Dipartimento di Informatica
Universita del Piemonte Orientale “A. Avogadro”
Via Bellini 25/G, 15100 Alessandria
http://www.di.unipmn.it

universita
degli studi
del piemonte
orientale

Knowledge-Free Scheduling Algorithms for Multiple Bag-ofTask Applications on

Desktop Grids
Authors: Cosimo Anglano, Massimo Canonico
{cosimo.anglano,massimo.canoni@di.unipmn.it

TECHNICAL REPORT TR-INF-2009-02-01-UNIPMN
(February 2009)

The University of Piemonte Orientale Department of Comp&@ence Research Technical Reports are available via WWW
at URLhttp://ww. di.nfn.unipm.it/.
Plain-text abstracts organized by year are available irditectory

Recent Titles from the TR-INF-UNIPMN Technical Report Series

2008-09 Case-based management of exceptions to business pracassggproach exploiting prototypedontani, S., December
2008.

2008-08 The ShareGrid Portal: an easy way to submit jobs on computatiGrids Anglano, C., Canonico, M., Guazzone, M.,
October 2008.

2008-07 BuzzChecker: Exploiting the Web to Better Understand 8gdt@irini, M., Montangero, S., July 2008.

2008-06 Low-Memory Adaptive Prefix Codin@Gagie, T., Nekrich, Y., July 2008.

2008-05 Non deterministic Repairable Fault Trees for computingiropt repair strategy Beccuti, M., Codetta-Raiteri, D.,
Franceschinis, G., July 2008.

2008-04 Reliability and QoS Analysis of the Italian GARR netwdkbbio, A., Terruggia, R., June 2008.

2008-03 Mean Field Methods in performance analysribaudo, M., Telek, M., Bobbio, A., March 2008.

2008-02 Move-to-Front, Distance Coding, and Inversion Frequeadrevisited Gagie, T., Manzini, G., March 2008.

2008-01 Space-Conscious Data Indexing and Compression in a StrepWode] Ferragina, P., Gagie, T., Manzini, G., February
2008.

2007-05 Scheduling Algorithms for Multiple Bag-of-Task Applicais on Desktop Grids: a Knowledge-Free Approgachnonico,
M., Anglano, C., December 2007.

2007-04 Verifying the Conformance of Agents with Multiparty Praitsc Giordano, L., Martelli, A., November 2007.

2007-03 A fuzzy approach to similarity in Case-Based ReasoningBlgitto SQL implementatigriPortinale, L., Montani, S.,
October 2007.

2007-02 Space-conscious compressi@agie, T., Manzini, G., June 2007.

2007-01 Markov Decision Petri Net and Markov Decision Well-formeet RormalismsBeccuti, M., Franceschinis, G., Haddad,
S., February 2007.

2006-03 New challenges in network reliability analysBobbio, A., Ferraris, C., Terruggia, R., November 2006.

2006-03 The Engineering of a Compression Boosting Library: The@yractice in BWT compressipRerragina, P., Giancarlo,
R., Manzini, G., June 2006.

2006-02 A Case-Based Architecture for Temporal Abstraction Comdijon and ProcessingPortinale, L., Montani, S., Bottrighi,
A., Leonardi, G., Juarez, J., May 2006.

2006-01 The Draw-Net Modeling System: a framework for the designtardsolution of single-formalism and multi-formalism
models Gribaudo, M., Codetta-Raiteri, D., Franceschinis, Gnuday 2006.

2005-06 Compressing and Searching XML Data Via Two Zparragina, P., Luccio, F., Manzini, G., Muthukrishnan [Bcember
2005.

Knowledge-Free Scheduling Algorithms for
Multiple Bag-of-Task Applications
on Desktop Grids

Cosimo Anglano, Massimo Canonico
C. Anglano and M. Canonico are with the Univeasdel Piemonte Orientale,
Dipartimento di Informatica, Alessandria (Italy).
E-mail:cosimo.anglano@unipmn.it, massimo.canonicoi@n.it

Abstract

Desktop Grids have the potential to provide an effective;tmst solution to the computing needs of a variety
of distributed applications consisting in a set of indeparidasks. However, such a potential can be exploited
in practice only if suitable scheduling strategies are @ygyd. In this paper we propose a setkobwledge-free
scheduling algorithms (that is, they do not require anyrmi@tion concerning either resource status or application
characteristics) that are able to effectively scheduletafseompeting applications simultaneously submitted to a
Desktop Grid, unlike previous solutions that are able td daly with a single application at a time. We study, via
simulation, the performance of these strategies, as welheis ability of efficiently using the available resources,
for a wide range of Desktop Grid configurations (ranging figmunteer Computing systems to Enterprise Desktop
Grids) and application workloads. Our results show thatstieeduling algorithms we propose outperform naive
alternative like FCFS (thele factostandard for Desktop Grids) both in terms of applicationfgrenance and
efficient resource usage. Furthermore, these results ensbto identify which one of the proposed algorithms
should be used for a given combination of Desktop Grid comdiion and application workload.

. INTRODUCTION

The widespread diffusion of the Internet has created a newhmarge scale opportunity for Grid
computing. Millions of desktop PCs, whose computing andegfe capacity is used only in a small part, are
indeed connected to wide-area networks both in the enserand in the home. The aggregation of these
independent resources into integrated computing plagpanhieved by means of suitable middlewares
(e.g.,OurGrid [1], BOINC [2], XtremWeD[3], United Deviceq4], and Data Synapsg5]), can provide
unprecedented amounts of raw computing power to distribapplications. These platforms, known in the
literature adDesktop Grid46], [7], have been profitably used in a large number of prgjée.g.,The Great
Internet Mersenne Prime Sear¢8], Seti@homg9], Folding@hom¢10], FightAids@homg11], just to
name a few), thanks to their ability of providing amounts afvrcomputing power that far exceed the
capabilities of traditional Grid platforms at a fraction thieir costs. The Desktop Grid paradigm, born in
academic settings, has been quickly adopted in the erderptere, however, it has been interpreted in a
different way. As a matter of fact, academic Desktop Grigsdgily (but not only) include machines owned
by independent users that voluntarily “donate” to the sysaefraction of capacity of their machines (hence
their nameVolunteer Computing Syste)nLonversely, Desktop Grids used within a single enteepris
(denoted asEnterprise Desktop Grigscomprise resources owned by that enterprise only, thahim t
way can obtain a degree of data and application confidemtiaigher than those attainable by Volunteer
Computing systems.

Regardless of their academic or enterprise nature, how@esktop Grids share the same core features:
like traditional Grids, they are characterized by a wideuese distribution and heterogeneity, but unlike
them they use resources that are not exclusively dedicatednt Grid applications. As a consequence,
these resources exhibit a much higher degree of volatdihge they may be reclaimed by the respective
owners at any time without any advance notice, and withoungabout the application that was using it.

For this reason, Desktop Grids are generally consideradérbatited to the execution of loosely-coupled
parallel applications, that are able to tolerate the failaf individual application processes much better
than tightly-coupled ones. Among these applicati®eg-of-Task$12], [13] (or simplyBoTsfor brevity)

— parallel applications whose tasks are completely indeégeifrom one another — have been shown [14]
to be particularly suited to Desktop Grids and consequetdégpite their simplicity, are used in a variety of
domains, such as parameter sweeps, simulations, frattalaions, computational biology, and computer
imaging.

In order to enable BoTs to profitably exploit Desktop Gridsitable scheduling strategies, able to
deal with the heterogeneity of resources, the fluctuationthe performance they deliver because of
the simultaneous execution of competing applications, thed failures due to their crashes/reboots or
unplanned departures, must be adopted. In response teetls various scheduling algorithms that attempt
to minimize themakesparof BoTs (that is, the time taken to execute all the tasks ing baspite of the
above problems have been proposed in the literature [19]-These algorithms, however, are able to deal
only with a single BoT at a time so, as shown later in this pap®en the workload consists in a set of
BoTs concurrently submitted by a community of potentiailstiehct users, are not able to properly perform,
and yield higher makespans for individual BoTs, lower reseuwitilization, or both. Consequently, these
algorithms are appropriate for situations where there ig@les BoT that exclusively uses a Desktop Grid
infrastructure (e.g., like in volunteer-computing prage¢9], [20]), but they fail to provide an adequate
solution when the same infrastructure is shared by many etingpapplications. Such scenarios, however,
are increasingly becoming commonplace both in the acadamdain the enterprise. On the one hand,
Desktop Grid infrastructures that federate resourcesnigelg to independent (small) research institutions
(such asShareGrid[21]) are becoming an established reality, and the worldahey run are naturally
composed of applications of different types independestigmitted by distinct user communities. On
the other hand, similar situations arise also in the ent&pwhere different R&D groups share the same
Desktop Grid infrastructure to run different applicatiomghout coordinating among them to ensure the
exclusive usage of the infrastructure. Therefore, scheglalgorithms able to properly schedule a set of
BoT applications concurrently submitted for executiontie same Desktop Grid are crucial in order to
exploit the potential provided by these platforms.

In spite of the above considerations, the analysis of thevaglt literature reveals that the problem of
schedulingmultiple BoTs concurrently submitted for execution to the same [gskirid has not been
studied yet in a systematic way. This paper fills this gap mppsing a set oknowledge-freescheduling
algorithms for multiple BoTs (i.e., algorithms not relyirmn any information concerning the status of
resources or applications), and by studying their perfoicedor a large set of Desktop Grid configurations
and workloads. Our results clearly show that the schedwdiggrithms proposed in this paper are able
to effectively schedule application workloads consistofgmultiple BoT submitted concurrently, and
that they outperform existing scheduling algorithms forsktep Grids, that — as already discussed —
assume that only a single BoT must be scheduled at a given tivaeinstead result in unacceptably low
application performance and resource utilization. Furttfuze, we are also able to identify which one of
the various algorithms we propose is better suited to a Bpeambination of Desktop Grid configuration
and application workload.

The rest of the paper is organized as follows. Section Iludised related work, while in Section Il we
precisely define the scheduling problem for multiple BoTrs] &ve present our scheduling algorithms. In
Section IV we describe the results we obtained in our evaln@xperiments. Finally, Section V concludes
the paper and outlines future research work.

[I. RELATED WORK

In the recent past, the problem of schedulingividual BoTs on Desktop Grid has been actively
studied. The scheduling algorithms proposed in the liteeatan be classified either ksowledge-based
or knowledge-freeKnowledge-based algorithms [15], [17], [18] assume tln#t $cheduler knows and

exploits various amounts of information concerning resesr(e.g., the computing power they deliver
to applications, their availability, etc.), applicatio(esg., the execution times of the tasks). However, it
has been observed [14] that in Desktop Grids the informat@mmcerning resource status may be very
hard to collect (because of resource volatility) and is rofigaccurate (because of resource contention).
Furthermore, the estimation of task execution times onrbgémeous, shared resources is still an open
research problem for which only partial solutions exist][423]. Knowledge-free strategies [14], [16],
[19], that instead do not rely on any system or applicatidarmation, have therefore been proposed as a
solution to the above problem, and have been shown [14]tf2d¢ able to obtain performance comparable
to knowledge-based ones at the price of using more resouhees strictly necessary. Therefore, in
situations where plenty of computing resources are aaildbey represent a viable solution.

