Dipartimento di Informatica
Universita del Piemonte Orientale “A. Avogadro”

Via Bellini 25/G, 15100 Alessandria
http://www.di.unipmn.it

universita
degli studi
del piemonte
orientale

Case-based management of exceptions to business processes: an

approach exploiting prototypes
Author: Stefania Montani(stefania.montani@unipmn.it)

TECHNICAL REPORT TR-INF-2008-12-09-UNIPMN
(December 2008)

The University of Piemonte Orientale Department of Computer Science Research Technical

Reports are available via WWW at URL http://www.di.mfn.unipmn.it/.
Plain-text abstracts organized by year are available in the directory

Recent Titles from the TR-INF-UNIPMN Technical Report

2008-08

2008-07

2008-06

2008-05

2008-04

2008-03

2008-02

2008-01

2007-05

2007-04

2007-03

2007-02

2007-01

2006-03

2006-03

Series

The ShareGrid Portal: an easy way to submit jobs on computational Grids, Anglano, C.,
Canonico, M., Guazzone, M., October 2008.

BuzzChecker: Exploiting the Web to Better Understand Society, Furini, M., Montangero,
S., July 2008.

Low-Memory Adaptive Prefix Coding, Gagie, T., Nekrich, Y., July 2008.

Non deterministic Repairable Fault Trees for computing optimal repair strategy, Beccuti,
M., Codetta-Raiteri, D., Franceschinis, G., July 2008.

Reliability and QoS Analysis of the Italian GARR network, Bobbio, A., Terruggia, R.,
June 2008.

Mean Field Methods in performance analysis, Gribaudo, M., Telek, M., Bobbio, A., March
2008.

Mowe-to-Front, Distance Coding, and Inversion Frequencies Revisited, Gagie, T., Manzini,
G., March 2008.

Space-Conscious Data Indexing and Compression in a Streaming Model, Ferragina, P.,
Gagie, T., Manzini, G., February 2008.

Scheduling Algorithms for Multiple Bag-of-Task Applications on Desktop Grids: a
Knowledge-Free Approach, Canonico, M., Anglano, C., December 2007.

Verifying the Conformance of Agents with Multiparty Protocols, Giordano, L., Martelli,
A., November 2007.

A fuzzy approach to similarity in Case-Based Reasoning suitable to SQL implementation,
Portinale, L., Montani, S., October 2007.

Space-conscious compression, Gagie, T., Manzini, G., June 2007.

Markov Decision Petri Net and Markov Decision Well-formed Net Formalisms, Beccuti,
M., Franceschinis, G., Haddad, S., February 2007.

New challenges in network reliability analysis, Bobbio, A., Ferraris, C., Terruggia, R.,
November 2006.

The Engineering of a Compression Boosting Library: Theory vs Practice in BWT com-
pression, Ferragina, P., Giancarlo, R., Manzini, G., June 2006.

2006-02 A Case-Based Architecture for Temporal Abstraction Configuration and Processing, Porti-
nale, L., Montani, S., Bottrighi, A., Leonardi, G., Juarez, J., May 2006.

2006-01 The Draw-Net Modeling System: a framework for the design and the solution of single-
formalism and multi-formalism models, Gribaudo, M., Codetta-Raiteri, D., Franceschinis,
G., January 2006.

2005-06 Compressing and Searching XML Data Via Two Zips, Ferragina, P., Luccio, F., Manzini,
G., Muthukrishnan, S., December 2005.

2005-05 Policy Based Anonymous Channel, Egidi, L., Porcelli, G., November 2005.

Case-based management of exceptions to
business processes: an approach exploiting
prototypes

Stefania Montani
Dipartimento di Informatica
Universita del Piemonte Orientale, Alessandria, Italy
stefania.montani@unipmn.it

Abstract

Business process optimization may require to deviate from a default process
model, in response to unexpected situations, thus raising exceptions. In this paper,
we present a system for supporting end users in handling exceptions in Business
Process Management, which exploits the case-based reasoning (CBR) methodology.
CBR offers the advantage of relying on operative knowledge, thus reducing the cost
of knowledge elicitation, with respect to other methodologies.

To maintain and organize the case base, we resort to a type of generalized cases,
known as prototypes. The use of prototypes allows us to structure the case base itself,
thus speeding up retrieval, and avoiding redundancy. In our system prototypes are
also intended as a means to help process engineers in defining revised versions of
the process schema, in response to frequent exceptions.

The system is currently in use at one of the largest logistics centres in Italy.

1 Introduction

Business Process Management (BPM) is a set of (highly automated) activities aimed at
defining, executing, monitoring and optimizing business processes, with the objective of
making the business of an enterprise as effective and efficient as possible, and of increasing
its economic success.

In particular, the optimization task may ask the enterprise to be able to flexibly devi-
ate from the predefined process schema, in response to expected situations (e.g. new laws,
reengineering efforts) as well as to unexpected ones (e.g. emergencies) [1]. Unexpected
situations, in particular, require a prompt reaction, which operatively translates in gener-
ating and handling an exception to the business process execution. These exceptions are
ad-hoc changes at the process instance level, operated by end users (in contrast to changes

at the more general process schema! level, which can be forecasted and scheduled, and
are operated by domain experts, i.e. process engineers).

Existing technology typically supports such ad-hoc changes [2], relying on different
methods (e.g. rule-based and graph-based approaches, see also section 4), which usually
share the characteristic of being based on a strong (and time-consuming) formalization
of domain knowledge. Moreover, in the existing systems, the effects of ad-hoc changes
are normally kept local to the respective process instance (i.e. they do not affect other
instances of the same process), and are normally not used to suggest a revised version of
the underlying process schema to the process engineer.

In this paper, on the other hand, we propose to resort to case-based reasoning (CBR) [3]
in order to support the management of exceptions in business process execution. CBR
is a reasoning paradigm that exploits the specific knowledge of previously experienced
situations, called cases. The use of CBR may mitigate the knowledge formalization effort,
since representing a real world situation as a case is often straightforward: given a set
of meaningful features for the domain, it can be sufficient to identify the value they as-
sume in the situation at hand. The so-obtained set of (feature, value) pairs provides the
problem description, which is typically coupled with information about the applied solu-
tion, thus completing the situation-action pattern adopted on that occasion. Such data
encompasses an amount of domain knowledge, which can be memorized without the need
of making it explicit in a more abstract and structured form, as it would be required by
other methodologies (e.g. rule-based or model-based reasoning). CBR is particularly well
suited for managing exceptional situations which can be neither foreseen nor preplanned.
As a matter of fact, in the literature cases have often been resorted to in order to describe
exceptions, in various domains (see e.g. [4, 5, 6]).

