha@cs.uni-bonn.de)

TECHNICAL REPORT TR-INF-2008-07-06-UNIPMN
(July 2008)

2

The University of Piemonte Orientale Department of Computer Science Research
Technical Reports are available via WWW at URL http://www.di.mfn.unipmn.it/.

Plain-text abstracts organized by year are available in the directory

Recent Titles from the TR-INF-UNIPMN Technical
Report Series

2008-05 Non deterministic Repairable Fault Trees for computing optimal repair strategy,
Beccuti, M., Codetta-Raiteri, D., Franceschinis, G., July 2008.

2008-04 Reliability and QoS Analysis of the Italian GARR network, Bobbio, A., Terruggia,
R., June 2008.

2008-03 Mean Field Methods in performance analysis, Gribaudo, M., Telek, M., Bobbio,
A., March 2008.

2008-02 Move-to-Front, Distance Coding, and Inversion Frequencies Revisited, Gagie, T.,
Manzini, G., March 2008.

2008-01 Space-Conscious Data Indexing and Compression in a Streaming Model, Ferragina,
P., Gagie, T., Manzini, G., February 2008.

2007-05 Scheduling Algorithms for Multiple Bag-of-Task Applications on Desktop Grids: a
Knowledge-Free Approach, Canonico, M., Anglano, C., December 2007.

2007-04 Verifying the Conformance of Agents with Multiparty Protocols, Giordano, L.,
Martelli, A., November 2007.

2007-03 A fuzzy approach to similarity in Case-Based Reasoning suitable to SQL imple-
mentation, Portinale, L., Montani, S., October 2007.

2007-02 Space-conscious compression, Gagie, T., Manzini, G., June 2007.
2007-01 Markov Decision Petri Net and Markov Decision Well-formed Net Formalisms,

Beccuti, M., Franceschinis, G., Haddad, S., February 2007.
2006-04 New challenges in network reliability analysis, Bobbio, A., Ferraris, C., Terruggia,

R., November 2006.
2006-03 The Engineering of a Compression Boosting Library: Theory vs Practice in BWT

compression, Ferragina, P., Giancarlo, R., Manzini, G., June 2006.
2006-02 A Case-Based Architecture for Temporal Abstraction Configuration and Processing,

Portinale, L., Montani, S., Bottrighi, A., Leonardi, G., Juarez, J., May 2006.
2006-01 The Draw-Net Modeling System: a framework for the design and the solution of

single-formalism and multi-formalism models, Gribaudo, M., Codetta-Raiteri, D.,
Franceschinis, G., January 2006.

2005-06 Compressing and Searching XML Data Via Two Zips, Ferragina, P., Luccio, F.,
Manzini, G., Muthukrishnan, S., December 2005.

2005-05 Policy Based Anonymous Channel, Egidi, L., Porcelli, G., November 2005.
2005-04 An Audio-Video Summarization Scheme Based on Audio and Video Analysis, Fu-

rini, M., Ghini, V., October 2005.

Low-Memory Adaptive Prefix Coding?

Travis Gagie1 and Yakov Nekrich2

1 Department of Computer Science
University of Eastern Piedmont

travis@mfn.unipmn.it

2 Department of Computer Science
University of Bonn

yasha@cs.uni-bonn.de

Abstract. In this paper we study the adaptive prefix coding problem
in cases when the size of the input alphabet is large, e.g., character-
based compression of Chinese or word-based compression of English. We
present an online prefix coding algorithm that uses O(σ1/λ+ε) bits of
space for any ε > 0 and encodes the string of symbols in O(log log σ)
time per symbol in the worst case, where σ is the size of the alphabet.
The upper bound on the encoding length is λnH(s) + (λ ln 2 + 2 + ε)n +
O(σ1/λ log2 σ) bits.

1 Introduction

In this paper we present an algorithm for adaptive prefix coding that
uses sublinear space in the size of the alphabet. Space usage can be an
important issue in situations when the available memory is small; e.g., in
mobile computing or when the alphabet is very large or when we want
the data used by the algorithm to fit into first-level cache memory.

