Dipartimento di Informatica
Universita del Piemonte Orientale “A. Avogadro”
Via Bellini 25/G, 15100 Alessandria
http://www.di.unipmn.it

universita
degli studi
del piemonte
orientale

The ShareGrid Portal: an easy way to submit jobs on computational Grids
Authors: Cosimo Anglano, Massimo Canonico and Marco Guazzone
({ cosimo.anglano,massimo.canonico,marco.guazzone} @unipmn.it)

TECHNICAL REPORT TR-INF-2008-10-08-UNIPMN
(October 2008)

The University of Piemonte Orientale Department of Computer Science Research Technical Reports are available via WWW at URL

2008-07
2008-06
2008-05

2008-04
2008-03
2008-02
2008-01
2007-05

2007-04
2007-03
2007-02
2007-01

2006-03
2006-03

2006-02

2006-01

2005-06
2005-05
2005-04

http://www.di.unipmn.it/.
Plain-text abstracts organized by year are available in the directory

Recent Titles from the TR-INF-UNIPMN Technical Report Series

BuzzChecker: Exploiting the Web to Better Understand Society, Furini, M., Montangero, S., July 2008.
Low-Memory Adaptive Prefix Coding, Gagie, T., Nekrich, Y., July 2008.

Non deterministic Repairable Fault Trees for computing optimal repair strategy, Beccuti, M., Codetta-Raiteri, D., Franceschinis, G.,
July 2008.

Reliability and QoS Analysis of the Italian GARR network, Bobbio, A., Terruggia, R., June 2008.

Mean Field Methods in performance analysis, Gribaudo, M., Telek, M., Bobbio, A., March 2008.

Move-to-Front, Distance Coding, and Inversion Frequencies Revisited, Gagie, T., Manzini, G., March 2008.

Space-Conscious Data Indexing and Compression in a Streaming Model, Ferragina, P., Gagie, T., Manzini, G., February 2008.

Scheduling Algorithms for Multiple Bag-of-Task Applications on Desktop Grids: a Knowledge-Free Approach, Canonico, M.,
Anglano, C., December 2007.

Verifying the Conformance of Agents with Multiparty Protocols, Giordano, L., Martelli, A., November 2007.
A fuzzy approach to similarity in Case-Based Reasoning suitable to SQL implementation, Portinale, L., Montani, S., October 2007.
Space-conscious compression, Gagie, T., Manzini, G., June 2007.

Markov Decision Petri Net and Markov Decision Well-formed Net Formalisms, Beccuti, M., Franceschinis, G., Haddad, S., February
2007.

New challenges in network reliability analysis, Bobbio, A., Ferraris, C., Terruggia, R., November 2006.

The Engineering of a Compression Boosting Library: Theory vs Practice in BWT compression, Ferragina, P., Giancarlo, R., Manzini,
G., June 2006.

A Case-Based Architecture for Temporal Abstraction Configuration and Processing, Portinale, L., Montani, S., Bottrighi, A.,
Leonardi, G., Juarez, J., May 2006.

The Draw-Net Modeling System: a framework for the design and the solution of single-formalism and multi-formalism models,
Gribaudo, M., Codetta-Raiteri, D., Franceschinis, G., January 2006.

Compressing and Searching XML Data Via Two Zips, Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S., December 2005.
Policy Based Anonymous Channel, Egidi, L., Porcelli, G., November 2005.
An Audio-Video Summarization Scheme Based on Audio and Video Analysis, Furini, M., Ghini, V., October 2005.

The ShareGrid Portal: an easy way to submit jobs on computational Grids *

Cosimo Anglano

Massimo Canonico

Marco Guazzone
Department of Computer Science, University of Piemonte Orientale, Alessandria (Italy),
email: { cosimo.anglano,massimo.canonico,marco.guazzone } @unipmn.it

Abstract

Grid computing is a distributed computing paradigm
which aims to aggregate several heterogeneous and dis-
tributed resources, belonging to different and independent
organizations, in a dynamic, transparent and coordinated
way. Since its introduction, Grid computing has been suc-
cessfully applied to solve several scientific challenging ap-
plications. Despite of the consolidation of many of its as-
pects, there are some issues that are still open. One of them
is the transparency: in many real Grid systems, users still
need to be aware of Grid computing, either for adapting
their applications to this paradigm or for wrapping them
in a suitable software framework. In this paper we present
the ShareGrid Portal, a Web portal and a portal framework,
built on top of the ShareGrid project infrastructure. Its in-
tent is both to ease the execution of user applications in a
Grid system and to allow developers to flexibly add new por-
tal functionalities. In this work, we compare it with other
well-known Grid portals and we show its user interface and
its architecture. Finally we discuss user experiences and
future extensions.