Within the proposed CBR framework, end users are enabled to retrieve past excep-
tions, in order to get suggestions on how to edit a process instance with ad-hoc changes.
Moreover, we also propose an automated way of learning more general indications from
ground exception cases through a proper maintenance procedure, and to store them in the
form of prototypes [7]. Prototypes are a well-documented notion in the CBR literature,
and are typically crucial for knowledge base organization, and for optimizing retrieval
performances. In our tool, they are also exploited to support process engineers in (long
term) revisions of process schemas, as envisioned in figure 1.

In summary, our contribution:

1. is based on well-established and well-documented methodological choices (as dis-
cussed in section 2), which make it methodologically sound as well;

2. provides advances in BPM exception handling research, because:

(a) it allows to mitigate knowledge formalization problems, and

!Intuitively, many instances of the same process schema may exist, e.g. the same plant maintenance
procedure might have been instantiated and executed on different dates.

Default process
schema

MEw Qrocess schema

PROCESS
ENGII?‘EER

Process instance = ﬁ
Process instance /END USER

with ad-hoc changes A

b airtenance f Retrieval

CASE BAGE

Figure 1: CBR for exception handling in BPM. A process engineer normally issues a process
schema, which is then instantiated and applied as a default procedure by end users. Due to an
emergency, an end user may want to deviate from the default process schema, and generate
a process instance with ad-hoc changes. Through our system, she can be supported in this
activity by retrieving from the case base past modifications that were applied to the default
procedure in the past, motivated by similar reasons. The instance with ad-hoc changes finally
edited by the end user is then saved as a new case in the case base. The case base content
can be periodically analyzed, by activating the maintenance procedure we have implemented,
which enables to learn more general indications (e.g. frequent changes) from the collected
ground cases, and to store them in the form of prototypes. The process engineer can finally
retrieve these prototypes, and be supported in issuing a new version of the process schema,
which could, for instance, incorporate the most frequent changes once and for all.

(b) at the same time, it proposes an automatic memory organization and mainte-
nance procedure, which can make retrieval faster, and can support long-term
revisions by process engineers.

As it will be discussed in section 4, point 2(b) appears to be a particularly significant
contribution in the existing literature panorama.

The paper is organized as follows. In section 2 we introduce CBR preliminaries. In
section 3 we present the details of our contribution: in particular, in section 3.1 we
introduce case representation, while section 3.2 deals with case base maintenance issues,
and section 3.3 describes our case retrieval facility. Our tool is in use at Interporto di
Rivalta Scrivia S.p.A., one of the largest logistics centres in Italy, since May 2008. Section
3.4 describes our evaluation activity at Interporto, and provides objective measures of the
application impact in this setting. In section 4 we describe related work. Finally, section
5 is devoted to conclusions and future work.

2 Case-based reasoning

CBR is a reasoning paradigm that exploits the knowledge collected on previously experi-
enced situations, known as cases.

In the classical approach, a case consists of a problem description able to summarize
the problem at hand, and of a case solution, describing the solution adopted for solving
the corresponding problem; sometimes a case outcome may be stored as well.

The problem description can be represented as a collection of (feature, value) pairs, a
format which was introduced in the early 90s [8], and which is still often resorted to. In this
work, we basically adopt this format as well. Nevertheless, more complex representations
are also possible. For instance, problems may be reported in the form of images, time
series or text.

CBR can be summarized by the following four basic steps, known as the CBR cycle, or
as the four “res” [3]: retrieve the most similar case(s) with respect to the input situation
from the case repository, known as the case base; reuse them, and more precisely their
solutions, to solve the new problem; revise the proposed new solution (if needed); retain
the current case for future problem solving.

Actually, in many application domains it is common to find CBR tools able to ex-
tract relevant knowledge, but that leave to the user the responsibility of providing its
interpretation and of formulating the final decision: reuse and revise are therefore not im-
plemented. However, even retrieval alone may significantly support the human decision
making process [9]. In the present work, we are following this policy as well.

Applying CBR can have a computational justification: as observed in the Introduc-
tion, by resorting to CBR the effort of knowledge acquisition and of knowledge repre-
sentation is often mitigated, since, given a set of meaningful features for the application
domain, it can be sufficient to identify the value they assume in the situation at hand
to define the problem description of a new case. Cases represent an “implicit” form of
knowledge, meant as an unstructured, operative knowledge type, which directly stores the

problem-solution patterns that have occurred in time “as they are”, without any effort in
the direction of extracting more abstract information (e.g., of eliciting rules or models,
which can be defined as “explicit” or “structured” knowledge) from them. Moreover, new
implicit knowledge can be automatically stored in the case base during the every day
working process. As the case library grows, more and more representative examples can
be retrieved, and it can become easier to find a proper solution to the problem at hand
by means of this paradigm.

While augmenting the case library content may be relatively easy, retaining new cases
may raise some issues. Actually, the problem solving competence of the case base not
necessarily grows as much as its size. It has been shown (see e.g. [10, 11]) that storing too
many cases may increase retrieval time unacceptably, while some cases could be deleted,
since their problem-solution information is already represented in other existing ones.

These observations have led to a significant research effort in the direction of case
base maintenance. Case base maintenance is an important process directly connected
to the retain step of the CBR cycle, which may have a significant impact on the actual
performance of the reasoning system. The work in [12] provides an interesting survey
on the possible policies adopted in the literature to this end. Among these policies, a
very promising one resorts to the definition and exploitation of prototypes [7]. Prototypes
are a generalization from single to clustered typical cases. The main purposes of such a
generalization knowledge are to:

e organize the case base;
e guide and speed-up the retrieval process;
e decrease the storage amount by erasing redundant cases.

In particular, the periodic reorganization of the case base to learn or update the
prototype definitions, by taking into account the new acquired cases, automatically allows
one to delete or disregard the redundant or useless ground cases. An evaluation of each
newly acquired case is therefore not needed with this strategy.

In this work, we deal with case base maintenance issues resorting to prototypes.

The idea of relying on prototypes is founded over a well-established literature tradition,
well examined in [13], in which the same notion is also referred to with different names.
In particular, a notion somehow similar to the one of prototype was originally introduced
in the theory of dynamic memory [14]; according to this theory, generalized knowledge is
held by Memory Organization Packets (MOPs), which also organize specific experiences in
cases. In this model, cases are the starting point for problem solving, while MOPs provide
guidance for adaptation . In the 90s, Bergmann [15] introduced the concept of generalized
case, intended as an entity that can be directly reused for wider ranges of problems than
specific cases. A very early approach using an equivalent notion in instance-based learning
research was represented by Protos [16]. The definition of prototype is also very similar
to the one of abstract case [17], obtained by merging two or more cases with the same
solution in a single entity.

The tool we have implemented is thus grounded on strong literature foundations.
Details of how it operates can be found in the next section.

3 Case-based reasoning for business process excep-
tion management

In this section, we introduce the details of our framework. First, we describe process
schema primitives, and case representation ones (see section 3.1). Cases are stored in
the case base, within a hierarchical organization which relies on prototypes; details of
case base maintenance and of memory organization are provided in section 3.2. The
retrieval procedure, which takes advantage of the case base hierarchical organization, is
described in section 3.3. Finally, our evaluation results, obtained in a real world setting,
are presented in section 3.4.

