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Abstract

Desktop Grids have the potential to provide an effective, low-cost solution to the computing needs of a variety
of distributed applications consisting in a set of independent tasks. However, such a potential can be exploited
in practice only if suitable scheduling strategies are employed. In this paper we propose a set ofknowledge-free
scheduling algorithms (that is, they do not require any information concerning either resource status or application
characteristics) that are able to effectively schedule a set of competing applications simultaneously submitted to a
Desktop Grid, unlike previous solutions that are able to deal only with a single application at a time. We study, via
simulation, the performance of these strategies, as well astheir ability of efficiently using the available resources,
for a wide range of Desktop Grid configurations (ranging fromVolunteer Computing systems to Enterprise Desktop
Grids) and application workloads. Our results show that thescheduling algorithms we propose outperform naive
alternative like FCFS (thede factostandard for Desktop Grids) both in terms of application performance and
efficient resource usage. Furthermore, these results enable us to identify which one of the proposed algorithms
should be used for a given combination of Desktop Grid configuration and application workload.

I. INTRODUCTION

The widespread diffusion of the Internet has created a new much large scale opportunity for Grid
computing. Millions of desktop PCs, whose computing and storage capacity is used only in a small part, are
indeed connected to wide-area networks both in the enterprise and in the home. The aggregation of these
independent resources into integrated computing platforms, achieved by means of suitable middlewares
(e.g., OurGrid [1], BOINC [2], XtremWeb[3], United Devices[4], and Data Synapse[5]), can provide
unprecedented amounts of raw computing power to distributed applications. These platforms, known in the
literature asDesktop Grids[6], [7], have been profitably used in a large number of projects (e.g.,The Great
Internet Mersenne Prime Search[8], Seti@home[9], Folding@home[10], FightAids@home[11], just to
name a few), thanks to their ability of providing amounts of raw computing power that far exceed the
capabilities of traditional Grid platforms at a fraction oftheir costs. The Desktop Grid paradigm, born in
academic settings, has been quickly adopted in the enterprise where, however, it has been interpreted in a
different way. As a matter of fact, academic Desktop Grids typically (but not only) include machines owned
by independent users that voluntarily “donate” to the system a fraction of capacity of their machines (hence
their nameVolunteer Computing Systems). Conversely, Desktop Grids used within a single enterprise
(denoted asEnterprise Desktop Grids) comprise resources owned by that enterprise only, that in this
way can obtain a degree of data and application confidentiality higher than those attainable by Volunteer
Computing systems.

Regardless of their academic or enterprise nature, however, Desktop Grids share the same core features:
like traditional Grids, they are characterized by a wide resource distribution and heterogeneity, but unlike
them they use resources that are not exclusively dedicated to run Grid applications. As a consequence,
these resources exhibit a much higher degree of volatility,since they may be reclaimed by the respective
owners at any time without any advance notice, and without caring about the application that was using it.



For this reason, Desktop Grids are generally considered better suited to the execution of loosely-coupled
parallel applications, that are able to tolerate the failure of individual application processes much better
than tightly-coupled ones. Among these applications,Bag-of-Tasks[12], [13] (or simplyBoTsfor brevity)
– parallel applications whose tasks are completely independent from one another – have been shown [14]
to be particularly suited to Desktop Grids and consequently, despite their simplicity, are used in a variety of
domains, such as parameter sweeps, simulations, fractal calculations, computational biology, and computer
imaging.

In order to enable BoTs to profitably exploit Desktop Grids, suitable scheduling strategies, able to
deal with the heterogeneity of resources, the fluctuations in the performance they deliver because of
the simultaneous execution of competing applications, andtheir failures due to their crashes/reboots or
unplanned departures, must be adopted. In response to this need, various scheduling algorithms that attempt
to minimize themakespanof BoTs (that is, the time taken to execute all the tasks in a bag) in spite of the
above problems have been proposed in the literature [14]–[19]. These algorithms, however, are able to deal
only with a single BoT at a time so, as shown later in this paper, when the workload consists in a set of
BoTs concurrently submitted by a community of potentially distinct users, are not able to properly perform,
and yield higher makespans for individual BoTs, lower resource utilization, or both. Consequently, these
algorithms are appropriate for situations where there is a single BoT that exclusively uses a Desktop Grid
infrastructure (e.g., like in volunteer-computing projects [9], [20]), but they fail to provide an adequate
solution when the same infrastructure is shared by many competing applications. Such scenarios, however,
are increasingly becoming commonplace both in the academiaand in the enterprise. On the one hand,
Desktop Grid infrastructures that federate resources belonging to independent (small) research institutions
(such asShareGrid[21]) are becoming an established reality, and the workloads they run are naturally
composed of applications of different types independentlysubmitted by distinct user communities. On
the other hand, similar situations arise also in the enterprise, where different R&D groups share the same
Desktop Grid infrastructure to run different applicationswithout coordinating among them to ensure the
exclusive usage of the infrastructure. Therefore, scheduling algorithms able to properly schedule a set of
BoT applications concurrently submitted for execution to the same Desktop Grid are crucial in order to
exploit the potential provided by these platforms.

In spite of the above considerations, the analysis of the relevant literature reveals that the problem of
schedulingmultiple BoTs concurrently submitted for execution to the same Desktop Grid has not been
studied yet in a systematic way. This paper fills this gap by proposing a set ofknowledge-freescheduling
algorithms for multiple BoTs (i.e., algorithms not relyingon any information concerning the status of
resources or applications), and by studying their performance for a large set of Desktop Grid configurations
and workloads. Our results clearly show that the schedulingalgorithms proposed in this paper are able
to effectively schedule application workloads consistingof multiple BoT submitted concurrently, and
that they outperform existing scheduling algorithms for Desktop Grids, that – as already discussed –
assume that only a single BoT must be scheduled at a given time, that instead result in unacceptably low
application performance and resource utilization. Furthermore, we are also able to identify which one of
the various algorithms we propose is better suited to a specific combination of Desktop Grid configuration
and application workload.

The rest of the paper is organized as follows. Section II discussed related work, while in Section III we
precisely define the scheduling problem for multiple BoTs, and we present our scheduling algorithms. In
Section IV we describe the results we obtained in our evaluation experiments. Finally, Section V concludes
the paper and outlines future research work.

II. RELATED WORK

In the recent past, the problem of schedulingindividual BoTs on Desktop Grid has been actively
studied. The scheduling algorithms proposed in the literature can be classified either asknowledge-based
or knowledge-free. Knowledge-based algorithms [15], [17], [18] assume that the scheduler knows and



exploits various amounts of information concerning resources (e.g., the computing power they deliver
to applications, their availability, etc.), applications(e.g., the execution times of the tasks). However, it
has been observed [14] that in Desktop Grids the informationconcerning resource status may be very
hard to collect (because of resource volatility) and is often inaccurate (because of resource contention).
Furthermore, the estimation of task execution times on heterogeneous, shared resources is still an open
research problem for which only partial solutions exist [22], [23]. Knowledge-free strategies [14], [16],
[19], that instead do not rely on any system or application information, have therefore been proposed as a
solution to the above problem, and have been shown [14], [24]to be able to obtain performance comparable
to knowledge-based ones at the price of using more resourcesthan strictly necessary. Therefore, in
situations where plenty of computing resources are available, they represent a viable solution.

Although the above scheduling algorithms are able to effectively schedule BoTs in the hypothesis that
they arrive one at a time (that is, at any single time only one BoT is present in the system), they do not
consider scenarios in whichmultiple BoTs must be scheduled. Existing approaches to schedule multiple
BoTs use either very simple algorithms (e.g., FCFS [3], [25]or random selection [24]) that – as shown
later in this paper – fail to provide adequate performance, or algorithms that adopt a knowledge-based
approach and pose restrictions on the communication topology of the Desktop Grid [26].