Although the above scheduling algorithms are able to effelgt schedule BoTs in the hypothesis that
they arrive one at a time (that is, at any single time only ood B present in the system), they do not
consider scenarios in whiamultiple BoTs must be scheduled. Existing approaches to schedulgpfaul
BoTs use either very simple algorithms (e.g., FCFS [3], [@5fandom selection [24]) that — as shown
later in this paper — fail to provide adequate performancegalgorithms that adopt a knowledge-based
approach and pose restrictions on the communication tggabb the Desktop Grid [26].

Unlike the above solutions, the scheduling strategiesepitesl in this paper are knowledge-free and do
not pose restrictions on the architecture of the Desktop.Gri

IIl. SCHEDULING ALGORITHMS FOR MULTIPLE BAG-OF-TASK APPLICATIONS

In this paper we consider the problem of scheduling a set Bwhsurrently submitted to a Desktop
Grid in such a way to minimize theifurnaround Timethat is defined as the time elapsing from the
submission of a BoT to when its last task is completed. Theanaund timel7’(B;) of a BoT B; can be
in turn decomposed in itgvaiting TimeWT'(B;) (the time elapsing from its submission to when its first
task is dispatched on a resource) and inMigkespan)/S(B;) (the time elapsing from the beginning of
the execution of its first task to the completion of the last)oithat is:

TT(B;) = WT'(B;) + MS(B) 1)

As indicated by Eq.(1), turnaround time can be minimizedibyustaneously minimizing both the waiting
time and the makespan of individual BoTs. Achieving this idilaneous minimization for every BoTs
B;, however, may not possible in general, since the minimepatif M S(B;) may adversely affect the
makespan and the waiting time of other BoTs. More specifictdl minimize M S(B;) it is necessary to
allocate toB; at least one machine for each one of its taskslowever, giving toB; at a single time
all the resources it requires may not leave enough resotocestisfy the needs of another Bdd;, with

the consequence that its makespan, its waiting time, or bwth increase with respect to the case in
which less resources had been givernBio As a matter of fact, if none oB;’s tasks has been scheduled
yet, the assignment of too many resourcesstomay procrastinate the time instant at whigh's first
task will be dispatched, thus making7’'(B,) increase. Furthermore, B, has not enough resources to
run an instance for each of its task®,S(B;) may increase as well. Therefore, a sensible scheduling
strategy must seek to strive a balance between allocatireat¢h BoT enough resources to reduce its
makespan, and to leave enough resources to other BoTs gvaitthe queue to reduce their waiting time
and makespan as well.

The problem of scheduling a set of independent BoTs can bessence, reduced to the problem
of selecting one of the tasks waiting to be scheduliedk(selectiopy an available machinen(achine
selection, and to dispatch the selected task on the chosen machisk.s&ection requires in turn that
one of the BoTs that still have to be completed is selectetd(BaT selectioly and that one of its tasks is
selected and dispatched for executiord{vidual BoT scheduling Accordingly, the scheduling algorithms

In practice, however, the presence of heterogeneity aratilityl requires — as discussed later — to use a certain degfreeplication, so
the number of resources that must be allocated@tdo minimize its makespan is larger than that of its tasks.

we propose in this paper couple a BoT selection policy witleteeduling algorithm for individual BoTs.
More precisely, we consider five different BoT selectioni@ek (four of which are novel contributions of
the present work), that are combined with a knowledge-fnélevidual BoT scheduling algorithm (WQR-
FT [16]), developed as part of our previous work, that — at lbest of our knowledge — provides the
best performance among similar algorithms. Thereforehis paper we propose five different scheduling
algorithms for multiple BoTs.

In the following subsections, after a description of thetaysmodel on which these algorithms are
based (Sec. IlI-A), we will present the general structurewf scheduling algorithms (Sec. 11I-B) and the
various BoT selection policies on which they are based (BeC).

A. System model

In our work we assume that Desktop Grids are composed by af sedlependently-owned machines,
connected by a public network (e.g., the Internet), thaseéhmachines may fail, or may be reclaimed by
the respective owner at any time without any advance naiee that they can reappear in the system after
a variable and unknown amount of time. Thus, the status di ea&chine alternates betweawmailable
andunavailable and the time spent in the available state (ih@e to failurg and in the unavailable state
(the repair time are both assumed to be random variables.

We also assume that, in order to tolerate resource failunelsdepartures, as well as to promote
application performance [16], [27], [28], the Desktop Gndddleware provides a checkpointing-and-
restart mechanism. More specifically, we assume that thellevicire automatically takes checkpoints of
running tasks by usingser-levelprocess checkpointing techniques [29] (e.g., [30], [3Where a new
checkpoint is automatically taken by code running in usecepwhen specific system calls are invoked
by tasks. Furthermore, we assume that these checkpoindaaezl on a checkpoint storage system (e.g.
[32], [33]) that enables all the machines in the Desktop Gidccess them.

Finally, we assume that scheduling is performed by a cem#dhlscheduler, that receives all the BoT
submissions and uses a separate queue for each BoT to ha#khts that still have to be completed
(pending tasKs

B. Scheduling Algorithms

As already anticipated, the scheduling algorithms progadsethis paper work by coupling a BoT
selection policy with the same individual BoT schedulingaxlthm. Consequently, the five scheduling
algorithms proposed in this paper share a common structtrieh is reported in Fig. [lI-B (where the
notation summarized in Table | is used) in which BoT seleci® performed first, and then individual
BoT scheduling follows.

TABLE |
NOTATION USED IN THE SCHEDULING ALGORITHM DESCRIPTION

Symbol Meaning

M The set of available machines

M (t;) Machine allocated to task

T(M;) Identifier of the task allocated to machiadé;

B(t;) Identifier of the bag to which task belongs

Repl(t;) The set of running replicas of tagk

Q(B;) Scheduling queue associated with B&T

Q The set of queues associated to submitted and uncomplefésl Bo
RepThresh | The replication threshold

The pseudo-code listed in Fig. 1 encompasses a fixed pars¢hatules individual BoTs by means of
WQR-FT, and a variable part performs BoT selection. A speasifheduling algorithm is obtained from
the pseudo-code by instantiating it with one of the BoT delacpolicies discussed later.

The scheduler works in an event-driven way, that is it waitee (3) for the occurrence of a scheduling-
related event, that is an event that requires the schedufeténtially take a scheduling decision, and then
it performs BoT selection (line 21) and individual BoT schkag (lines 22-28). The first scheduling-

1 M= {Ml,MQ,...,MN};
2 while true do
3 wai t (event);

4 switch eventdo

5 casearrival of BoT B;:

6 create queu€)(B;); addQ(B;) to Q;

7 for each task; € B;, insertt; into Q(B;);

8 casecompletion of replica-* of taskt;:

9 add M (r*) to M,

10 foreach task replicar? € Rep(t;), ¥ # r* do

11 terminater?,

12 add M(r¥) to M;

13 endfch

14 deletet; from Q(B(t;));

15 if (Q(B(t;)) =0) then removeQ(B(t;)) from Q;

16 casefailure of machinel/;:

17 Repl(I’(M;)) — removel; from the set of available machines;
18 caserepair of machine)M;: add M; to the setM of available machines;
19 endsw

20 while (Q # 0 and M # () do

21 B; = SelectBag();

22 CS(Bj) ={t; € Q(B,)|Rep(t;) < RepThresh};

23 next_task =ty € C'S(B;) such thatvt; € CS(B;),t; # tn, Rep(tn) < Rep(t;);
24 starting_point(next_task) = SelectBestCheckpointgext task);

25 M; = RandomSelect(\);

26 removel; from the setM of available machines;

27 dispatch§tarting_point(next_task),M;);

28 Repl(next_task)++;

29 endw

30 endw

Fig. 1. Pseudo-code of the scheduler

related event is the arrival of a new Bd3; (lines 5-7), that is handled by creating a new quéns;),
in which all the tasks belonging tB; are placed, that is added to the g&t

The next scheduling-related event is the successful tetmoim of areplica of taskt; (lines 8-15). As
will be discussed later, WQR-FT uses task replication tertaike both poor scheduling decisions (due to
the lack of any resource or task information) and the ocogaeeof machine faults. That is, it creates
replicas of already-running tasks when there are availalehines, and terminates all the running replicas
of a task when the first one successfully terminates its a@wecuTherefore, when the first replica of a
task terminates, all other replicas of the same task are aratedy terminated by the scheduler (line 11),
and the machine they used are placed in the/getof available machines (lines 9 and 12). Next,

is removed from the queu@(B(¢;)) of the corresponding BoT (line 14), since this task — haviegrb
completed — is no longer pending. Furthermore,; ivas the last pending task @(B(¢;)), its termination
implies also the termination of the whole BoT, that is hadddg removing the corresponding task queue
Q(B(t;)) from the setQ of active BoT queues (line 15).

The last two scheduling-related event correspond to tHeréaand to the repair of a machine of the
Desktop Grid. In case of failure of machidé; (lines 16—17), the number of replicas of the corresponding
taskT'(M;) is decremented by one (this action, as discussed laterafféitt the decisions taken by WQR-
FT) and); is removed from the set of available machines. Conversdignna previously-failed machine
M; is repaired and reappears in the Desktop Grid, the only mdhiat is performed is to add it to the set
M (line 18).

When the processing of the just occurred event is compleiedscheduler checks (line 20) if there
are tasks to be scheduled, i.e. that there are pending ta@sksd) and available machines\{ # ¢). If
there are no tasks to be scheduled, the scheduler goes bl& 8to wait for the next event. If, instead,
there is scheduling work to be done, the scheduler first tsethe next BoTB; from which the next task
will be chosen by calling th&elect_Bag() procedure (line 21) (that implements one of the BoT selactio
policies discussed in Sec. IlI-C), and théh is scheduled by means of the WQR-FT algorithm (lines
22-28).