For instance, Version 5.0 of the Unicode Standard [14] provides code
points for 99 089 characters, covering “all the major languages written
today”. The Standard itself may be the only document to contain quite
that many distinct characters, but there are over 50 000 Chinese charac-
ters, of which everyday Chinese uses several thousand [15]. One reason
there are so many Chinese characters is that each conveys more informa-
tion than an English character; if we consider syllables, morphemes or
words as basic units of text — as we do for word-based compression —
then the English ‘alphabet’ is comparably large. Compressing strings over
such alphabets can be awkward; the problem can be severely aggravated
if we have only a small amount of (cache) memory at our disposal.
? The first author was supported by Italy-Israel FIRB grant “Pattern Discovery Al-

gorithms in Discrete Structures, with Applications to Bioinformatics”.

4 T. Gagie and Y. Nekrich

Static and adaptive prefix encoding algorithms that use linear space
in the size of the alphabet were extensively studied. The classic algorithm
of Huffman [8] enables us to construct an optimal prefix-free code and en-
code a text in two passes in O(n) time. Here and further in this paper
n denotes the number of characters in the text, and σ denotes the size
of the alphabet; H(s) =

∑σ
i=1

fai
n log2

n
fai

is the zeroth-order entropy3 of
s, where fa denotes the number of occurrences of character a in s. The
length of the encoding is (H + d)n bits, and the redundancy d can be
estimated as d ≤ pmax + 0.086, where pmax is the probability of the most
frequent character [6]. The drawback to the static Huffman coding is the
need to make two passes over data: we collect the frequencies of different
characters during the first pass, and then construct the code and encode
the string during the second pass. Adaptive coding avoids this by main-
taining a code for the prefix of the input string that has already been
read and encoded. When a new character si is read, it is encoded with
the code for s1 . . . si−1; then, the code is updated. The Faller-Gallager-
Knuth algorithm [11] for adaptive Huffman coding encodes the string in
(H + 2 + d)n + O(σ log σ) bits, while the adaptive Huffman algorithm of
Vitter [16] guarantees that the string is encoded in (H+1+d)n+O(σ log σ)
bits. The adaptive Shannon coding algorithms of Gagie [4] and Karpinksi
and Nekrich [10] encode the string in (H + 1)n + O(σ log σ) bits and
(H + 1)n + O(σ log2 σ) bits respectively. All of the above algorithms use
space at least linear in the size of the alphabet, to count how often each
distinct character occurs. All algorithms for adaptive prefix coding with
exception of [10] encode and decode in Θ(nH) time, i.e. the time to pro-
cess the string depends on H and hence on the size of the input alphabet.
The algorithm of [10] encodes a string in O(n) time, and decoding takes
O(n log H) time.

The compression with sub-linear space usage was studied by Gagie
and Manzini [5] who proved the following lower bound: For any g in-
dependent of n and any constant ε > 0, in the worst case we cannot
encode s in λH(s)n + o(n log σ) + g bits if, during the single pass during
which we write the encoding, we use O(σ1/λ−ε) bits of memory. In [5]
the authors also presented an algorithm that divides the input string into
chunks of length O(σ1/λ log σ) and encodes each individual chunk with
a modification of the arithmetic coding, so that the string is encoded
with (λH(s)+µ)n+O(σ1/λ log σ) bits. However, their algorithm is quite
complicated and uses arithmetic coding; hence, codewords are not self-

3 For ease of description, we sometimes simply denote the entropy by H if the string
s is clear from the context

Low-Memory Adaptive Prefix Coding 5

delimiting and the encoding is not ‘instantaneously decodable’. Besides
that, their algorithm is based on static encoding of parts of the input
string.

