Dipartimento di Informatica
Universita del Piemonte Orientale “A. Avogadro”
Via Teresa Michel 11, 15100 Alessandria
http://www.di.unipmn.it

universita
degli studi
del piemonte
orientale

The TAAROA Project Specification
Authors: Cosimo Anglano, Massimo Canonico, Marco GuazamadeMatteo Zola
({cosimo.anglano,massimo.canonico,marco.guazzongmaola}@unipmn.it)

TECHNICAL REPORT TR-INF-2009-02-02-UNIPMN
(February 2009)

The University of Piemonte Orientale Department of Comp8i@ence Research Technical Reports are available via WAWWRa
http://ww.di.nfn. unipm.it/.
Plain-text abstracts organized by year are available idlitteetory

Recent Titles from the TR-INF-UNIPMN Technical Report Series

2009-01 Knowledge-Free Scheduling Algorithms for Multiple Bagtatk Applications on Desktop Gridanglano, C., Canonico, M., Febru-
ary 2009.

2008-09 Case-based management of exceptions to business pracassgsproach exploiting prototypeMontani, S., December 2008.
2008-08 The ShareGrid Portal: an easy way to submit jobs on compuriatiGrids Anglano, C., Canonico, M., Guazzone, M., October 2008.
2008-07 BuzzChecker: Exploiting the Web to Better Understand 8gdtearini, M., Montangero, S., July 2008.

2008-06 Low-Memory Adaptive Prefix CodinGagie, T., Nekrich, Y., July 2008.

2008-05 Non deterministic Repairable Fault Trees for computingropt repair strategy Beccuti, M., Codetta-Raiteri, D., Franceschinis, G.,
July 2008.

2008-04 Reliability and QoS Analysis of the Italian GARR netwd@&bbio, A., Terruggia, R., June 2008.

2008-03 Mean Field Methods in performance analysgribaudo, M., Telek, M., Bobbio, A., March 2008.

2008-02 Move-to-Front, Distance Coding, and Inversion FrequeadevisitedGagie, T., Manzini, G., March 2008.

2008-01 Space-Conscious Data Indexing and Compression in a Strepiode] Ferragina, P., Gagie, T., Manzini, G., February 2008.

2007-05 Scheduling Algorithms for Multiple Bag-of-Task Appliceits on Desktop Grids: a Knowledge-Free Appraa€anonico, M.,
Anglano, C., December 2007.

2007-04 Verifying the Conformance of Agents with Multiparty Praifsc Giordano, L., Martelli, A., November 2007.
2007-03 A fuzzy approach to similarity in Case-Based Reasoningisigitto SQL implementatioRortinale, L., Montani, S., October 2007.
2007-02 Space-conscious compressi@agie, T., Manzini, G., June 2007.

2007-01 Markov Decision Petri Net and Markov Decision Well-formest RormalismsBeccuti, M., Franceschinis, G., Haddad, S., February
2007.

2006-03 New challenges in network reliability analysBobbio, A., Ferraris, C., Terruggia, R., November 2006.

2006-03 The Engineering of a Compression Boosting Library: TheariPractice in BWT compressipRerragina, P., Giancarlo, R., Manzini,
G., June 2006.

2006-02 A Case-Based Architecture for Temporal Abstraction Cordijon and ProcessingPortinale, L., Montani, S., Bottrighi, A.,
Leonardi, G., Juarez, J., May 2006.

2006-01 The Draw-Net Modeling System: a framework for the design thedsolution of single-formalism and multi-formalism migde
Gribaudo, M., Codetta-Raiteri, D., Franceschinis, G.uday 2006.