3.1 Process schema and case representation

BPM activities are based on a predefined process schema, consisting of the tasks to be
executed, of their control flow connections, of the actors meant to perform them, and on
the data which have to be provided to enable the task execution. In this section, for the
sake of simplicity, we make the hypothesis that a single actor is responsible for completing
all the tasks of the process schema?. Therefore, we need to represent: (i) tasks, (ii) control
flow relations and (iii) data. Asin many process modelling systems (see e.g. [18]), in order
to enhance usability, we have defined a reduced set of representation primitives, enabling
to describe a process schema.

According to our representation formalism, a process schema can be represented as a
hierarchical graph, where nodes are the tasks to be executed, and edges are the control
flow relations linking them. We can distinguish between atomic and composite tasks
(plans), where atomic tasks represent simple steps in the process, and plans represent
tasks which can be defined in terms of their components via the has-part relation. The
overall process itself is a plan. Two different types of atomic tasks can be identified: (1)
actions, i.e. tasks that describe an activity which must be executed at a given point of the
process (e.g. to switch on a software device); (2) decisions, used to model the selection
among different alternative paths (e.g. to test if a software device is responding or not;
different actions will then be taken, depending on the answer).

Needed data (e.g. resources and constraints) are stored as properties of the actions in
which they are resorted to.

Control relations, on the other hand, establish which tasks can be executed next,
and in what order. In particular, the sequence relation explicitly establishes what is the
following task to be executed; the alternative relation describes which alternative paths
stem from a decision, and the repetition relation states that a task has to be repeated

2A rather realistic assumption in some application domains, and in particular in the one in which we
are currently working, see section 3.4.

several times (until an exit test, modelled by means of a decision, becomes true). Join
and fork constructs are modelled as well; thus, we can also represent parallel executions.

These primitives will be referred to in section 3.4; in figure 3, in particular, boxes
will be used to represent actions, diamonds to represent decisions and circles to represent
joins. Additional control flow relations will be straightforwardly depicted by arrows.

A process schema or exception instance can be acquired by means of our tool’s graph-
ical interface, which also incorporates a set of logical consistency checking facilities. For
instance, it automatically verifies that different alternatives only stem from decisions (and
not e.g. from an activity).

The process schema, as well as its exception instances (i.e. cases), and prototypes
built upon them, are then maintained in a relational database. Cases and prototypes
share the same structure (i.e. they have the same features).

In particular, a case stores an atomic change made to a process schema at execution
time, together with its problem description.

In the BPM domain, the problem description has to keep track of the context which
motivated the exception raised by the end user. The unavailability of some needed data
may justify an exception. Therefore, in our approach the problem description includes
information about the presence of required technological resources, human competences,
time constraints and additional (application-specific) data, all modelled as case features.

Since a user may need to adapt/change a process instance also when its applicability
conditions are met (and thus when the context alone is not sufficient to clarify the reasons
for raising an exception), we also add the possibility of justifying the reasons for deviation
as free text. Such text can provide an insight of the user’s motivations to a colleague that
will retrieve that case in the future, but will not be resorted to when calculating distances
in the retrieval step (see section 3.3); an interpretation of textual features is left as a
future work.

Another special feature we introduce is reputation (see also [19]). Reputation is a sort
of score, set to 1 when the case is generated, and increased by 1 every time a user retrieves
the case and judges it to be useful for her current problem. Reputation is decreased
if the user retrieves the case, but then discards it. A high reputation is therefore an
indicator of appropriateness. Users are also encouraged to decrease a case reputation if
the modifications suggested in that case resulted in problems when applied in practice.

Finally, we introduce the link feature, to keep track of the parent relation between a
prototype and the ground cases it subsumes. Details on feature setting in prototypes will
be discussed in section 3.2.

The atomic change to the process schema more properly represents the case solu-
tion. Different types of atomic changes may take place, namely: insertions, deletions and
updates, of activities, decisions and control flow relations.

Cases thus store atomic elements of an exception. The overall set of changes applied as
a single exception to a process schema on a certain date can be reconstructed by executing
a query in the case base, restricted to the exception date.

Thus, an exception is not stored as a single memory item (i.e. as a single case) in the
database, but it is a meta-level concept, whose ground implementation consists of a set

of cases, that can be joined by means of their execution date. Since each case reports
an atomic change, justified by a set of features, the set of features justifying the overall
exception can be obtained as the union of the features associated to every atomic case
composing it.

3.2 Case base maintenance

After a set of new exception cases are generated, we search for redundancies or partially
matching features between their problem descriptions and the ones of the already stored
cases, with the double aim of (1) hierarchically organizing the case base, and (2) avoiding
to retain useless information. The maintenance procedure can be activated by process
engineers through the tool’s interface.

The generalized information that can be extracted from a set of ground cases is stored
as a prototype. In particular, similarly to an abstract case [17], in our approach a proto-
type summarizes a set of ground cases sharing the same solution. Operatively, it has the
same structure of a ground case, and its features are automatically calculated as follows.
The feature values that all the ground cases share in their problem descriptions are kept
unchanged in the prototype problem description. On the other hand, the features assum-
ing different values in the ground cases take a null value in the prototype. However, if
all the subsumed cases have a null value in a certain feature, except one, the prototype
assumes the only non-null value in the feature at hand. The rationale behind this choice is
that the prototype solution is justified by the union of the motivations (i.e. of the problem
descriptions) of the subsumed cases®. The reputation feature of a prototype is initially
set to the sum of the reputations of the ground cases it summarizes. The prototype also
references all the ground cases it subsumes by means of the link feature - which allows for
an easy memory navigation.

Figure 2 summarizes the procedure, in the hypothesis (without loss of generality) of
working with just two cases, sharing the same solution.

Ground cases perfectly represented by a prototype (i.e. sharing all the same feature
values of the prototype, or having a null value in a feature which assumes a non-null value
in the prototype) can be deleted on demand?, thus avoiding redundancies. Actually, when
retrieval efficiency is related to the case base size, keeping redundant cases only degrades
performances, by increasing retrieval time [11].

In the current version of the system, due to the characteristics of the application
domain (see section 3.4), it was sufficient to define prototypes which only subsume ground
cases. However the framework could be trivially extended to allow a multi-level hierarchy,
in which more generalized prototypes reference more specific ones, progressively moving
towards ground cases. Also observe that less strict policies in the prototype definition
are allowed: for instance, it could be possible not to force all subsumed cases to share
the same solution of the prototype, but just part of it [20]; moreover, a prototype could

3Qther policies are possible, and may be chosen depending on the application domain.
“In the application domain in which we are currently working (see section 3.4) case deletion has not
been required yet, due to the relatively low number of collected cases.