In this paper we present an adaptive prefix coding algorithm that
uses O(σ1/λ+ε) bits of memory and encodes a string s with λnH(s) +
(λ ln 2+2+ ε)n+O(σ1/λ log2 σ) bits. The encoding and decoding work in
O(log log σ) time per symbol in the worst case, and the whole string s is
encoded/decoded in O(n log H(s)) time. A randomized implementation
of our algorithm uses O(σ1/λ log2 σ) bits of memory and works in O(nH)
expected time. Our method is based on a simple but effective form of
alphabet-partitioning (see, e.g., [1] and references therein) to trade off the
size of a code against the compression it achieves: we split the alphabet
into frequent and infrequent characters; we preface each occurrence of a
frequent character with a 1, and each occurrence of an infrequent one with
a 0; we replace each occurrence of a frequent character by a codeword,
and replace each occurrence of an infrequent character by that character’s
index in the alphabet. We make a natural assumption that unencoded
files consist of characters represented by their indices in the alphabet (cf.
ASCII codes), so we can simply copy the representation of an infrequent
character from the original file. One difficulty is that we cannot identify
the frequent characters using a low-memory one-pass algorithm: according
to the lower bound of [9] any online algorithm that identifies a set of
characters F , such that each s ∈ F occurs at least Θn times for some
parameter Θ, needs Ω(σ log n

σ) bits of memory in the worst case. We
overcome this difficulty by maintaining the frequencies of symbols that
occur in a sliding window.

In section 2, we recapitulate the data structures that are used by our
algorithm. In section 3 we present a novel encoding method, further called
sliding window Shannon coding. Analysis of the sliding window Shannon
coding is given in section 4.

2 Preliminaries

The dictionary data structure contains a set S ⊂ U , so that for any
element x ∈ U we can determine whether x belongs to S. We assume
that |S| = m. The following dictionary data structure is described in [7].

Lemma 1. There exists a O(m) space dictionary data structure that can
be constructed in O(m log m) time and supports membership queries in
O(1) time.

6 T. Gagie and Y. Nekrich

In the case of a polynomial-size universe we can easily construct a data
structure that uses more space but also supports updates. The following
Lemma is folklore:

Lemma 2. If |U | = mO(1), then there exists a O(m1+ε) space dictio-
nary data structure that can be constructed in O(m1+ε) time and supports
membership queries and updates in O(1) time.

Proof: We regard S as a set of binary strings of length log U . All strings
can be stored in a trie T with node degree 2ε′ log U = mε, where ε′ =
(log U/ log m)·ε. The height of T is O(1), and the total number of internal
nodes is O(m). Each internal node uses O(mε) space; hence, the data
structure uses O(m1+ε) space and can be constructed in O(m1+ε) time.
Clearly, queries and updates are supported in O(1) time.

If we allow randomization, then the dynamic O(m) space dictionary
can be maintained. We can use the result of [3]:

Lemma 3. There exists a randomized O(m) space dictionary data struc-
ture that supports membership queries in O(1) time and updates in O(1)
expected time.

All of the above dictionary data structures can be augmented so that
one or more additional records are associated with each element of S; the
record(s) associated with element a ∈ S can be accessed in O(1) time.

In Section 3, we also use the following dynamic partial-sums data
structure, due to Moffat [12]:

Lemma 4. There is a dynamic searchable partial-sums data structure
that stores a sequence of O(log σ)-bit real numbers p1, . . . , pk in O(k log σ)
bits and supports the following operations in O(log i) time:

– given an index i, return the i-th partial sum p1 + · · ·+ pi;
– given a real number b, return the index i of the largest partial sum

p1 + · · ·+ pi ≤ b;
– given an index i and a real number d, add d to pi.

3 Adaptive coding

The adaptive Shannon coding algorithm we present in this section com-
bines ideas from Karpinski and Nekrich’s algorithm [10] with the sliding-
window approach, to encode s in λnH(s)+(λ ln 2+2+ε)n+O(σ1/λ log2 σ)
bits using O(n log H) time overall and O(log log σ) time for any character,
O(σ1/λ+ε) bits of memory and one pass, for any given constants λ ≥ 1 and

Low-Memory Adaptive Prefix Coding 7

ε > 0. Whereas Karpinski and Nekrich’s algorithm considers the whole
prefix already encoded, however, our new algorithm encodes each char-
acter s[i] of s based only on the window wi = s[max(i − `, 1)..(i − 1)],
where ` =