WQR-FT is a replication-based scheduler, that is it creggpBcas of already-running tasks when there
are enough available resources. Although, as discussed taplication is used to compensate the lack
of information, it also provides fault tolerance since, sse of failure of a task replica, the other ones
will continue their computation. WQR-FT works by keepingdk of the number of running replicas of
each task, and by always choosing the task that has the lowegier of running replicas (in case of tie,
random selection is used). rplication threshold (RepThreshk)an upper limit on the number of running
replicas per task — is set in order to avoid to waste too masgurees (a replica that does not successfully
terminate wastes the computing cycles used to run it). Whiaslaof B; has to be scheduled, WQR-FT
builds thecandidate set’'S(B;) (line 22) — the set of tasks that have a number of runningcaglstrictly
smaller than the replication threshold — and then seleetdabk inC'S(B;) having the smallest number
of running replicas (line 23). Then, theest checkpointor the chosen task is selected (see below), one
of the available machines is chosen at random (line 25) sonib&nowledge about resource status is
required), and the new task replica is started on it (line 28)

The concept of best checkpoint of a given task, that is defamedhe checkpoint generated by the
replica that has completed the largest part of its work, legnbntroduced in WQR-FT in order to further
enhance application performance. Starting a new replima fithe best checkpoint of the corresponding
task (line 24), rather than from scratch, promotes indeatbprance as the new replica leverages the
computing work already performed by the one that producedbibst checkpoint. It is worth to point
out that this assumption does not limit the generality of smlution, as user-level checkpointing systems
can be easily extended, as described below, to provide wtecheckpoint selection capability. User-level
checkpointing works by taking a checkpoint each time a tasdcates a system call so, since all the
replicas of the same task execute the same code, the rdpdicattany given point in time has generated
the largest number of checkpoints is the one that has extdthéelargest number of system calls, that
corresponds to say that it has completed the largest amdéuwvar&. Therefore, in order to determine the
best checkpoint for a given task, it is sufficient to keepKkrat the number of times that a checkpoint
has been taken for each of its replicas.

C. BoT Selection Policies

The BoT selection policy has a direct effect on both the wgitime (since it determines when the
first task of a BoT is scheduled) and the makespan (sinceetmétes the number of machines allocated
to each BoT). Therefore, it must be carefully crafted in orttebe able at the same time to allocate
enough resources to each BoT to reduce its makespan, anstiibute the available resources among all

the BoTs in order to reduce their waiting time. In this paper pvopose the following set of five BoT
selection policies, that differ in the way they attempt thiage the above balance:

« First Come First Served - Exclusif€CFS-Excl): This policy is a straightforward extensiontoé
classical FCFS strategy used to schedule individual BoTiggimns on Desktop Grids, and consists
in simply serializing the execution of the various BoTs adaag to the order of their arrival. More
specifically, BoTs are scheduled in the order of their alrigad the resources of the Desktop Grid
are exclusively allocated to the currently running BoT (tisa no task of any other BoT is executed
until the current one is completed). In order to fully exphali the resources, the replication threshold
is raised to a potentially unlimited value. This correspomal say that — when there are no longer
pending tasks for the current BoT — the machines that becoereafe kept busy by starting additional
replicas of the tasks that are still running;

« First Come First Served - Sharg@rCFS-Share): variant dFCFS-Exclin which the Desktop Grid
is not exclusively allocated to a single BoT. AC€FS-Exc] BoTs are scheduled according to FCFS
but, if the first BoT in FCFS order has no longer pending tasksjachine that completes its task
is allocated to the BoT that comes next. Therefore, as thebeuwf completed tasks of the current
BoT application increases, the number of resources a#dcti the next BoT in the FCFS order
increases as well;

« Round Robin(RR): in this policy, the various BoTs are scheduled in tuccaading to a circular
order, starting from the first one i@ (the oldest BoT among the ones that still have to be completed
to the last one inQ;

« Round Robin - No Replica FirgRR-NRF): this policy is a variant dRRthat gives priority to BoTs
that do not have any task instance running. That is, when ¢hedsiler is triggered, if there is a
set B, of BoTs that do not have any task replica running, the circolaer of BoT selection is
temporarily suspended, and BoTs) are repeatedly selected until every BoT has at least a task
running. Starting from that moment, circular BoT selectismestored:;

« Longest Idle(Longldle): this policy is motivated by the consideratidrat the turnaround time is
often dominated by the waiting time, especially for high load intensities. This policy attempts to
reduce waiting time by giving preference to the BoT hostimg task that exhibits the largest waiting
time, defined as the total amount of time in which the task fes o running replicas.

IV. EXPERIMENTAL EVALUATION

In order to asses the effectiveness of the proposed schgaqudiicies, we performed an exhaustive study,
carried out by means a discrete-event simulator, in whicltevepared them for a large set of operational
scenarios covering the whole landscape of Desktop Grid ganations and application workloads.

In our evaluation we compared the various scheduling algos in terms of the performance they
deliver to BoTs, and their ability to maximize the utilizati of the Desktop Grid resources. Delivered
performance is measured by the averdagearound Time (TTdf BoTs (defined as the arithmetic average
of the turnaround time of individual BoTs — as defined in E.(The ability of a scheduling policy to
efficiently use resources is instead quantified by means eR#lative Wasted Time (RWJefined as
the fraction of computation time wasted to ruselesseplicas. A replica is considered useless if it is
terminated by the scheduler (as consequence of the suglcesgipletion of the first replica of the same
task), or because of a machine crash, without having evelugex a checkpoint better than the one stored
for the corresponding task.

In the rest of this section we describe the Desktop Grid carditions first (Section IV-A), we continue
with the description of the workloads (Section IV-B), an@nhwe conclude with the results obtained in
our simulation experiments (Section IV-C).

A. Desktop Grid configurations

Generally speaking, Desktop Grids differ from each othertarms of the heterogeneity and the
availability of their resources. In order to ensure the gaiitg of our results, in this study we defined a set

of six Desktop Grid configurations, obtained by combining tveterogeneity levels with three availability
values, in such a way to cover a large set of real systems.

1) Resource Heterogeneitye quantify heterogeneity in terms of the distribution oé ttomputing
power delivered by individual resources of the Desktop Gfide computing poweP; of machinei is
represented as a real number whose value is directly propaltto the speed of the machine (i.e., a
machine: with P, = 10 is twice faster than a machinewith P; = 5). Thetotal computing power” of

M|
a Desktop Grid is defined as the sum of the computing powerdviolual machines, that i® = ZR»
=1

(where M denotes the set of machines of the Desktop Grid).

The heterogeneity levels we used for our experiments hage bleosen in such a way to be represen-
tative of two classes of Desktop Grids placed at the oppesites of the spectrum, namely those whose
resources have identical computing power (i.e., hendefeferred to afiomogeneousonfigurations) and
those whose resources exhibit relatively high differencetheir computing power (henceforth referred
to asheterogeneousonfigurations).

Since, to the best of our knowledge, the literature lacksranson agreement on the computing power
distributions of typical Desktop Grids, we decided — as id][2 to set the total computing power
P = 1,000 (for all the configurations used in the experiments) of thskdep Grid and to progressively
add machines — whose computing powers were drawn from afgpecobability distribution — until
the sum of their computing power matched the valuePofTherefore, the numbetM| of machines
included in a given configuration depends on the particutanputing power distribution chosen for that
configuration.

For homogeneous configurations, the computing power wad txelO for all machines, (i.ef; =
10,7 =1,...,|M)]), that resulted in a system composed ItY) machines. For heterogeneous configura-
tions, the computing power was assumed to be uniformlyidiged in the [2.3,17.7] interval, resulting in
an average value of 10 and a variance of 19.76, that gavearigeconfiguration including3 machines.
This specific distribution was chosen, as discussed in [@djeproduce a computing power distribution
complying with the Moore’s Law (that states that computew@odouble every 18 months) under the
hypothesis that the construction dates of the machinesei#sktop Grid span a 5 years interval. Under
these assumptions, we can indeed expect that the fastebinmauf the Desktop Grid is 8 times faster
than the slowest one, and this corresponds to the limitse{2t8,17.7] interval.

2) Resource AvailabilityThe availability of a Desktop Grid configuration is quantifie terms of its
average machine availabilityl, that is defined as:

~ 1
A:WZAZ- ()

where A; is the asymptotic availability of machin&/;, a percentage value that quantifies the fraction of
time during whichM; can be used to run Desktop Grid applications, that is in t@wimdd as:
MTTEF;
Ai = (MTTF, + MTTR;) ®)
where MTTF; and MTT R; denote the mean of the distributions of the time to failuré ahrepair times
of M;, respectively.

In order to consider various Desktop Grid configurations,used three different availability values.
Enterprise Desktop Grids, being characterized by a higbureg stability, were represented by configu-
rations whose average availability was set to 98% (henttefeferred to asdigh-Avail configurations).
Conversely, Volunteer Desktop Grids were represented bfigurations whose availability was set to 50%
(Low-Avail configurations), since in these platforms the particigatirachines come and go unpredictably
with a relatively high-frequency. A third availability va¢ (75%) was used in order to consider also

Desktop Grid configurations that could be placed in betwerterfgrise and Volunteer Desktop Grids
(Medium-Availconfigurations).

To obtain these values, we proceeded as follows. As indicateEqs.(2) and (3), a given average
availability A can be obtained by suitably setting7TF; and MTTR; (i = 1,...,|M]|), that in turn
requires the knowledge of the distributions of fault andaregimes, as well as of their parameters,
for all the machines inM. In accordance with the studies reported in [34], [35], weduthe Weibull
distribution for fault times, while for the repair times (farhich, at the best of our knowledge, no results
are published in the literature) we chose the normal digiob. For each of the three availability levels,
the parameters of the repair times distributions were sahéosame value for all the machines (i.e.,
MTTR; = MTTR,,i,j5 = 1,...,N). For the parameters of the Weibull distribution (tdeapeand
the scalg§ characterizing fault times, we took instead a differenprapch in which we partitioned the
machines in 15 different groups, each one associated wehifgp values of shape and scale (obtained
from the results published in [35] and reported in Table tigat were used for all the machines in the
same group.

TABLE 1l
MTTF AND MTTR FOR THE MACHINE GROUPS

Machine High-Avalil Medium-Avail Low-Avail
Group | MTTF (sec.) | MTTR (sec.) | MTTF (sec.) | MTTR (sec.)| MTTF (sec.) | MTTR (sec.)

1 773119 23193.60 7731.19

2 1044610 31338.40 10446.10

3 997908 29937.20 9979.08

4 816990 24509.70 8169.90

5 330479 9914.37 3304.79

6 1288810 38664.20 12888.10

7 426508 12795.20 4265.08

8 487921 1800 14637.60 5400 4879.21 5400

9 779938 23398.20 7799.38

10 997908 29937.20 9979.08

11 600641 18019.20 6006.41

12 331339 9940.17 3313.39

13 315787 9473.60 3157.87

14 319848 9595.44 3198.48

15 407545 12226.40 4075.45

The three availability values used in our study correspanthé MTTF and MTTR values reported in
Table II. More specifically, the MTTF values for tlitigh-Avail case have been directly derived from [35],
while the other ones have been computed by reducing thesesvéd 3% Kedium-Avai) and 1% [ow-
Avall), respectively. Furthermore, the mean and variance ofpair time for theHigh-Avail case were
set to 1800 sec. and 300 sec., respectively, while for therdtho cases we set them to 5400 sec. and
800 sec., respectively.

