
Dipartimento di Informatica
Università del Piemonte Orientale “A. Avogadro”

Via Teresa Michel 11, 15100 Alessandria
http://www.di.unipmn.it

The TAAROA Project Specification
Authors: Cosimo Anglano, Massimo Canonico, Marco Guazzoneand Matteo Zola

({cosimo.anglano,massimo.canonico,marco.guazzone,matteo.zola}@unipmn.it)

TECHNICAL REPORT TR-INF-2009-02-02-UNIPMN
(February 2009)

The University of Piemonte Orientale Department of Computer Science Research Technical Reports are available via WWW at URL
http://www.di.mfn.unipmn.it/.

Plain-text abstracts organized by year are available in thedirectory

Recent Titles from the TR-INF-UNIPMN Technical Report Series

2009-01 Knowledge-Free Scheduling Algorithms for Multiple Bag-of-Task Applications on Desktop Grids, Anglano, C., Canonico, M., Febru-
ary 2009.

2008-09 Case-based management of exceptions to business processes: an approach exploiting prototypes, Montani, S., December 2008.

2008-08 The ShareGrid Portal: an easy way to submit jobs on computational Grids, Anglano, C., Canonico, M., Guazzone, M., October 2008.

2008-07 BuzzChecker: Exploiting the Web to Better Understand Society, Furini, M., Montangero, S., July 2008.

2008-06 Low-Memory Adaptive Prefix Coding, Gagie, T., Nekrich, Y., July 2008.

2008-05 Non deterministic Repairable Fault Trees for computing optimal repair strategy, Beccuti, M., Codetta-Raiteri, D., Franceschinis, G.,
July 2008.

2008-04 Reliability and QoS Analysis of the Italian GARR network, Bobbio, A., Terruggia, R., June 2008.

2008-03 Mean Field Methods in performance analysis, Gribaudo, M., Telek, M., Bobbio, A., March 2008.

2008-02 Move-to-Front, Distance Coding, and Inversion Frequencies Revisited, Gagie, T., Manzini, G., March 2008.

2008-01 Space-Conscious Data Indexing and Compression in a Streaming Model, Ferragina, P., Gagie, T., Manzini, G., February 2008.

2007-05 Scheduling Algorithms for Multiple Bag-of-Task Applications on Desktop Grids: a Knowledge-Free Approach, Canonico, M.,
Anglano, C., December 2007.

2007-04 Verifying the Conformance of Agents with Multiparty Protocols, Giordano, L., Martelli, A., November 2007.

2007-03 A fuzzy approach to similarity in Case-Based Reasoning suitable to SQL implementation, Portinale, L., Montani, S., October 2007.

2007-02 Space-conscious compression, Gagie, T., Manzini, G., June 2007.

2007-01 Markov Decision Petri Net and Markov Decision Well-formed Net Formalisms, Beccuti, M., Franceschinis, G., Haddad, S., February
2007.

2006-03 New challenges in network reliability analysis, Bobbio, A., Ferraris, C., Terruggia, R., November 2006.

2006-03 The Engineering of a Compression Boosting Library: Theory vs Practice in BWT compression, Ferragina, P., Giancarlo, R., Manzini,
G., June 2006.

2006-02 A Case-Based Architecture for Temporal Abstraction Configuration and Processing, Portinale, L., Montani, S., Bottrighi, A.,
Leonardi, G., Juarez, J., May 2006.

2006-01 The Draw-Net Modeling System: a framework for the design andthe solution of single-formalism and multi-formalism models,
Gribaudo, M., Codetta-Raiteri, D., Franceschinis, G., January 2006.

The TAAROA Project Specification ∗

Cosimo Anglano Massimo Canonico Marco Guazzone
Matteo Zola

Department of Computer Science, University of Piemonte Orientale, Alessandria (Italy),
email:{cosimo.anglano,massimo.canonico,marco.guazzone,matteo.zola}@unipmn.it

Abstract

Since its introduction, the Grid computing paradigm has
been widely adopted both in scientific and also in indus-
trial areas. The main advantage of the Grid computing
paradigm is the ability to enable, in a transparent way, the
sharing and the coordination of several heterogeneous and
large-scale distributed resources belonging to differentin-
stitutional domains. One of its limitation is the lack of facili-
ties for executing services. In fact, Grid computing has been
traditionally used and improved for running computational-
intensive or data-intensive applications. A service differs
from this kind of applications in that it usually waits for
requests from clients and replies with useful information;
moreover, a service is typically subjected to some predefined
constraints, called Service Level Agreement (SLA), includ-
ing both temporal and performance restrictions. In this pa-
per we present the TAAROA middleware, a software system
that tries to extend the traditional target of the Grid com-
puting paradigm to include the service concept. It attempts
to accomplish its goal by using the virtualization technol-
ogy. By abstracting the hardware and software resources
of a computer, virtualization brings to TAAROA two impor-
tant benefits: (1) the encapsulation of the service runtime
environment, and (2) the possibility, through the migration
facility, to move a service from the computer where it is run-
ning to another one that hopefully reduces the risk of vio-
lating some of the SLA constraints. In the current version
of TAAROA middleware there is no explicit mechanism for
achieving the level of a service as defined by the related
SLA; this means that actually TAAROA is only able to pro-
vide a best-effort service.

Keywords: Grid Computing, Service Level Agreement,
Virtualization.

∗This work has been supported by TOP-IX and the Piedmont Region
Agency under the Innovation Development Program.

1 Introduction

The traditional use of a distributed computing infras-
tructure is for executing computational-intensive or data-
intensive applications for solving complex problems. These
applications are characterized by the lack of user interaction
and by the high demand of computational power or storage
capacity. While almost all of the scientific applications can
be considered to belong to at least one of the above cate-
gories, there are others, like the ones in the business do-
main, that follow different behavioral patterns. Servicesare
an example of such applications.

A service is an application that differs from traditional
resource-intensive applications for at least two aspects:(1)
there is some kind of interaction with its users, that is it
spends most of its time waiting for client requests (gener-
ally issued by a user) and, upon a request arrival, replies to
a requesting client with useful information, and (2) is typ-
ically subjected to predefined temporal, performance and
economical constraints referred to as Service Level Agree-
ment (SLA). The importance of services is demonstrated
by the actual trend in the development and in the deploy-
ment of applications [1, 7]: the Service Oriented Architec-
ture (SOA) model is now a fundamental part in designing
and integrating applications since it allows existing IT in-
frastructure and systems to achieve end-to-end enterprise
connectivity by removing redundancies, generating unified
collaboration tools, and streamlining IT processes [4, 2].

Distributed computing paradigms still lacks of suitable
mechanisms in order to execute this kind of applications.
Specifically, the two most challenging and still open prob-
lems are: (1) to decide to what physical machine assign a
service for execution in order to satisfy its SLA constraints
and (2) to continuously monitor the execution of the al-
ready running services for preventing and possibly reacting
to SLA violations.

Finding the optimal allocation of a certain number of ser-
vices to a finite number of physical machine, subjected to
SLA constraints, is a computationally hard problem (NP-
complete) [5]. Furthermore, when no such optimal alloca-

tion can be found, a quasi-optimal allocation is still required
in order to minimize SLA violations; in this case, additional
issues must be taken into consideration for the conflicting
nature of the problem: two or more services competes for
getting assigned to the machine that allows them to meet the
largest number of SLA constraints.

The other challenging problem is the monitoring and
the fulfillment of SLA constraints. It consists in observing
the behavior of the service execution, collecting the perfor-
mance measures related to SLA constraints, predicting fu-
ture behavior (on the basis of a specific performance model)
and finally properly reacting in order to prevent SLA viola-
tions, without compromising the SLA constraints of other
running services.

In this paper we present the TAAROA middleware, a
software system that tries to extend the traditional targetof
the Grid computing paradigm to include the service con-
cept. It attempts to accomplish its goal by using the vir-
tualization technology. By abstracting the hardware and
software resources of a computer, virtualization brings to
TAAROA two important benefits: (1) the encapsulation of
the service runtime environment, and (2) the opportunity,
through the migration facility, of moving an executing ser-
vice from the physical machine where it is running to an-
other one which, hopefully, reduces the risk of violating
some of the SLA constraints. Even if the ultimate goal of
TAAROA middleware is to enable the optimal execution of
services on distributed systems, in its current version there
is no explicit mechanism for achieving the level of a ser-
vice as defined by the related SLA; this means that actually
TAAROA is only able to provide a best-effort service.