Keywords: Grid computing, Grid portal, Portal frame-
work, Bag-of-Tasks, Parameter sweep applications.

1 The ShareGrid Portal

1.1 Introduction

With the advances of technology used for building sci-
entific instrumentation, scientists are now able to explore
aspects that only few years ago were not completely able
to observe. As a consequence, scientific applications, used
to carry on scientific experiments, might need to access
and elaborate massive amounts of data at a faster rate, and,

*This work has been supported by TOP-IX and the Piedmont Region
Agency under the Innovation Development Program.

therefore, they are characterized by an high demand of stor-
age and computational resources. For instance, the Large
Hadron Collider (LHC) [5], the world’s largest and highest-
energy particle accelerator built by CERN [2], is able to
produce petabytes of data per year that need to be accessed
and studied by thousands of scientists belonging to differ-
ent organizations and spread around the world. The com-
puting paradigm traditionally used for running compute-
intensive applications is the cluster computing [15], which
implies the use of a powerful cluster of homogeneous com-
puters owned by a single organization. This paradigm does
not fit very well with the above scenario, since the avail-
able resources might be insufficient to satisfy the incoming
demand of computational power and storage space, and it
generally does not allow collaboration among users of dif-
ferent organizations. Hence, a more complex computing
paradigm is needed in order to allow multi-institutional col-
laboration and resource sharing in a way as easy as pos-
sible. The Grid computing [21] is a computing paradigm
that tries to achieve this goal through a software and hard-
ware infrastructure in order to allow and ease the dynamic
sharing of heterogeneous resources among different, inde-
pendent and geographically distributed organizations, in a
way that should be totally transparent to the user.

The coordination and the sharing of heterogeneous re-
sources between different communities distributed on a
large geographic scale, has partially changed the way of
solving compute-intensive and data-intensive applications.
Being a kind of a distributed system, one of the initial
promise of the Grid computing was to make the execution of
applications in a Grid system completely transparent from
the point of view of users: the user of such a system should
be unaware of the location where her/his application is cur-
rently executed; it should believe that all the computations
be local. This goal has been partially reached. Even though
a Grid middleware has the purpose of hiding all the low
level interactions taking place in a Grid system, in practice
the user has still the responsibility to describe the structure
of her/his application or, in the worst case, adapts it to the
requirements of the underlying Grid. From the ShareGrid

[13] project experience, we have learned that one of the
most important aspect to consider for making a Grid project
successful, is the social aspect, that is inducing a potential
Grid user to use the Grid infrastructure as an everyday part
of her/his work.

With this in mind, the ShareGrid project provides to its
users community a Web portal, the ShareGrid Portal, in or-
der to ease the execution and the monitoring of a user appli-
cation in the Grid system.

The ShareGrid Portal is a Web based Grid portal that pro-
vides to its users the access to Grid services and resources
through the ShareGrid middleware. Due to the nature of the
current ShareGrid middleware, its primary focus is toward
Bag-of-Tasks (BoT) [17] applications. A BoT application is
a kind of parallel application whose tasks are independent
from each other. Though this is one of the simplest kind
of programming model for the Grid computing, there are
several real world applications that adopt it. BoT applica-
tions include, but are not limited to, parameter sweep ap-
plications [16], which are applications structured as a set of
multiple experiments each of which is executed with a dis-
tinct set of parameters. Parameter sweep applications can
be viewed as a simple means of exploring the behaviour
of a complex system through a series of parametric exper-
iments. Monte-Carlo and discrete-event simulation are a
typical example of parameter sweep applications. The wide
applicability of this type of application contributed to the
spread of the Grid computing in the scientific community
[12]. In fact it is extensively used for carry on several exper-
iments in many scientific areas such as: extra-terrestrial in-
telligence [6], protein folding [3], high-energy physics [4],
just to name a few.