Unlike the above solutions, the scheduling strategies presented in this paper are knowledge-free and do
not pose restrictions on the architecture of the Desktop Grid.

III. SCHEDULING ALGORITHMS FOR MULTIPLE BAG-OF-TASK APPLICATIONS

In this paper we consider the problem of scheduling a set BoTsconcurrently submitted to a Desktop
Grid in such a way to minimize theirTurnaround Time, that is defined as the time elapsing from the
submission of a BoT to when its last task is completed. The turnaround timeTT (Bi) of a BoTBi can be
in turn decomposed in itsWaiting TimeWT (Bi) (the time elapsing from its submission to when its first
task is dispatched on a resource) and in itsMakespanMS(Bi) (the time elapsing from the beginning of
the execution of its first task to the completion of the last one), that is:

TT (Bi) = WT (Bi) + MS(Bi) (1)

As indicated by Eq.(1), turnaround time can be minimized by simultaneously minimizing both the waiting
time and the makespan of individual BoTs. Achieving this simultaneous minimization for every BoTs
Bi, however, may not possible in general, since the minimization of MS(Bi) may adversely affect the
makespan and the waiting time of other BoTs. More specifically, to minimizeMS(Bi) it is necessary to
allocate toBi at least one machine for each one of its tasks1. However, giving toBi at a single time
all the resources it requires may not leave enough resourcesto satisfy the needs of another BoTBj , with
the consequence that its makespan, its waiting time, or bothmay increase with respect to the case in
which less resources had been given toBi. As a matter of fact, if none ofBj ’s tasks has been scheduled
yet, the assignment of too many resources toBi may procrastinate the time instant at whichBj ’s first
task will be dispatched, thus makingWT (Bj) increase. Furthermore, ifBj has not enough resources to
run an instance for each of its tasks,MS(Bj) may increase as well. Therefore, a sensible scheduling
strategy must seek to strive a balance between allocating toeach BoT enough resources to reduce its
makespan, and to leave enough resources to other BoTs waiting in the queue to reduce their waiting time
and makespan as well.

The problem of scheduling a set of independent BoTs can be, inessence, reduced to the problem
of selecting one of the tasks waiting to be scheduled (task selection), an available machine (machine
selection), and to dispatch the selected task on the chosen machine. Task selection requires in turn that
one of the BoTs that still have to be completed is selected first (BoT selection), and that one of its tasks is
selected and dispatched for execution (individual BoT scheduling). Accordingly, the scheduling algorithms

1In practice, however, the presence of heterogeneity and volatility requires – as discussed later – to use a certain degree of replication, so
the number of resources that must be allocated toBi to minimize its makespan is larger than that of its tasks.



we propose in this paper couple a BoT selection policy with a scheduling algorithm for individual BoTs.
More precisely, we consider five different BoT selection policies (four of which are novel contributions of
the present work), that are combined with a knowledge-free individual BoT scheduling algorithm (WQR-
FT [16]), developed as part of our previous work, that – at thebest of our knowledge – provides the
best performance among similar algorithms. Therefore, in this paper we propose five different scheduling
algorithms for multiple BoTs.

In the following subsections, after a description of the system model on which these algorithms are
based (Sec. III-A), we will present the general structure ofour scheduling algorithms (Sec. III-B) and the
various BoT selection policies on which they are based (Sec.III-C).

A. System model

In our work we assume that Desktop Grids are composed by a set of independently-owned machines,
connected by a public network (e.g., the Internet), that these machines may fail, or may be reclaimed by
the respective owner at any time without any advance notice,and that they can reappear in the system after
a variable and unknown amount of time. Thus, the status of each machine alternates betweenavailable
andunavailable, and the time spent in the available state (thetime to failure) and in the unavailable state
(the repair time) are both assumed to be random variables.

We also assume that, in order to tolerate resource failures and departures, as well as to promote
application performance [16], [27], [28], the Desktop Gridmiddleware provides a checkpointing-and-
restart mechanism. More specifically, we assume that the middleware automatically takes checkpoints of
running tasks by usinguser-levelprocess checkpointing techniques [29] (e.g., [30], [31]),where a new
checkpoint is automatically taken by code running in user space when specific system calls are invoked
by tasks. Furthermore, we assume that these checkpoints arestored on a checkpoint storage system (e.g.
[32], [33]) that enables all the machines in the Desktop Gridto access them.

Finally, we assume that scheduling is performed by a centralized scheduler, that receives all the BoT
submissions and uses a separate queue for each BoT to hold itstasks that still have to be completed
(pending tasks).

B. Scheduling Algorithms

As already anticipated, the scheduling algorithms proposed in this paper work by coupling a BoT
selection policy with the same individual BoT scheduling algorithm. Consequently, the five scheduling
algorithms proposed in this paper share a common structure,which is reported in Fig. III-B (where the
notation summarized in Table I is used) in which BoT selection is performed first, and then individual
BoT scheduling follows.

TABLE I

NOTATION USED IN THE SCHEDULING ALGORITHM DESCRIPTION

Symbol Meaning

M The set of available machines

M(ti) Machine allocated to taskti

T (Mj) Identifier of the task allocated to machineMj

B(ti) Identifier of the bag to which taskti belongs

Repl(ti) The set of running replicas of taskti

Q(Bi) Scheduling queue associated with BoTBi

Q The set of queues associated to submitted and uncompleted BoTs

RepThresh The replication threshold



The pseudo-code listed in Fig. 1 encompasses a fixed part thatschedules individual BoTs by means of
WQR-FT, and a variable part performs BoT selection. A specific scheduling algorithm is obtained from
the pseudo-code by instantiating it with one of the BoT selection policies discussed later.

The scheduler works in an event-driven way, that is it waits (line 3) for the occurrence of a scheduling-
related event, that is an event that requires the scheduler to potentially take a scheduling decision, and then
it performs BoT selection (line 21) and individual BoT scheduling (lines 22–28). The first scheduling-

M = {M1, M2, . . . , MN};1

while true do2

wait (event);3

switch eventdo4

casearrival of BoT Bi:5

create queueQ(Bi); addQ(Bi) to Q;6

for each tasktj ∈ Bi, inserttj into Q(Bi);7

casecompletion of replicarx of taskti:8

addM(rx) to M;9

foreach task replicary ∈ Rep(ti), r
y 6= rx do10

terminatery;11

addM(ry) to M;12

endfch13

deleteti from Q(B(ti));14

if (Q(B(ti)) = ∅) then removeQ(B(ti)) from Q;15

casefailure of machineMi:16

Repl(T (Mi)) –; removeMi from the set of available machines;17

caserepair of machineMi: addMi to the setM of available machines;18

endsw19

while (Q 6= ∅ andM 6= ∅) do20

Bj = SelectBag();21

CS(Bj) = {tj ∈ Q(Bj)|Rep(tj) < RepThresh};22

next task = tN ∈ CS(Bj) such that∀ti ∈ CS(Bj), ti 6= tN , Rep(tN) < Rep(ti);23

starting point(next task) = SelectBest Checkpoint(next task);24

Mi = RandomSelect(M);25

removeMi from the setM of available machines;26

dispatch(starting point(next task),Mi);27

Repl(next task)++;28

endw29

endw30

Fig. 1. Pseudo-code of the scheduler

related event is the arrival of a new BoTBi (lines 5–7), that is handled by creating a new queueQ(Bi),
in which all the tasks belonging toBi are placed, that is added to the setQ.