The rest of this paper is organized as follows. In §2 we
aim to provide an understanding of the main ideas under-
lying the TAAROA middleware by outlining its high-level
architecture. In §3 we add details to the architecture de-
scribed in §2 by illustrating the role of each TAAROA com-
ponent and the associated interactions. In §4 we describe
what are the information maintained by the TAAROA mid-
dleware, to enable interaction between its component, and
how they are organized. In §5 the communication proto-
col, used by TAAROA components for interacting, is thor-
oughly described. Finally, in §6we provide conclusions and
our future research directions.

2 Overview of TAAROA

TAAROA is a software middleware which tries to enable
Grid systems (i.e., distributed systems using the Grid com-
puting paradigm) to execute services and, at the same time,
to preserve their SLA constraints. In this section we provide
an high-level overview of the architecture of the TAAROA
middleware.

As shown in Fig.1, the architecture of TAAROA con-

sists of five types of components: the TAAROA Client, the
Information Service, the Repository Manager, the Sched-
uler and the Machine Manager (along with the associated
Physical Machine). Each component is loosely coupled to
each other, meaning that components, both of the same and
of different type, weakly depend from each other.

The TAAROA Client component is the user interface to
the TAAROA middleware; it is the component where all
user requests start. For instance, it allows a user to execute
a new service or to stop the execution of a running one.

The Information Service component is responsible for
collecting, managing and publishing information about the
state of the user services and of the other TAAROA compo-
nents. This information is further used by TAAROA mid-
dleware in order to locate a particular TAAROA component
or to get insights about its last published state.

The Machine Manager component is in charge of exe-
cuting a user service on a Physical Machine. It uses the vir-
tualization technology of the underlying Physical Machine
in order to execute the service in an isolated environment
and to avoid runtime dependencies issues: every service,
along with its runtime environment, is encapsulated inside
a Virtual Machine.

The Repository Manager component is responsible for
hosting the images of the Virtual Machines associated to
the user services.

The Scheduler component has the role of deciding to
what Physical Machine a user service is to be assigned
for the execution. In the current implementation of the
TAAROA middleware, requests for service submission are
queued and served in the order of their arrival, by assigning
to each service the first available Physical Machine.

There are several type of interactions occurring between
TAAROA components. In the following, just for illustra-
tion, we outline the workflow associated to the submission
of a user service. When a user wants to execute a service
to TAAROA, he accesses to the TAAROA Client, selects
the wanted service from a list retrieved by the TAAROA
Client from the Information Service, and finally submit it
to TAAROA. In response to the service submission request,
the TAAROA Client contacts the Scheduler for submitting
the interested service. In turn, the Scheduler queries the
Information Service for obtaining the list of the available
Physical Machines, along with their allocation statistics,
and chooses the best one where executing the user service.
This choice can be done according to different strategies;
the scheduling strategy actually implemented in TAAROA
follows the FCFS (First-Come First-Served) policy both for
selecting what service to execute and for choosing the Phys-
ical Machine where running it. After having chosen the
Physical Machine, the Scheduler instructs the Repository
Manager to execute the service on the chosen Physical Ma-
chine. In turn, the Repository Manager contacts the Ma-

LAN

TAAROA

CLIENT

REPOSITORY MANAGERs

INFORMATION

SERVICE

PHYSICAL MACHINEs

+

MACHINE MANAGERs

USER

SCHEDULER

Figure 1. The component-level architecture of TAAROA.

chine Manager of the chosen Physical Machine and sends
it the files related to the Virtual Machine representing the
given service. The Machine Manager, upon completion of
the Virtual Machine files transfer, instructs the virtualiza-
tion layer of the Physical Machine where it is running to
start the new Virtual Machine.

In the above workflow, whenever a TAAROA compo-
nent needs to locate another one, the Information Service
is contacted in order to obtain the needed information. The
interactions occurring between the various components is
describe in the following section, while the details about all
of the exchanged information is delayed to §5.

3 Architecture

In this section we provide a detailed view of the archi-
tecture of TAAROA middleware. We begin by a thorough
description of the concepts underlying the TAAROA mid-
dleware; then we describe the role of each TAAROA com-
ponents; finally we provide an example of the most impor-
tant interactions between TAAROA components.

3.1 Concepts

In this section we outline the fundamental concepts of
the TAAROA architecture upon which all of the TAAROA

components are based on. They include the concept of
Physical Machine, Service and Virtual Machine.

3.1.1 Physical Machine

ThePhysical Machineconcept represents a computer con-
nected to a network and equipped with hardware and oper-
ating system that supports virtualization technologies.

The amount of its hardware components (e.g., RAM
size, disk space, CPU clock frequency, network bandwidth,
and so on) is sent by the Machine Manager to the Infor-
mation Service when it enters into TAAROA. This infor-
mation might be used by the Scheduler for understanding
which Physical Machine best fits the performance needs of
a Virtual Machine.

3.1.2 Service

The Serviceconcept represents an application that usually
waits for incoming client requests and replies with useful
information. Typical example of Services are web servers,
database servers, name servers and authentication servers.
The execution of a Service is requested through a TAAROA
Client and is performed on a Physical Machine inside a Vir-
tual Machine. Along with the Service application, a Ser-
vice usually comes with one or more predefined constraints
called Service Level Agreement (SLA). An SLA is a formal

ABORTED

CANCELLED

FAILEDSTOPPED

UNSTARTED

STAGING_IN

RUNNING

SUSPENDED

Figure 2. Execution state for a Virtual Ma-
chine.

description of the level of a Service, upon which two nego-
tiating parties (the provider and the recipient) agree. It is
commonly described in terms of Service Level Objectives
(SLOs) and Service Level Specifications (SLSs), which in
turn define temporal and performance metrics for measur-
ing the level of Service, and the operational guidelines for
achieving the desired level of Service, respectively. To illus-
trate, an SLA may specify the levels of availability, reliabil-
ity and performance of the service and possible penalties in
case of violation.

In TAAROA, the application runtime environment of a
Service is generally stored as one or more files; for in-
stance, it can represent an image (e.g., an ISO-9660 file) of
an operating system. For each Service, its associated SLA
is defined as a set of requirements on physical resources
that needs to be satisfied once the related Service is chosen
to be executed; for instance, a requirement can specify the
minimum amount of space on a physical disk.

3.1.3 Virtual Machine

TheVirtual Machineconcept represents a Service submit-
ted for execution. It is characterized by the following at-
tributes: the instantiated Service defining a self-contained
application environment, the address of the Physical Ma-
chine where the service is running, and the name or the IP
address of the virtual host through which it is possible to
communicate with the Virtual Machine.

The execution of a Virtual Machine can evolve through
several states. In Fig.2 is shown how execution states
of a Virtual Machine are related to each other. Before
running, the execution state of a Virtual Machine is UN-
STARTED. Once the Virtual Machine is selected for exe-
cution, it changes its state to STAGING_IN; in this state,
the Virtual Machine is sent to the Physical Machine where
it will be executed. After the stage-in phase has been com-

pleted, the Virtual Machine is started and its execution state
becomes RUNNING. Eventually, when the Virtual Machine
is no more needed, the TAAROA Client can decide to shut
it down, making the execution state of that Virtual Ma-
chine to switch to STOPPED. There are other possible ex-
ecution states a Virtual Machine can take. Specifically, if
the execution of a Virtual Machine is explicitly cancelled
by a TAAROA Client, the corresponding execution state
changes to CANCELLED. If the execution of a Virtual Ma-
chine is prematurely arrested by a TAAROA component
(e.g., for the lack of physical resources needed by the Vir-
tual Machine), the corresponding execution state changes
to ABORTED. If something goes wrong during the execu-
tion of a Virtual Machine, the corresponding execution state
changes to FAILED. The execution of a Virtual Machine
can even be temporarily suspended; in this case the execu-
tion state changes to SUSPENDED. Once its execution is
resumed, the execution state turns back to RUNNING.

Execution states divide in two main groups:final and
temporarystates. Final states are the ones that once a Vir-
tual Machine enters, cannot leave any more. They include
the ABORTED, CANCELLED, FAILED and STOPPED
states (i.e., the ones marked with a thicker line in the figure).
Instead, temporary states are the ones that a Virtual Ma-
chine temporarily takes before entering a final state. They
include the RUNNING, STAGING_IN, SUSPENDED and
UNSTARTED states. According to Fig.2, the execution of
a Virtual Machine, generally, cycles through one of more
temporary states before entering a final state.