The remainder of this section is organized as follows.
In §1.2 we provide a short list of the most important re-
lated works. In §1.3 we explain how the job submission
works, both with and without the portal, and what benefits
the ShareGrid Portal brings. In §1.4 we give an overview
of the ShareGrid Portal architecture. Finally, in §1.4 we
present future works.

1.2 Related Works

In this section we present some of similar and consoli-
dated projects that are well-known to Grid community. The
GridSphere project [25] is a portal framework which pro-
vides a portlet-based Web portal [11]; it supports various
middlewares, like the Globus toolkit [20], Unicore [27],
and gLite [24], through portlet components, called Grid-
Portlets. The ShareGrid Portal is a portal framework too.
The main difference is the mechanism used for supporting
a new Grid middleware. While the GridSphere approach
makes use of portlet components for extending the range
of supported middlewares, the ShareGrid Portal extension

mechanism consists in a series of Plain Old Java Object
(POJO) [22] interfaces, defining the high-level behaviour
of a middleware, which are deployed in the portal by means
of simple Java libraries (JARs). Another difference is that
GridSphere delegates each middleware portlet for provid-
ing its user interface, while the ShareGrid Portal provides a
uniform view independent by the underlying middleware.
The P-GRADE Portal [23] is a workflow-oriented Grid
portal; it is built upon GridSphere, for the Web interface,
JavaGAT [29], for interacting with the middleware, and
Condor DAGMan [1] for managing a workflow application.
The main difference with the ShareGrid Portal is the nature
of the supported Grid applications; the P-GRADE Portal
is oriented to workflow applications, with some extensions
for parameter sweep applications; the ShareGrid Portal cur-
rently supports BoT applications, which include the family
of parameter sweep applications but are more limited than
workflow applications. Another difference is the type of the
supported middleware. The P-GRADE Portal is a Globus-
based, multi-Grid collaborative portal; it is able to connect
to different Globus-based Grid systems and let their user
communities to migrate applications between Grids. The
ShareGrid Portal can be considered a multi-Grid portal as
well; however, it is not limited to the Globus middleware,
since it relies on a set of interfaces that abstract from the
underlying middleware; regarding the multi-Grid collabo-
ration aspect, it is relied upon the underlying middleware.

1.3 Job Submission

In this section we provide an overview of how the job
submission works and the main motivations that brought us
to develop a Web portal.

In order to submit an application to a Grid system, a user
has to “prepare” a job that describes the structure and the
behaviour of that application. In OurGrid version 3 [17],
the middleware that the ShareGrid infrastructure currently
adopts, the submission of a job is done through the mygrid
program [18]. This is a Linux console application, installed
on the user machine, that acts as a Grid local scheduler: it
accepts in input a job file (i.e., the description of a user ap-
plication) from the user and assigns it one or more compu-
tational resources according to a preconfigured scheduling
policy. The file representing the user job is a text file follow-
ing the Job Description File (JDF) format. Basically, a JDF
file is a text file containing a collection of task specifica-
tions, each of which includes an optional “init” section (for
the stage-in phase), a “remote” section (for the remote exe-
cution phase) and a “final” section (for the stage-out phase),
as shown in Fig. 1. From the user point of view, the job
submission phase requires three steps: (1) the user creates
a job by writing a JDF file that provides the structure and
the behaviour of the application (s)he wants to run, (2) the

JDF file is submitted to the mygrid program, which trans-
parently takes care of mapping the related job on one or
more computational resources, and (3) the user manually
and periodically polls the mygrid program for checking the
job execution status. This workflow has some weak points:

job:
label: MyJob
requirements: mem == 100MB

task:
init:
put MyLocal.in MyRemote.in
remote: MyCommand -i MyRemote.in -o MyRemote.out

final:
get MyRemote.out MyLocal.out

Figure 1. ShareGrid Portal — Example of a JDF
file.

e The mygrid program actually only runs on the Linux
operating system; maybe, this is the major weakness
since the computer world is not Linux-centric.