B. Workloads

For our study, we consider various workloads, each one stingiin a set of BoTs that arrive to the
scheduler at a certain rate and require a given amount of. \8ath the amount of work required by each
task fask execution timeand the time elapsing between two consecutive BoT asi@bT interarrival
time), are assumed to be random variables distributed accotdisgecific distributions. We assume that
BoT interarrival times were exponentially distributed hwitate A (henceforth referred to a@BoT arrival
rate). Task execution times are assumed to be uniformly digetbin the interval X — 50%, X + 50%],

where X is the granularity of tasks, that is defined as their mean execution times ssfdi abaseline
machinehaving computing poweP = 1 2. We consider BoT that include tasks characterized by differ
granularities by defining a set ¢dsk classeseach one corresponding to a given granularity values, and
by defining a set ofvorkload mixeseach one corresponding to a specific combination of thecliask
classes. The workload we use for our study are obtained byicwmg a value for the BoT interarrival
rate with a specific workload mix. Therefore, all the BoTs gmted when using a given workload are
characterized by the same workload mix.

Four our study, we used 8 task mixes and 3 BoT arrival ratesserieed below — that give rise to 24
different workloads.

1) Workload mixesAs already anticipated, each workload mix corresponds taragoilar combination
of task classes, each one characterized by a single valusskfgranularity. We define four basic task
classes, nameW®lery Small Small Medium andLarge, corresponding to granularity of 1,000 se®ely
Smal), 5,000 sec.$mal), 25,000 sec.NMediun), and 125,000 secLérge), and we use them to obtain 8
different task mixes, each one corresponding to a particlisdribution of task classes, expressed in terms
of the percentage of tasks of the various classes that betongdividual BoTs. These percentages are
reported, for all the task mixes, in Table Ill (wheFe s, Ps, Py, and P;, denote the fraction of very small,
small, medium, and large tasks). As can be observed by THbledrkload mixes can be divided in two

TABLE 1lI
WORKLOAD MIXES

Mix group Task mix | Pysg Ps Py Pr,
All_VS 100% | 0% 0% 0%

Single class All_S 0% 100% 0% 0%
All_M 0% 0% 100% 0%
All_L 0% 0% 0% 100%
Uniform 25% 25% 25% 25%

. Short 50% 16.3% | 16.3 % | 16.3 %

Multiple class 5o 163% | 16.3% | 50% | 16.3%

Long 16.3% | 16.3% 16.3% 50%

distinct groups. The first group (henceforth referred tsiagle clasanixes) included mixes characterized
by a single task class (that is, all the BoTs submitted to teekilbp Grids are composed by tasks having
the same granularity), and is made up Ay VS All_S, All_M, andAll_L. The second group (henceforth
referred to agnultiple classmixes) includes instead mixes characterized by multipd& tdasses, and is
made up byUniform, Short Med Long

Given the fraction of tasks belonging to a each class, theilolision of the task execution times of
BoTs for a given workload is given by:

Pys * U(500, 1500) + Ps U(2500, 7500) + Py * U(12500, 37500) + Pp, + U(62500, 187500) (4)

where Py s, Ps, Py, Pr, are set according to Table I, arid(a, b) denotes the uniform distribution with
parametera and b. Eq. (4) is used to generate the various BoTs composing angwakload in the
following way. First, we fix itsapplication sizeAS of a BoT (defined as the sum of the execution times
of its constituent tasks), and then we repeatedly genemtetaisks until the sum of their execution times,
computed by drawing random values from the distribution gn(#), matchesiS. For this studyAS was

set to 3,600,000 sec. for all the BoTs regardless of theciBpéask mix, (as done also in [24]), since this
allowed us to evaluate the impact not only of resource aridhaterogeneity, but also of task-to-machine
ratio. As a matter of fact, since both the application sizd #re number of machines is constant for a

2It is worth to point out that the actual execution time of aktaepends on the computing power of the machine on which it lveil
executed. In our case, given that the average computing rpofM@achines equal to 10, a task whose granularity is 1258@0 will be
executed — on average — in 12,500 sec.

given heterogeneity level, varying the task granularitgresponds to change the average number of tasks
per BoT executed by each machine.

2) BoT arrival rates: We considered a set of different arrival rates chosen in sualay to reproduce
various load conditions on the resources of the Desktop.®viel quantify the amount of work induced
on the Desktop Grid by a given workload by means ofaotsd factor L [36], a real quantity representing
the proportion of time that the Desktop Grid is busy defined as

| M|
> 5
. i=1
M|
> (Bi+ 1)
i=1
where B; (the busy tim¢ denotes the amount of time that machihg& spends processing tasks of the
various BoTs, and; (the idle timg denotes the time that/; spends idle waiting for tasks to execute.
In order to evaluate the various scheduling algorithms umdeious load conditions, in our study we
considered workloads yielding load factors of 0.5, 0.75¢ &95, named asow-intensity medium-
intensity and high-intensity and denoted as;,.,, L.q, and L;;, respectively’.
As shown in [37], a given load factaix, (X € {low, med, hi}) depends on the BoT arrival ratey

and theCPU occupancy timé&'y (the total amount of time requested by all the tasks in a sBQE),
that is:

(5)

L=\ -C (6)

For our study, we used the same valug_bfor all our experiments, that i€'x = C, X € {low, med, hi}.
Consequently, we obtained a workload characterized by endvad factorl x by setting the interarrival
rate Ay for its BoTs as:

L
Ao =5 (7)
We compute the CPU occupancy timefor a given workload as:
AS

Soer
=1

where E'P; is theeffective computing powef machinel;, that is the computing power that; delivers
over any time interval during which the machine may also bavaitable, which is in turn defined as:

EPF =P+ A 9)

where P; and A; denote the computing power and the asymptotic availalwfitmachine)M;, respectively.
Intuitively, Eq.(9) states that the effective computingveo delivered by a machin&/; whose availability
is A; is equivalent to that of a machin¥; that is fully available but delivering a computing power =

P; - A;. For example, a machine whose computing power and availabiie 10 and 0.5, respectively, is
considered to be equivalent to a machine with a computingepof.5 that is 100% available. By looking
at Egs.(8) and (9), we note that the CPU occupancy time doeslepgend on the particular workload,
since AS assumes the same value for all the workloads, but depen@sithen the characteristics of the
Desktop Grid configuration (and, precisely, on the distidouof the computing power and of availability
of individual machines). The consequence is that, for bffié configurations, the same load factor will
correspond to a different value of as reported in Table IV.

3Note that in order for the system to be in a stable state (tha state in which the turnaround time of BoTs does not grdimiialy)
for a given workload, we must have < 1.

TABLE IV
BOT INTERARRIVAL RATES FOR THE VARIOUS SCENARIOS

Desktop Grid configuration | Y "EP; | C A
i=1
Llow Lmed Lhi
High-Avalil Homogeneous| 996.68 3612 0.00014| 0.00021| 0.00026
High-Avalil Heterogeneous 997.89 3607.61| 0.00014| 0.00021 | 0.00026

Medium-Avail | Homogeneous| 759.71 | 4738.68| 0.00011| 0.00016| 0.00020
Medium-Avail | Heterogeneous 763.82 | 4713.17| 0.00011| 0.00016| 0.00020
Low-Avail Homogeneous| 526.41 6838.81| 0.00007 | 0.00011| 0.00014
Low-Avail Heterogeneous 531.87 6768.52 | 0.00007 | 0.00011| 0.00014

As a final consideration, we note that Eq.(8) does not take awcount the overheads due to task
replications and resubmissions, as well as to checkpagntirat were hard to express in a closed formula.
Furthermore, it is based on the simplifying assumption thatworkload is perfectly divisible (i.e., any
machine can receive any arbitrarily small amount of worki)jlevin practice it is not, since the work is
discretized into individual tasks. However, these simgdifions do not hinder the generality of the results.
As a matter of fact, the value af computed by means of Eq.(8) corresponds to a lower bounchéor t
actual load factor (e.g., a value = 0.75 indicates that the actual load factoras least75%), and if a
given result holds for the lower bound, it also holds for agtgly) higher value of the load factor.

C. Results

Let us discuss now the results we obtained by performing lsithom experiments for all the combi-
nations of the scenarios and workloads described beforall lthe experiments, we set the replication
threshold of WQR-FT to 2 (i.e., the scheduler attempts toagbvhave two running replicas per task)
since, as shown in [16], higher replication thresholdsdnegligible performance benefits at the price of
a much higher overhead caused by the larger number of reglieatask. The only exception to this rule
has been made for tHeCFS-Exc] where (as already mentioned) an unlimited replicatioeghold has
been used. Finally, for all the Desktop Grid configurations, assumed that the time taken to transfer
(retrieve) a checkpoint file to (from) the server was uniflyraiistributed in the interval [240,720] seconds.

As mentioned before, our primary performance indices aeeAberage Turnaround TimeAyT) of
BoTs, and the Relative Wasted TimBWT). In addition to these indices, we have also collected other
information that help us to explain the phenomena that ytielthe measured values for AVT and RWT.
More specifically, we collect:

« the Average Makespan Timeefined as the arithmetic average of the makespan of indiVidoTs;

« the Average Bag Waiting Timelefined as the arithmetic average of the waiting time ofvicldial

BoTs;
For all the above performance indices, we computed 95% camdel intervals with a relative error of
2.5% or less.

In the rest of this section, we will first discuss the resultdammed for workloads characterized by
single class mixes (Sec. IV-C.1), and then those correspgno workloads characterized by multiple
class task mixes (Sec. IV-C.2).

1) Single Class WorkloadsSingle class workloads are those corresponding tAth&'S All_S All_M,
andAll_L workload mixes (see Table III).

The results corresponding to Desktop Grid configuratiorsratierized by a high availability value
(representing, as already mentioned, Enterprise Deskt@s)Gare reported from Fig. 2 through Fig. 5.

In the case of homogeneous configurations and low-intensiskloads (Fig. 2), we note that, for
workload characterized by very small and small task graitida (the bar groups labeled &dl VS and

45000

25000

40000 -
35000 20000

30000 -

)

> 15000
25000

Time (s.)