3.2 Components

In this section we provide a detailed description of the
components of the TAAROA architecture. As described in
§2 and shown on Fig.1, there are five types of components:
the TAAROA Client, the Information Service, the Repos-
itory Manager, the Scheduler and the Machine Manager
(along with the associated Physical Machine). Each com-
ponent is loosely coupled to each other, meaning that com-
ponents, both of the same and of different type, weakly de-
pend from each other. Components, in opposite to concepts,
interact directly with the TAAROA system to achieve their
goals. There areactive and passivecomponents. Active
components are the ones that initiate interactions with the
middleware; in TAAROA, the TAAROA Client, the Repos-
itory Manager and the Machine Manager are active compo-
nents. Passive components are the ones that act as a conse-
quence of stimulus sent by active components to the system;
in TAAROA, the Information Service and the Scheduler are
passive components.

3.2.1 Information Service

The Information Servicecomponent is responsible for col-
lecting, managing and publishing information about the
primary TAAROA entities: Physical Machine, Repository
Manager, Service and Virtual Machine. The structure of the
information stored in the Information Service follows the
database schema described in §4.

Every TAAROA component can communicate with the
Information Service. The Repository Manager component
contacts the Information Service for registering or unreg-
istering itself; in addition, it is responsible for inserting,
updating and removing information about Services. The
Machine Manager component interacts with the Informa-
tion Service for registering or unregistering itself, the Phys-
ical Machine where it runs and the Virtual Machines hosted
by the Physical Machine. The TAAROA Client component
asks the Information Service to provide it the list of Ser-
vices for choosing what of them to submit for execution.
The Scheduler component queries the Information Service
for obtaining the resource utilization of the available Physi-
cal Machines; this information can help it to decide on what
machine a given Service is to be executed.

Actually, there is only one Information Service compo-
nent in TAAROA. This means that information about the
state of TAAROA resources are definitively managed in a
centralized way.

3.2.2 Machine Manager

TheMachine Managercomponent is a software component
that runs on a Physical Machine and waits for connections.

The Machine Manager is in charge of managing each
Virtual Machine that is hosted by the Physical Machine
where it is running, by means of a software component
named Virtual Machine Monitor (VMM). The VMM, also
referred to as hypervisor, is a software layer that provides
virtualization support and can run either directly on hard-
ware, if that supports it, or on top of the operating system.

At startup the Machine Manager contacts the Informa-
tion Service and sends it the hardware characteristics of the
Physical Machine on which resides. When the Repository
Manager is asked to start a Service, it sends to the Machine
Manager the Virtual Machine image and the related con-
figuration file. The Virtual Machine image contains all the
files that build up the Service runtime environment, while
the configuration file contains all the settings used by the
VMM when starting, stopping and suspending the Virtual
Machine.

A Machine Manager is also responsible for keeping the
Information Service up to date by communicating changes
in the amount of resources allocated to every managed Vir-
tual Machine.

3.2.3 Repository Manager

TheRepository Managercomponent is a software compo-
nent that is responsible for hosting Virtual Machine images.
It has access to a storage area (either local or remote) where
each Virtual Machine image is placed, along with its config-
uration file ad everything that is necessary for running the
Virtual Machine.

Upon service submission request, it takes care of sending
the corresponding Virtual Machine image and related files,
to a given Physical Machine and asks the Machine Manager
(located on that machine) to start the Virtual Machine. In a
similar way, when it is asked to stop a Virtual Machine, it
instructs the Machine Manager (where the Virtual Machine
is running) accordingly.

A Repository Manager is also responsible for keep-
ing the Information Service up to date by communicating
changes in the execution state of every managed Virtual Ma-
chine.

3.2.4 Scheduler

The Schedulercomponent is responsible for deciding to
what Physical Machine a Service is to be assigned for the
execution. This decision is taken through the so called
scheduling policy, often referred to as scheduling heuris-
tic. In the current implementation of the TAAROA middle-
ware, the only available scheduling heuristic is the one that
uses the First-Come-First-Served (FCFS) policy: requests
for Service submission are queued and served in the order
of their arrival, by assigning to each Service the first avail-
able Physical Machine.

Actually, there is only one Scheduler component in
TAAROA. This means that, from the point of view of a
TAAROA Client, the Scheduler component is the only sin-
gle point of control for starting, monitoring and stopping
the execution of a Service in TAAROA: every request for
submitting, managing and terminating a Service must go
through the Scheduler component.

3.2.5 TAAROA Client

The TAAROA Clientcomponent communicates with the
other TAAROA components in order to submit Services and
to monitor their execution. It represents the user interface to
the TAAROA middleware: all of the interactions occurring
between a user (or a user application) and TAAROA happen
through this component.

TheTAAROA Web Portalis a specific type of TAAROA
Client which offers an high-level user-friendly interfacein
order to make the interactions with the other TAAROA
components easier from the point of view of its users.

TAAROA Client

Information Service

Scheduler

Repository Manager

Machine Manager

Figure 3. Static relations between TAAROA
components.

3.3 Workflow

In this section we describe the static relations and the
dynamic interactions between the TAAROA components.

Fig. 3 shows the structural relations between TAAROA
components. The TAAROA Client uses the Information
Service for getting access to information about Services and
other related entities; for instance, it queries the Informa-
tion Service for retrieving the list of available Services.In
addition, the TAAROA Client uses the Scheduler for exe-
cuting, managing and stopping one or more Services. The
Scheduler uses the Information Service for obtaining infor-
mation about Services and resource utilization of Physical
Machines. This information might be used, for example, for
deciding to what Physical Machine a given Service is to be
assigned for the execution. Moreover, the Scheduler uses
the Repository Manager for submitting and stopping a spe-
cific Service. The Repository Manager uses the Information
Service for registering and unregistering itself along with
the published Services. The Repository Manager also uses
the Machine Manager for controlling the execution of a Vir-
tual Machine. Finally, the Machine Manager uses the Infor-
mation Service for registering and unregistering the Physi-
cal Machine on which it runs and every Virtual Machine it
manages.

The dynamic interactions between TAAROA compo-
nents are based on a message-oriented and stateless proto-
col; this means that each pair of TAAROA components ex-
changes messages with the rest of TAAROA components, in
the form of request-reply messages, and each message nei-
ther depends on previously sent messages nor on additional
information stored on the receiving component.

In the rest of this section we present the workflow con-
cerning two of the most important TAAROA interactions:
the Service submission workflow and the Service stopping
workflow. The type of modelling diagram used for describ-
ing these interactions is the UMLcommunication diagram
[6]. This kind of diagram models the interactions between
TAAROA components by showing the flow of messages
exchanged among them. In order to maintain the sequen-
tial ordering of interactions, messages are labeled with a
chronological number (usually starting from one), placed
near the link where the message is sent over.

In the Service submission workflow, schematically
shown on Fig.4, the active actor is the TAAROA Client.
When it wants to submit a Service, the first action it per-
forms is to request to the Information Service component
the list of the available Services. After having chosen the
Service it wants to run, denoted with Servicex in the fig-
ure, it sends a request to the Scheduler component for sub-
mitting the selected Service and waits for a replay. In turn,
the Scheduler contacts the Information Service for obtain-
ing the list of Physical Machines along with their alloca-
tion statistics. The information needed to calculate these
statistics is sent to the Information Service by the Machine
Manager both when the Physical Machine, on which it is
running, is added to TAAROA and when one of the Virtual
Machine, running on that Physical Machine, changes its ex-
ecution state. These statistics can be used by the Scheduler
for deciding, according to a proper scheduling heuristic, if
a Service can be immediately executed and on what Phys-
ical Machine. If the Service can be executed and a suit-
able Physical Machine is found, the Scheduler instructs the
Repository Manager to submit the Virtual Machine asso-
ciated to this Service on the chosen Physical Machine. In
the figure, the Physical Machine chosen by the Scheduler is
namedy. Then, the Repository Manager contacts the Ma-
chine Manager of the chosen Physical Machine for starting
a new Virtual Machine for the given Service. It sends all the
files composing the Virtual Machine to the Machine Man-
ager which, in turn, instructs the virtualization layer to start
the Virtual Machine. In the figure, the new Virtual Machine
is marked asz. In case of success, it registers the newly
created Virtual Machine to the Information Service along
with its parameters (network configuration, administration
credentials and so on), for later retrieval, and notifies the
Repository Manager about the starting of the Virtual Ma-
chine. When the Repository Manager receives the notifica-
tion about the execution of the Virtual Machine, it contacts
the Information Service, for updating the execution status
of that Virtual Machine, and the Scheduler, for passing to
it the Virtual Machine global identifier (i.e., the value that
uniquely identifies the Virtual Machine inside the TAAROA
system) obtained from the Information Service. The Sched-
uler, in turn, notifies the requesting TAAROA Client, that

User

:TAAROA

Client

:Information

Service

:Scheduler

:Repository

Manager

:Machine

Manager

1: Get Services

3: Submit Service x

2: Get Services

4: Submit Service x

5: Get Physical Machines statistics

7: Submit Service x on Physical Machine y

6: Choose Physical Machine y

8: Starts Virtual Machine for Service x on Physical Machine y

10: Register Virtual Machine z

9: Start Virtual Machine z

11: Update status of Virtual Machine z

Figure 4. The communication diagram for TAAROA service submission.

is the one that initially began the workflow. In the above
figure, all the replies are omitted for the sake of simplicity.