⌈
cσ1/λ log σ

⌉
and c is a constant we will define later in terms

of λ and ε. (With c = 10, for example, we produce an encoding of fewer
than λnH(s) + (2λ + 2)n + O(σ1/λ log2 σ) bits; with c = 100, the bound
is λnH(s)+ (0.9λ+2)n+O(σ1/λ log2 σ) bits.) Let f(a, s[i..j]) denote the
number of occurrences of a in s[i..j]. For 1 ≤ i ≤ n, if f(s[i], wi) ≥ `/σ1/λ,
then we write a 1 followed by s[i]’s codeword in our adaptive Shannon
code; otherwise, we write a 0 followed by s[i]’s dlog σe-bit index in the
alphabet.

As in the case of the quantized Shannon coding [10], our algorithm
maintains a canonical Shannon code. In a canonical code [13, 2] codewords
of the same length are binary representations of consecutive integers;
hence, each codeword can be characterized by its length and its position
among codewords of the same length, further called offset. The codeword
of length j with offset k can be computed as

∑j−1
h=1 nh/2h + (k − 1)/2j .

We maintain four dynamic data structures: a queue Q, an augmented
dictionary D, an array A

[
0..dlog σ1/λe, 0..bσ1/λc] and a searchable partial-

sums data structure P . (We actually use A only while decoding but, to
emphasize the symmetry between the two procedures, we refer to it in
our explanation of encoding as well.) When we come to encode or decode
s[i],

– Q stores wi;
– D stores each character a that occurs in wi, its frequency f(a,wi)

there and, if f(a,wi) ≥ `/σ1/λ, its position in A;
– A

[
0..dlog σ1/λe] is an array of doubly-linked lists, in which the list

A[j] contains all characters with codeword length j sorted by the
codeword offsets, and A[j].l points to the last element in A[j];

– C[j] stores the number of codewords of length j;
– P stores C[j]/2j for each j and supports prefix-sum queries.

We implement Q in O(` log σ) = O(σ1/λ log2 σ) bits of memory, A in
O(σ1/λ log2 σ) bits, and P in O(log2 σ) bits by Lemma 4. The dictionary
D uses O(σ1/λ+ε) bits and supports queries and update in O(1) worst-
case time by Lemma 2; if we allow randomization, we can apply Lemma 3
and the space usage is reduced to O(σ1/λ log2 σ) bits, but updates are
supported in O(1) expected time. Therefore, altogether we use O(σ1/λ+ε)
bits of memory; if randomization is allowed, the space usage is reduced
to O(σ1/λ log2 σ) bits.

8 T. Gagie and Y. Nekrich

To encode s[i], we first search in D and, if f(s[i], wi) < `/σ1/λ, we
simply write a 0 followed by s[i]’s index in the alphabet, update the data
structures as described below, and proceed to s[i + 1]; if f(s[i], wi) ≥
`/σ1/λ, we use P and s[i]’s position A[j, k] in A to compute

j−1∑

h=0

C[h]/2h + (k − 1)/2j ≤ 1 .

The first j = dlog(`/f(s[i], wi))e bits of this sum’s binary representation
are enough to uniquely identify s[i] because, if a character a 6= s[i] is
stored at A[j′, k′], then
∣∣∣∣∣∣

(
j−1∑

h=0

C[h]/2h + (k − 1)/2j

)
−




j′−1∑

h=0

C[h]/2h + (k′ − 1)/2j′




∣∣∣∣∣∣
≥ 1/2j ;

therefore, we write a 1 followed by these bits as the codeword for s[i].
To decode s[i], we read the next bit in the encoding; if it is a 0, we

simply interpret the following dlog σe bits as s[i]’s index in the alphabet,
update the data structures, and proceed to s[i+1]; if it is a 1, we interpret
the following dlog σ1/λe bits (of which s[i]’s codeword is a prefix) as a
binary fraction b and search in P for index j of the largest partial sum∑j−1

h=0 C[h]/2h ≤ b. Knowing j tells us the length of s[i]’s codeword or,
equivalently, its row in A; we can also compute its offset,

k =

⌊
b−∑j−1

h=0 C[h]/2h

2j

⌋
+ 1 ;

thus, we can find and write s[i].
Encoding or decoding s[i] takes O(1) time for querying D and A and,

if f(s[i], wi) ≥ `/σ1/λ, then

O

(
log log

`

f(s[i], wi)