The next scheduling-related event is the successful termination of areplica of task ti (lines 8–15). As
will be discussed later, WQR-FT uses task replication to tolerate both poor scheduling decisions (due to
the lack of any resource or task information) and the occurrence of machine faults. That is, it creates
replicas of already-running tasks when there are availablemachines, and terminates all the running replicas
of a task when the first one successfully terminates its execution. Therefore, when the first replica of a
task terminates, all other replicas of the same task are immediately terminated by the scheduler (line 11),
and the machine they used are placed in the setM of available machines (lines 9 and 12). Next,ti



is removed from the queueQ(B(ti)) of the corresponding BoT (line 14), since this task – having been
completed – is no longer pending. Furthermore, ifti was the last pending task inQ(B(ti)), its termination
implies also the termination of the whole BoT, that is handled by removing the corresponding task queue
Q(B(ti)) from the setQ of active BoT queues (line 15).

The last two scheduling-related event correspond to the failure and to the repair of a machine of the
Desktop Grid. In case of failure of machineMi (lines 16–17), the number of replicas of the corresponding
taskT (Mi) is decremented by one (this action, as discussed later, willaffect the decisions taken by WQR-
FT) andMi is removed from the set of available machines. Conversely, when a previously-failed machine
Mi is repaired and reappears in the Desktop Grid, the only action that is performed is to add it to the set
M (line 18).

When the processing of the just occurred event is completed,the scheduler checks (line 20) if there
are tasks to be scheduled, i.e. that there are pending tasks (Q 6= φ) and available machines (M 6= φ). If
there are no tasks to be scheduled, the scheduler goes back toline 3 to wait for the next event. If, instead,
there is scheduling work to be done, the scheduler first selects the next BoTBi from which the next task
will be chosen by calling theSelect Bag() procedure (line 21) (that implements one of the BoT selection
policies discussed in Sec. III-C), and thenBi is scheduled by means of the WQR-FT algorithm (lines
22–28).

WQR-FT is a replication-based scheduler, that is it createsreplicas of already-running tasks when there
are enough available resources. Although, as discussed later, replication is used to compensate the lack
of information, it also provides fault tolerance since, in case of failure of a task replica, the other ones
will continue their computation. WQR-FT works by keeping track of the number of running replicas of
each task, and by always choosing the task that has the lowestnumber of running replicas (in case of tie,
random selection is used). Areplication threshold (RepThresh)– an upper limit on the number of running
replicas per task – is set in order to avoid to waste too many resources (a replica that does not successfully
terminate wastes the computing cycles used to run it). When atask ofBi has to be scheduled, WQR-FT
builds thecandidate setCS(Bi) (line 22) – the set of tasks that have a number of running replicas strictly
smaller than the replication threshold – and then selects the task inCS(Bi) having the smallest number
of running replicas (line 23). Then, thebest checkpointfor the chosen task is selected (see below), one
of the available machines is chosen at random (line 25) so that no knowledge about resource status is
required), and the new task replica is started on it (line 28).

The concept of best checkpoint of a given task, that is definedas the checkpoint generated by the
replica that has completed the largest part of its work, has been introduced in WQR-FT in order to further
enhance application performance. Starting a new replica from the best checkpoint of the corresponding
task (line 24), rather than from scratch, promotes indeed performance as the new replica leverages the
computing work already performed by the one that produced the best checkpoint. It is worth to point
out that this assumption does not limit the generality of oursolution, as user-level checkpointing systems
can be easily extended, as described below, to provide the best checkpoint selection capability. User-level
checkpointing works by taking a checkpoint each time a task executes a system call so, since all the
replicas of the same task execute the same code, the replica that at any given point in time has generated
the largest number of checkpoints is the one that has executed the largest number of system calls, that
corresponds to say that it has completed the largest amount of work. Therefore, in order to determine the
best checkpoint for a given task, it is sufficient to keep track of the number of times that a checkpoint
has been taken for each of its replicas.

C. BoT Selection Policies

The BoT selection policy has a direct effect on both the waiting time (since it determines when the
first task of a BoT is scheduled) and the makespan (since it determines the number of machines allocated
to each BoT). Therefore, it must be carefully crafted in order to be able at the same time to allocate
enough resources to each BoT to reduce its makespan, and to distribute the available resources among all



the BoTs in order to reduce their waiting time. In this paper we propose the following set of five BoT
selection policies, that differ in the way they attempt to achieve the above balance:

• First Come First Served - Exclusive(FCFS-Excl): This policy is a straightforward extension ofthe
classical FCFS strategy used to schedule individual BoT applications on Desktop Grids, and consists
in simply serializing the execution of the various BoTs according to the order of their arrival. More
specifically, BoTs are scheduled in the order of their arrival, and the resources of the Desktop Grid
are exclusively allocated to the currently running BoT (that is, no task of any other BoT is executed
until the current one is completed). In order to fully exploit all the resources, the replication threshold
is raised to a potentially unlimited value. This corresponds to say that – when there are no longer
pending tasks for the current BoT – the machines that become free are kept busy by starting additional
replicas of the tasks that are still running;

• First Come First Served - Shared(FCFS-Share): variant ofFCFS-Exclin which the Desktop Grid
is not exclusively allocated to a single BoT. AsFCFS-Excl, BoTs are scheduled according to FCFS
but, if the first BoT in FCFS order has no longer pending tasks,a machine that completes its task
is allocated to the BoT that comes next. Therefore, as the number of completed tasks of the current
BoT application increases, the number of resources allocated to the next BoT in the FCFS order
increases as well;

• Round Robin(RR): in this policy, the various BoTs are scheduled in turn according to a circular
order, starting from the first one inQ (the oldest BoT among the ones that still have to be completed)
to the last one inQ;

• Round Robin - No Replica First(RR-NRF): this policy is a variant ofRR that gives priority to BoTs
that do not have any task instance running. That is, when the scheduler is triggered, if there is a
set Bx of BoTs that do not have any task replica running, the circular order of BoT selection is
temporarily suspended, and BoTs inBx are repeatedly selected until every BoT has at least a task
running. Starting from that moment, circular BoT selectionis restored;

• Longest Idle(LongIdle): this policy is motivated by the consideration that the turnaround time is
often dominated by the waiting time, especially for high workload intensities. This policy attempts to
reduce waiting time by giving preference to the BoT hosting the task that exhibits the largest waiting
time, defined as the total amount of time in which the task has had no running replicas.

IV. EXPERIMENTAL EVALUATION

In order to asses the effectiveness of the proposed scheduling policies, we performed an exhaustive study,
carried out by means a discrete-event simulator, in which wecompared them for a large set of operational
scenarios covering the whole landscape of Desktop Grid configurations and application workloads.

In our evaluation we compared the various scheduling algorithms in terms of the performance they
deliver to BoTs, and their ability to maximize the utilization of the Desktop Grid resources. Delivered
performance is measured by the averageTurnaround Time (TT)of BoTs (defined as the arithmetic average
of the turnaround time of individual BoTs – as defined in Eq.(1)). The ability of a scheduling policy to
efficiently use resources is instead quantified by means of the Relative Wasted Time (RWT), defined as
the fraction of computation time wasted to runuselessreplicas. A replica is considered useless if it is
terminated by the scheduler (as consequence of the successful completion of the first replica of the same
task), or because of a machine crash, without having ever produced a checkpoint better than the one stored
for the corresponding task.

In the rest of this section we describe the Desktop Grid configurations first (Section IV-A), we continue
with the description of the workloads (Section IV-B), and then we conclude with the results obtained in
our simulation experiments (Section IV-C).