20000

Time (s

10000
15000

10000 - 5000 -

5000 |

_Workload Mix Workload Mix
(a) Average Turnaround Time (b) Average Makespan Time

o0
25000

20000

Fraction

5000

=
ALLVS AllS AllM AllL

Workload Mix _Workload Mix
(c) Average Bag Waiting Time (d) Relative Wasted Time
M FCFS-Excl (] FCFS-Share 7 RR RR-NRF 1 Longldle

Fig. 2. Results for the High-Avail/Homogeneous DesktopdGnfiguration and Single-Class/Low-Intensity workloads

All_S respectively), RR and RR-NRF perform slightly worse thla@ other ones (Fig. 2(a)). The results
reported in Fig. 2(b) and Fig. 2(c) indicate that this perfance gap is not due to higher values of the
waiting time or of the RWT (that are negligible for both RR aR&-NRF), but — as indicated by the
results in Fig. 2(b)- it is instead due to higher values of itiekespan. This depends on the fact that,
for these granularity values, each BoT application has,\a@mage, a number of tasks much larger than
that of available resources-(36 tasks/machine foAll_'VS and~ 7 tasks/machine foAll_S). Therefore,
strategies that tend to allocate a larger amount of ressuxwdewer BoTs perform better than those
that simultaneously allocate fewer resources to a largenben of BoTs, since the larger the number
of resources allocated to each bag, the lower the corregppmiakespan. Furthermore, given the short
average duration of individual tasks (1,000 sec. and 5,@@0Q, sespectively), the waiting time is not an
issue, so strategies like RR and RR-NRF, that aim at minigizhe waiting time, do not obtain any
appreciable benefit with respect to the other strategidsiristead focus on reducing the makespan.
However, by looking at the average turnaround time (Fig))2i@ workload mixes characterized by
higher granularity values (corresponding to the bar grdapsled asAll_-M and All_L), we observe that
the performance of RR and RR-NRF are comparablétbNl) and much better thamA{l_L) those of the
other strategies. Furthermore, it is worth to point out fleatthe All_L workload mix FCFS-Excl makes
the makespan grow to an unlimited value, as graphicallycetéd by the fact that the corresponding
bar goes beyond the border of the graph. The inspection afethdts concerning the average makespan

(Fig. 2(b)) and the waiting time (Fig. 2(c)) provides agdue explanation for this behavior. As a matter
of the fact, as indicated in Fig. 2(c), the above performagae is due to the waiting time, rather than
to the makespan that, for RR and RR-NRF, is even higher thamtther strategies (see Fig. 2(b)). This
depends on the fact that, for these workload mixes, the geenamber of tasks per BoT is comparable
to or smaller than that of the machines of the Desktop Gkidl (5 tasks/machine foAll_lM and ~ 0.3
tasks/machine foAll_L), so there are always enough machines to simultaneousddathseveral BoTs,
thus significantly reducing their waiting times (see Fige)2(Conversely, FCFS-Excl — by allocating all
the resources to a single BoT application even in thesetgihsawhere this is not necessary — makes the
turnaround time grow to an unlimited value as consequendbeotimultaneous growth of the makespan
and of the waiting time. FCFS-Share and Longldle performsedhan RR and RR-NRF as well because
of their higher values for the average waiting time. An iesting observation that can be made by looking
at the results for FCFS-Share and Longldle is that theirkekpractically identical performance. This is
due to the fact that, when the currently running BoT has géhding tasks without replicas, they behave
exactly in the same way. As a matter of fact, in this case tmelipg tasks of a given BoT will always
exhibit a larger amount of idle time with respect to taskohglng to BoTs submitted later. Longldle will
instead start choosing BoTs different from the oldest ong winen all its tasks have at least a replica
running.

The other performance metric used for our comparison, thd R¥g. 2(d)), tells a different story. As
a matter of fact, RR and RR-NRF are always able to outperftwenother strategies for all the workload
mixes. This is the direct consequence of the fact that, bygusicircular order for bag selection, they start
replicate much later than the other strategies. Howevahigparticular configuration, characterized by
homogeneous resources and high availability, the perfoce®enefits of replication are marginal since
the vast majority of replicas is useless. As a matter of faicice the machines are identical and their
availability is high, the replica of a given task that is sdrfirst is always ahead of the other ones of that
task, thus making them unable to generate checkpointsrlibtie those produced by the first replica.

When the machines of the Desktop Grid are heterogeneoussiiiutighly-available), the results for
low-intensity workloads (shown in Fig. 3), are similar t@#e obtained for the homogeneous configuration.
As in the latter case, RR and RR-NRF perform slightly worsantthe other strategies for thdl_VS
and All_S workload mixes, and comparably to (better than) them forAHeM (All_L) mixes. The only
notable difference with respect to the homogeneous cabatigtthis scenario — for the higher granularity
workload mixes — the performance gap between RR and RR-NERhanother ones is smaller (that is,
they perform slightly worse, while the other ones slighttbr). This is due to the fact that when resources
are heterogeneous, replication pays off, as it allows ttebédlerate poor scheduling decisions due to
the lack of resource information. Therefore, FCFS-ExclFB&Share and Longldle, being more prone to
replication — especially foAll_.M andAll_L — than RR and RR-NRF, exhibit performance better than in
the homogeneous case, while the opposite is true for RR anrtiRR However, despite this difference
in performance, also in this case RR and RR-NRF are clearanitmterms of their ability of profitably
exploit resources, as indicated by the results concermadRWT (see Fig. 3(d)).

Similar considerations can be made for these Desktop Grfigiorations when the workload intensity
is high (see Figs. 4 and 5). As for low intensity workloads, BRI RR-NRF perform slightly worse
than the other scheduling algorithms for tA# VS and All_S workload mixes, and better fokll_M and
All_L (see Figs. 4(a) and 5(a)). However, the performance gapeleetiRR and RR-NRF, and the other
strategies, is now much higher than in the low-intensityecasce FCFS-Excl, FCFS-Share, and Longldle
fail to yield a finite value for the turnaround time since, @ de seen from Figs. 4(c) and 5(c), their
waiting time is practically unbounded, while this is not tteese of RR and RR-NRF. Furthermore, as in
the low-intensity case, RR and RR-NRF result in much lowdues for RWT.

When the Desktop Grid availability decreases to 73%edium-Avai), our results (that have been
omitted from this paper because of space constraintsRR &lRF perform slightly worse than the
other ones for theAll_VS and All_S workload mixes, and comparably to (much better than)Ab6rM
(All_L). Furthermore, in this latter case FCFS-Excl, FCFS-Shack laongldle yield unbounded values

45000

35000

40000 30000
35000
25000
30000
Ei 25000 Ei 20000
g g
£ 20000 = 15000
15000
10000
10000
5000 5000
0 0
h _Workload Mix_ B Workload Mix_
(a) Average Turnaround Time (b) Average Makespan Time
25000 : 0.9 : : : T T T
20000
~ 15000 c
) kel
© 3]
£ o
F 10000 w
5000
Al_VS All_S All_M All_L s !
Workload Mix Workload Mix
(c) Average Bag Waiting Time (d) Relative Wasted Time
Hl FCFS-Excl [J FCFS-Share ? RR RR-NRF P1 Longidle

Fig. 3. Results for the High-Avail/Heterogeneous Deskta @onfiguration and Single-Class/Low-Intensity worldea

of the turnaround time also fofk,,, workloads, and not only for.;; ones. The results for the RWT,
again, show a large advantage of RR and RR-NRF, that exhépibjpnance gains as large as 10% for
FCFS-Share and Longldle and 25% for FCFS-Excl (homogenemnisgyurations), and slightly lower for
the heterogeneous configurations since, as already destusiating an higher number of task replicas
pays off when the machines are heterogeneous.

Finally, let us consider the results obtained for low avaliy configurations (corresponding, as already
mentioned, to Volunteer Computing Desktop Grids), thatsdr@wvn from Fig. 6 through 9. Also for these
configurations, in the case of low intensity workloads, ttrategies exhibit the same behavior observed
for high and medium availability values. That is, for low gudarity workload mixesAll_VSandAll_S),

RR and RR-NRF perform slightly worse than the other stratggivhile their turnaround time is better
for the other workload mixes. However, in this case, we olesehat for high-intensity workloads all
the scheduling strategies fail to yield a bounded turnadotime regardless of the heterogeneity of the
platform. This, however, is not unexpected, since a 0.90 faetor make the system work under saturation,
and there is no room to create enough replicas to tolerate gpb@duling decisions or machine failures.

All_L

All_M

Workload Mix
(b) Average Makespan Time

AllLS

All_VS

35000
30000
25000
i, 20000 |
15000
10000
5000

AU NN NNV wN

AllL

Workload Mix

All M
(a) Average Turnaround Time

AllS

35000 -
30000 -
25000
20000
15000
10000

[=
=]
=]
o
<

All_L

AII_M
”1 Longidle
Intensity workloads

Workload Mix
(d) Relative Wasted Time

AII S
RR-NRF

AllVS

uonoeli4q

Z RR

Share

All_L

U FCFS-

AllM

Workload Mix
(c) Average Bag Waiting Time
Excl

AllS

M FCFS-

All_VS

A A S S S S S SN N .
m_
[
¥
iSwww
—
o o o o o o
g 8 8§ 8 g 8
N o [°s] ©o < N
- -
('s) awiL

Fig. 4. Results for the High-AvaillHomogeneous DesktopdGrnfiguration Single-Class/High

45000

40000 -

35000

30000

A.

25000

w
~

20000

awi|

15000

10000

5000

T

T

T

T

T

T

T

T

A% N .S S S ...

o
=]
=]
o]
<

40000 -

35000

30000

2

~

25000

20000

awil

15000

10000

All_M All_L

All_S

AlLVS

All_M All_L

All_S

Workload Mix_
(b) Average Makespan Time

Workload Mix_
(a) Average Turnaround Time

Y

L L L

© v %

c o o
uonoeli4q

0.9
0.8 -
0.7
0.3
0.2
0.1f
0.0

T T T T T T

AMA S SRS SRS RSNNw
m
- 5

T

,,
o o o
o o o
o o o
< N o
- - -
('s) awiL

All_M

All_L

All_S

AlLVS

All_S All_M All_L

AlLVS

Workload Mix
(d) Relative Wasted Time

Workload Mix_
(c) Average Bag Waiting Time

”1 Longidle

RR-NRF

J FCFS-Share Z RR

Excl

M FCFS

Results for the High-Avail/Heterogeneous Desktafn @onfiguration and Single-Class/High-Intensity woddis

Fig. 5.

. . , . . ,

o o o o o o o

(=] o o (=] o o o

o o o o o o o

o o o o o o o

~ © n < o N -
('s) awnL

T T T T T T

A% N .S ... Nw

1 1 1 1 1 1

=] o =] =] o [= o

=] o =] =] o =] o

=] o =] =] o =] o

o Qo (=3 o o o o

~ © [rs) <] « B
('s) awiL

All_M All_L

All_S

AlLVS

All_M

All_S

Workload Mix_
(b) Average Makespan Time

Workload Mix_
(a) Average Turnaround Time

1 1 1

L L L

~ © n < [} N — =}

=) S (=) <} (=} <] <] [S)
uonoeli4q

T T T T T

4% % % % % N NN N WY
5 1

L L ! L L
o o o o o o o
=1 S =1 S =] =1
=1 S =1 S =] =1
=1 =] =] o =] =1
) rs) <] 39 —

('s) awn

All_M

AlLVS

All_L

Workload Mix
(d) Relative Wasted Time

All_S

AllL

Workload Mix

All_M
(c) Average Bag Waiting Time

All_S

All_VS

”1 Longidle

RR-NRF

Z RR

Share

U FCFS-

Excl

M FCFS-

Results for the Low-Avail/Homogeneous Desktop Griahfiguration and Single-Class/Low-Intensity workloads

Fig. 6.