)
= O(log log σ)

time to query P . After encoding or decoding s[i], we update the data
structures as follows:

– we dequeue s[i−`] (if it exists) from Q and enqueue s[i]; we decrement
s[i − `]’s frequency in D and delete it if it does not occur in wi+1;
insert s[i] into D if it does not occur in wi or, if it does, increment its
frequency;

Low-Memory Adaptive Prefix Coding 9

– we remove s[i − `] from A (by replacing it with the last character in
its list A[j], decrementing C[j], and updating D) if

f(s[i− `], wi+1) < `/σ1/λ ≤ f(s[i− `], wi) ;

– we move s[i− `] from list A[j] to list A[j + 1] if

dlog σ1/λe ≥
⌈
log

`

f(s[i− `], wi+1)

⌉
>

⌈
log

`

f(s[i− `], wi)

⌉

(by replacing s[i− `] with A[j].l, and appending s[i− `] at the end of
A[j + 1]; pointers A[j].l and A[j + 1].l and counters C[j] and C[j + 1]
are also updated);

– if necessary, we insert s[i] into A or move it from A[j] to A[j+1]; these
procedures are symmetric to deleting s[i − `] and to moving s[i − `]
from A[j] to A[j − 1], respectively;

– finally, if we have changed C, the data structure P is updated.

All of these updates, except the last one, take O(1) time, and updating P
takes O(log log σ) time in the worst case. When we insert a new element
s[i] into Q, this may lead to updating P as described above. The length
of s[i] can be decremented, or we may insert a new codeword for the
symbol s[i]. In both cases, P can be updated in O(length(s[i])) time,
where length(s[i]) is the current codeword length of s[i]. When an element
s[i − `] is deleted, we may decrement the codeword length of s[i − `] or
remove it from the code. If the codeword length is decremented, then
P is updated in O(length(s[i − `])) time. If the codeword for s[i − `] is
removed, we also update P in O(length(s[i− `])) time; in the last case we
can charge the cost of updating P to the previous occurrence of s[i − `]
in the string s, when s[i− `] was encoded with length(s[i− `]) bits. The
codeword lengths of symbols s[i] and s[i− `] are O

(
log log `

f(s[i],wi)

)
and

O
(

log log `
f(s[i−`],wi)

)
respectively. Hence, by Jensen’s inequality, in total

we encode s in O(n log H ′) time, where H ′ is the average number of bits
per character in our encoding. In the next section, we will prove that the
sliding window Shannon coding encodes s in λnH(s)+ (λ ln 2+2+ ε)n+
O(σ1/λ log2 σ) bits. Since we can assume that σ is not vastly larger than
n, our method works in O(n log H) time.

If the dictionary D is implemented as in Lemma 3, the analysis is
exactly the same, but a string s is processed in expected time O(n log H).

Lemma 5. The sliding window Shannon coding can be implemented in
O(n log H) time overall and O(log log σ) time for any character, O(σ1/λ+ε)

10 T. Gagie and Y. Nekrich

bits of memory and one pass. If randomization is allowed, the sliding win-
dow Shannon coding can be implemented in O(σ1/λ log2 σ) bits of memory
and O(n log H) expected time.

4 Analysis

In this section we prove the upper bound on the encoding length of sliding
window Shannon coding and obtain the following Theorem.

Theorem 1. We encode s in, and later decode it from, λnH(s)+(λ ln 2+
2+ε)n+O(σ1/λ log2 σ) bits using O(n log H) time overall and O(log log σ)
time for any character, O(σ1/λ+ε) bits of memory and one pass. If ran-
domization is allowed, the memory usage can be reduced to O(σ1/λ log2 σ)
bits and s can be encoded and decoded in O(n log H) expected time.