Let fki 1<=k<=N be the features in case ci
Let fkj 1<=k<=N be the features in case cj
Let soli, solj be the solutions of cases ci, cj
Let ri,rj be the reputations of cases ci,cj

Let fkp l<=k<=N be the features in prototype p
Let solp be the solution of prototype p

Let rp be the reputation of prototype p

Let linkp be the link feature of prototype p

if soli==solj

set solp=soli

for all k
if fki==fkj set fkp=fki
else if fki==NULL set fkp=£fkj
else if fkj==NULL set fkp=fki
else set fkp=NULL

set rp=ri+rj

set linkp={ci,cj}

Figure 2: Pseudo-code of the prototype creation procedure, in the hypothesis of working with
two cases, sharing the same solution.

include a non-null feature value which is shared only by a certain percentage (lower than
100%) of the subsumed cases.

The use of prototypes, while allowing to automatically identify/delete useless cases,
also imposes a hierarchical organization to the case base. Such an organization allows
a quicker and more focused retrieval (see also [21]), since the identification of the most
similar prototype (with respect to the input case) can be exploited to reduce the retrieval
search space only to the cases subsumed by the prototype itself, thus ignoring the rest of
the case base (details on the retrieval procedure are provided in the following section).

Moreover, prototypes can support long-term revisions of the process schema by the
process engineer. As a matter of fact, prototypes properly group sets of consistent exam-
ples, representing frequent, similar modifications to instances of the same process schema,
which could justify the choice of issuing a new version of the default process schema it-
self, incorporating such changes once and for all. Within our tool, we allow the process
engineer to retrieve a prototype, and then to progressively navigate down in its hierarchy,
in order to inspect the details of the subsumed cases. This facility is meant to support
her in such a schema revision activity, still leaving her the complete responsibility of the
final decision.

Finally, it is worth observing that prototypes allow to extract more generalized knowl-
edge from ground cases. However, such extraction does not require an explicit formaliza-
tion of domain knowledge, and a consequent involvement of a domain expert. Actually,
despite the fact that prototypes do summarize a set of (very similar) cases, and gen-
eralize them to some extent, they do not constitute highly abstracted evidence. Thus,
our memory organization and maintenance strategy still keeps the knowledge elicitation
advantages of the CBR methodology discussed in the Introduction.

3.3 Case retrieval

Within our framework, case retrieval is primarily conceived as a support for exception
handling by end users.

When a user encounters an emergency in executing a process instance, she may ask
our tool to retrieve suggestions from the case base, providing as an input the current data
and resources information, which represent the context to be used for indexation, and
which are interpreted as the input case features.

The most similar prototypes are then shown to the user; she can indicate a subset of
them, thus restricting further retrieval just to the ground cases subsumed by the selected
prototypes. She could also decide to stop the search at the prototype level, if she believes
that the retrieval information is sufficient. Additional ground cases can also be retrieved
if they are not indexed under any prototype in the taxonomy, but are similar to the query
case.

In order to retrieve the most similar (i.e. less distant) prototypes/cases with respect to
the input one, it is a common technique to provide a measure of distance in the features
space. As already observed, prototypes are generalized cases, are physically stored in
the same memory and share the ground cases structure. Thus, distance calculation can
operate identically on prototypes and on ground cases. Generally speaking, the distance
d(c;, ¢;) between cases ¢; and ¢; can be computed as a weighted average of the normalized
distances between their various features, that is:

> wy-d(ei(f), ¢i(f))
d(Ci, Cj) == f=1

N (1)
> wy
=1

where d(c;(f), ¢j(f)) and wy denote the normalized distance between feature f of cases ¢;
and ¢;, and the weight associated with this feature, respectively. Weights can be properly
set to state that some features are more “important” for retrieval relatively to the others.
They have to be experimentally set and tuned, and their choice varies from domain to
domain.

Various metrics can be relied upon to calculate d(c;(f), ¢;(f)); we are currently choos-
ing the heterogeneous euclidean-overlap metric (HEOM) [22], a distance metric able to
treat both symbolic and numeric variables, and to cope with the problem of missing data.

Prototypes and/or cases are inversely ordered by distance with respect to the query
case; if two or more items have the same distance, they are further ordered by reputation.

In our approach, retrieval solutions are then shown to the user for a personal inter-
pretation. After she has selected a prototype or case from the retrieval output list, since
retrieved items represent atomic modifications within a more complex exception, she is
also allowed to reconstruct the whole exception information happened on the date at
hand, by properly querying the case base. We then leave to her the responsibility of the
final decision.

10

Prototype retrieval can also support process engineers in schema redefinition, as al-
ready explained in section 3.2.

3.4 Evaluation results
3.4.1 A real world application

The tool described in this paper is implemented in Java, and relies on MySQL for the
case base storage, while the graphical interface has been implemented by resorting to
JGraphPad software (an open-source product written in Java which can be extended to
support additional features, and which can be properly interfaced with other software
modules, see http : //sourceforge.net/projects/jgraph/).

The current version of the tool has been made available at Interporto di Rivalta Scrivia
S.p.A., Italy, since May 2008. Interporto, with its 1300000 m? of surface extension and
with more than 500 employees, is one of the largest logistics centres in Italy. Interporto
does not only take care of goods storage, but also of their preprocessing; in particular,
several plants for food pre-processing are available. Engineers and employees responsible
for goods and tanks movement, and for plants administration and security, follow specific
process schemas for designing and executing equipment management and maintenance
procedures. Our tool is enabling them to keep track of unexpected exceptions, to deal
with them, and to learn generalized knowledge which can be useful to restructure the
schemas.

Our evaluation activity at Interporto has been structured as follows. First, we con-
ducted a pilot study, in order to assess the reliability of our tool. The pilot study lasted
eight weeks, and involved the adoption of the tool for supporting exception handling to
the bag cutter machines maintenance process. Four identical bag cutters are available at
Interporto, and cases were collected from all of them. The details and the main results of
the pilot study are presented in section 3.4.2.

After the pilot study results became available, we evaluated them together with the
process engineer responsible for the bag cutter machines. Given the very encouraging
outcome, in September 2008 we started a second, more extensive evaluation phase, which
is still going on. Currently, the tool is being routinely applied to all the equipment
management and maintenance procedures - and not only to the bag cutter machines, as
in the pilot study. Section 3.4.3 provides an analysis of the impact of three months of
usage of the tool at Interporto, and highlights advantages and improvement suggestions
identified so far.