All_M

80000

70000

60000

— 50000
40000 |

'S) awl |

30000

20000

10000

T

T

T T

T

T

T

A% N S S S ... Nw

All_M

80000

70000

60000

50000
40000 -

('s) awiL

30000 (-

20000

| || All_L
Workload Mix
(b) Average Makespan Time

All_S

All_VS

Workload Mix_
(a) Average Turnaround Time

AllS

A
=

0.8

uonoeli4q

T T T T

AMA S SRS SRS RSNNw

o o o o o
o o o o o
o o o o o
n o n o [T2)
N N - i

('s) swiL

Workload Mix
(d) Relative Wasted Time

AllLS

AllL

B All_M
Workload Mix
(c) Average Bag Waiting Time

All_S

All_VS

”1 Longidle

RR-NRF

J FCFS-Share Z RR

Excl

M FCFS

Results for the Low-Avail/Heterogeneous Desktojd@onfiguration and Single-Class/Low-Intensity worklead

Fig. 7.

700000
600000 -
500000 -
i, 400000 -
300000
200000
100000

K
]
S
=

T T T T T

AN S %S SNNNN

,
o o o o o o
S S S S S S °
o o o o o o
Q 8 5 3 e &
- —

('s) awnL

All_L

AllL

Workload Mix

All_M
(b) Average Makespan Time

AllLS

All_VS

AllM

Workload Mix
(a) Average Turnaround Time

AllS

1 1 1

L L L

~ © n < [} N — =}

=) S (=) <} (=} <] <] [S)
uonoeli4q

T T T T T T

ATS SN

T
e
AlLVS

.
o o o o o o o o
s 8 8 8 8 8 38
< N o @ © < N
- - -

('s) swiL

All_M All_L

All_S

AlLVS

All_M All_L

All_S

Workload Mix
(d) Relative Wasted Time

Workload Mix
(c) Average Bag Waiting Time

”1 Longidle

RR-NRF

Z RR

[J FCFS-Share

Hl FCFS-Excl

Fig. 8. Results for the Low-Avail/[Homogeneous Desktop Grishfiguration and Single-Class/High-Intensity workloads

s T "o T8 & & o
o [=] o o o o
o o o o o o
o o o o o o
o o o o o o
© mn < o™ N -
('s) awnL
Al S
[\

70000
60000
50000 (-
40000 -
30000 -
20000

1
o o
S o
S o
[} (=]
=) @©

-
2
~

awil

All_M All_L

All_S

AlLVS

All_M All_L

All_S

Workload Mix_
(a) Average Turnaround Time

Workload Mix
(b) Average Makespan Time

0.8

uonoeli4q

T T T T T T T

A O NN NN wN

1 L 1 1 1 1 L
[= =] o o = (=] =] o o
=] =] o o =] =] =] o
=] =] o o =] =] =] o
(=] o (=3 Q o o o o
© ~ © D < ™ 39 B

('s) swiL

All_S All_M All_L

AlLVS

All_S All_M All_L

AlLVS

Workload Mix_
(c) Average Bag Waiting Time

Workload Mix
(d) Relative Wasted Time

”1 Longidle

RR-NRF

Z RR

[J FCFS-Share

Hl FCFS-Excl

Fig. 9. Results for the Low-Avail/Heterogeneous Desktopd@onfiguration and Single-Class/High-Intensity workdea

2) Multiple Class WorkloadsMultiple class workloads are those characterized bylthdorm, Short
Mediumand Long workload mixes (see Table IlI).

The results corresponding to Desktop Grid configuratioregatterized by high availability values are
reported from Fig. 10 through Fig. 13. For homogeneous cordigons and low-intensity workloads

oo o0 oo oo o0 oo
35000 30000
30000 25000
M m 7l
25000) . 1 _
20000 M
E 20000 Q
o © 15000
£ £
= 15000 - =
10000
10000 |
5000 - 5000 |-
0 [7 | 1AAYA 0 | 1A L1
Uniform Short Medium Uniform Medium
Workload Mix Workload Mix
(a) Average Turnaround Time (b) Average Makespan Time
14000 T T T T T T T T T
0.8
12000
10000 0.7
& 8000 S o6
© °
£ o
i= 6000 IC
0.5
4000
0.4
2000 I
7 I d
.)
Uniform Short Medium Long Uniform Short Medium Lon
Workload Mix Workload Mix
(c) Average Bag Waiting Time (d) Relative Wasted Time
B FCFS-Excl [J FCFS-Share Z RR RR-NRF ?1 Longldle

Fig. 10. Results for the High-Avail/Homogeneous Desktojd@onfiguration and Multi-Class/Low-Intensity workloads

(Fig. 10) we note that, for all workload mixes, the turnarduime obtained for FCFS-Excl (Fig. 10(a))
grows to an unlimited value, as consequence of the simwtangrowth of the makespan (Fig. 10(b)) and
of the waiting time (Fig 10(c)). This is due to the fact thatFSsExcl allocates all the resources to a single
BoT application — thus increasing the number of replicastpsk — even in situations like these, where
replication yields marginal benefits because of the homeigerand high availability of machines. This
effect is confirmed also by the results concerning the RWT.(ED(d)), that indicate that the percentage
of useless replicas generated by FCFS-Excl is about 80%llftmeaworkload mixes.

For the other scheduling policies, we note that, RR and RR-NRrform better (for theJniform,
Short andMediumworkload mixes) or slightly better (for theong mix) than the other ones. The results
shown in Fig. 10(b) indicate that this gap is not due to theaye makespan (that is higher for RR and
RR-NRF), but — as can be seen from Fig. 10(c) — it can be asttdbéhe waiting time. The explanation
of this phenomenon recalls that already given for singleschaorkloads: since the average number of
tasks in a BoT is comparable tJiiform, Short Medium) or much smaller thanLong the number of
machines of the Desktop Grid, there are enough resourcentdtaneously schedule several BoTs (as RR

and RR-NRF do), thereby reducing their waiting time withpess to the other policies, and at the same
time to allocate to each of them enough resources, therebpirkg their makespan within reasonable
limits. Conversely, for th&.ongworkload mix, we observe that all the scheduling policies(as already
discussed) FCFS-Excl exhibit similar performance. Thidus to the fact that theongworkload mix is
characterized by BoTs having an average number of tasks smeler than the number of machines of
the Desktop Grid+{ 0.5 tasks/machine). Therefore, in this case there are enosghnees to concurrently
run several BoTs, and there are so many resources for eachtfBdBven RR and RR-NRF creates a
significant number of replicas per task (as can be deduceddyfact that their values of RWT are
practically identical to that corresponding to FCFS-Shemd Longldle — see Fig. 10 (d)). Consequently,
there are no appreciable differences in their performance.

35000 30000

—
30000 25000 | _
a7 _
25000 7 [
20000
E 20000 Q
4 © 15000
E 15000 [E
10000
10000
5000 - 5000 |-
0 %7 | |VAYA 0 L1742 L1 Ll
Short Medium Uniform Short Medium
Workload Mix Workload Mix
(a) Average Turnaround Time (b) Average Makespan Time
o0 o0
7000 T T T T T
M 0.8
6000 |-
5000 [0.7
@ 4000} S o6
) °
£ o
i 3000 IC
0.5
2000
0.4
1000
= = = 0.3
Uniform Short Medium Long
Workload Mix Workload Mix
(c) Average Bag Waiting Time (d) Relative Wasted Time
B FCFS-Excl [J FCFS-Share ? RR RR-NRF ?1 Longldle

Fig. 11. Results for the High-Avail/Heterogeneous DeskByjrl configuration and Multi-Class/Low-Intensity workkis

When the machines of the Desktop Grid are heterogeneoussifbutighly-available), the results for
low-intensity (shown in Fig. 11), are similar to those ohtl for the homogeneous configurations. As
in the latter case, RR and RR-NRF perform betténiform, Short Medium) and slightly better l{ong)
than the other strategies. The only notable difference vefipect to the homogeneous case is that in this
scenario the performance gap between the RR and RR-NRF arathtbr policies is smaller. This is due
to the fact that when resource are heterogeneous, replhicptiys off, as it allows to better tolerate poor
scheduling decisions due to the lack of resource informatis mentioned before, FCFS-Excl, FCFS-
Share and Longldle, being more prone to replication, exlpgiformance better than in the homogeneous

case, while the opposite is true for RR and RR-NRF. Howewvespide this difference in performance,
clear winners in terms ef #bility of profitably exploit the

also in this case RR and RR-NRF are

available resources.

40000

oo

oo o0 oo

40000

1%
/
35000 Z 35000
v
.
30000 % 30000
7
. 25000} Z . 25000
@ Z @
@ 20000} v @ 20000
£ . £
F . F
15000 7 15000
.
10000 - . 10000
.
5000 7 5000
7
.
0 — L 174 | |7 0
Uniform Short Medium
Workload Mix Workload Mix
(a) Average Turnaround Time (b) Average Makespan Time
4000 T T T T 0.9 T T T T T T T
3500 M 08k
3000
07}
2500 c
b Sosep
GEJ 2000 §
= L 05F
1500 -
0.4
1000 -
500 0.3}
Ll L Ll e 0.2 P '
Uniform Short Medium Long Uniform Short Medium Long
Workload Mix Workload Mix
(c) Average Bag Waiting Time (d) Relative Wasted Time
Hl FCFS-Excl [J FCFS-Share RR RR-NRF ¥1 Longidle
Fig. 12. Results for the High-Avail/[Homogeneous Desktojd@ponfiguration and Multi-Class/High-Intensity worklaad

The results obtained for Desktop Grid configurations whenwbrkload intensity is high (see Figs. 12
and 13) tell a different story. In particular, FCFS-Excl, F&Share, and Longldle fail to yield a finite
value for the turnaround time since, as can be seen from ERg) and 13(c), their waiting time is
practically unbounded, while this is not the case of RR andNF. Only for theLong workload mix,
the FCFS-Share and Longldle are able to yield a finite valuehe turnaround time (albeit worse than
that corresponding to RR and RR-NRF). This is due to the faat, tagain, for the_.ong workload mix
there are enough resources to simultaneously scheduleak®ad's, thereby reducing their waiting time,
and to give to each of them enough resources to minimize thakespan as well. Also in these cases,
RR and RR-NRF are clear winners even in terms of RWT (see ERfsl) and 13(d)).