The TAAROA Project Specification *

Cosimo Anglano Massimo Canonico Marco Guazzone
Matteo Zola
Department of Computer Science, University of PiemonteQale, Alessandria (Italy),
email:{cosimo.anglano,massimo.canonico,marco.guazmatteo.zola}@unipmn.it

Abstract 1 Introduction

Since its introduction, the Grid computing paradigm has ~ The traditional use of a distributed computing infras-
been widely adopted both in scientific and also in indus- tructure is for executing computational-intensive or data
trial areas. The main advantage of the Grid computing intensive applications for solving complex problems. &hes
paradigm is the ability to enable, in a transparent way, the applications are characterized by the lack of user intenact
sharing and the coordination of several heterogeneous andand by the high demand of computational power or storage
large-scale distributed resources belonging to diffeiaat ~ capacity. While almost all of the scientific applicationsica
stitutional domains. One of its limitation is the lack ofifac be considered to belong to at least one of the above cate-
ties for executing services. In fact, Grid computing hastbee gories, there are others, like the ones in the business do-
traditionally used and improved for running computational main, that follow different behavioral patterns. Serviaes
intensive or data-intensive applications. A service diffe an example of such applications.
from this kind of applications in that it usually waits for A service is an application that differs from traditional
requests from clients and replies with useful information; resource-intensive applications for at least two aspét)s:
moreover, a service is typically subjected to some predgfine there is some kind of interaction with its users, that is it
constraints, called Service Level Agreement (SLA), inrclud spends most of its time waiting for client requests (gener-
ing both temporal and performance restrictions. In this pa- ally issued by a user) and, upon a request arrival, replies to
per we present the TAAROA middleware, a software systena requesting client with useful information, and (2) is typ-
that tries to extend the traditional target of the Grid com- ically subjected to predefined temporal, performance and
puting paradigm to include the service concept. It attempts economical constraints referred to as Service Level Agree-
to accomplish its goal by using the virtualization technol- ment (SLA). The importance of services is demonstrated
ogy. By abstracting the hardware and software resources by the actual trend in the development and in the deploy-
of a computer, virtualization brings to TAAROA two impor- ment of applicationsd], 7]: the Service Oriented Architec-
tant benefits: (1) the encapsulation of the service runtime ture (SOA) model is now a fundamental part in designing
environment, and (2) the possibility, through the migratio and integrating applications since it allows existing 1T in
facility, to move a service from the computer where itis run- frastructure and systems to achieve end-to-end enterprise
ning to another one that hopefully reduces the risk of vio- connectivity by removing redundancies, generating unified
lating some of the SLA constraints. In the current version collaboration tools, and streamlining IT processe<].
of TAAROA middleware there is no explicit mechanism for Distributed computing paradigms still lacks of suitable
achieving the level of a service as defined by the relatedmechanisms in order to execute this kind of applications.
SLA; this means that actually TAAROA is only able to pro- Specifically, the two most challenging and still open prob-
vide a best-effort service. lems are: (1) to decide to what physical machine assign a
service for execution in order to satisfy its SLA constraint
and (2) to continuously monitor the execution of the al-
ready running services for preventing and possibly regctin
to SLA violations.

Finding the optimal allocation of a certain number of ser-
vices to a finite number of physical machine, subjected to

“This work has been supported by TOP-IX and the Piedmont Regio SLA constraints, is a computationally hard problem (NP-
Agency under the Innovation Development Program. complete) b]. Furthermore, when no such optimal alloca-

Keywords: Grid Computing, Service Level Agreement,
Virtualization.

tion can be found, a quasi-optimal allocation is still reqdi sists of five types of components: the TAAROA Client, the

in order to minimize SLA violations; in this case, additibna Information Service, the Repository Manager, the Sched-
issues must be taken into consideration for the conflicting uler and the Machine Manager (along with the associated
nature of the problem: two or more services competes for Physical Machine). Each component is loosely coupled to
getting assigned to the machine that allows them to meet theeach other, meaning that components, both of the same and
largest number of SLA constraints. of different type, weakly depend from each other.