3.4.2 The pilot study

The eight-week pilot study involved the usage of the tool just on the four bag cutter
machines. Each bag cutter available at Interporto automatically cuts bags (typically
containing coffee and cocoa beans), empties them, and arranges the content in a tank for
transportation. If the machine does not work properly, some beans may remain inside
the bags, so that the bags have to be manually verified and emptied, highly increasing

11

4 IGraphpad
File Edit Wiew Format Shape Select Graph Extras Window Help

& E:texmfmiktexbintagliasacchi.zml.g

[r[a][ofolclelalale][~]]

R

adjust d.s. slope

(1)

~

substitute d.s.

verify d.s.fract 3
e 31/
1 \\
Faerify ball b, fract £ substitute h.b.
QF

-,
@ _/
wverify hlades F
0

Figure 3: Part of the bag cutter maintenance procedure, acquired by means of our tool.

sharpen blades ‘

151

the time and cost of the activity. Thus, the status of the machine elements (e.g. blades,
drive shaft, ball bearings) is periodically evaluated, and deteriorated pieces are properly
treated or substituted.

Part of the default maintenance process schema is provided in figure 3, as represented
by our tool’s graphical interface, and is described below. Some details of the procedure
that were useless for the discussion, have been removed, for the sake of legibility.

By following such part of the schema, (1) the slope of the drive shaft is first evaluated,
and corrected, in case of need. Then, (2) the cutting performances are tested on a set
of bags. If the result is not satisfactory, (3) the drive shaft and (4) the ball bearings are
verified for possible fractures, and substituted if necessary. Finally, (5) the blades are
sharpened.

In the first two weeks of our pilot study, during the every-day working activity, some

12

exceptions were raised with respect to this procedure. In particular, in the first exception
(casel), due to time constraints, step (2) was skipped. In the second exception, time
constraints problems as well as the unavailability of the grindstone determined not only
that step (2) was skipped, but also that the blades were not sharpened - see step (5) - but
directly substituted with new ones. These two modifications were stored as two separate
cases (case2 and case3), as explained in section 3.1. In the third exception (case4), blade
substitution instead of sharpening took place as well (step (5)), simply motivated by the
fact that blades had not been substituted recently.

The tool organized these 4 cases under two prototypes: (pl) the blade substitution
one; and (p2) the skipped cutting performance verification one.

Figure 4 shows the (main) features of the exception cases described above, together
with the prototypes created from them.

After this hierarchy definition, end users exploited the tool for the subsequent six
weeks. In particular, those who were affected by strict time constraints, could retrieve
both the pl prototype, and the p2 prototype (which code the presence of time constraints
in their features). Both pl’s solution (i.e. substituting the blades) and p2’s one (i.e.
skipping the cutting performance verification) were then suggested to them. Moreover,
users were allowed to navigate the hierarchy, thus accessing the details of the ground cases
subsumed by the two prototypes. By querying the case base on the basis of the date, for
instance, they were also allowed to retrieve the whole exception composed by case2 and
case3, thus obtaining the suggestion of applying both the solutions at the same time. All
these data were provided to help users to better understand the solutions taken in the
past, and to further guide them in decision making. However, they were always free to
decide whether to reapply (one of) the retrieved solutions, or to edit a new one.

After six weeks of usage, 10 cases confirming the blade substitution change, motivated
by various reasons, were collected and stored under prototype pl. The process engineer
then evaluated this suggestion, in order to understand if it could be implemented within
the default bag cutter process schema, being it a very frequently happening change. He
judged the possibility of converting blade sharpening into blade substitution as a reason-
able modification, and then decided to adopt it. Actually, even if this change obviously
increases costs, it is also true that blades, due to the normal working activity, soon become
so deteriorated that sharpening them during preplanned maintenance procedures can be
not enough. Therefore, either sharpening frequency is significantly increased (which also
increases costs and increases the machine unavailability time), or blades are always sub-
stituted. This second alternative, suggested by the tool, was preferred. The modified bag
cutter maintenance procedure has been adopted in the second phase of our evaluation
activity, described in the next section.

3.4.3 Routine adoption of the tool at Interporto: measurable outcomes

Our tool is being routinely used at Interporto since September 2008. In this section, we
report on the impact of the first three months of usage, and discuss the improvement
suggestions that emerged so far.

13

A13u8031 20N
aTqeTTRAR 30N
anIy

anTe/

UOTINITISANS IpeTq

UTINIIISANS 2peld

uoIINT0§

3U0ISPUTIY
SIUTRIISUOD BUT
aInjead

1d

K13us031 30N
TION

TINN
anteq

UOTINITISNS IpeTq
uoTINT0s

UOTINITISANS 3peld
3U0ISPUTIY
SIUTRIISUOD AWT
aInjead

pesen

TION
aTqeTTRAR 10K
anig
anteq

UOTINITISANS SpeTd
uoTINTOos

WTINITISANS 3pelq
3U0ISPUTIY
SIUTRIISUOD SUTL
aInjeay

¢gasen

UOTJeITITISA mocmEMOwM®Q ON

TN
aTqeTTEAR 10K
anig
anteq

uoTINTOS

WTINITISANS 3pelq
3U0ISPUTIY
SIUTRIISUOD SUTL
aInjead

7esen

K13us031 30N
oTqeTreAy
anIg,

antes

UOTJedTITIoA woﬁwEMowme ON

uoTInNTog

UOTINITISANS 3peld
3U0ISPUTIY
SIUTRIISUOD SWI
aInjead

T88®D

¢ uotydeoxe

UOTIeDTTIaA 30uew1031ad Of
uorInNTog

K1qus0a1 JoN UOTINITISANS Speld
TINN SU0JSPUTIH
anIL SIUTRIISUOD SWTL

anteq

9.1N]e94

7d

he pilot study.

Int

A snapshot of the case base i

Figure 4

14

Several equipments and people were (and still are) involved in this extensive evalu-
ation phase. In particular, the tool is being applied to process schemas concerning the
management/maintenance of:

1.
2.

6.

150 carts for goods movement within the warehouse;
6 carts for tanks movement;
4 bag cutter machines (as in the pilot study);

1 cocoa butter melting machine, which melts cocoa butter, filters such pre-processed
food, and loads it into a tank;

1 pallet assembler machine, which properly organizes food bags in a moveable plat-
form;

3 identical freezing plants, globally serving 100000 m? of refrigerated warehouses.

Three process engineers and eight end users are exploiting the tool, and providing their
feedback.
From September to November 2008, we were able to collect the following cases:

1.
2.

3.

2 cases related to the goods movement carts maintenance process schema;
0 cases related to the tanks movement carts maintenance process schema;

7 cases related to the new version of the bag cutter machines maintenance process
schema (see section 3.4.2). 5 of them were further indexed under 2 prototypes;

2 cases related to the cocoa butter melting machine maintenance process schema;

13 cases related to the pallet assembler machine maintenance process schema. 3 of
them were further indexed under 1 prototype;

25 cases related to the freezing plants management process schema. The first 14
were collected during the first six weeks of usage, and were all indexed under 3
prototypes. Eventually they led to a process schema redefinition. The other 11
were collected during the following six weeks, and were related to the new version
of the process schema. 8 of them were further indexed under 3 prototypes.