When the Desktop Grid availability decreases to the medialaev(corresponding to 75%) our results
(see Figs. 14 through 17) show that, again, RR and RR-NRmperbetter Uniform, Short Mediun)
and slightly betterlong) than the other strategies. The only notable differencé waspect to the high
availability case is that in this scenario — for theng workload mix and low-intensity workload — the
FCFS-Excl scheduling policy is able to yield a finite value fioee average makespan time (see Fig. 14(b)
and Fig. 15(b)). This is due to the fact that when resourcesnat reliable, replication pays off, as it

o0 0000 o) 0000
40000

oC X o0 o0
T T T 40000
7 7
35000 . E 35000 -
30000 E 30000
. 25000} R . 25000} M
))
@ 20000 - B @ 20000 -
£ £
[[
15000 - E 15000 -
10000 - E 10000 -
5000 - g 5000 -
0 | I 7 LIV | I 0 | 17
Uniform Medium Short Medium
Workload Mix Workload Mix
(a) Average Turnaround Time (b) Average Makespan Time
3000 T T T — 0.9 : T T T T T T
2500 -
2000 -
— c
K 9o
o 1500 ©
£ o
= [T
1000 -
500
0 L

l;ﬂform _Short K/Iedium Long ’ Uniform Short Medium Lon
Workload Mix Workload Mix
(c) Average Bag Waiting Time (d) Relative Wasted Time
Hl FCFS-Excl [J FCFS-Share ? RR RR-NRF P1 Longidle

Fig. 13. Results for the High-Avail/Heterogeneous DeskBjal configuration and Multi-Class/High-Intensity worklds

allows to better tolerate machine failures. However, desiis difference in performance, also in this
case RR and RR-NRF are clear winners for scenarios chawsttdyy resource with medium availability.

Finally, the results obtained for low availability configitions corresponding, as already mentioned, to
\Volunteer Desktop Grids (not reported here for the sake @¥iby), show that for low intensity workloads,
all the strategies behave exactly as observed for high ardlumeavailability values. That is, RR and
RR-NRF perform betterUniform, Short Mediun) and slightly better l{long) than the other strategies.
However, in this scenario, we observe that for high-intgnsorkloads all the scheduling policies always
fail to yield a bounded turnaround time for the Short worklaaix. This is not unexpected, since the
large number of tasks for each bag and the high load factoerntfak system work under saturation, so
there is no room to create enough replicas to tolerate pdwdsding decisions or machine failures.

3) Discussion:The results reported in the previous sections allow us tev d@ne general conclusions
about the performance and the efficiency of the various sdimgdpolicies considered in this paper.

As discussed in the previous sections, FCFS-Excl (that wa&lres a direct extension of the scheduling
algorithm used by state-of-the-art Desktop Grid platformschedule workloads composed by a single
BoT a time) never yields performance better than all the rost@tegies. As a matter of fact, for many
workloads and Desktop Grid configurations RR and RR-NRFagperfbetter than all the other algorithms
both in terms of performance and efficiency, while when thposte is true, FCFS-Excl performs always

120000

40000

M 35000 (-
100000
30000 +
80000 _
— — 25000
X b4
© 60000 @ 20000 -
£ £
= =
15000 (-
40000
10000 (-
20000
5000
0 L 2 0 L
Uniform Short Medium Lon Medium
Workload Mix Workload Mix
(a) Average Turnaround Time (b) Average Makespan Time
80000 0.7 ; T T T T T T
70000 065
0.6
60000
0.55
~ 50000 c 05
8 9
GEJ 40000 § 0.45
= L
30000 0.4
0.35
20000
0.3
10000 0.25 I
0 0.2 4
Uniform Short Medium Long Uniform Short Medium Lon
Workload Mix Workload Mix
(c) Average Bag Waiting Time (d) Relative Wasted Time
Hl FCFS-Excl [J FCFS-Share ? RR RR-NRF P1 Longidle

Fig. 14. Results for the Medium-Avail/Homogeneous DeskB configuration and Multi-Class/Low-Intensity workids

worse (or, in some cases, the same) than FCFS-Share botimis ¢ efficiency and performance. This
demonstrates our initial claim that the vanilla FCFS schiadualgorithm cannot be used in situations
where multiple BoT are simultaneously submitted for execut

As a second consideration, we observe that for all the siw=nand workloads considered, FCFS-Share
and Longldle results in the same performance and efficieawis. Therefore, being FCFS-Share easier to
implement, it should be preferred to Longldle in those ditues where RR and RR-NRF perform worse.
Analogously, RR and RR-NRF always exhibit the same perfagaand efficiency levels but, being RR
easier to implement, it should be preferred over RR-NRF.

This said, let us provide an answer to the question whetheofthese two scheduling policies must be
preferred over the other one for all the Desktop Grid scesaaind application workloads we considered
in this paper.

As it appears from the results concerning the amount of wastee, RR is always more efficient than
FCFS-Share for all the Desktop Grid configurations and appbn workloads we considered, that is it
wastes less CPU cycles. This has the consequence that,aperiormance goal that must be met (e.g.,
an upper threshold that must not be exceeded by the turnérme), RR requires less resources than
FCFS-Share to achieve it. Furthermore, for a fixed amounbofputing power provided by the Desktop
Grid, RR is able to better deal with sudden workload spikestRCFS-Share, as it is always able to
spare a higher amount of resource power thanks to its aloiityasting less computing capacity.

50000

T T T T 40000

45000 - 350001
40000 | _
30000 +
35000
~ 30000 21] . 25000
&L &L
@ 25000 - @ 20000 -
E E
= L =
20000 150001
15000 -
10000 (-
10000
5000 1 5000
0 Lz 0 L
Medium Medium
Workload Mix Workload Mix
(a) Average Turnaround Time (b) Average Makespan Time
o0
25000 ; ; T T
20000 M
~ 15000 c
L S
g 3
£ o
F 10000 w
5000 -
0 - " 2 I
Uniform Short Medium Long Uniform Short Medium Lon
Workload Mix Workload Mix
(c) Average Bag Waiting Time (d) Relative Wasted Time
Hl FCFS-Excl [J FCFS-Share ? RR RR-NRF P1 Longidle

Fig. 15. Results for the Medium-Avail/Heterogeneous DegkErid configuration and Multi-Class/Low-Intensity wooklds

The results concerning performance, however, indicatent@ingle scheduling policy outperforms the
other ones for all Desktop Grid configurations and applwativorkloads we considered, although RR
performs better than FCFS-Share in a higher number of gt The results concerning single class
workloads, summarized in Table V, indicate indeed that FSR&re has to be preferred over RR only
for workloads featuring very small and small task grantikesi(regardless of Desktop Grid configuration
and workload intensity), while RR performs better in theestbases. The only exceptions are represented
by the HighAvail/Homogeneous Desktop Grid configurationd gheAll_M workload mix, where FCFS-
Share and RR perform the same (indicated by-thsymbol in the corresponding table entries), and by
the Low-Avail/Heterogeneous configuration aAtl_L workload mix, where both policies fail to yield a
finite value for the turnaround time.

The situation is instead different for multiple class woidls, whose results are summarized in Table VI,
where we observe that RR always performs better than FCR&She only exception to this rule is
represented by the Homogeneous Desktop Grid configuratindsghe Long workload mix, where both
strategies exhibit very similar performance (denoted &y shimbol~).

Therefore, we can conclude that, while in terms of efficieRéy should always be preferred over the
other scheduling policies, for single class workloads iimg) of fine grain tasks FCFS-Share represents
the best choice, while for all the other situations RR presithigher performance advantages.

Fig.

90000

717
80000 |-
70000 7
2
0
60000 [%
o) 0
£ 50000 Z
o o
£ o
£ 40000 - é
- .
30000 %
0
20000 Z
v
o
10000 Z
Unlform Short d Long
Workload Mix
(a) Average Turnaround Time
10000 T
9000 | B
8000 | 1
7000 B
z 6000 | 1
© 5000 1
£
4000 - B
3000 1
2000 1
1000 B
Unlform Short Medlum Long
Workload Mix
(c) Average Bag Waiting Time
B FCFS-Excl [J FCFS-Share
16.

O(D_(; o0
90000 . . T
80000 ’
70000 ’
60000 - f
S 50000 /
[}
g /
£ 40000 ’
30000 ’
20000 ’
10000 ’
0 ALA
Unlform Medium
Workload Mix
(b) Average Makespan Time
0.65
0.6
0.55
0.5
c 0.45
il
‘8 0.4
(TR

0.35

0.3

0.25

0.2

Workload Mix
(d) Relative Wasted Time

RR RR-NRF ?1 Longldle

Results for the Medium-Avail/Homogeneous DeskBjl configuration and Multi-Class/High-Intensity worklds

TABLE V
COMPARISON OF THE TURNAROUND TIME FOR SINGLE CLASS WORKLOADS

Workload Mix
Desktop Grid configuration All_VS All_S All_M All_L
leu Lhi Llow Lh,v’, Llow Lhi leu Lh,v’,
High-Avail | Homogeneous | FCFS-Share FCFS-Share FCFS-Sharel FCFS-Sharel ~ RR | RR RR
High-Avail | Heterogeneous| FCFS-Shareg FCFS-Share FCFS-Sharel FCFS-Share ~ RR | RR RR
Low-Avail | Homogeneous | FCFS-Share| FCFS-Sharel FCFS-Share| FCFS-Sharel FCFS-Sharel RR | RR 00
Low-Avail | Heterogeneous| FCFS-Sharel FCFS-Sharg FCFS-Sharel FCFS-Share RR RR | RR 00
TABLE VI
COMPARISON OF THE TURNAROUND TIME FOR MULTIPLE CLASS WORKLORS
Workload Mix
Desktop Grid configuration Uniform Short Medium Long
Llow Lh'i Llow Lh'i Llow Lhi Llou Lh'i
High-Avail | Homogeneous | RR RR | RR RR | RR RR | ~ RR
High-Avail | Heterogeneous| RR RR | RR RR | RR RR | ~ RR
Med-Avail | Homogeneous | RR RR | RR RR | RR RR | ~ RR
Med-Avail | Heterogeneous| RR RR | RR RR | RR RR | ~ RR

Medium

Short

80000

70000

60000

1 1 1 1 1

= = o o o

=] =] =] o o

=] =] =] =] o

o =] =] <] <]

e} < (3] 34 -
('s) awiL

70000

60000

1 1 1 1 1

o = (=] o o

=] =] =] =] o

=] =] =] =] o

(=] o (=] (= o

e} < (3] 34 -
('s) awiL

Long

Uniform

Long

Memum‘
Workload Mix
(a) Average Turnaround Time

Short

Workload Mix
(b) Average Makespan Time

oo

o0

0.7

, , ,
0 < « N
o o o

0.6

uonoeli4

8000

.
o o o o o o o o
8 &8 & & & & &
S & & & © © 9o
R & b <% ® &« 4

('s) awiL

Short Medium Long

Uniform

Medium Long

Short

Workload Mix
(d) Relative Wasted Time

Workload Mix
(c) Average Bag Waiting Time

”1 Longidle

RR-NRF

J FCFS-Share Z RR

Excl

M FCFS-

Results for the Medium-Avail/Heterogeneous Degskbrid configuration and Multi-Class/High-Intensity wiréds

Fig. 17.

V. CONCLUSIONS AND FUTURE WORK

Desktop Grid infrastructures are becoming commonplaceondt in the academia, but also in the
enterprise. Consequently, their employment as generalega computing platforms, exploited by different
user communities running a variety of different BoT appimas at the same time is continuously
increasing. This motivates the need of scheduling algmstlable to simultaneously promote application
performance and efficiently use available resources. Therustate-of-the-art of scheduling algorithm
for Desktop Grid offers solutions able to effectively schkedworkloads where a single BoT is submitted
(and, hence, needs to be scheduled) at a time but, as showis ipaper, these strategies fail to achieve
this goal.