A. Desktop Grid configurations

Generally speaking, Desktop Grids differ from each other interms of the heterogeneity and the
availability of their resources. In order to ensure the generality of our results, in this study we defined a set



of six Desktop Grid configurations, obtained by combining two heterogeneity levels with three availability
values, in such a way to cover a large set of real systems.

1) Resource Heterogeneity:We quantify heterogeneity in terms of the distribution of the computing
power delivered by individual resources of the Desktop Grid. The computing powerPi of machinei is
represented as a real number whose value is directly proportional to the speed of the machine (i.e., a
machinei with Pi = 10 is twice faster than a machinej with Pj = 5). The total computing powerP of

a Desktop Grid is defined as the sum of the computing power of individual machines, that isP =

|M|∑

i=1

Pi

(whereM denotes the set of machines of the Desktop Grid).
The heterogeneity levels we used for our experiments have been chosen in such a way to be represen-

tative of two classes of Desktop Grids placed at the oppositeends of the spectrum, namely those whose
resources have identical computing power (i.e., henceforth referred to ashomogeneousconfigurations) and
those whose resources exhibit relatively high differencesin their computing power (henceforth referred
to asheterogeneousconfigurations).

Since, to the best of our knowledge, the literature lacks a common agreement on the computing power
distributions of typical Desktop Grids, we decided – as in [24] – to set the total computing power
P = 1, 000 (for all the configurations used in the experiments) of the Desktop Grid and to progressively
add machines – whose computing powers were drawn from a specific probability distribution – until
the sum of their computing power matched the value ofP . Therefore, the number|M| of machines
included in a given configuration depends on the particular computing power distribution chosen for that
configuration.

For homogeneous configurations, the computing power was fixed to 10 for all machines, (i.e.,Pi =
10, i = 1, . . . , |M|), that resulted in a system composed by100 machines. For heterogeneous configura-
tions, the computing power was assumed to be uniformly distributed in the [2.3,17.7] interval, resulting in
an average value of 10 and a variance of 19.76, that gave rise to a configuration including93 machines.
This specific distribution was chosen, as discussed in [24],to reproduce a computing power distribution
complying with the Moore’s Law (that states that computer power double every 18 months) under the
hypothesis that the construction dates of the machines in the Desktop Grid span a 5 years interval. Under
these assumptions, we can indeed expect that the fastest machine of the Desktop Grid is 8 times faster
than the slowest one, and this corresponds to the limits of the [2.3,17.7] interval.

2) Resource Availability:The availability of a Desktop Grid configuration is quantified in terms of its
average machine availabilityA, that is defined as:

A =
1

|M|

|M|∑

i=1

Ai (2)

whereAi is the asymptotic availability of machineMi, a percentage value that quantifies the fraction of
time during whichMi can be used to run Desktop Grid applications, that is in turn defined as:

Ai =
MTTFi

(MTTFi + MTTRi)
(3)

whereMTTFi andMTTRi denote the mean of the distributions of the time to failure and of repair times
of Mi, respectively.

In order to consider various Desktop Grid configurations, weused three different availability values.
Enterprise Desktop Grids, being characterized by a high resource stability, were represented by configu-
rations whose average availability was set to 98% (henceforth referred to asHigh-Avail configurations).
Conversely, Volunteer Desktop Grids were represented by configurations whose availability was set to 50%
(Low-Availconfigurations), since in these platforms the participating machines come and go unpredictably
with a relatively high-frequency. A third availability value (75%) was used in order to consider also



Desktop Grid configurations that could be placed in between Enterprise and Volunteer Desktop Grids
(Medium-Availconfigurations).

To obtain these values, we proceeded as follows. As indicated by Eqs.(2) and (3), a given average
availability A can be obtained by suitably settingMTTFi and MTTRi (i = 1, . . . , |M|), that in turn
requires the knowledge of the distributions of fault and repair times, as well as of their parameters,
for all the machines inM. In accordance with the studies reported in [34], [35], we used the Weibull
distribution for fault times, while for the repair times (for which, at the best of our knowledge, no results
are published in the literature) we chose the normal distribution. For each of the three availability levels,
the parameters of the repair times distributions were set tothe same value for all the machines (i.e.,
MTTRi = MTTRj , i, j = 1, . . . , N). For the parameters of the Weibull distribution (theshapeand
the scale) characterizing fault times, we took instead a different approach in which we partitioned the
machines in 15 different groups, each one associated with specific values of shape and scale (obtained
from the results published in [35] and reported in Table II),that were used for all the machines in the
same group.

TABLE II

MTTF AND MTTR FOR THE MACHINE GROUPS

Machine High-Avail Medium-Avail Low-Avail

Group MTTF (sec.) MTTR (sec.) MTTF (sec.) MTTR (sec.) MTTF (sec.) MTTR (sec.)

1 773119

1800

23193.60

5400

7731.19

5400

2 1044610 31338.40 10446.10

3 997908 29937.20 9979.08

4 816990 24509.70 8169.90

5 330479 9914.37 3304.79

6 1288810 38664.20 12888.10

7 426508 12795.20 4265.08

8 487921 14637.60 4879.21

9 779938 23398.20 7799.38

10 997908 29937.20 9979.08

11 600641 18019.20 6006.41

12 331339 9940.17 3313.39

13 315787 9473.60 3157.87

14 319848 9595.44 3198.48

15 407545 12226.40 4075.45

The three availability values used in our study correspond to the MTTF and MTTR values reported in
Table II. More specifically, the MTTF values for theHigh-Avail case have been directly derived from [35],
while the other ones have been computed by reducing these values to 3% (Medium-Avail) and 1% (Low-
Avail), respectively. Furthermore, the mean and variance of the repair time for theHigh-Avail case were
set to 1800 sec. and 300 sec., respectively, while for the other two cases we set them to 5400 sec. and
800 sec., respectively.

B. Workloads

For our study, we consider various workloads, each one consisting in a set of BoTs that arrive to the
scheduler at a certain rate and require a given amount of work. Both the amount of work required by each
task (task execution time), and the time elapsing between two consecutive BoT arrivals (BoT interarrival
time), are assumed to be random variables distributed accordingto specific distributions. We assume that
BoT interarrival times were exponentially distributed with rateλ (henceforth referred to asBoT arrival
rate). Task execution times are assumed to be uniformly distributed in the interval[X − 50%, X + 50%],



whereX is thegranularity of tasks, that is defined as their mean execution times referred to abaseline
machinehaving computing powerP = 1 2. We consider BoT that include tasks characterized by different
granularities by defining a set oftask classes, each one corresponding to a given granularity values, and
by defining a set ofworkload mixes, each one corresponding to a specific combination of the basic task
classes. The workload we use for our study are obtained by combining a value for the BoT interarrival
rate with a specific workload mix. Therefore, all the BoTs generated when using a given workload are
characterized by the same workload mix.

Four our study, we used 8 task mixes and 3 BoT arrival rates – described below – that give rise to 24
different workloads.