The other important interaction between TAAROA com-
ponents is the stopping of a Service. In Fig.5 is depicted the
workflow for stopping a Service. Likewise the Service sub-
mission workflow, the active actor is the TAAROA Client.
When it wants to stop a running Service, identified asz in
the figure, it sends a request to the Scheduler component.
Subsequently, the Scheduler contacts the Repository Man-
ager component which, in turn, queries the Information Ser-
vice for finding out what Physical Machine is hosting that
Virtual Machine. Once the Repository Manager obtains the
requested information, it asks the Machine Manager, run-
ning on that Physical Machine, to stop the involved Virtual
Machine. In the figure, the hosting Physical Machine is de-
noted withy. The Machine Manager delegates the Virtual
Machine Monitor to stop that Virtual Machine, then unreg-
isters the Virtual Machine on the Information Service and,
on success, notifies the Repository Manager about the stop-
ping of the Virtual Machine. Finally, the Repository Man-
ager updates the execution status of the stopped Virtual Ma-
chine and then notifies the Scheduler, which successively
notifies the requesting TAAROA Client. Similarly to the
diagram for the Service submission workflow, in the above
figure, all the replies are omitted for the sake of simplicity.

The other kind of interactions that might occur between
TAAROA components mainly concern the updating of in-
formation kept in the Information Service. For example,
each Repository Manager registers or unregisters itself to
the Information Service whenever it joins to or leaves the
TAAROA system, respectively. Likewise, when a Machine
Manager joins to or leaves the TAAROA system, it registers
or unregisters itself, respectively, to the Information Ser-
vice component, along with the Physical Machine on which
it runs. Moreover, every time a new Service is added or
an existing Service is removed from TAAROA, it is stored
on or deleted from a Repository Manager which, in turn,
takes care of registering or unregistering it to the Informa-
tion Service, respectively. When a Virtual Machine changes
the state of its execution, the Repository Manager updates

the related information maintained by the Information Ser-
vice accordingly.

4 Database

In this section we describe the databases maintained by
the Information Service, the Repository Manager and the
Machine Manager components. The modelling diagram
used for showing the different database models is the Data
Structure Diagram (DSD). This kind of diagram is an exten-
sion of the classic Entity-Relationship (E-R) diagram [3];
it differs from it in that the E-R model focuses on the rela-
tionships between different entities, whereas a DSD focuses
on the relationships of the elements within an entity, en-
abling users to better understand the links and the relation-
ships between each entity. In this diagram, entities are rep-
resented as boxes, entity attributes are specified inside the
entity boxes, while binary relationships are drawn as lines
connecting the boxes representing the participating entities.
Forn-ary relationships, an additional entity is used; it might
have attributes which specify the constraints that bind par-
ticipating entities together. The cardinality of an entityfor a
particular relationship is expressed using the “crow’s foot”
notation.

4.1 The Information Servicedatabase

In Fig. 6 is shown the DSD of the database used by the
Information Service component. In the rest of this section,
we describe the entities and the relationships contained in
this database.

4.1.1 ThePhysicalMachines entity

The PhysicalMachinesentity represents the Physical Ma-
chine concept presented in §3.1.1. A PhysicalMachines en-
tity is uniquely identified by an integer positive number rep-
resented by the attributeId. A Physical Machine can host
one or more Virtual Machines, whereas a Virtual Machine is

User

:TAAROA

Client

:Information

Service

:Scheduler

:Repository

Manager

:Machine

Manager

1: Stop Virtual Machine z

2: Stop Virtual Machine z

3: Get information on Service x running on Virtual Machine z

4: Stop Virtual Machine z

6: Stop Virtual Machine z for Service x on Physical Machine y

8: Unregister Virtual Machine z

7: Stop Virtual Machine z

9: Update status of Virtual Machine z

5: Get information on Physical Machine y running the Virtual Machine z

Figure 5. The communication diagram for TAAROA service stopping.

PhysicalMachines

Id INTEGER

Address VARCHAR

CpuType VARCHAR

NCpu INTEGER

CpuClock INTEGER

RamSize INTEGER

DiskSize INTEGER

NetSpeed INTEGER

MaxVmNumber INTEGER

UserName VARCHAR

UserPasswd VARCHAR

VmmUserName VARCHAR

VmmUserPasswd VARCHAR

MachMngrPort INTEGER

Repositories

Id INTEGER

Address VARCHAR

Port INTEGER

UserName VARCHAR

UserPasswd VARCHAR

Services

Id INTEGER

Name VARCHAR

ReqDisk INTEGER

RepositoryId INTEGER

VirtualMachines

Id INTEGER

ServiceId INTEGER

PhyMachId INTEGER

LocalId VARCHAR

Address VARCHAR

ProbePort INTEGER

AllocatedCpu FLOAT

AllocatedRam FLOAT

AllocatedDisk FLOAT

Status INTEGER

Legend

 Primary Key

 Foreign Key

 Standard Column

Figure 6. The E-R schema of the Information Service database.

running on only one Physical Machine at a time. The maxi-
mum amount of Virtual Machines a given Physical Machine
can run is specified by the attributeMaxVmNumber.

The other attributes concern hardware and system prop-
erties and administration information. Regarding the hard-
ware and system characteristics, the attributeCpuTyperep-
resents the vendor and the model of the CPU, the attribute
NCpudenotes the number of cores or processors installed
on the Physical Machine, while the attributeCpuClock
specifies the CPU clock frequency (in MegaHertz). The
attributesRamSize, DiskSizeand NetSpeedrepresent re-
spectively the amount of system RAM (in MegaBytes), the
amount of disk space (in MegaBytes) and the speed of the
network card (in MegaBps) of the Physical Machine. Fi-
nally, the attributeAddressrepresents the IP address of the
Physical Machine.

For what concerns the information for administration
purpose, the attributesUserNameand UserPasswordrep-
resent the credentials for remotely accessing to the Physical
Machine, the attributeVmmUserNameandVmmUserPass-
word are the credentials for gaining access to the Virtual
Machine Monitor and the attributeMachMngrPort is the
port at which the Machine Manager waits for requests.

4.1.2 TheRepositories entity

TheRepositoriesentity represents the Repository Manager
concept stated in §3.2.3. A Repositories entity is uniquely
identified by the attributeId, which is an integer positive
number. The attributesAddressandPort are used for con-
necting to the Repository Manager, while attributesUser-
NameandUserPasswdare the credentials needed for gain-
ing access to it.

4.1.3 TheServices entity

TheServicesentity models the Service concept described in
§3.1.2. A Services entity is uniquely identified by an integer
positive number represented by the attributeId. This entity
is uniquely associated to a Repositories entity (through the
attributeRepositoryId), meaning that a Service is provided
by one and only one Repository Manager component. Fur-
thermore, a Services entity can participate in the association
with one more VirtualMachines entities, but a VirtualMa-
chines entity is associated to exactly one Services entity.
This basically means that the same Service can appear in
one or more Virtual Machines, but a Virtual Machine can
only run exactly one Service. The remaining attributes are
the Service name (attributeName) and the amount of disk
space (in bytes) needed by the Service for executing (at-
tributeReqDisk).

vmlist

id INTEGER

sid INTEGER

path VARCHAR

desc VARCHAR

IS.Services

Legend

 Primary Key

 Foreign Key

 Standard Column

Figure 7. The E-R schema of the Repository
Manager database.

4.1.4 TheVirtualMachines entity

The VirtualMachinesentity describes the Virtual Machine
concept outlined in §3.1.3. A VirtualMachines entity is
uniquely identified by the attributeId, which is an integer
positive number. A Virtual Machine represents a solely
running Service instance and can live in only one Physi-
cal Machine (though Virtual Machine migration can change
the hosting machine along the time); the attributes that link
a Virtual Machine to its Service and to its Physical Machine
areServiceIdand PhyMachId, respectively. On the other
hand, more than one Virtual Machine can execute the same
Service and a Physical Machine may contain several Vir-
tual Machines. Among the other attributes characterizing
this entity, those that are worth noting are the ones indicat-
ing the amount of physical resources allocated to a Virtual
Machine and the state of the execution. The resource allo-
cation attributes include the CPU share allocation (attribute
AllocatedCpu), the fraction of allocated system memory
(attributeAllocatedRam) and the fraction of allocated disk
space (attributeAllocatedDisk). For what concerns the ex-
ecution state of a Virtual Machine, it is represented by the
attributeStatus, an integer number whose possible values
are defined according to the TAAROA communication pro-
tocol (described in §5).