The very low number of exceptions raised for devices 1, 2 and 4 in the list above are
justified by two reasons: the maintenance procedures are very simple, and the devices
rely on a very well established technology and design. Devices 1, 2 and 4, therefore, have
not been considered for measuring the impact of our tool on Interporto’s outcomes.

On the other hand, devices 3, 5, and 6 raised a relatively high number of exception.
This fact was foreseen by process engineers. Actually, machines 3 and 5 are not commercial
devices (they have been partly designed by Interporto engineers themselves), and are
still in their testing phase; therefore frequent exceptional needs can emerge during their

15

maintenance. Also observe that device 5 is composed by a very large set of simpler
modules. The collected cases often involved different modules, so that it was not possible
to organize them under the same prototype. This also explains why no new maintenance
process schema was issued by the process engineers for device 5 in these three months.

On the other hand, the freezing plants (device 6) management procedure is complex
per se, and (similar) exceptions are frequent: as a matter of fact, environmental conditions,
such as humidity and temperature, can strongly influence the freezers performances, and
have a significant effect on electrical and water consumptions, motivating tuning activities
and changes. Additionally, the I/O food flow in the refrigerated warehouses, and the initial
food temperature and humidity, have to be considered as well.

Thus, devices 3, 5 and 6 were very useful to measure the impact of the retrieval
facility of our tool, and device 6 was also useful to evaluate the impact of the case base
maintenance and schema revision suggestion facility (while engineers issued a revised
process schema for device 3 only during the pilot study). Details are provided below.

Impact of the retrieval facility.

The main advantage of the adoption of the tool, focusing on the retrieval facility, was
measured in terms of time: since, when raising an exception, end users were allowed to
retrieve similar cases occurred in the past, they were able to manage the current problem
more quickly, with respect to what happened before the tool was made available.

In particular, in 85% of the situations, end users could rely on (one of) the most similar
retrieved cases or prototypes, in order to manage the emergency at hand, since (its) their
motivations were indeed very close to the input case ones.

Thanks to end users’ time savings, Interporto obtained several objectively measurable
advantages:

1. machine unavailability time was reduced of about 20%, as an average, for devices 3
and 5. The freezing plants management procedure completion time was reduced of
about 10% in the first six weeks, and of a further 20% after the new version of the
process schema was issued;

2. 30% less overtime work had to be paid in the end users’ wages;

3. end users could employ their time to properly complete other, less urgent procedures,
which used to be delayed of several days before the tool was adopted;

4. as a consequence of items (1) and (3) above, with all devices working more properly
thanks to the quicker and more effective maintenance procedures, Interporto was
able to deliver its goods always on time during the evaluation period.

Outcomes (3) and (4) above were judged to be particularly relevant by Interporto
managers, since they allowed them to be more compliant with ISO 9004, a guideline
developed by the International Organization for Standardization (ISO), meant to improve
business organizations performances - see http : //www.iso.org/iso/home.htm.

However, in 15% of the situations, the tool was unable to retrieve very helpful sug-
gestions. This could be partly due to the relatively low number of cases stored in the

16

case base - a problem of knowledge competence that, very probably, will be automatically
overcome in the future, as the tool adoption goes on. On the other hand, the issue may
be also partly due to a low capability of the case features to capture the reasons why a
specific change was made. Textual comments may be helpful to clarify the motivations of
such “ambiguous” cases: in the future we will thus work on an automatic interpretation
of such information, in order to improve the tool reliability.

Finally, end users were interviewed, in order to assess the tool usability (consider that
they are not computer scientists). Globally, the tool interface was judged as quite easy
to use, and user friendly. However, all the eight end users needed a training phase before
using the system, and two of them, in several occasions, asked a computer technician
to help them. The further simplification of the tool graphical interface will be another
objective of our future work, and we will make a new release of the tool available as soon
as these changes are completed.

Impact of the case base maintenance and schema revision suggestion facility.

During the overall evaluation, Interporto engineers issued just two new versions of
the existing process schemas: one for the bag cutter machines (in the pilot study), and
one for the freezing plants (in the second phase of the evaluation procedure). As already
observed, the freezing plants management process is particularly complex, since it often
has to be tuned/changed depending on weather or food conditions: this motivates the
high number of (similar) exceptions happened during the three months of tool usage. On
the other hand, no enough cases and prototypes were collected for the other equipments,
as an average. A relatively high number of exceptions took place only for the pallet
assembler machine, but, as explained before, it was not possible to identify many common
suggestions in them.

The changes to the bag cutter machines process schema have been already discussed.
In the following, we will thus draw some conclusions about the impact of the tool adop-
tion, focusing on the case base maintenance and schema revision suggestion facility, by
considering the freezing plants management procedure.

From the beginning of September to mid October 2008, 14 cases were collected, re-
porting modifications to such procedure. The tool was able to identify common changes
in them, thus indexing all of them under 3 prototypes. Guided by memory navigation,
the responsible engineer was helped in defining a new version of the management pro-
cess schema, in which these very frequent modifications could be permanently addressed.
According to the engineer’s comments, the need for these modifications was not trivially
evident. Moreover, with the help of the tool, he could immediately issue a new schema in-
corporating all of the three changes, instead of reaching the same result by issuing several
versions in sequence, each one addressing only one change at a time, as it often happened
in the past.

The main advantage was thus measurable in terms of time, but also of quality: the
engineer was helped to quickly issue a better version of the process, which has been made
available since October 2008, and which allowed Interporto to:

e reduce energy consumption of about 8% and water consumption of about 15%.

17

Despite the fact that the procedure is probably still ameliorable (further exceptions
have been raised from mid October on), such savings help in keeping under control
the impact that Interporto’s activities have on the environment. This result is con-
sidered as very valuable by Interporto managers, since they aim at certifying the busi-
ness organization according to the ISO 14001 environmental quality standard (see hittp :
//www.iso.org/iso/home.htm). Such a certification is not compulsory in Italy, but tes-
tifies the will to make the activities of an organization more and more sustainable.

As a final consideration, regarding the graphical interface, its usage did not represent
a major issue for engineers, since they all have a strong computer science background.

We are aware that a deeper analysis of the impact of the tool adoption for long-term
process schema revision requires more time and more examples; the collection and the
interpretation of additional data about schema revision suggestions will thus be the main
objective of our evaluation work from now on.

4 Related work

A wide literature exists about dynamic changes in BPM, as regards both modifications at
the process schema level, and at the process instance level. An adaptive workflow approach
is typically envisioned when supporting process schema changes (see e.g. [18, 23, 24]).
The survey in [2] provides a comparisons of a set of works in this area, along the lines of
several correctness criteria. Besides the specific differences, the survey reveals a trade-off
between the complexity of the used representation model, and the flexibility of the system
during runtime. Such observation supports our choice of defining a rather limited (though
sufficiently expressive) set of representation primitives, in order to handle process changes
in an easier way.