The other challenging problem is the monitoring and ~ The TAAROA Client component is the user interface to
the fulfillment of SLA constraints. It consists in observing the TAAROA middleware; it is the component where all
the behavior of the service execution, collecting the perfo user requests start. For instance, it allows a user to execut
mance measures related to SLA constraints, predicting fu-a new service or to stop the execution of a running one.
ture behavior (on the basis of a specific performance model) The Information Service component is responsible for
and finally properly reacting in order to prevent SLA viola- collecting, managing and publishing information about the
tions., Withou.t compromising the SLA constraints of other state of the user services and of the other TAAROA compo-
running services. nents. This information is further used by TAAROA mid-

In this paper we present the TAAROA middleware, a dleware in order to locate a particular TAAROA component
software system that tries to extend the traditional tanflet or to get insights about its last published state.
the Grid computing paradigm to include the service con- The Machine Manager component is in charge of exe-

cept. It attempts to accomplish its goal by using the vir- ¢yting a user service on a Physical Machine. It uses the vir-
tualization technology. By abstracting the hardware and yajization technology of the underlying Physical Machine

software resources of a computer, virtualization brings 10 i grder to execute the service in an isolated environment
TAAROA two important benefits: (1) the encapsulation of anq to avoid runtime dependencies issues: every service,

the service runtime environment, and (2) the opportunity, giong with its runtime environment, is encapsulated inside
through the migration facility, of moving an executing ser- g \vjirtual Machine.

vice from the physical machine where it is running to an-
other one which, hopefully, reduces the risk of violating
some of the SLA constraints. Even if the ultimate goal of
TAAROA middleware is to enable the optimal execution of

services on distributed systems, in its current versiorethe what Physical Machine a user service is to be assigned

is. no expligit mechanism for achievir!g the level of a ser- for the execution. In the current implementation of the
vice as defined by the related SLA; this means that actuallyTAAROA middleware, requests for service submission are

TAAROA is only able to provide a best-effort service. . L o
The rest of this paper is organized as follows. B gueued and served in the order of their arrival, by assigning
pap 9 ' to each service the first available Physical Machine.

aim to provide an understanding of the main ideas under- There are several type of interactions occurring between
lying the TAAROA middleware by outlining its high-level . . ;
ying y 9 g TAAROA components. In the following, just for illustra-

architecture. In § we add details to the architecture de- i tine th Kl iated 1o th bmissi
scribed in 8 by illustrating the role of each TAAROA com- lon, we outlin€ the workliow associated to the submission
of a user service. When a user wants to execute a service

ponent and the associated interactions. 4na& describe .
what are the information maintained by the TAAROA mid- to TAAROA, he accesses 1o the TAAROA Client, selects
: Othe wanted service from a list retrieved by the TAAROA
Client from the Information Service, and finally submit it
to TAAROA. In response to the service submission request,
the TAAROA Client contacts the Scheduler for submitting
the interested service. In turn, the Scheduler queries the
Information Service for obtaining the list of the available
. Physical Machines, along with their allocation statistics
2 Overview of TAAROA and chooses the best one where executing the user service.
This choice can be done according to different strategies;
TAAROA is a software middleware which tries to enable the scheduling strategy actually implemented in TAAROA
Grid systems (i.e., distributed systems using the Grid com-follows the FCFS (First-Come First-Served) policy both for
puting paradigm) to execute services and, at the same timeselecting what service to execute and for choosing the Phys-
to preserve their SLA constraints. In this section we previd ical Machine where running it. After having chosen the
an high-level overview of the architecture of the TAAROA Physical Machine, the Scheduler instructs the Repository
middleware. Manager to execute the service on the chosen Physical Ma-
As shown in Fig.1, the architecture of TAAROA con- chine. In turn, the Repository Manager contacts the Ma-

The Repository Manager component is responsible for
hosting the images of the Virtual Machines associated to
the user services.

The Scheduler component has the role of deciding to

how they are organized. In5§he communication proto-
col, used by TAAROA components for interacting, is thor-
oughly described. Finally, inGwe provide conclusions and
our future research directions.