1) Workload mixes:As already anticipated, each workload mix corresponds to a particular combination
of task classes, each one characterized by a single value of task granularity. We define four basic task
classes, namedVery Small, Small, Medium, andLarge, corresponding to granularity of 1,000 sec. (Very
Small), 5,000 sec. (Small), 25,000 sec. (Medium), and 125,000 sec. (Large), and we use them to obtain 8
different task mixes, each one corresponding to a particular distribution of task classes, expressed in terms
of the percentage of tasks of the various classes that belongto individual BoTs. These percentages are
reported, for all the task mixes, in Table III (wherePV S, PS, PM , andPL denote the fraction of very small,
small, medium, and large tasks). As can be observed by Table III, workload mixes can be divided in two

TABLE III

WORKLOAD MIXES

Mix group Task mix PV S PS PM PL

Single class

All VS 100% 0% 0% 0%
All S 0% 100% 0% 0%
All M 0% 0% 100% 0%
All L 0% 0% 0% 100%

Multiple class

Uniform 25% 25% 25% 25%
Short 50% 16.3 % 16.3 % 16.3 %
Med 16.3% 16.3% 50% 16.3%
Long 16.3% 16.3% 16.3% 50%

distinct groups. The first group (henceforth referred to assingle classmixes) included mixes characterized
by a single task class (that is, all the BoTs submitted to the Desktop Grids are composed by tasks having
the same granularity), and is made up byAll VS, All S, All M, andAll L. The second group (henceforth
referred to asmultiple classmixes) includes instead mixes characterized by multiple task classes, and is
made up byUniform, Short, Med, Long.

Given the fraction of tasks belonging to a each class, the distribution of the task execution times of
BoTs for a given workload is given by:

PV S ∗ U(500, 1500) + PS ∗ U(2500, 7500) + PM ∗ U(12500, 37500) + PL ∗ U(62500, 187500) (4)

wherePV S, PS, PM , PL are set according to Table III, andU(a, b) denotes the uniform distribution with
parametera and b. Eq. (4) is used to generate the various BoTs composing a given workload in the
following way. First, we fix itsapplication sizeAS of a BoT (defined as the sum of the execution times
of its constituent tasks), and then we repeatedly generate new tasks until the sum of their execution times,
computed by drawing random values from the distribution in Eq.(4), matchesAS. For this study,AS was
set to 3,600,000 sec. for all the BoTs regardless of their specific task mix, (as done also in [24]), since this
allowed us to evaluate the impact not only of resource and task heterogeneity, but also of task-to-machine
ratio. As a matter of fact, since both the application size and the number of machines is constant for a

2It is worth to point out that the actual execution time of a task depends on the computing power of the machine on which it will be
executed. In our case, given that the average computing power of machines equal to 10, a task whose granularity is 125,000sec. will be
executed – on average – in 12,500 sec.



given heterogeneity level, varying the task granularity corresponds to change the average number of tasks
per BoT executed by each machine.

2) BoT arrival rates: We considered a set of different arrival rates chosen in sucha way to reproduce
various load conditions on the resources of the Desktop Grid. We quantify the amount of work induced
on the Desktop Grid by a given workload by means of itsload factorL [36], a real quantity representing
the proportion of time that the Desktop Grid is busy defined as:

L =

|M|∑

i=1

Bi

|M|∑

i=1

(Bi + Ii)

(5)

whereBi (the busy time) denotes the amount of time that machineMi spends processing tasks of the
various BoTs, andIi (the idle time) denotes the time thatMi spends idle waiting for tasks to execute.
In order to evaluate the various scheduling algorithms under various load conditions, in our study we
considered workloads yielding load factors of 0.5, 0.75, and 0.95, named aslow-intensity, medium-
intensity, andhigh-intensity, and denoted asLlow, Lmed, andLhi, respectively3.

As shown in [37], a given load factorLX , (X ∈ {low, med, hi}) depends on the BoT arrival rateλX

and theCPU occupancy timeCX (the total amount of time requested by all the tasks in a singeBoT),
that is:

L = λ · C (6)

For our study, we used the same value ofC for all our experiments, that isCX = C, X ∈ {low, med, hi}.
Consequently, we obtained a workload characterized by a given load factorLX by setting the interarrival
rateλX for its BoTs as:

λX =
LX

C
(7)

We compute the CPU occupancy timeC for a given workload as:

C =
AS

|M|∑

i=1

EPi

(8)

whereEPi is theeffective computing powerof machineMi, that is the computing power thatMi delivers
over any time interval during which the machine may also be unavailable, which is in turn defined as:

EPi = Pi · Ai (9)

wherePi andAi denote the computing power and the asymptotic availabilityof machineMi, respectively.
Intuitively, Eq.(9) states that the effective computing power delivered by a machineMi whose availability
is Ai is equivalent to that of a machineMj that is fully available but delivering a computing powerPj =
Pi · Ai. For example, a machine whose computing power and availability are 10 and0.5, respectively, is
considered to be equivalent to a machine with a computing power of0.5 that is 100% available. By looking
at Eqs.(8) and (9), we note that the CPU occupancy time does not depend on the particular workload,
sinceAS assumes the same value for all the workloads, but depends instead on the characteristics of the
Desktop Grid configuration (and, precisely, on the distribution of the computing power and of availability
of individual machines). The consequence is that, for different configurations, the same load factor will
correspond to a different value ofλ, as reported in Table IV.

3Note that in order for the system to be in a stable state (that is, a state in which the turnaround time of BoTs does not grow infinitely)
for a given workload, we must haveL < 1.



TABLE IV

BOT INTERARRIVAL RATES FOR THE VARIOUS SCENARIOS

Desktop Grid configuration
N

X

i=1

EPi C λ

Llow Lmed Lhi

High-Avail Homogeneous 996.68 3612 0.00014 0.00021 0.00026
High-Avail Heterogeneous 997.89 3607.61 0.00014 0.00021 0.00026
Medium-Avail Homogeneous 759.71 4738.68 0.00011 0.00016 0.00020
Medium-Avail Heterogeneous 763.82 4713.17 0.00011 0.00016 0.00020
Low-Avail Homogeneous 526.41 6838.81 0.00007 0.00011 0.00014
Low-Avail Heterogeneous 531.87 6768.52 0.00007 0.00011 0.00014

As a final consideration, we note that Eq.(8) does not take into account the overheads due to task
replications and resubmissions, as well as to checkpointing, that were hard to express in a closed formula.
Furthermore, it is based on the simplifying assumption thatthe workload is perfectly divisible (i.e., any
machine can receive any arbitrarily small amount of work), while in practice it is not, since the work is
discretized into individual tasks. However, these simplifications do not hinder the generality of the results.
As a matter of fact, the value ofL computed by means of Eq.(8) corresponds to a lower bound for the
actual load factor (e.g., a valueL = 0.75 indicates that the actual load factor isat least75%), and if a
given result holds for the lower bound, it also holds for a (slightly) higher value of the load factor.

C. Results

Let us discuss now the results we obtained by performing simulation experiments for all the combi-
nations of the scenarios and workloads described before. Inall the experiments, we set the replication
threshold of WQR-FT to 2 (i.e., the scheduler attempts to always have two running replicas per task)
since, as shown in [16], higher replication thresholds bring negligible performance benefits at the price of
a much higher overhead caused by the larger number of replicas per task. The only exception to this rule
has been made for theFCFS-Excl, where (as already mentioned) an unlimited replication threshold has
been used. Finally, for all the Desktop Grid configurations,we assumed that the time taken to transfer
(retrieve) a checkpoint file to (from) the server was uniformly distributed in the interval [240,720] seconds.

As mentioned before, our primary performance indices are the Average Turnaround Time (AVT) of
BoTs, and the Relative Wasted Time (RWT). In addition to these indices, we have also collected other
information that help us to explain the phenomena that yieldto the measured values for AVT and RWT.
More specifically, we collect:

• the Average Makespan Time, defined as the arithmetic average of the makespan of individual BoTs;
• the Average Bag Waiting Time, defined as the arithmetic average of the waiting time of individual

BoTs;
For all the above performance indices, we computed 95% confidence intervals with a relative error of
2.5% or less.

In the rest of this section, we will first discuss the results obtained for workloads characterized by
single class mixes (Sec. IV-C.1), and then those corresponding to workloads characterized by multiple
class task mixes (Sec. IV-C.2).