Proof: Consider any substring s′ = s[k..(k + ` − 1)] of s with length
`, and let F be the set of characters a such that

f
(
a, s[max(k − `, 1)..(k + `− 1)]

) ≥ `

σ1/λ
;

notice |F | ≤ 2σ1/λ. For k ≤ i ≤ k + ` − 1, if s[i] ∈ F but f(s[i], wi) <
`/σ1/λ, then we encode s[i] using

dlog σe+ 1
< λ log σ1/λ + 2

< λ log
`

max
(
f(s[i], wi), 1

) + 2

≤ λ log
`

max
(
f

(
s[i], s[k..(i− 1)]

)
, 1

) + 2

bits; if f(s[i], wi) ≥ `/σ1/λ, then we encode s[i] using
⌈
log

`

f(s[i], wi)

⌉
+ 1 < λ log

`

max
(
f

(
s[i], s[k..(i− 1)]

)
, 1

) + 2

bits; finally, if s[i] 6∈ F , then we again encode s[i] using

dlog σe+ 1
< λ log σ1/λ + 2

< λ log
`

f
(
s[i], s[max(k − `, 1)..(k + `− 1)]

) + 2

≤ λ log
`

f(s[i], s′)
+ 2

Low-Memory Adaptive Prefix Coding 11

bits. Therefore, the total number of bits we use to encode s′ is less than

λ
∑

a∈F

∑
s[i]=a,

k≤i≤k+`−1

log
`

max
(
f

(
a, s[k..(i− 1)]

)
, 1

)+

λ
∑

a 6∈F

f(a, s′) log
`

f(a, s′)
+ 2`

= λ` log `− λ
∑

a∈F

∑
s[i]=a,

k≤i≤k+`−1

log
(
max

(
f

(
a, s[k..(i− 1)]

)
, 1

))−

λ
∑

a 6∈F

f(a, si) log f(a, s′) + 2` ;

since

∑
s[i]=a,

k≤i≤k+`−1

log max
(
f

(
a, s[k..(i− 1)]

)
, 1

)
=

f(a,s′)−1∑

j=1

log j ,

we can rewrite our bound as

λ


` log `−

∑

a∈F

f(a,s′)−1∑

j=1

log j −
∑

a6∈F

f(a, s′) log f(a, s′)


 + 2`

= λ


` log `−

∑

a∈F

log((f(a, s′)− 1)!)−
∑

a 6∈F

f(a, s′) log f(a, s′)


 + 2` ;

by Stirling’s Formula,

` log `−
∑

a∈F

log((f(a, s′)− 1)!)

= ` log `−
∑

a∈F

log((f(a, s′)!) +
∑

a∈F

log f(a, s′)

≤ ` log `−
∑

a∈F

(
f(a, s′) log f(a, s′)− f(a, s′) ln 2

)
+ |F | log `

≤ ` log `−
∑

a∈F

f(a, s′) log f(a, s′) + ` ln 2 + 2σ1/λ log ` ,

12 T. Gagie and Y. Nekrich

so we can again rewrite our bound as

λ

(
` log `−

∑
a

f(a, s′) log f(a, s′) + ` ln 2 + 2σ1/λ log `

)
+ 2`

= λ
∑

a

f(a, s′) log
`

f(a, s′)
+

(
λ ln 2 + 2 +

2λσ1/λ log `

`

)
`

= λ`H(s′) +

(
λ ln 2 + 2 +

2λσ1/λ log `

`

)
` .

Recall ` =
⌈
cσ1/λ log σ

⌉
, so

2λσ1/λ log `

`

=
2λσ1/λ log

⌈
cσ1/λ log σ

⌉
⌈
cσ1/λ log σ

⌉

≤ 2λ
(
log c + (1/λ) log σ + log log σ + 1

)

c log σ

≤ 2λ(log c + 3)
c

(we will give tighter inequalities in the full paper, but use these here for
simplicity); for any constants λ ≥ 1 and ε > 0, we can choose a constant
c large enough that

2λ(log c + 3)
c

< ε ,

so the number of bits we use to encode s′ is less than λ`H(s′) + (λ ln 2 +
2 + ε)`. With c = 10, for example,

2λ(log c + 3)
c

< (2− ln 2)λ ,

so our bound is less than λ`H(s′)+(2λ+2)`; with c = 100, it is less than
λ`H(s′) + (0.9λ + 2)`.