\
1
1
1
1
1
1
1
1
1
1
1
1

INFORMATION !
_______________________ SERVICE)

PHYSICAL MACHINEs !
+
MACHINE MANAGERSs !

Figure 1. The component-level architecture of TAAROA.

chine Manager of the chosen Physical Machine and sendcomponents are based on. They include the concept of
it the files related to the Virtual Machine representing the Physical Machine, Service and Virtual Machine.

given service. The Machine Manager, upon completion of
the Virtual Machine files transfer, instructs the virtualiz
tion layer of the Physical Machine where it is running to

start the new Virtual Machine. The Physical Machineoncept represents a computer con-
In the above workflow, whenever a TAAROA compo- nected to a network and equipped with hardware and oper-

nent needs to locate another one, the Information Serviceating system that supports virtualization technologies.

is contacted in order to obtain the needed information. The The amount of its hardware components (e.g., RAM

interactions OCCUrring between the various Components iSSize, disk space, CPU clock frequency’ network bandw|dth'

describe in the fOIIOWing Section, while the details abdut a and so on) is sent by the Machine Manager to the Infor-

3.1.1 Physical Machine

of the exchanged information is delayed & § mation Service when it enters into TAAROA. This infor-
mation might be used by the Scheduler for understanding
3 Architecture which Physical Machine best fits the performance needs of

a Virtual Machine.

In this section we provide a detailed view of the archi-
tecture of TAAROA middleware. We begin by a thorough 3.1.2 Service
description of the concepts underlying the TAAROA mid-
dleware; then we describe the role of each TAAROA com-
ponents; finally we provide an example of the most impor-
tant interactions between TAAROA components.

The Serviceconcept represents an application that usually
waits for incoming client requests and replies with useful
information. Typical example of Services are web servers,
database servers, name servers and authentication servers
The execution of a Service is requested through a TAAROA
3.1 Concepts Client and is performed on a Physical Machine inside a Vir-
tual Machine. Along with the Service application, a Ser-

In this section we outline the fundamental concepts of vice usually comes with one or more predefined constraints

the TAAROA architecture upon which all of the TAAROA called Service Level Agreement (SLA). An SLA is a formal

pleted, the Virtual Machine is started and its executiotesta
becomes RUNNING. Eventually, when the Virtual Machine
is no more needed, the TAAROA Client can decide to shut
it down, making the execution state of that Virtual Ma-
chine to switch to STOPPED. There are other possible ex-
ecution states a Virtual Machine can take. Specifically, if
the execution of a Virtual Machine is explicitly cancelled
by a TAAROA Client, the corresponding execution state
changes to CANCELLED. If the execution of a Virtual Ma-
chine is prematurely arrested by a TAAROA component
(e.g., for the lack of physical resources needed by the Vir-
tual Machine), the corresponding execution state changes
,) , to ABORTED. If something goes wrong during the execu-
Figure 2. Execution state for a Virtual Ma- tion of a Virtual Machine, the corresponding executionestat
chine. changes to FAILED. The execution of a Virtual Machine
can even be temporarily suspended; in this case the execu-
tion state changes to SUSPENDED. Once its execution is

description of the level of a Service, upon which two nego- resumed, the execution state turns back to RUNNING.

tiating parties (the prqvider and the rgcipient) agrges_lt i Execution states divide in two main groupknal and
commonly described in terms of Service Level Objectives o horarystates. Final states are the ones that once a Vir-
(SLOs) and Service Level Specifications (SLSs), which in 5" Machine enters, cannot leave any more. They include
turn define temporal and performance metrics for measur-iho ABORTED. CANCELLED. FAILED and STOPPED
ing fthe. level of Sgrvice, and the qperational guideline_s for states (i.e., the ones marked with a thicker line in the figure
achieving the desired level of Service, respectively. TS 1054, temporary states are the ones that a Virtual Ma-
trate, an SLA may specify the levels of availability, reliab opine temporarily takes before entering a final state. They
ity and performance of the service and possible penalties inj, ~jude the RUNNING. STAGING IN. SUSPENDED and
case of violation. o)) UNSTARTED states. According to Fig, the execution of

In TAAROA, the application runtime environment of @ 5 virtual Machine, generally, cycles through one of more

Service is generally stored as one or more files; for in- temporary states before entering a final state.
stance, it can represent an image (e.g., an ISO-9660 file) of

an operating system. For each Service, its associated SLA

is defined as a set of requirements on physical resources

that needs to be satisfied once the related Service is chose}-2 Components
to be executed; for instance, a requirement can specify the

minimum amount of space on a physical disk.