1) Single Class Workloads:Single class workloads are those corresponding to theAll VS, All S, All M,
andAll L workload mixes (see Table III).

The results corresponding to Desktop Grid configurations characterized by a high availability value
(representing, as already mentioned, Enterprise Desktop Grids), are reported from Fig. 2 through Fig. 5.

In the case of homogeneous configurations and low-intensityworkloads (Fig. 2), we note that, for
workload characterized by very small and small task granularities (the bar groups labeled asAll VS and
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Fig. 2. Results for the High-Avail/Homogeneous Desktop Grid configuration and Single-Class/Low-Intensity workloads

All S, respectively), RR and RR-NRF perform slightly worse than the other ones (Fig. 2(a)). The results
reported in Fig. 2(b) and Fig. 2(c) indicate that this performance gap is not due to higher values of the
waiting time or of the RWT (that are negligible for both RR andRR-NRF), but – as indicated by the
results in Fig. 2(b)– it is instead due to higher values of themakespan. This depends on the fact that,
for these granularity values, each BoT application has, on average, a number of tasks much larger than
that of available resources (∼ 36 tasks/machine forAll VS, and∼ 7 tasks/machine forAll S). Therefore,
strategies that tend to allocate a larger amount of resources to fewer BoTs perform better than those
that simultaneously allocate fewer resources to a larger number of BoTs, since the larger the number
of resources allocated to each bag, the lower the corresponding makespan. Furthermore, given the short
average duration of individual tasks (1,000 sec. and 5,000 sec., respectively), the waiting time is not an
issue, so strategies like RR and RR-NRF, that aim at minimizing the waiting time, do not obtain any
appreciable benefit with respect to the other strategies that instead focus on reducing the makespan.

However, by looking at the average turnaround time (Fig. 2(a)) for workload mixes characterized by
higher granularity values (corresponding to the bar groupslabeled asAll M andAll L), we observe that
the performance of RR and RR-NRF are comparable to (All M) and much better than (All L) those of the
other strategies. Furthermore, it is worth to point out thatfor the All L workload mix FCFS-Excl makes
the makespan grow to an unlimited value, as graphically indicated by the fact that the corresponding
bar goes beyond the border of the graph. The inspection of theresults concerning the average makespan



(Fig. 2(b)) and the waiting time (Fig. 2(c)) provides again the explanation for this behavior. As a matter
of the fact, as indicated in Fig. 2(c), the above performancegap is due to the waiting time, rather than
to the makespan that, for RR and RR-NRF, is even higher than the other strategies (see Fig. 2(b)). This
depends on the fact that, for these workload mixes, the average number of tasks per BoT is comparable
to or smaller than that of the machines of the Desktop Grid (∼ 1.5 tasks/machine forAll M and∼ 0.3
tasks/machine forAll L), so there are always enough machines to simultaneously schedule several BoTs,
thus significantly reducing their waiting times (see Fig. 2(c)). Conversely, FCFS-Excl – by allocating all
the resources to a single BoT application even in these situations where this is not necessary – makes the
turnaround time grow to an unlimited value as consequence ofthe simultaneous growth of the makespan
and of the waiting time. FCFS-Share and LongIdle perform worse than RR and RR-NRF as well because
of their higher values for the average waiting time. An interesting observation that can be made by looking
at the results for FCFS-Share and LongIdle is that their exhibit practically identical performance. This is
due to the fact that, when the currently running BoT has stillpending tasks without replicas, they behave
exactly in the same way. As a matter of fact, in this case the pending tasks of a given BoT will always
exhibit a larger amount of idle time with respect to tasks belonging to BoTs submitted later. LongIdle will
instead start choosing BoTs different from the oldest one only when all its tasks have at least a replica
running.

The other performance metric used for our comparison, the RWT (Fig. 2(d)), tells a different story. As
a matter of fact, RR and RR-NRF are always able to outperform the other strategies for all the workload
mixes. This is the direct consequence of the fact that, by using a circular order for bag selection, they start
replicate much later than the other strategies. However, inthis particular configuration, characterized by
homogeneous resources and high availability, the performance benefits of replication are marginal since
the vast majority of replicas is useless. As a matter of fact,since the machines are identical and their
availability is high, the replica of a given task that is started first is always ahead of the other ones of that
task, thus making them unable to generate checkpoints better than those produced by the first replica.

When the machines of the Desktop Grid are heterogeneous (butstill highly-available), the results for
low-intensity workloads (shown in Fig. 3), are similar to those obtained for the homogeneous configuration.
As in the latter case, RR and RR-NRF perform slightly worse than the other strategies for theAll VS
and All S workload mixes, and comparably to (better than) them for theAll M (All L) mixes. The only
notable difference with respect to the homogeneous case is that in this scenario – for the higher granularity
workload mixes – the performance gap between RR and RR-NRF and the other ones is smaller (that is,
they perform slightly worse, while the other ones slightly better). This is due to the fact that when resources
are heterogeneous, replication pays off, as it allows to better tolerate poor scheduling decisions due to
the lack of resource information. Therefore, FCFS-Excl, FCFS-Share and LongIdle, being more prone to
replication – especially forAll M andAll L – than RR and RR-NRF, exhibit performance better than in
the homogeneous case, while the opposite is true for RR and RR-NRF. However, despite this difference
in performance, also in this case RR and RR-NRF are clear winner in terms of their ability of profitably
exploit resources, as indicated by the results concerning the RWT (see Fig. 3(d)).

Similar considerations can be made for these Desktop Grid configurations when the workload intensity
is high (see Figs. 4 and 5). As for low intensity workloads, RRand RR-NRF perform slightly worse
than the other scheduling algorithms for theAll VS andAll S workload mixes, and better forAll M and
All L (see Figs. 4(a) and 5(a)). However, the performance gap between RR and RR-NRF, and the other
strategies, is now much higher than in the low-intensity case, since FCFS-Excl, FCFS-Share, and LongIdle
fail to yield a finite value for the turnaround time since, as can be seen from Figs. 4(c) and 5(c), their
waiting time is practically unbounded, while this is not thecase of RR and RR-NRF. Furthermore, as in
the low-intensity case, RR and RR-NRF result in much lower values for RWT.

When the Desktop Grid availability decreases to 75% (Medium-Avail), our results (that have been
omitted from this paper because of space constraintsRR and RR-NRF perform slightly worse than the
other ones for theAll VS and All S workload mixes, and comparably to (much better than) forAll M
(All L). Furthermore, in this latter case FCFS-Excl, FCFS-Share and LongIdle yield unbounded values
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Fig. 3. Results for the High-Avail/Heterogeneous Desktop Grid configuration and Single-Class/Low-Intensity workloads

of the turnaround time also forLlow workloads, and not only forLhi ones. The results for the RWT,
again, show a large advantage of RR and RR-NRF, that exhibit performance gains as large as 10% for
FCFS-Share and LongIdle and 25% for FCFS-Excl (homogeneousconfigurations), and slightly lower for
the heterogeneous configurations since, as already discussed, creating an higher number of task replicas
pays off when the machines are heterogeneous.