e The mygrid program maintains its state in the volatile
memory of the client machine and so it must remain
running for the entire duration of the job execution.
For this reason, the user must keep her/his machine
powered on until all of her/his jobs in execution are
done. This point represents another important weak-
ness causing both economical and ecological implica-
tions for the useless power consumption. In fact, the
price of the energy continuously gets higher and higher
due to the strong dependence to oil and to the current
oil crisis caused by an unbalance between the demand
and the offer. Hence, a possible economical conse-
quence for a user is the increasing of her/his energy
costs. For what concerning ecological implications, it
is now a fact that the excessive energy consumption
contributes to the global warming. Users that are sen-
sible to this subject might be disappointed for seeing
that, in some sense, they are contributing to the over-
heating of the planet Earth.

e The mygrid program is not free in resource occupation.
We have empirically observed that when the mygrid
program is in an idle state, the memory consumption is
about of 30MB (the CPU, on the other hand, is nearly
unutilized). For this reason, the user might consider
the installation and the use of the mygrid program as
something of too intrusive, especially when (s)he does
not own a powerful machine.

e The user must repeatedly poll the mygrid application
for knowing the execution status of a given job (e.g.,
either completed, failed or still running).

e The JDF syntax, though simple, is error-prone, espe-
cially for the beginner user; furthermore, some kind
of error (e.g. a misspelled file name) might only be
thrown near the end of the execution, making the en-
tire computation useless.

The above issues were enough to motivate the realization of
the ShareGrid Portal. The first benefit the Web portal brings
is the operating system independence, freeing the user from
having installed on her/his own machine the Linux oper-
ating system. A Web application has also the advantage
that does not require any software installation, since almost
all modern operating system distributions ship with a Web
browser and the utilization of the resources of the user ma-
chine is rather limited. Because the Web portal does not
store any job submission state on the user machine, the user
can submit her/his jobs from any machine connected to the
Internet; furthermore, there is no more need to keep the ma-
chine powered on, waiting for jobs completion, since all the
informations about job submissions are kept in the Share-
Grid infrastructure. In order to avoid the user to manually
and periodically poll for monitoring the status of the job
execution, the ShareGrid Portal provides an active notifica-
tion system. When the execution status of a job changes
(e.g. from running to finished), the portal sends a notifica-
tion (actually an email) to the user.

The submission of a job has been simplified thanks to
the presence of several user-friendly web interfaces. These
interfaces divides in two main groups according to the way
job informations are fed: (1) job file upload and (2) manu-
ally job insertion. The fastest way to submit a job through
the portal is by using the “import file” interface, depicted
in Fig. 2. This interface allows the user to directly up-
load a JDF job file, that is a file that contains informations
about the structure and the behaviour of the user applica-
tion. Along with the job file, the user can upload many input
files as needed that will be transfered on worker machines
during the stage-in phase. This type of job submission is
targeted to expert users that do not want to go through the
additional steps that are inevitably introduced by the others
more user-friendly interfaces. The other type of job sub-
mission interface is the manual job insertion view. In this
interface, the user can choose to insert her/his job between
two views: (1) a generic simple interface and (2) an ad-hoc
interface for parameter sweep applications. In the generic
simple interface, shown in Fig. 3, the user can create a job
for a generic BoT application. For each task, the user must
explicitly specify the executable command line (i.e., the ex-
ecutable name and its argument that will be executed on
the worker machine), can optionally upload input files (in-

(Text marked with * is mandatory)

Import File Manual Insertion
Browse...
Job File *@x
Uplcad|
Browse...

Input Files &#
Upload'

Submitl Previewl Exportl Cancel|

Figure 2. ShareGrid Portal — Job submission
through job file import.

cluded the executable command if not already present in the
worker machines) and possibly specify one or more output
file names. This last two informations are used during the
job stage-in and stage-out phase, respectively. The other

(Text marked with * is mandatory)

Import File Manual Insertion

Job Name o

Job
Requirements

* Simple View'_' Parameter Sweep View

Browse...
Input Files o
Upload
Tasks =, Executable g
Insertion Command Line
Output Files © Add

Add Taskl

Submit| Preview| Export| cancel|

Figure 3. ShareGrid Portal — Job submission
through the simple view.

way for manually submit a job is the parameter sweep view,
shown in Fig. 4, an ad-hoc interface targeted for parameter
study applications. This kind of application differs from a
generic BoT application for the executable command: pos-
sibly different for each task in a BoT application and unique
in a parameter sweep application. In fact, in this interface,
the user is asked to specify a unique executable command,
the list of parameters to study (one line for each experiment)
and zero or more input, output and shared files. In order to
speed up the insertion of informations, this view provides
many useful shortcuts; the ones that are worth noting are:

e The user can choose to manually insert the executable
command name, in the case it is already installed on
worker machines, or to upload the corresponding exe-
cutable command file.

e The arguments for the executable command and the
output file names can be either uploaded via a text file
or inserted by hand.

e Parameters can be studied as a function of input files
by combining each parameter line to every input files.