Since the product of length and empirical entropy is superadditive —
i.e., |s1|H(s1) + |s2|H(s2) ≤ |s1s2|H(s1s2) — we have

`

bn/`c−1∑

j=0

H
(
s[(j` + 1)..(j + 1)`]

) ≤ nH(s)

Low-Memory Adaptive Prefix Coding 13

so, by the bound above, we encode the first `bn/`c characters of s using
fewer than λnH(s)+(λ ln 2+2+ε)n bits. We encode the last ` characters
of s using fewer than

λ`H(s[(n− `)..n]) + (λ ln 2 + 2 + ε)` = O(` log σ) = O(σ1/λ log2 σ)

bits so, even counting the bits we use for s[(n − ` + 1)..`bn/`c] twice, in
total we encode s using fewer than

λnH(s) + (λ ln 2 + 2 + ε)n + O(σ1/λ log2 σ)

bits.
If the most common σ1/λ characters in the alphabet make up much

more than half of s (in particular, when λ = 1) then, instead of using an
extra bit for each character, we can keep a special escape codeword and
use it to indicate occurrences of characters not in the code. The analysis
becomes somewhat complicated, however, so we leave discussion of this
modification for the full paper.

5 Summary

In this paper we presented an algorithm that uses space sub-linear in
the alphabet size and achieves encoding length that is close to the lower
bound of [5]. Our algorithm processes each symbol in O(log log σ) worst-
case time, whereas linear-space prefix coding algorithms can encode a
string of n symbols in O(n) time, i.e. in time independent of the alphabet
size σ. It would be interesting to know whether our algorithm (or one
with the same space bound) can be made to run in O(n) time.

References

1. D. Chen, Y.-J. Chiang, N. D. Memon, and X. Wu. Alphabet partitioning for
semi-adaptive Huffman coding of large alphabets. IEEE Transactions on Commu-
nications, 55(3):436–443, 2007.

2. J.B. Connell. A Huffman-Shannon-Fano code. Proc. of IEEE, 61:1046–1047, 1973.
3. M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert,

and R. E. Tarjan. Dynamic perfect hashing: upper and lower bounds. SIAM J.
Comput., 23:738–761, 1994.

4. T. Gagie. Dynamic Shannon coding. Information Processing Letters, 102(2–3):113–
117, 2007.

5. T. Gagie and G. Manzini. Space-conscious compression. In Proceedings of the
32nd Symposium on Mathematical Foundations of Computer Science, pages 206–
217, 2007.

14 T. Gagie and Y. Nekrich

6. R. G. Gallager. Variations on a theme by Huffman. IEEE Trans. Information
Theory, 24:668–674, 1978.

7. T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministic dictionaries. Journal of
Algorithms, 41(1):69–85, 2001.

8. D. A. Huffman. A method for construction of minimum-redundancy codes. Pro-
ceedings of the IRE, 40:1098–1101, 1952.

9. R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simple algorithm for finding
frequent elements in streams and bags. ACM Transactions on Database Systems,
28(1):51–55, 2003.

10. M. Karpinski and Y. Nekrich. A fast algorithm for adaptive prefix coding. Algo-
rithmica, to appear.

11. D. E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6(2):163–180,
1985.

12. A. Moffat. Linear time adaptive arithmetic coding. IEEE Transactions on Infor-
mation Theory, 36(2):401–406, 1990.

13. E.S. Schwartz and B. Kallick. Generating a canonical prefix encoding. Comm. of
the ACM, 7:166–169, 1964.

14. Unicode Consortium. The Unicode Standard, Version 5.0. Addison-Wesley Pro-
fessional, 2006.

15. P. Vines and J. Zobel. Compression techniques for Chinese text. Software: Practice
and Experience, 28(12):1299–1314, 1998.

16. J. S. Vitter. Design and analysis of dynamic Huffman codes. J. ACM, 1987:825–
845, 1987.