Finally, let us consider the results obtained for low availability configurations (corresponding, as already
mentioned, to Volunteer Computing Desktop Grids), that areshown from Fig. 6 through 9. Also for these
configurations, in the case of low intensity workloads, the strategies exhibit the same behavior observed
for high and medium availability values. That is, for low granularity workload mixes (All VSandAll S),
RR and RR-NRF perform slightly worse than the other strategies, while their turnaround time is better
for the other workload mixes. However, in this case, we observe that for high-intensity workloads all
the scheduling strategies fail to yield a bounded turnaround time regardless of the heterogeneity of the
platform. This, however, is not unexpected, since a 0.90 load factor make the system work under saturation,
and there is no room to create enough replicas to tolerate poor scheduling decisions or machine failures.
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Fig. 4. Results for the High-Avail/Homogeneous Desktop Grid configuration Single-Class/High-Intensity workloads
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Fig. 5. Results for the High-Avail/Heterogeneous Desktop Grid configuration and Single-Class/High-Intensity workloads
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Fig. 6. Results for the Low-Avail/Homogeneous Desktop Gridconfiguration and Single-Class/Low-Intensity workloads
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Fig. 7. Results for the Low-Avail/Heterogeneous Desktop Grid configuration and Single-Class/Low-Intensity workloads
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Fig. 8. Results for the Low-Avail/Homogeneous Desktop Gridconfiguration and Single-Class/High-Intensity workloads
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Fig. 9. Results for the Low-Avail/Heterogeneous Desktop Grid configuration and Single-Class/High-Intensity workloads



2) Multiple Class Workloads:Multiple class workloads are those characterized by theUniform, Short,
MediumandLong workload mixes (see Table III).

The results corresponding to Desktop Grid configurations characterized by high availability values are
reported from Fig. 10 through Fig. 13. For homogeneous configurations and low-intensity workloads
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Fig. 10. Results for the High-Avail/Homogeneous Desktop Grid configuration and Multi-Class/Low-Intensity workloads

(Fig. 10) we note that, for all workload mixes, the turnaround time obtained for FCFS-Excl (Fig. 10(a))
grows to an unlimited value, as consequence of the simultaneous growth of the makespan (Fig. 10(b)) and
of the waiting time (Fig 10(c)). This is due to the fact that FCFS-Excl allocates all the resources to a single
BoT application – thus increasing the number of replicas pertask – even in situations like these, where
replication yields marginal benefits because of the homogeneity and high availability of machines. This
effect is confirmed also by the results concerning the RWT (Fig. 10(d)), that indicate that the percentage
of useless replicas generated by FCFS-Excl is about 80% for all the workload mixes.

For the other scheduling policies, we note that, RR and RR-NRF perform better (for theUniform,
Short, andMediumworkload mixes) or slightly better (for theLong mix) than the other ones. The results
shown in Fig. 10(b) indicate that this gap is not due to the average makespan (that is higher for RR and
RR-NRF), but – as can be seen from Fig. 10(c) – it can be ascribed to the waiting time. The explanation
of this phenomenon recalls that already given for single class workloads: since the average number of
tasks in a BoT is comparable to (Uniform, Short, Medium) or much smaller than (Long) the number of
machines of the Desktop Grid, there are enough resource to simultaneously schedule several BoTs (as RR



and RR-NRF do), thereby reducing their waiting time with respect to the other policies, and at the same
time to allocate to each of them enough resources, thereby keeping their makespan within reasonable
limits. Conversely, for theLongworkload mix, we observe that all the scheduling policies but (as already
discussed) FCFS-Excl exhibit similar performance. This isdue to the fact that theLong workload mix is
characterized by BoTs having an average number of tasks muchsmaller than the number of machines of
the Desktop Grid (∼ 0.5 tasks/machine). Therefore, in this case there are enough resources to concurrently
run several BoTs, and there are so many resources for each BoTthat even RR and RR-NRF creates a
significant number of replicas per task (as can be deduced by the fact that their values of RWT are
practically identical to that corresponding to FCFS-Shareand LongIdle – see Fig. 10 (d)). Consequently,
there are no appreciable differences in their performance.
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Fig. 11. Results for the High-Avail/Heterogeneous DesktopGrid configuration and Multi-Class/Low-Intensity workloads

When the machines of the Desktop Grid are heterogeneous (butstill highly-available), the results for
low-intensity (shown in Fig. 11), are similar to those obtained for the homogeneous configurations. As
in the latter case, RR and RR-NRF perform better (Uniform, Short, Medium) and slightly better (Long)
than the other strategies. The only notable difference withrespect to the homogeneous case is that in this
scenario the performance gap between the RR and RR-NRF and the other policies is smaller. This is due
to the fact that when resource are heterogeneous, replication pays off, as it allows to better tolerate poor
scheduling decisions due to the lack of resource information. As mentioned before, FCFS-Excl, FCFS-
Share and LongIdle, being more prone to replication, exhibit performance better than in the homogeneous



case, while the opposite is true for RR and RR-NRF. However, despite this difference in performance,
also in this case RR and RR-NRF are clear winners in terms of their ability of profitably exploit the
available resources.
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Fig. 12. Results for the High-Avail/Homogeneous Desktop Grid configuration and Multi-Class/High-Intensity workloads

The results obtained for Desktop Grid configurations when the workload intensity is high (see Figs. 12
and 13) tell a different story. In particular, FCFS-Excl, FCFS-Share, and LongIdle fail to yield a finite
value for the turnaround time since, as can be seen from Figs.12(c) and 13(c), their waiting time is
practically unbounded, while this is not the case of RR and RR-NRF. Only for theLong workload mix,
the FCFS-Share and LongIdle are able to yield a finite value for the turnaround time (albeit worse than
that corresponding to RR and RR-NRF). This is due to the fact that, again, for theLong workload mix
there are enough resources to simultaneously schedule several BoTs, thereby reducing their waiting time,
and to give to each of them enough resources to minimize theirmakespan as well. Also in these cases,
RR and RR-NRF are clear winners even in terms of RWT (see Figs.12(d) and 13(d)).

When the Desktop Grid availability decreases to the medium value (corresponding to 75%) our results
(see Figs. 14 through 17) show that, again, RR and RR-NRF perform better (Uniform, Short, Medium)
and slightly better (Long) than the other strategies. The only notable difference with respect to the high
availability case is that in this scenario – for theLong workload mix and low-intensity workload – the
FCFS-Excl scheduling policy is able to yield a finite value for the average makespan time (see Fig. 14(b)
and Fig. 15(b)). This is due to the fact that when resources are not reliable, replication pays off, as it
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Fig. 13. Results for the High-Avail/Heterogeneous DesktopGrid configuration and Multi-Class/High-Intensity workloads

allows to better tolerate machine failures. However, despite this difference in performance, also in this
case RR and RR-NRF are clear winners for scenarios characterized by resource with medium availability.

Finally, the results obtained for low availability configurations corresponding, as already mentioned, to
Volunteer Desktop Grids (not reported here for the sake of brevity), show that for low intensity workloads,
all the strategies behave exactly as observed for high and medium availability values. That is, RR and
RR-NRF perform better (Uniform, Short, Medium) and slightly better (Long) than the other strategies.
However, in this scenario, we observe that for high-intensity workloads all the scheduling policies always
fail to yield a bounded turnaround time for the Short workload mix. This is not unexpected, since the
large number of tasks for each bag and the high load factor make the system work under saturation, so
there is no room to create enough replicas to tolerate poor scheduling decisions or machine failures.

3) Discussion:The results reported in the previous sections allow us to draw some general conclusions
about the performance and the efficiency of the various scheduling policies considered in this paper.

As discussed in the previous sections, FCFS-Excl (that we recall is a direct extension of the scheduling
algorithm used by state-of-the-art Desktop Grid platformsto schedule workloads composed by a single
BoT a time) never yields performance better than all the other strategies. As a matter of fact, for many
workloads and Desktop Grid configurations RR and RR-NRF perform better than all the other algorithms
both in terms of performance and efficiency, while when the opposite is true, FCFS-Excl performs always
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Fig. 14. Results for the Medium-Avail/Homogeneous DesktopGrid configuration and Multi-Class/Low-Intensity workloads

worse (or, in some cases, the same) than FCFS-Share both in terms of efficiency and performance. This
demonstrates our initial claim that the vanilla FCFS scheduling algorithm cannot be used in situations
where multiple BoT are simultaneously submitted for execution.