(Text marked with * is mandatory)

Import File Manual Insertion

Job Name 74
Job
Requirements g

Simple View'® Parameter Sweep View

The executable is already installed on the remote
machines.

Upload|

Import the arguments for the executable
command from a text file

Executable *&» Browse...

Executable
Arguments

Tasks
Insertion

Specify input files as executable command arguments.
Combine each argument to every input files.

Input Files 4 Browse

Uploadl

Specify additional files as executable command

Additional , “rOUMENts.

Files v Browse...

Upload'

Specify output files as executable command arguments.
Associate to each task only one output file (order matters).

Output Import the output files from a text file.

Files

Add

Submit| Preview| Exportl Cancell

Figure 4. ShareGrid Portal — Job submission
through the parameter sweep view.

Each of the above interfaces allows the user to preview the
job before submitting it, for discovering possible syntax er-
rors, and to export the job to a text file (actually, only to
a JDF file); the exported job can be successively uploaded
in the import file view, in order to let the user to minimize
repetitive tasks for similar jobs. After a job has been submit-
ted, the user is freed from any other task and can decide, for
example, to submit another job or even to shutdown her/his
machine. It is the responsibility of the ShareGrid Portal to
instruct the underlying Grid middleware for staging in the
input files, remotely executing the specified command and,
finally, for staging out the output files. In particular, staged

out files are stored in the ShareGrid repository, that is an
area accessible only to the user who submitted the job. Once
the execution status of a job is changed (e.g. from running
to finished or to failed), the ShareGrid Portal sends a noti-
fication to the user. For instance, when a job has been suc-
cessfully completed, the notification includes a link to the
ShareGrid repository where the output files has been stored.

1.4 Architecture

In this section we provide a high-level description of the
ShareGrid Portal architecture. The ShareGrid Portal is both
a Web portal application and a portal framework.

As a Web portal application, it provides internation-
alization and localization support, user account manage-
ment, data persistence abstraction, graphical appearance
customization, and a set of core functionalities for the cre-
ation, deletion, updating and querying of user and job infor-
mations. The access control to the portal is based upon the
Role Based Access Control (RBAC) model [19]. As pointed
out in [28], a role is a semantic construct around which
access control policies are formulated; users are assigned
to specific roles and, in this way, they acquire the permis-
sions associated with their roles. Roles are closely related to
the concept of groups but the main difference is that a role
brings together a set of users on one side and a set of groups
on the other, while a group is typically defined as a set of
users. Our RBAC model consists of a hierarchical user role
model where each role is assigned to one or more access
permissions defined upon a hierarchical page access control
policy. For instance, the administrator user is allowed to
access to any page whereas the anonymous user can access
only to a limited set a pages (e.g., to the user registration
page). Actually, we have defined three roles: (1) Anony-
mous, for users not logged into the portal, (2) Standard, for
users that are allowed to submit a job to the ShareGrid in-
frastructure, and (3) Administrator, for standard users with
additional site administration privileges.

As a portal framework, the ShareGrid Portal provides
to the developer a set of independent and reusable compo-
nents. In Fig. 5 is depicted an high-level view of the Share-
Grid Portal infrastructure. All the modules relies on the Sun
Java Platform Standard Edition 6 [8]. The “Commons”
module offers shared and commonly used functionalities,
like string manipulation, format conversions, I/O and net-
work utilities, and so on. This component is used by almost
any other ShareGrid modules. The “Grid” module aims to
provide an abstraction layer from any Grid middleware; the
ShareGrid portal uses this component for keeping it inde-
pendent by the underlying middleware used. This module
is divided into two parts: the “Core” sub-module defines
the interfaces and the implementations that are middleware
independent, whereas the OurGrid sub-module is the im-