However, note that our work is only loosely related to these ones, since we primarily
aim at supporting exceptions, i.e. changes at the process instance level. It is true that
we also provide a form of support to process engineers in schema revision, when it is
triggered by frequent exceptions; however, schema revision is not automated. Moreover,
we do not deal with the problem of migration, which is one of the main concerns of the
works described in [2]. Migration means ensuring that, after a process schema change has
been operated, instances that have not progressed too far will be executed according to
new schema, while instances whose state is not compliant with the new schema will be
executed according to the old one. Migration was not an issue in our application domain;
however, we will possibly consider this problem as a future research direction.

As regards the works in the area of handling changes at the process instance level,
which are more closely related to ours, they can be subdivided into three main categories

[2]:

e rule-based approaches (see e.g. [18]): they rely on the so called ECA (Event/Condition/Action)
rules [25] to automatically detect logical failures, and to determine the needed pro-
cess changes. ECA rules specify adaptation at an abstract and general level, inde-
pendently of any concrete execution, and are fired at execution time;

18

e goal-based approaches (see e.g. [26]): they formalize process goals, and then apply
planning techniques to automatically “repair” process instances when the goals are
not met (it is worth noting that current planning methods are unable to treat some
complex situations);

e process-driven approaches (see e.g. [1]): they try to restrict possible variants to the
process in advance, by using e.g. graph grammars and graph reduction rules.

A common feature of these approaches is the need for a typically hard and time-consuming
knowledge acquisition and formalization activity, which involves the cooperation of a
domain expert and of a knowledge engineer, in order to define the rule base or the required
process model and goals. This task might be extremely difficult in practice, especially
in those applications in which a strong domain theory does not exist, or knowledge is
rapidly changing, or the expert is not often available. Moreover, applying the formalized
knowledge in concrete cases during runtime might raise some issues, due to unexpected
peculiarities of the situation at hand, which cannot be completely captured by a domain
model or rule base. Finally, some kinds of changes simply cannot be preplanned at all:
most of the existing systems just deal with these situations by allowing an interaction
with the end user through the system (graphical) interface, without any kind of reasoning
support.

As observed in the Introduction, CBR seems to be a very well suited reasoning method-
ology for supporting also totally unexpected changes at the process instance level, since
it strongly relies on operative and unformalized knowledge.

Actually, the CBR methodology has already been exploited in the BPM domain. The
system in [27], for instance, uses generalized workflow templates (i.e. a kind of prototypes)
as well as concrete cases of previously defined workflows, in order to help the user in
authoring her model. However, this contribution deals with process schema modeling
from scratch, and not with process instance changing.

The first proposal towards the use of CBR in BPM specifically for exception handling
is represented by the work by Luo [28], which adopts a rule-based system for managing
dynamic changes in business processes, but couples it with a case-based retrieval facility,
able to support the end user in handling unforeseen situations. With respect to our
contribution, here the use of CBR is much simpler and more limited, basically because
CBR is not the main reasoning methodology in Luo’s work.

CBR for handling exceptions in BPM is more extensively resorted to by Weber [19].
Weber captures exceptions by means of a conversational CBR approach, in which features
elicitation partially depends on the interaction between the user and the system, and many
features are in the textual form. On the other hand, we have been able to define the case
structure in advance, thus relying on a more classical CBR approach. Weber’s system
periodically evaluates the case base content, in order to identify dependencies among
cases: for instance, it is able to reveal if, when a certain change cl is applied, a second
change c¢2 is always applied as well. Such a facility can be seen as a means to support the
process engineer for an informed revision of the process schema, after several exceptions
have been collected. We have not treated this aspect explicitly; however, since we store

19

atomic changes as cases (as Weber does), and we allow the user to reconstruct the whole
set of changes that took place within a single exception date, we could easily highlight
the same kind of relations; the implementation of this feature is foreseen as a future work.

Minor [29] has developed another pure CBR system for agile workflow support, which
enables process revision. In the system, cases represent a process revision, as a pair of
two workflows: the original one, and the modified one. These examples of alterations
can be retrieved to support new changes, in similar situations. Very interestingly, Mi-
nor distinguishes between changes in tasks and changes in the activity flow, and defines
two different metrics for dealing with them. This aspect, which was also considered by
Ciccarese [30] in the medical field, will be a topic for our future research as well.

However, neither Weber nor Minor, in the works cited above, describe an automatic
procedure for maintaining the case base, as we do with prototypes. On the other hand,
in our opinion case base maintenance is extremely important in the BPM domain, since
the case base can rapidly grow, and thus needs to be organized, in order to speed up
retrieval, and to avoid redundancies. As observed, prototypes hierarchically organize the
case base content, can make retrieval faster, and can also support long-term revisions of
the process, an issue which is only partially afforded in [19]. By allowing the extraction of
more generalized (and yet unstructured) knowledge from ground cases, prototypes reveal
frequent similarities, that can be relied upon for schema revision. On the other hand, they
allow not to disregard peculiar details - left in the ground cases features - which would
be lost in rule/model-based reasoning systems. To our knowledge, the use of prototypes
thus represents the most interesting and original contribution of our approach.

5 Conclusions

Exceptions provide great opportunities for a BPM system, to learn, correct itself and
evolve. In this paper, we have described an approach for handling exceptions in BPM
systems, based on the CBR methodology. The choice of CBR allows to automatically
acquire and increase operative knowledge, without requiring a hard and time consuming
formalization of knowledge itself, as it is needed by other methodologies, such as rule-based
or model-based reasoning. Moreover, we resort to prototypes for case base maintenance.
Prototypes allow the extraction of more generalized (and yet unformalized) knowledge
from ground cases, and enable to organize the case base, thus making retrieval faster, and
avoiding redundancies. Additionally, by retrieving prototypes, the process engineer can
discover and analyse frequent modification, thus being supported in a long-term revision
of the process schema.

From a technical viewpoint, some enhancements are foreseen as a future work. In
particular, at the moment we don’t take into account the textual exception motivations
introduced by end users, neither in the retrieval nor in the maintenance phase. An effort
to take advantage from this free text feature would be very relevant, as suggested by the
results of our evaluation study, since users’ motivations may help in better distinguishing
between potentially ambiguous situations. Textual CBR is an emerging research area

20

(see e.g. [31]), which is making available a set of suitable techniques for textual features
representation and retrieval, that could be fruitfully exploited in our application.

Always according to the evaluation results, we will study how to make the graphical
interface even more user friendly, in order to be easily adopted by all end users.

Moreover, we plan to develop a facility to automatically extract dependencies among
cases belonging to the same exceptional situation, along the lines described in [19].

We will also study how to distinguish between changes in the process tasks and changes
in the activity flow, as in [29].