As a second consideration, we observe that for all the scenarios and workloads considered, FCFS-Share
and LongIdle results in the same performance and efficiency levels. Therefore, being FCFS-Share easier to
implement, it should be preferred to LongIdle in those situations where RR and RR-NRF perform worse.
Analogously, RR and RR-NRF always exhibit the same performance and efficiency levels but, being RR
easier to implement, it should be preferred over RR-NRF.

This said, let us provide an answer to the question whether any of these two scheduling policies must be
preferred over the other one for all the Desktop Grid scenarios and application workloads we considered
in this paper.

As it appears from the results concerning the amount of wasted time, RR is always more efficient than
FCFS-Share for all the Desktop Grid configurations and application workloads we considered, that is it
wastes less CPU cycles. This has the consequence that, givena performance goal that must be met (e.g.,
an upper threshold that must not be exceeded by the turnaround time), RR requires less resources than
FCFS-Share to achieve it. Furthermore, for a fixed amount of computing power provided by the Desktop
Grid, RR is able to better deal with sudden workload spikes than FCFS-Share, as it is always able to
spare a higher amount of resource power thanks to its abilityof wasting less computing capacity.
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Fig. 15. Results for the Medium-Avail/Heterogeneous Desktop Grid configuration and Multi-Class/Low-Intensity workloads

The results concerning performance, however, indicate that no single scheduling policy outperforms the
other ones for all Desktop Grid configurations and application workloads we considered, although RR
performs better than FCFS-Share in a higher number of situations. The results concerning single class
workloads, summarized in Table V, indicate indeed that FCFS-Share has to be preferred over RR only
for workloads featuring very small and small task granularities (regardless of Desktop Grid configuration
and workload intensity), while RR performs better in the other cases. The only exceptions are represented
by the HighAvail/Homogeneous Desktop Grid configurations and theAll M workload mix, where FCFS-
Share and RR perform the same (indicated by the∼ symbol in the corresponding table entries), and by
the Low-Avail/Heterogeneous configuration andAll L workload mix, where both policies fail to yield a
finite value for the turnaround time.

The situation is instead different for multiple class workloads, whose results are summarized in Table VI,
where we observe that RR always performs better than FCFS-Share. The only exception to this rule is
represented by the Homogeneous Desktop Grid configurationsand the Long workload mix, where both
strategies exhibit very similar performance (denoted by the symbol∼).

Therefore, we can conclude that, while in terms of efficiencyRR should always be preferred over the
other scheduling policies, for single class workloads consisting of fine grain tasks FCFS-Share represents
the best choice, while for all the other situations RR provides higher performance advantages.
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Fig. 16. Results for the Medium-Avail/Homogeneous DesktopGrid configuration and Multi-Class/High-Intensity workloads

TABLE V

COMPARISON OF THE TURNAROUND TIME FOR SINGLE CLASS WORKLOADS

Workload Mix
Desktop Grid configuration All VS All S All M All L

Llow Lhi Llow Lhi Llow Lhi Llow Lhi

High-Avail Homogeneous FCFS-Share FCFS-Share FCFS-Share FCFS-Share ∼ RR RR RR
High-Avail Heterogeneous FCFS-Share FCFS-Share FCFS-Share FCFS-Share ∼ RR RR RR
Low-Avail Homogeneous FCFS-Share FCFS-Share FCFS-Share FCFS-Share FCFS-Share RR RR ∞

Low-Avail Heterogeneous FCFS-Share FCFS-Share FCFS-Share FCFS-Share RR RR RR ∞

TABLE VI

COMPARISON OF THE TURNAROUND TIME FOR MULTIPLE CLASS WORKLOADS

Workload Mix
Desktop Grid configuration Uniform Short Medium Long

Llow Lhi Llow Lhi Llow Lhi Llow Lhi

High-Avail Homogeneous RR RR RR RR RR RR ∼ RR
High-Avail Heterogeneous RR RR RR RR RR RR ∼ RR
Med-Avail Homogeneous RR RR RR RR RR RR ∼ RR
Med-Avail Heterogeneous RR RR RR RR RR RR ∼ RR
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Fig. 17. Results for the Medium-Avail/Heterogeneous Desktop Grid configuration and Multi-Class/High-Intensity workloads



V. CONCLUSIONS AND FUTURE WORK

Desktop Grid infrastructures are becoming commonplace notonly in the academia, but also in the
enterprise. Consequently, their employment as general-purpose computing platforms, exploited by different
user communities running a variety of different BoT applications at the same time is continuously
increasing. This motivates the need of scheduling algorithms able to simultaneously promote application
performance and efficiently use available resources. The current state-of-the-art of scheduling algorithm
for Desktop Grid offers solutions able to effectively schedule workloads where a single BoT is submitted
(and, hence, needs to be scheduled) at a time but, as shown in this paper, these strategies fail to achieve
this goal.

In this paper we have proposed a set of novel scheduling strategies specifically conceived to deal with
scenarios where multiple BoT applications are simultaneously submitted to a Desktop Grid, that have been
shown to provide an appropriate answer to the performance and efficiency needs characterizing modern
Desktop Grid infrastructures. Our results clearly indicate that (a) these strategies enable applications to
achieve performance better than those attainable by using vanilla FCFS schedulers, (b) simple Round Robin
(RR) always results in better resource utilization, and in many cases in better performance too (especially
for workloads featuring BoTs characterized by different task granularities), and (c) a straightforward
variant of FCFS in which free resources that are not strictlynecessary to the running BoT are allocated
to the subsequent one greatly improves the performance of vanilla FCFS, and makes it suited to schedule
single class workloads characterized by a small task granularity.

In addition to the above advantages, our strategies have theadditional benefit of being knowledge-free,
that is they neither require nor rely on any information concerning resources and applications. As such,
they are easier to implement, deploy, and use on Desktop Gridinfrastructures, whose relative resource
instability makes very hard (if not impossible) the task of collecting accurate information about resources
or applications.

The scheduling strategies we presented, albeit already providing a suitable answer to the scheduling
needs of contemporary Desktop Grids infrastructures and workloads, still provide room for improvements.
Among those, we mention the possibility of using individualBoT scheduling algorithms that use dynamic
replication strategies (rather than the static one used in this paper), as this intuitively should further reduce
the amount of wasted CPU cycles. Another possible avenue of research worth exploring is represented
by the usage of knowledge-based scheduling algorithm for individual BoT (e.g., those proposed in [15]),
in place of WQR-FT. This would make the scheduling strategy no more completely knowledge-free (the
BoT selection policy, however, would still be knowledge-free), but might result in further application
performance improvements. The adoption of a (partially) knowledge-based approach would also open
a further avenue of research concerning the awareness of data placement. The scheduling algorithms
presented in this paper are data placement agnostic, that isthey do not consider the overhead due to
data access, that may impact in a different way on the performance of different replicas of the same
tasks executed on distinct machines. However, knowledge-free approaches cannot base their decisions on
data placement information, as this would require the gathering of information concerning data access
patterns for the various tasks, as well as those concerning data location. The migration towards a partial
knowledge-based approach would allow us to combine the knowledge-free BoT selection policies presented
in this paper with knowledge-based, data-aware resource selection policies, thus reducing the amount of
information that must be provided to the scheduler with respect to fully knowledge-based strategies able
to deal also with data placement.
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