In this paper we have proposed a set of novel schedulingegtest specifically conceived to deal with
scenarios where multiple BoT applications are simultasosubmitted to a Desktop Grid, that have been
shown to provide an appropriate answer to the performandeeffitiency needs characterizing modern
Desktop Grid infrastructures. Our results clearly indictat (a) these strategies enable applications to
achieve performance better than those attainable by uaimgjarsFCFS schedulers, (b) simple Round Robin
(RR) always results in better resource utilization, and angncases in better performance too (especially
for workloads featuring BoTs characterized by differengktagranularities), and (c) a straightforward
variant of FCFS in which free resources that are not stricdgessary to the running BoT are allocated
to the subsequent one greatly improves the performancenifas&CFS, and makes it suited to schedule
single class workloads characterized by a small task gaaityl

In addition to the above advantages, our strategies havadtidgional benefit of being knowledge-free,
that is they neither require nor rely on any information @mning resources and applications. As such,
they are easier to implement, deploy, and use on Desktop iGfriastructures, whose relative resource
instability makes very hard (if not impossible) the task ofiecting accurate information about resources
or applications.

The scheduling strategies we presented, albeit alreadyiding a suitable answer to the scheduling
needs of contemporary Desktop Grids infrastructures ariéleads, still provide room for improvements.
Among those, we mention the possibility of using individBalT scheduling algorithms that use dynamic
replication strategies (rather than the static one usekisnpaper), as this intuitively should further reduce
the amount of wasted CPU cycles. Another possible avenuesafarch worth exploring is represented
by the usage of knowledge-based scheduling algorithm fividual BoT (e.g., those proposed in [15]),
in place of WQR-FT. This would make the scheduling strategymore completely knowledge-free (the
BoT selection policy, however, would still be knowledgesd], but might result in further application
performance improvements. The adoption of a (partiallypvdedge-based approach would also open
a further avenue of research concerning the awareness afpiiatement. The scheduling algorithms
presented in this paper are data placement agnostic, tliaeysdo not consider the overhead due to
data access, that may impact in a different way on the pedoboa of different replicas of the same
tasks executed on distinct machines. However, knowletggedpproaches cannot base their decisions on
data placement information, as this would require the gateof information concerning data access
patterns for the various tasks, as well as those concerratayldcation. The migration towards a partial
knowledge-based approach would allow us to combine the latne-free BoT selection policies presented
in this paper with knowledge-based, data-aware resouleetgn policies, thus reducing the amount of
information that must be provided to the scheduler with eespo fully knowledge-based strategies able
to deal also with data placement.

REFERENCES

[1] W. Cirne, F. Brasileiro, N. Andrade, L. Costa, A. Andrade. Novaes, , and M. Mowbray, “Labs of the world, unite!Udurnal of
Grid Computing 2006.

[2] D. P. Anderson, “Boinc: A system for public-resource garting and storage,” itGRID '04: Proceedings of the Fifth IEEE/ACM
International Workshop on Grid Computing004, pp. 4-10.

[3] G. Fedak, C. Germain, V. Neri, and F. Cappello, “Xtremwgbgeneric global computing system,” @CGRID '01: Proceedings of
the 1st International Symposium on Cluster Computing aedGhd, 2001, p. 582.

(4]
(6]

(8]
(9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]

(28]

[29]
[30]
[31]

[32]

[33]
[34]
[35]
[36]

[37]

“United Devices Home Page,” http://www.ud.com, visiten Sept. 5th, 2007.

“Data Synapse Corp. Home Page,” http://www.datasyeaqusn, visited on Sept. 5th, 2007.

S. Choi, H. Kim, E. Byun, M. Baik, S. Kim, C. Park, and C. Hwg “Characterizing and Classifying Desktop Grid,” @GCGRID
'07: Proceedings of the Seventh IEEE International Symposon Cluster Computing and the GridWashington, DC, USA: IEEE
Computer Society, 2007, pp. 743—748.

D. Kondo, A. Chien, and H. Casanova, “Resource managefioemapid application turnaround on enterprise desktagsgrin Proc.
of Supercomputing Conferenc2004.

“The great internet mersenne prime search,” http://wwversenne. org, 1997.

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D.riMener, “Seti@home: an experiment in public-resource potimg,”
Commun. ACMvol. 45, no. 11, pp. 56-61, 2002.

“The Folding@home Project”,” http://www.stanford@group/pandegroup/folding, visited on Sept. 7th, 2007.

“The FightAids@Home Project,” http://fightaidsatherscripps.edu, visited on Sept. 7th, 2007.

W. Cirne and et al., “Grid computing for bag of tasks aggtions,” in Proc. of 3"¢ IFIP Conf. on E-Commerce, E-Business and
E-Government2003.

J. Smith and S. Srivastava, “A System for Fault-TolérBmrecution of Data and Compute Intensive Programs over avdikt of
Workstations,” inProc. of EuroPar’'96 ser. Lecture Notes in Computer Science, vol. 1123, 1996.

D. da Silva, W. Cirne, and F. Brasileiro, “Trading Cysl&o Information: Using Replication to Schedule Bag-o&R& Applications
on Computational Grids,” ifProc. of EuroPar 2003ser. Lecture Notes in Computer Science, vol. 2790, 2003.

C. Anglano, J. Brevik, M. Canonico, D. Nurmi, and R. Wa|s‘Fault-aware scheduling for Bag-of-Tasks applicaioon Desktop
Grids,” in Proc. of 7th IEEE/ACM International Conference on Grid Cartipg. Barcelona, Spain: IEEE Press, Sept. 2006.

C. Anglano and M. Canonico, “Fault-Tolerant Schedgliior Bag-of-Tasks Grid Applications,” ifProc. of the 2005 European Grid
Conferenceser. Lecture Notes in Computer Science, no. 3470. Amgterdde Netherlands: Springer, Berlin, Feb. 2005.

D. Kondo, A. Chien, and H. Casanova, “Scheduling TaskalRa Applications for Rapid Application Turnardound omt&rprise
Desktop Grids,"Journal of Grid Computing2007, to appear.

Y. C. Lee and A. Y. Zomaya, “Practical scheduling of bafgtasks applications on grids with dynamic resiliendeEE Trans. Comput.
vol. 56, no. 6, pp. 815-825, 2007.

D. Zhou and V. Lo, “Wave Scheduler: Scheduling for Fadternaround Time in Peer-Based Desktop Grid SystemsProt. of 11th
Workshop on Job Scheduling Strategies for Parallel Prdogsser. Lecture Notes in Computer Science, no. 3834. Bostoh, M
USA: Springer, Berlin, June 2005.

“The Compute Against Cancer Project,” http://www.qmuteagainstcancer.org, visited on Sept. 7th, 2007.

“The ShareGrid Project Home Page,” http://dcs.dpomi.it, visited on Nov. 22nd, 2007.

Y. Zhang, W. Sun, and Y. Inoguchi, “Predict task runntimge in grid environments based on CPU load predictioRafure Generations
Computer Systemsol. 24, pp. 489-497, 2008.

M. Dobber, R. van der Mei, and G. Koole, “A prediction retl for job runtime on shared processors: Survey, stalsdicalysis and
new avenues,Performance Evaluatignvol. 64, pp. 755-781, 2007.

W. Cirne, D. Paranhos, F. Brasileiro, and F. Goes, “Ome Hifficacy, Efficiency and Emergent Behavior of Task Repiicatn Large
Distributed Systems,Parallel Computing vol. 33, no. 3, pp. 213-234, April 2007.

A. Chien, B. Calder, S. Elbert, and K. Bhatia, “Entrapgchitecture and performance of an enterprise desktapsystem,”Journal
of Parallel and Distributed Computingrol. 63, no. 5, pp. 597-610, 2003.

O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Mafcand Y. Robert, “Centralized versus Distributed Scheduor Bag-of-Tasks
Applications,” I[EEE Transactions on Parallel and Distributed Systemd. 19, no. 5, May 2008.

P. Domingues and J.G. Silva and L. Silva, “Sharing clpeakts to improve turnaround time in desktop grid compuytimg Proc. of
the 20" International Conference on Advanced Information Netiwmarland Applications Vienna, Austria: IEEE Press, April 2006.
P. Domingues and F. Araujo and L.M. Silva, “A DHT-basedrastructure for Sharing Checkpoints in Desktop Grid Cotimg,” in
Proc. of the 2¢ IEEE International Conference on e-Science and Grid Coingufe-Science '06) Amsterdam, The Netherlands:
IEEE Press, December 2006.

M. Bozyigit and M. Wasig, “User-level Process Checkpoand Restore for Migration,ACM SIGOPS Operating Systems Reyiew
vol. 35, no. 2, pp. 8696, Apr. 2001.

M. Litzkow and T. Tannenbaum and J. Basney and M. Livighéckpoint and Migration of UNIX Processes in the Condottiitisted
Processing System,” Computer Sciences Department, Witivef Winsconsin, Tech. Rep. 1346, 1999.

V.C. Zandy and B.P. Miller and M. Livny, “Process Hijang,” in Proc. of 8" Int. Symposium on High Performance Distributed
Computing (HPDC-8) Redondo Beach, CA (USA): IEEE Press, Aug. 1999.

S. Al Kiswany and M. Ripeanu and S.S. Vazhkudai and A. i@iteeh, “stdchk: A Checkpoint Storage System for Desktofd Gr
Computing,” inProc. of the 28" Int. Conference on Distributed Computing Systems (ICDG®BR0 Beijing, China: IEEE Press, Jun.
2008.

P. Domingues and F. Araujo and L. M. Silva, “A DHT-basedrastructure for Sharing Checkpoints in Desktop Grid Cotimg,” in
Proc. of the 2 IEEE Int. Conference on e-Science and Grid Computingmsterdam, The Netherlands: IEEE Press, Dec. 2006.
D. Nurmi, J. Brevik, and R. Wolski, “Modeling Machine Aifability in Enterprise and Wide-area Distributed ConipgtEnvironments,”
in Proc. of Euro-Par 2005ser. Lecture Notes in Computer Science, no. 3648. Lisbodual: Springer, September 2005.

——, “Automatic Methods for Predicting Machine Availitity in Desktop Grid and Peer-to-Peer Systems,Piroc. of 4" Int. Workshop
on Global and P2P Computing (GP2PC '04)Chicago, IL (USA): IEEE Press, April 2004.

G. Harrison, “Stationary Single-Server Queuing Pesceith a Finite Number of SourceDperations Researchvol. 7, no. 4, pp.
458-467, Jul.—Aug. 1954.

L. Kleinrock, Queueing Systems: Volume | — TheorjNew York, USA: Wiley Interscience, 1975.