Finally, we will continue our evaluation at Interporto di Rivalta Scrivia S.p.A. More
data about the usefulness of the tool for long-term process schema revision, in particular,
will be collected and analysed during the future evaluation activity. We also plan to make
available a new release of the software, including the enhancements discussed above, as
soon as possible. Extensions and adaptations in order to adopt the tool in different
business contexts are also foreseen.

6 Acnowledgements

The author is grateful to the personnel of Interporto di Rivalta Scrivia S.p.A. who is
taking part in the evaluation activity, and in particular to Dr. Giacomo Mongini.

References

[1] P. Heimann, G. Joeris, C. Krapp, and B. Westfechtel. Dynamite: dynamic task
nets for software process management. In Proceedings International Conference of
Software Engineering, pages 331-341, Berlin, 1996.

[2] S. Rinderle, M. Reichtert, and P. Dadam. Correctness criteria for dynamic changes
in workflow systems - a survey. Data and Knowledge Engineering, 50:9-34, 2004.

(3] A. Aamodt and E. Plaza. Case-based reasoning: foundational issues, methodological
variations and systems approaches. AI Communications, 7:39-59, 1994.

[4] J. Surma and K. Vanhoof. Integration rules and cases for the classification task. In
M. Veloso and A. Aamodt, editors, Proc. 1st Int. Conference on Case-Based Reason-
ing, volume 1010 of Lecture Notes in Computer Science, pages 325-334, Sesimbra,
Portugal, October 1995. Springer.

[5] L.K. Branting and B.W. Porter. Rules and precedents as complementary warrants.
In Proc. of 9th National Conference on Artificial Intelligence, Anaheim, CA, USA,
July 1991. AAAT Press.

[6] 1. Bichindaritz, E. Kansu, and K. Sullivan. Case-based reasoning in care-partner:
Gathering evidence for evidence-based medical practice. In B. Smyth and P. Cun-
ningham, editors, Proc. 4th European Workshop on Case-Based Reasoning, volume

21

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

1488 of Lecture Notes in Computer Science, pages 334-345, Dublin, Ireland, Septem-
ber 1998. Springer.

L. Gierl and S. Stengel-Rutkowski. Integrating consultation and semi-automatic
knowledge acquisition in a prototype-based architecture: Experiences with dysmor-
phic syndromes. Artificial Intelligence in Medicine, 6:29—-49, 1994.

J.L. Kolodner. Case-Based Reasoning. Morgan Kaufmann, San Mateo, CA, 1993.

I. Watson. Applying Case-Based Reasoning: techniques for enterprise systems.
Morgan-Kaufmann, 1997.

J. Zhu and Q. Yang. Remembering to add: competence-preserving case-addition poli-
cies for case base maintenance. In Proc. International Joint Conference on Artificial
Intelligence. Morgan Kaufmann, San Mateo, 1999.

B. Smyth and E. McKenna. Building compact competent case bases. In LNCS 1650,
pages 329-242. Springer-Verlag, Berlin, 1999.

D.B. Leake, B. Smyth, D.C. Wilson, and Q. Yang(eds). Special issue on maintaining
case based reasoning systems. Computational Intelligence, 17(2):193-398, 2001.

K. Maximini, R. Maximini, and R. Bergmann. An investigation of generalized cases.
In K. D. Ashley and D. Bridge, editors, Proceedings of the 5th International Con-

ference on Case Base Reasoning (ICCBR’03), volume 2689 of LNAI, pages 261-275,

Trondheim, Norway, June 2003. Springer.

C. K. Riesbeck and R. C. Schank. Inside Case-Based Reasoning. Lawrence Erlbaum
Associates, Inc., Hillsdale, New Jersey, 1989.

R. Bergmann and W. Wilke. On the role of abstraction in case-based reasoning.
volume 1186 of LNAI pages 28-43. Springer, 1996.

E. Bareiss, B. Porter, and C. Wier. Protos: an exemplar-based learning apprentice.
International Journal of Man-Machine Studies, 20:549-561, 1988.

T. Reinartz, 1. Iglezakis, and T. Roth-Berghofer. On quality measures for case-base
mainenance. Computational Intelligence, 17:214-234, 2001.

F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolutions. Data and Knowl-
edge Engineering, 24:211-238, 1998.

B. Weber, M. Reichert, and W. Wild. Case-based maintenance for CCBR-based
process evolution. In T. Roth-Berghofer, M. Goker, and H. Altay Guvenir, editors,
Proc. European Conference on Case Based Reasoning (ECCBR) 2006, LNAI /106,
pages 106—-120. Springer, Berlin, 2006.

22

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

R. Schmidt and L. Gierl. Case-based reasoning for antibiotics therapy advice: an in-
vestigation of retrieval algorithms and prototypes. Artificial Intelligence in Medicine,
23:171-186, 2001.

J. Lieber. Strong, fuzzy and smooth hierarchical classification for case-based problem
solving. In F. van Harmelen, editor, Proceedings of the 15th European Conference on
Artificial Intelligence (ECAI-02), Lyon, France, pages 81-85. IOS Press, Amsterdam,
2002.

D.R. Wilson and T.R. Martinez. Improved heterogeneous distance functions. Journal
of Artificial Intelligence Research, 6:1-34, 1997.

S. Sadiq, O. Marjanovic, and M. Orlowska. Managing change and time in dynamic
workflow processes. IJCIS, 9:93-116, 2000.

W. VanderAalst and T. Basten. Inheritance of workflows: an approach to tackling
problems related to change. Theoretical Computer Science, 270:125-203, 2002.

K.R. Dittrich, S. Gatziu, and A. Geppert. The active database management system
manifesto: A rulebase of adbms features. In Lecture Notes in Computer Science 985,
pages 3—20. Springer, 1995.

C. Beckstein and J. Klausner. A planning framework for workflow management. In
Proc. workshop on Intelligent Workflow and Process Management, Stockholm, 1999.

T. Madhusudan, J.L. Zhao, and B. Marshall. A case-based reasoning framework for
workflow model management. Data and Knowledge Engineering, 50:87-115, 2004.

Z. Luo, A. Sheth, K. Kochut, and J. Miller. Exception handling in workflow systems.
Applied Intelligence, 13:125-147, 2000.

M. Minor, A. Tartakovski, D. Schmalen, and R. Bergmann. Agile workflow technol-
ogy and case-based change reuse for long-term processes. International Journal of
Intelligent Information Technologies, 4(1):80-98, 2008.

P. Ciccarese, E. Caffi, L. Boiocchi, A. Halevy, S. Quaglini, A. Kumar, and M. Ste-
fanelli. The newguide project: guidelines, information sharing and learning from
exceptions. In Proc. Artificial Intelligence in Medicine Europe (AIME) 2003, pages
163-167. Springer, Berlin, 2003.

N. Wiratunga and L. Lamontagne. Workshop on Textual Case Based Reasoning:
reasoning with text, European Conference on Case Based Reasoning (ECCBR) 2006.
Oludeniz, 2006.

23