plementation for the OurGrid middleware. The role of the
“Portal” module is two fold: (1) it provides a set of inter-
faces, classes and tag libraries to act as a Web application
framework for developing Sun Java EE [7] Web applica-
tions, and (2) it realizes the Web interfaces for using it as a
Grid portal. A Grid portal derived from the “Portal” mod-
ule, included the ShareGrid Portal, consists of at least a
set of presentation pages, including static HTML [26], Sun
JavaServer Pages [10] and JavaServer Faces [9], along with
the associated backing beans, for implementing the presen-
tation logic; in addition, it is possible to define classes for
realizing the business logic and overriding existing classes
for redefining, for instance, the data persistence layer or the
page life cycle.

DCS::ShareGrid Modules

{ Portal

{ Tags/Servlet/Filters][Wrappers] ‘ Grid

OurGrid I

Cloud

Party - -
’JSP Serviet || JSF Libs ‘, Commons]
(J2SE 6 J

Figure 5. ShareGrid Portal — High level view
of the architecture.

1.5 Conclusions and Future Work

The ShareGrid Portal is a rather young project started
in the middle of 2007. Nevertheless, it is able to provide
a simple but effective way to submit jobs to the ShareGrid
infrastructure avoiding to force its users to adapt their desk-
top environment to the requirements of the underlying mid-
dleware. Obviously, from the point of view of an expert
user, the time taken for submitting a job to the Grid middle-
ware with the portal will never be comparable with the one
spent directly using the console application. In fact, this is
a trade-off that almost all Web applications have to accept
with respect to the desktop-based counterparts. However,
we think the benefits brought by a Web portal might make
the adoption of the ShareGrid infrastructure more attractive.

Being a young project it is in continue evolution. On-
going projects include the redesign of some views, in or-
der to make the job submission even faster, and the devel-
opment of application oriented Web interfaces, that is in-
terfaces specifically targeted to an application domain, like
distributed rendering. Future extensions include the support

for others Grid middlewares, the implementation of a Web
Services layer and the possibility to export a job to differ-
ent formats, like the Job Submission Description Language
(JSDL) [14] format.

References

(1]
(2]

(3]
(4]
(3]
(6]
(7]

(8]
(9]
(10]

(1]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

The Condor DAGMan. http://www.cs.wisc.edu/condor/dagman/.

European Organization for Nuclear Research (CERN).

http://www.cern.ch/.

The Folding@home project. http://folding.stanford.edu/.
The LCG project. http://lcg.web.cern.ch/LCG/.

The LHC project. http://lhc.web.cern.ch/lhc/.

The SETI@home project. http://setiathome.berkeley.edu/.

The Sun Java Platform Enterprise Edition 5.
http://java.sun.com/javaee.

The Sun Java Platform Standard Edition 6.
http://java.sun.com/javase.

The Sun JavaServer Faces 1.2
http://java.sun.com/javaee/avaserverfaces/.

The Sun JavaServer Pages 2.1.

http://java.sun.com/products/jsp/index.jsp.
A. Abdelnur and S. Hepper. JSR 168: Java Portlet

specification version 1.0. Technical report, Sun, 2003.

http://www.jcp.org/en/jsr/detail 7id=168.
D. Abramson, J. Giddy, and L. Kotler. High performance

parametric modeling with Nimrod/G: Killer application for
the global Grid? In IPDPS ’00: Proceedings of the 14th
International Symposium on Parallel and Distributed Pro-
cessing, pages 520-528, Cancun, Mexico, May 2000. IEEE

Computer Society.
C. Anglano, M. Canonico, M. Guazzone, M. Botta, S. Ra-

bellino, S. Arena, and G. Girardi. Peer-to-peer desktop
Grids in the real world: The ShareGrid project. In T. Priol,
L. Lefevre, , and R. Buyya, editors, CCGRID’08: Proceed-
ings of the 2008 Eighth IEEE International Symposium on
Cluster Computing and the Grid (CCGRID), pages 609-614,

Lyon, France, May 2008. IEEE Computer Society.
A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly,