4.2 The Repository Managerdatabase

In Fig. 7 is shown the DSD of the database used by
the Repository Manager component. The purpose of this
database is to store information that allow to associate
TAAROA global descriptors with information that are local
to each Repository Manager. For this reason, each Reposi-
tory Manager maintains a different copy of this database.

In the rest of this section, we describe the entities and the
relationships contained in this database.

vmidlist

id INTEGER

vmid INTEGER

localid INTEGER

IS.VirtualMachines

Legend

 Primary Key

 Foreign Key

 Standard Column

Figure 8. The E-R schema of the Machine
Manager database.

4.2.1 Thevmlist entity

Thevmlistentity is used by the Repository Manager for re-
trieving, from a given Service identifier, all of the files com-
posing a Virtual Machine. The attributesid represents the
Service identifier related to a particular Virtual Machine;it
is a foreign key referring to the attributeId of the entity
Services, stored in the Information Service database (see
§4.1.3). Thepathattribute is the actual path where all the
files for a given Virtual Machine are stored.

4.3 The Machine Managerdatabase

In Fig. 8 is shown the DSD of the database used by the
Machine Manager component. This database contains only
information that is local to each Machine Manager; for in-
stance, the information regarding Virtual Machines is re-
stricted only to the ones running on the Physical Machine
on which the Machine Manager resides. For this reason,
each Machine Manager maintains a different copy of this
database.

In the rest of this section, we describe the entities and the
relationships contained in this database.

4.3.1 Thevmidlist entity

Thevmidlistentity is used by the Machine Manager for as-
sociating a Virtual Machine concept (see §3.1.3) with a real
Virtual Machine implementation. Specifically, it links a Vir-
tual Machine global identifier, assigned by the Information
Service, to a local identifier associated to the correspond-
ing Virtual Machine running on the Physical Machine on
which the Machine Manager resides; this local identifier
is assigned to the real Virtual Machine by the underlying
Virtual Machine Monitor. Each vmidlist entity is uniquely
identified by an integer positive number represented by the

Symbol Description
<#> The literal character ’#’.
 A sequence of one or more blank characters

(whitespace or horizontal tabulation).
D64[s] The base64 decoding of the strings.
E64[s] The base64 encoding of the strings.
IS Abbreviation for Information Server.
MM Abbreviation for Machine Manager.
RM Abbreviation for Repository Manager.
SC Abbreviation for Scheduler.
SVC Abbreviation for Service.
TC Abbreviation for TAAROA client.
VM Abbreviation for Virtual Machine.
WP Abbreviation for TAAROA Web Portal.

Table 1. Notations and abbreviations for the
TAAROA communication protocol.

attribute Id. The attributevmid represents the TAAROA
Virtual Machine identifier, whereas the attributelocalid is
the local Virtual Machine identifier assigned by the Virtual
Machine Monitor.

5 Communication Protocol

In this section we describe the communication protocol
used by the current version of TAAROA middleware. The
protocol is at the base of all the dynamic interactions oc-
curring between TAAROA components; it is a message-
oriented and stateless protocol, that is each TAAROA com-
ponent exchanges with the others a series of request-reply
messages that neither depend on previously sent messages
nor on additional information stored on the receiving com-
ponent.

The specification of the protocol messages follows pre-
cise symbol and number conventions. In Tab.1 are shown
the symbols, along with their meaning, employed for de-
scribing the format of the protocol messages. Instead, in
§5.1, the format of the number, the unit of measurement
and the other constants is illustrated.

5.1 Common formats

5.1.1 Integer Numbers representation

The protocol supports the following integer number format
(expressed as POSIX regular expression):

• \d+ (e.g.14).

No negative value is allowed.

5.1.2 Real Numbers representation

The protocol supports the following real number formats
(expressed as POSIX regular expression):

• Standard notation:\d + \. \d+ (e.g.14.5).

• Scientific notation:\d + \. \d + [eE][+−]\d+ (e.g.
1.45e + 1).

No negative value is allowed.

5.1.3 Frequency Unit of Measurement representation

The string MUST be an integer number optionally followed
by a unit specifier character. Possible unit specifiers are:

• Hz for Hertz.

• KHz for KiloHertz.

• MHz for MegaHertz.

• GHz for GigaHertz.

• THz for TeraHertz.

• PHz for PetaHertz.

If no unit specifier character is specified, the default value
depends on the context where the unit of measurement has
to be specified.

5.1.4 Memory Unit of Measurement representation

The string MUST be an integer number optionally followed
by a unit specifier character. Possible unit specifiers are:

• B for bytes.

• KB for Kilobytes.

• MB for Megabytes.

• GB for Gigabytes.

• TB for Terabytes.

• PB for Petabytes.

If no unit specifier character is specified, the default value
depends on the context where the unit of measurement has
to be specified.

5.1.5 Net Speed Unit of Measurement representation

The string MUST be an integer number §5.1.1optionally
followed by a unit specifier character. Possible unit speci-
fiers are:

• bps for bits-per-second (bit/s).

• Kbps for Kilobps (Kbit/s).

• Mbps for Megabps (Mbit/s).

• Gbps for Gigabps (Gbit/s).

• Tbps for Terabps (Tbit/s).

• Pbps for Petabps (Pbit/s).

If no unit specifier character is specified, the default value
depends on the context where the unit of measurement has
to be specified.

5.1.6 Execution Status Codification

The execution status of a Virtual Machine is coded as an
integer number:

0: represents the UNKNOWN execution status.

1: represents the UNSTARTED execution status.

2: represents the READY execution status.

3: represents the STAGING_IN execution status.

4: represents the RUNNING execution status.

5: represents the SUSPENDED execution status.

6: represents the STOPPED execution status.

7: represents the CANCELLED execution status.

8: represents the FAILED execution status.

9: represents the ABORTED execution status.

5.2 Messages issued to the Information
Server

5.2.1 GETPHYMACH – Physical Machine details re-
quest

Sent by a RM to the IS for getting information about a spe-
cific physical machine.

〈 GETPHYMACHPHY_ID 〉

where:

• PHY_ID: integer number §5.1.1 representing the
physical machine identifier.

Possible replies from the IS are:

• In case of success:

〈 OKPHY_IPMM_PORT 〉

where:

– PHY_IP: string containing the IP address of the
requested physical machine.

– MM_PORT: integer number §5.1.1 representing
the TCP port of the MM.

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.2.2 GETVM – Virtual Machine details request

Sent by a TC to the IS when it wants to know the details
regarding a given submitted service (virtual machine).

〈 GETVMVM_ID 〉

where:

• VM_ID: integer number §5.1.1containing the submit-
ted service (virtual machine) identifier.

Possible replies from the IS are:

• In case of success:

〈 OKS_IDPHY_ID

VM_LOCAL_IDVIRT_IPSTATUS 〉

where:

– S_ID: integer number §5.1.1containing the ser-
vice identifier.

– PHY_ID: integer number §5.1.1containing the
identifier of the physical machine.

– VM_LOCAL_ID: string containing the identifier
used by the MM to uniquely retrieve a VM.

– VIRT_IP: string containing the IP address of the
virtual machine on which the service is running.

– STATUS: integer number §5.1.1 representing
the execution status of the submitted service
(§3.1.3).

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.2.3 GETVMMACHMNGR – Virtual Machine Ma-
chine Manager request

Sent by a RM (or other clients) to the IS when it wants to
know the machine manager associated to a given submitted
service (virtual machine).

〈 GETVMMACHMNGRVM_ID 〉

where:

• VM_ID: integer number §5.1.1containing the submit-
ted service (virtual machine) identifier.

Possible replies from the IS are:

• In case of success:

〈 OKPHY_IDPHY_IP

MM_PORTVM_LOCAL_ID 〉

where:

– PHY_ID: integer number §5.1.1representing the
identifier of the Physical Machine where the MM
is running.

– PHY_IP: string representing the IP address of
the Physical Machine where the MM is running.

– MM_PORT: integer number §5.1.1 representing
the TCP port of the MM.

– VM_LOCAL_ID: string containing the identifier
used by the MM to uniquely retrieve a VM.

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.2.4 GETVMSERV –Virtual Machine Service request

Sent by a TC to the IS when it wants to know the service
associated to a given submitted service (virtual machine).

〈 GETVMSERVVM_ID 〉

where:

• VM_ID: integer number §5.1.1containing the submit-
ted service (virtual machine) identifier.

Possible replies from the IS are:

• In case of success:

〈 OKS_IDE64 [NAME]

RM_IDRM_IPRM_PORT 〉

where:

– S_ID: integer number §5.1.1 representing the
service identifier.

– NAME: string representing the symbolic name of
the service.

– RM_ID: integer number §5.1.1representing the
RM identifier.

– RM_IP: string representing the IP address of the
RM.

– RM_PORT: integer number §5.1.1 representing
the TCP port of the RM.

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.2.5 GETVMSTATUS – Virtual Machine Status re-
quest

Sent by a TC to the IS when it wants to know the execution
status of a given submitted service (virtual machine).

〈 GETVMSTATUSVM_ID 〉

where:

• VM_ID: integer number §5.1.1containing the submit-
ted service (virtual machine) identifier.

Possible replies from the IS are:

• In case of success:

〈 OKSTATUS 〉

whereSTATUS is an integer number §5.1.1represent-
ing the service execution status (§3.1.3).

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.2.6 LISTPHYMACH – List of Physical Machines re-
quest

Sent by a TC to the IS when it wants to retrieve the list of
all registered physical machines.

〈 LISTPHYMACH 〉

Possible replies from the IS are:

• In case of success, returns:

〈 OKPhyMachList 〉

wherePhyMachList is a list of entry messages:

〈 PHY_IDPHY_IPMM_PORT 〉

where:

– PHY_IP: string containing the IP address of a
physical machine.

– PHY_ID: integer number §5.1.1representing the
identifier of a physical machine.

– MM_PORT: integer number §5.1.1 representing
the TCP port of the MM.

terminated by a dot message:

〈 . 〉

indicating the end of the list. In case of empty list the
following message is returned:

〈 OK. 〉

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.2.7 LISTPHYMACHSTATUS – List of Physical Ma-
chines along with Resource Utilization request

Sent by a SC (or other clients) to the IS when it wants to
retrieve the list of all registered physical machines along
with the status of their resources utilization.

〈 LISTPHYMACHSTATUS 〉

Possible replies from the IS are:

• In case of success, returns:

〈 OKPhyMachList 〉

wherePhyMachList is a list of entry messages:

〈 PHY_IDAVAIL_CPUAVAIL_RAM

AVAIL_DISKNETSPEED 〉

terminated by a dot message:

〈 . 〉

indicating the end of the list.

The fields in each entry has the following meaning:

– PHY_ID: integer number §5.1.1representing the
identifier of a physical machine.

– AVAIL_CPU: real number §5.1.2 representing
the available number of processors expressed as
a fraction of the total number of CPU/Core pro-
cessors:

NumOfCpus(PHY _ID)

−

X

VM_ID
onPHY _ID

AllocCpuFrac(VM _ID)

Admissibile values are in the range of
[0,NumOfCpus(PHY _ID)].

– AVAIL_RAM: real number §5.1.2 representing
the available RAM expressed as a fraction of the
total RAM size:

1 −

X

VM_ID
onPHY _ID

AllocRamFrac(VM _ID)

Admissibile values are in the range of[0, 1].

– AVAIL_DISK: real number §5.1.2representing
the available disk expressed as a fraction of the
total disk size:

1 −

X

VM_ID
onPHY _ID

AllocDiskFrac(VM _ID)

Admissibile values are in the range of[0, 1].

– NETSPEED: string representing the total speed
of the network interface card, expressed as an in-
teger number followed by a unit of measurement
specifier §5.1.5.

In case of empty list the following message is returned:

〈 OK. 〉

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.2.8 LISTREPO –List of Repositories request

Sent by a TAAROA component to the IS when it wants to
know the list of available RMs.

〈 LISTREPO 〉

Possible replies from the IS are:

• In case of success, returns:

〈 OKRepoList 〉

whereRepoList is a list of entry messages:

〈 REPO_IDIP_ADDRPORT

E64 [USER_NAME]E64 [PASSWD] 〉

where:

– IP_ADDR: string containing the IP address of the
repository manager service.

– PORT: integer number §5.1.1 representing the
TCP port on which the repository manager ser-
vice must be contacted.

– USER_NAME: string containing the username
that must be used to authenticate with the RM.

– PASSWD: string containing the password that
must be used to authenticate with the RM.

terminated by a dot message:

〈 . 〉

indicating the end of the list. In case of empty list the
following message is returned:

〈 OK. 〉

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.2.9 LISTSERV –List of Services request

Sent by a TC to the IS when it wants to retrieve the list of
all registered services.

〈 LISTSERV 〉

Possible replies from the IS are:

• In case of success, returns:

〈 OKServList 〉

whereServList is a list of entry messages:

〈 S_IDE64 [NAME]RM_ID

RM_IPRM_PORT 〉

where:

– S_ID: integer number §5.1.1 representing the
service identifier.

– NAME: string representing the symbolic name of
the service.

– RM_ID: integer number §5.1.1representing the
RM identifier.

– RM_IP: string representing the IP address of the
RM.

– RM_PORT: integer number §5.1.1 representing
the TCP port of the RM.

terminated by a dot message:

〈 . 〉

indicating the end of the list. In case of empty list the
following message is returned:

〈 OK. 〉

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.2.10 LISTVM – List of Virtual Machines from Service
request

Sent by a TC to the IS when it wants to retrieve the list of all
submitted services (virtual machines) for the given service
S_ID.

〈 LISTVMS_ID 〉

where:

• S_ID: integer number §5.1.1representing the service
identifier.

Possible replies from the IS are:

• In case of success, returns:

〈 OKVMList 〉

whereVMList is a list of entry messages:

〈 VM_IDPHY_IDVM_LOCAL_ID

VIRT_IPSTATUS 〉

where:

– VM_ID: integer number §5.1.1 containing the
submitted service (virtual machine) identifier.

– PHY_ID: integer number §5.1.1containing the
identifier of the physical machine.

– VM_LOCAL_ID: string containing the identifier
used by the MM to uniquely retrieve a VM.

– VIRT_IP: string containing the IP address of the
virtual machine on which the service is running.

– STATUS: integer number §5.1.1 representing
the execution status of the submitted service
(§3.1.3).

terminated by a dot message:

〈 . 〉

indicating the end of the list. In case of empty list the
following message is returned:

〈 OK. 〉

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.2.11 REGPHYMACH – Physical Machine Registra-
tion request

Sent by a MM to the IS for registering a specific physical
machine.

〈 REGPHYMACHPHY_IPE64 [CPUTYPE]

NCPUCPUCLOCKRAMSIZE

DISKSIZENETSPEEDMAX_VM_NUMBER

E64 [MACH_USERNAME]E64 [MACH_PASSWORD]

E64 [XM_USERNAME]E64 [XM_PASSWORD]

MM_PORT 〉

where:

• PHY_IP: string representing the physical machine IP
address.

• CPUTYPE: string representing the model or architec-
ture or type of the CPU installed on the machine.

• NCPU: integer number §5.1.1 representing the total
number of CPU processors/cores installed on the ma-
chine.

• CPUCLOCK: string representing the clock frequency
of a single CPU processor/core of the machine. See
§5.1.3for the specification of frequency unit of mea-
surement. If no unit specifier character is specified, the
MegaHertzunit of measurement is assumed as default.

• RAMSIZE: string representing the total memory avail-
able on the machine. See §5.1.4for the specification
of memory unit of measurement. If no unit specifier
character is specified, theMegabyteunit is assumed as
default.

• DISKSIZE: string representing the total disk space
available on the machine. See §5.1.4 for the speci-
fication of memory unit of measurement. If no unit
specifier character is specified, theMegabyteunit is as-
sumed as default.

• NETSPEED: string representing the speed of the
(main) network card installed on the machine. See
§5.1.5for the specification of net speed unit of mea-
surement. If no unit specifier character is specified,
theMbit/sunit is assumed as default.

• MAX_VM_NUMBER: integer number §5.1.1represent-
ing the maximum allowed number of running virtual
machines. The value−1 means “no limit”.

• MACH_USERNAME: string representing the name of
the user used for logging in the machine.

• MACH_PASSWORD: string representing the password
of the user used for logging in the machine.

• XM_USERNAME: string representing the name of the
user used for controlling the Xen Manager.

• XM_PASSWORD: string representing the password of
the user used for controlling the Xen Manager.

• MM_PORT: integer number §5.1.1 representing the
TCP port number where the MM is accepting connec-
tions.

Possible replies from the IS are:

• 〈 OKPHY_ID 〉 in case of success, wherePHY_ID
is the integer identifier of the new registered physical
machine.

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.2.12 REGREPO –Repository Manager Registration
request

Sent by a RM to the IS for registering itself.