S. McGough, D. Pulsipher, and A. Savva. GFD.136:
Job Submission Description Language (JSDL) specifica-
tion, version 1.0 (first errata update) [obsoletes GFD.56].
Technical report, Open Grid Forum (OGF), July 2008.

http://www.ggf.org/documents/GFD.136.pdf.
M. Baker, R. Buyya, and D. C. Hyde. Cluster computing: A

high-performance contender. /[EEE Computer, 32(7):79-80,

1999.
H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The

AppLeS parameter sweep template: User-level middleware

for the Grid. Scientific Programming, 8(3):111-126, 2000.
W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto,

F. Brasileiro, J. Sauvé, F. A. B. Silva, C. O. Barros, and
C. Silveira. Running Bag-of-Tasks applications on compu-
tational Grids: The MyGrid approach. International Con-
ference on Parallel Processing (ICPP), page 407, October

2003.
L. B. Costa, L. Feitosa, E. Aradjo, G. Mendes, R. Coelho,

W. Cirne, and D. Fireman. MyGrid: A complete solution
for running Bag-of-Tasks applications. In SBRC 2004: 22nd
Brazilian Symposium on Computer Networks (SBRC), Gra-
mado, RS, Brazil, May 2004.

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

D. Ferraiolo and R. Kuhn. Role-Based Access Control. In
15th NIST-NCSC National Computer Security Conference,

pages 554-563, 1992.
I. Foster and C. Kesselman. Globus: A metacomputing

infrastructure toolkit. The International Journal of Super-
computer Applications and High Performance Computing,

11(2):115-128, Summer 1997.
I. Foster and C. Kesselman. The Grid: Blueprint for e New

Computing Infrastructure. Morgan Kaufmann, 1998.
M. Fowler. POJO: An acronym for Plain Old Java Object.

http://www.martinfowler.com/bliki/POJO.html.
P. Kacsuk and G. Sipos. Multi-Grid, multi-user workflows

in the P-GRADE grid portal. Journal of Grid Computing,

3(3):221-238, September 2005.
E. Laure, F. Hemmer, A. Aimar, M. Barroso, P. Buncic,

A. D. Meglio, L. Guy, P. Kunszt, S. Beco, F. Pacini, F. Prelz,
M. Sgaravatto, A. Edlund, O. Mulmo, D. Groep, S. Fisher,
and M. Livny. Middleware for the next generation Grid in-
frastructure. In A. Aimar, J. Harvey, and N. Knoors, edi-
tors, CHEP 2004: Computing in High Energy Physics and
Nuclear Physics (CHEP), page 826, Interlaken, Switzerland,

Sep. 2004.
J. Novotny, M. Russell, and O. Wehrens. GridSphere: A

portal framework for building collaborations: Research ar-
ticles. Concurrency and Computation: Practice & Experi-
ence, 16(5):503-513, 2004.

D. Raggett, A. L. Hors, and I. Jacobs. Html 4.01 speci-
fication. Recommendation, World Wide Web Consortium

(W3C), December 1999.
M. Romberg. The UNICORE Grid infrastructure. In Pro-

ceedings of 1st Worldwide SGI Users’ Conference, pages

144-153, Krakow, Poland, 2000.
R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.

Youman. Role-Based Access Control models. IEEE Com-
puter, 29(2):38-47, 1996.

R. V. van Nieuwpoort, J. Maassen, R. Hofman, T. Kielmann,
and H. E. Bal. Ibis: An efficient Java-based Grid program-
ming environment. In Joint ACM Java Grande - ISCOPE
2002 Conference, pages 18-27, Seattle, Washington, USA,
November 2002.

http://www.cs.wisc.edu/condor/dagman/
http://www.cern.ch/
http://folding.stanford.edu/
http://lcg.web.cern.ch/LCG/
http://lhc.web.cern.ch/lhc/
http://setiathome.berkeley.edu/
http://java.sun.com/javaee
http://java.sun.com/javase
http://java.sun.com/javaee/avaserverfaces/
http://java.sun.com/products/jsp/index.jsp
http://www.jcp.org/en/jsr/detail?id=168
http://www.ggf.org/documents/GFD.136.pdf
http://www.martinfowler.com/bliki/POJO.html

	The ShareGrid Portal
	Introduction
	Related Works
	Job Submission
	Architecture
	Conclusions and Future Work