〈 REGREPOIP_ADDRPORT

E64 [USER_NAME]E64 [PASSWD] 〉

where:

• IP_ADDR: string containing the IP address of the RM.

• PORT: integer number §5.1.1containing the TCP port
on which the RM waits for requests.

• USER_NAME: string containing the username that
must be used to authenticate with the RM.

• PASSWD: string containing the password that must be
used to authenticate with the RM.

Possible replies from the IS are:

• 〈 OKRM_ID 〉 in case of success, whereRM_ID is
the integer identifier of the new registered RM.

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.2.13 REGSERV –Service Registration request

Sent by a RM to the IS when it wants to register a new
service.

〈 REGSERVRM_IDE64 [NAME]REQ_DISK 〉

where:

• RM_ID: integer number §5.1.1 containing the RM
identifier.

• NAME: string containing the symbolic name of the ser-
vice.

• REQ_DISK: string representing the disk requirements.
See §5.1.4 for the specification of disk unit of mea-
surement. If no unit specifier character is specified,
theKilobyteunit is assumed as default.

Possible replies from the IS are:

• 〈 OKS_ID 〉 in case of success, whereS_ID is the
integer identifier of the new registered service.

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.2.14 REGVM –Virtual Machine Registration request

Sent by a MM to the IS when it wants to register a running
VM (i.e., a VM that has been started on a physical machine).

〈 REGVMS_IDPHY_IDVM_LOCAL_ID

VIRT_IPALLOCATED_CPU

ALLOCATED_RAMALLOCATED_DISK 〉

where:

• S_ID: integer number §5.1.1 containing the service
identifier.

• PHY_ID: integer number §5.1.1containing the identi-
fier of the physical machine.

• VM_LOCAL_ID: string containing an identifier used
by the MM to uniquely retrieve a VM.

• VIRT_IP: string containing the IP address of the
physical machine on which the VM is running.

• ALLOCATED_CPU: real number §5.1.2 representing
the number of CPU/Core processors allocated to the
VM.

• ALLOCATED_RAM: real number §5.1.2 representing
the amount of RAM allocated to the VM.

• ALLOCATED_DISK: real number §5.1.2representing
the amount of disk allocated to the VM.

Possible replies from the IS are:

• 〈 OKVM_ID 〉 in case of success, whereVM_ID is
the integer identifier of the new registered virtual ma-
chine.

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.2.15 SRVPROTOVER –Protocol Version request

Sent by a client to the IS for getting information about the
TAAROA protocol version implemented by the IS server.

〈 SRVPROTOVER 〉

Possible replies from the IS are:

• In case of success:

〈 OKVERSION 〉

where:

– VERSION: string containing the TAAROA pro-
tocol version implemented by the server.

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.2.16 UNREGPHYMACH –Physical Machine Unreg-
istration request

Sent by a MM (or other clients) to the IS for unregistering
a specific physical machine.

〈 UNREGPHYMACHPHY_ID 〉

where:

• PHY_ID: integer number §5.1.1 representing the
physical machine identifier.

Possible replies from the IS are:

• 〈 OKPHY_ID 〉 in case of success, wherePHY_ID is
the integer identifier of the unregistered physical ma-
chine (the same received in the request message).

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

Side Effects: all virtual machines running on this machine
MUST be unregistered as well.

5.2.17 UNREGREPO –Repository Manager Unregis-
tration request

Sent by a RM (or other clients) to the IS for unregistering
itself (a specific repository manager).

〈 UNREGREPORM_ID 〉

where:

• RM_ID: integer number §5.1.1representing the repos-
itory manager identifier.

Possible replies from the IS are:

• 〈 OKRM_ID 〉 in case of success, whereRM_ID is
the integer identifier of the unregistered repository
manager (the same received in the request message).

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

Side Effects: all services and related virtual machines regis-
tered by this RM MUST be unregistered as well.

5.2.18 UNREGSERV –Service Unregistration request

Sent by a RM to the IS for unregistering a specific service.

〈 UNREGSERVS_ID 〉

where:

• S_ID: integer number §5.1.1representing the service
identifier.

Possible replies from the IS are:

• 〈 OKS_ID 〉 in case of success, whereS_ID is the
integer identifier of the unregistered service (the same
received in the request message).

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

Side Effects: all virtual machines associated to this service
MUST be unregistered as well.

5.2.19 UNREGVM – Virtual Machine Unregistration
request

Sent by a MM to the IS for unregistering a specific running
service (virtual machine).

〈 UNREGVMVM_ID 〉

where:

• VM_ID: integer number §5.1.1representing the virtual
machine identifier.

Possible replies from the IS are:

• 〈 OKVM_ID 〉 in case of success, whereVM_ID is
the integer identifier of the unregistered virtual ma-
chine (the same received in the request message).

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.2.20 UPDATEVMSTATUS – Virtual Machine Status
Update request

Sent by a RM to the IS when it wants to update the execution
status of a given submitted service (virtual machine).

〈 UPDATEVMSTATUSVM_IDSTATUS 〉

where:

• VM_ID: integer number §5.1.1containing the submit-
ted service (virtual machine) identifier.

• STATUS: integer number §5.1.1representing the exe-
cution status of the submitted service (§3.1.3).

Possible replies from the IS are:

• 〈 OKSTATUS 〉 in case of success, whereSTATUS is
the new execution status of the submitted service (vir-
tual machine).

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.3 Messages issued to the Repository
Manager

5.3.1 SRVPROTOVER –Protocol Version request

Sent by a client to the RM for getting information about the
TAAROA protocol version implemented by the RM server.

〈 SRVPROTOVER 〉

Possible replies from the RM are:

• In case of success:

〈 OKVERSION 〉

where:

– VERSION: string containing the TAAROA pro-
tocol version implemented by the server.

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.3.2 STOPVM –Service Stop request

Sent by a SC to the RM for stopping a given submitted ser-
vice (virtual machine).

〈 STOPVMVM_ID 〉

where:

• VM_ID: integer number §5.1.1 representing the sub-
mitted service (virtual machine) identifier.

Possible replies from the RM are:

• 〈 OKVM_ID 〉 in case of success, whereVM_ID is
the identifier of the stopped submitted service (virtual
machine).

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.3.3 SUBMITVM – Service Submission request

Sent by a SC to the RM for submitting a given service.

〈 SUBMITVMS_IDPHY_ID 〉

where:

• S_ID: integer number §5.1.1representing the service
identifier.

• PHY_ID: integer number §5.1.1representing the iden-
tifier of the physical machine where the service has to
be executed.

Possible replies from the RM are:

• 〈 OKVM_ID 〉 in case of success, whereVM_ID is
the integer identifier of the virtual machine where the
submitted service (virtual machine) is running.

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.4 Messages issued to the Scheduler

5.4.1 SRVPROTOVER –Protocol Version request

Sent by a client to the SC for getting information about the
TAAROA protocol version implemented by the SC server.

〈 SRVPROTOVER 〉

Possible replies from the SC are:

• In case of success:

〈 OKVERSION 〉

where:

– VERSION: string containing the TAAROA pro-
tocol version implemented by the server.

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.4.2 STOPSERV –Service Stop request

Sent by a TC to the SC for stopping a given submitted ser-
vice (virtual machine).

〈 STOPSERVVM_ID 〉

where:

• VM_ID: integer number §5.1.1representing the identi-
fier of a running service instance.

Possible replies from the SC are:

• 〈 OKVM_ID 〉 in case of success, whereVM_ID is
the identifier of the stopped service instance.

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.4.3 SUBMITSERV –Service Submission request

Sent by a TC to the SC for starting the execution of a given
service.

〈 SUBMITSERVS_ID 〉

where:

• S_ID: integer number §5.1.1representing the service
identifier.

Possible replies from the SC are:

• 〈 OKVM_ID 〉 in case of success, whereVM_ID is
the integer identifier of the running instance of the
given service.

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.5 Messages issued to the Machine Man-
ager

5.5.1 SRVPROTOVER –Protocol Version request

Sent by a client to the MM for getting information about the
TAAROA protocol version implemented by the MM server.

〈 SRVPROTOVER 〉

Possible replies from the MM are:

• In case of success:

〈 OKVERSION 〉

where:

– VERSION: string containing the TAAROA pro-
tocol version implemented by the server.

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.5.2 STARTVM – Virtual Machine Execution request

Sent by a RM to the MM for starting a virtual machine given
all the file necessary for running it.

〈 STARTVMS_ID + <VM_IMAGE> 〉

where:

• S_ID: integer number §5.1.1representing the service
identifier.

• <VM_IMAGE>: all the file necessary for running the
virtual machine.

Possible replies from the MM are:

• 〈 OKVM_ID 〉 in case of success, whereVM_ID is
the integer identifier of the virtual machine where the
submitted service (virtual machine) is running.

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.5.3 STOPVM –Virtual Machine Stop request

Sent by a RM to the MM for stopping a given submitted
service (virtual machine).

〈 STOPVMVM_LOCAL_ID 〉

where:

• VM_LOCAL_ID: integer number §5.1.1 representing
the submitted service (virtual machine) identifier.

Possible replies from the RM are:

• 〈 OK0 〉 in case of success.

• 〈 ERRCODE 〉 otherwise, whereCODE is an integer
number representing an error code.

5.6 Workflows Diagrams

To illustrate the communication protocol at work, we
present in this section the two sample workflows previously
described in §3.3. The type of modelling diagram used for
introducing the interaction between the different TAAROA
component is the UMLsequence diagram[6]. This kind
of diagram shows how components communicate with each
other in terms of a sequence of messages. Furthermore, it
indicates the lifespans of components relative to those mes-
sages.

Fig. 9 shows the sequence diagram for the service sub-
mission request corresponding to the Service submission
workflow presented in §3.3.

Fig. 10shows the sequence diagram for the service stop-
ping request related to the Service stopping workflow de-
scribed in §3.3.

6 Conclusions and Future Work

In this paper we presented the TAAROA middleware,
a software system that tries to add the concept of service
and Service Level Agreement (SLA) to the Grid computing
paradigm, by using the virtualization technology. The cur-
rent version of TAAROA has some limitations. The most
important of these are the lack of a logic for mapping a
high-level SLA specification to a low-level resource allo-
cation and, as a consequence, the absence of a scheduling
heuristic that properly assigns a Physical Machine to a Vir-
tual Machine taking into account the preservation of SLA

TC IS

RM:RM_ID_x

Service Submission Request
LISTSERV

OK{S_IDBase64(NAME)RM_IDRM_IPRM_PORT}*

{NAME}*

Select S_ID_x

SUBMITVMS_ID_xPHY_ID_y

Contact RM at RM_IP_x:RM_PORT_x

OKVM_ID | ERRCODE

Success / Failure

LEGEND

IS: Information Service

MM: Machine Manager

RM: Repository Manager

SC: Scheduler

TC: TAAROA Client

. | ERRCODE

Choose S_ID_x

SC
Contact SC

SUBMITSERVS_ID_x

LISTPHYMACHSTATUS

OK{PHY_IDAVAIL_CPUAVAIL_RAMAVAIL_DISKNETSPEED}*

. | ERRCODE

Choose PHY_ID_y

GETPHYMACHPHY_ID_y

OKPHY_IP_yMM_PORT_y | ERRCODE

MM:MM_ID_y
Contact MM at PHY_IP_y:MM_PORT_y

STARTVMS_ID_xServiceImage(S_ID_x)

OKVM_ID | ERRCODE

OKVM_ID | ERRCODE

UPDATEVMSTATUSVM_IDSTATUS

OKSTATUS | ERRCODE

REGVMS_IDPHY_IDVM_LOCAL_IDVIRT_IPALLOC_CPUALLOC_RAMALLOC_DISK

OKVM_ID | ERRCODE

F
ig

u
re

9.T
h

e
seq

u
en

ce
d

iag
ram

fo
r

TA
A

R
O

A
service

su
b

m
issio

n
.

TC IS

RM:RM_ID_z

Stop Service VM_ID_x

STOPVMVM_ID_x

Contact RM at RM_IP_z:RM_PORT_z

OKVM_ID_x | ERRCODE

Success / Failure

LEGEND

IS: Information Service

MM: Machine Manager

RM: Repository Manager

SC: Scheduler

TC: TAAROA Client

SC

STOPSERVVM_ID_x

MM:MM_ID_w
Contact MM at PHY_IP_w:MM_PORT_w

STOPVMVM_LOCAL_ID_x

OK0 | ERRCODE

GETVMVM_ID_x

OKS_IDPHY_ID_wVM_LOCAL_ID_xVIRT_IPSTATUS | ERRCODE

OKVM_ID_x | ERRCODE

GETVMSERVVM_ID_x

OKS_ID_yBase64(NAME_y)RM_ID_zRM_IP_zRM_PORT_z | ERRCODE

UNREGVMVM_ID_x

OKVM_ID_x | ERRCODE

UPDATEVMSTATUSVM_ID_xSTATUS

OKSTATUS | ERRCODE

F
ig

u
re

10.T
h

e
seq

u
en

ce
d

iag
ram

fo
r

TA
A

R
O

A
service

sto
p

p
in

g
.

constraints. This means that actually TAAROA is only able
to provide a best-effort service: each service is scheduled
for execution with a First-Come-First-Served policy and is
assigned to the first available Physical Machine. In the fu-
ture, we plan to provide a better support for proactively or
reactively avoiding SLA violations, by creating specific per-
formance models and exploiting, for instance, the Virtual
Machines migration.

References

[1] C. Abrams. Service-oriented business applications break
down barriers. Research Note AV-22-1413, Gartner Research,
February 2004.

[2] N. Bieberstein, S. Bose, L. Walker, and A. Lynch. Impact
of service-oriented architecture on enterprise systems, orga-
nizational structures, and individuals.IBM System Journal,
44(4):691–708, 2005.

[3] P. P.-S. Chen. The Entity-Relationship model – toward a uni-
fied view of data.ACM Transactions on Database Systems,
1(1):9–36, 1976.

[4] L. Cherbakov, G. Galambos, R. Harishankar, S. Kalyana, and
G. Rackham. Impact of service orientation at the business
level. IBM System Journal, 44(4):653–668, 2005.

[5] M. R. Garey and D. S. Johnson.Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman
& Co., New York, NY, USA, January 1979.

[6] O. M. Group. Unified Modeling Language: Superstructure
v2.1.2. Specification formal/2007-11-02, OMG, November
2007.

[7] P. Liegl. The strategic impact of service oriented architec-
tures. InProc. of the 14th Annual IEEE International Con-
ference and Workshops on the Engineering of Computer-
Based Systems (ECBS’07), pages 475–484, Los Alamitos,
CA, USA, 2007. IEEE Computer Society.

	Introduction
	Overview of TAAROA
	Architecture
	Concepts
	Physical Machine
	Service
	Virtual Machine

	Components
	Information Service
	Machine Manager
	Repository Manager
	Scheduler
	TAAROA Client

	Workflow

	Database
	The Information Service database
	The PhysicalMachines entity
	The Repositories entity
	The Services entity
	The VirtualMachines entity

	The Repository Manager database
	The vmlist entity

	The Machine Manager database
	The vmidlist entity

	Communication Protocol
	Common formats
	Integer Numbers representation
	Real Numbers representation
	Frequency Unit of Measurement representation
	Memory Unit of Measurement representation
	Net Speed Unit of Measurement representation
	Execution Status Codification

	Messages issued to the Information Server
	GETPHYMACH -- Physical Machine details request
	GETVM -- Virtual Machine details request
	GETVMMACHMNGR -- Virtual Machine Machine Manager request
	GETVMSERV -- Virtual Machine Service request
	GETVMSTATUS -- Virtual Machine Status request
	LISTPHYMACH -- List of Physical Machines request
	LISTPHYMACHSTATUS -- List of Physical Machines along with Resource Utilization request
	LISTREPO -- List of Repositories request
	LISTSERV -- List of Services request
	LISTVM -- List of Virtual Machines from Service request
	REGPHYMACH -- Physical Machine Registration request
	REGREPO -- Repository Manager Registration request
	REGSERV -- Service Registration request
	REGVM -- Virtual Machine Registration request
	SRVPROTOVER -- Protocol Version request
	UNREGPHYMACH -- Physical Machine Unregistration request
	UNREGREPO -- Repository Manager Unregistration request
	UNREGSERV -- Service Unregistration request
	UNREGVM -- Virtual Machine Unregistration request
	UPDATEVMSTATUS -- Virtual Machine Status Update request

	Messages issued to the Repository Manager
	SRVPROTOVER -- Protocol Version request
	STOPVM -- Service Stop request
	SUBMITVM -- Service Submission request

	Messages issued to the Scheduler
	SRVPROTOVER -- Protocol Version request
	STOPSERV -- Service Stop request
	SUBMITSERV -- Service Submission request

	Messages issued to the Machine Manager
	SRVPROTOVER -- Protocol Version request
	STARTVM -- Virtual Machine Execution request
	STOPVM -- Virtual Machine Stop request

	Workflows Diagrams

	Conclusions and Future Work