In this section we provide a detailed description of the

3.1.3 Virtual Machine components of the TAAROA architecture. As described in

82 and shown on Fidl, there are five types of components:
The Virtual Machineconcept represents a Service submit- the TAAROA Client, the Information Service, the Repos-
ted for execution. It is characterized by the following at- itory Manager, the Scheduler and the Machine Manager
tributes: the instantiated Service defining a self-comt@in (along with the associated Physical Machine). Each com-
application environment, the address of the Physical Ma-ponent is loosely coupled to each other, meaning that com-
chine where the service is running, and the name or the IPponents, both of the same and of different type, weakly de-
address of the virtual host through which it is possible to pend from each other. Components, in opposite to concepts,
communicate with the Virtual Machine. interact directly with the TAAROA system to achieve their

The execution of a Virtual Machine can evolve through goals. There aractive and passivecomponents. Active

several states. In Fig2 is shown how execution states components are the ones that initiate interactions with the
of a Virtual Machine are related to each other. Before middleware; in TAAROA, the TAAROA Client, the Repos-
running, the execution state of a Virtual Machine is UN- itory Manager and the Machine Manager are active compo-
STARTED. Once the Virtual Machine is selected for exe- nents. Passive components are the ones that act as a conse-
cution, it changes its state to STAGING_IN; in this state, quence of stimulus sent by active components to the system;
the Virtual Machine is sent to the Physical Machine where in TAAROA, the Information Service and the Scheduler are
it will be executed. After the stage-in phase has been com-passive components.

3.2.1 Information Service 3.2.3 Repository Manager

TheInformation Serviceomponent is responsible for col- The Repository Managecomponent is a software compo-
lecting, managing and publishing information about the nent that is responsible for hosting Virtual Machine images
primary TAAROA entities: Physical Machine, Repository It has access to a storage area (either local or remote) where
Manager, Service and Virtual Machine. The structure of the each Virtual Machine image is placed, along with its config-
information stored in the Information Service follows the uration file ad everything that is necessary for running the
database schema described4n 8§ Virtual Machine.

Every TAAROA component can communicate with the Upon service submission request, it takes care of sending
Information Service. The Repository Manager component the corresponding Virtual Machine image and related files,
contacts the Information Service for registering or unreg- to a given Physical Machine and asks the Machine Manager
istering itself; in addition, it is responsible for insed, (located on that machine) to start the Virtual Machine. In a
updating and removing information about Services. The similar way, when it is asked to stop a Virtual Machine, it
Machine Manager component interacts with the Informa- instructs the Machine Manager (where the Virtual Machine
tion Service for registering or unregistering itself, tHey/B- is running) accordingly.
ical Machine where it runs and the Virtual Machines hosted A Repository Manager is also responsib|e for keep_
by the Physical Machine. The TAAROA Client component jng the Information Service up to date by communicating

asks the Information Service to provide it the list of Ser- changesin the execution state of every managed Virtual Ma-
vices for choosing what of them to submit for execution. chine.

The Scheduler component queries the Information Service
for obtaining the resource utilization of the available Bihy
cal Machines; this information can help it to decide onwhat 3.2.4 Scheduler
machine a given Service is to be executed.
Actually, there is only one Information Service compo- The Schedulercomponent is responsible for deciding to
nent in TAAROA. This means that information about the What Physical Machine a Service is to be assigned for the

state of TAAROA resources are definitively managed in a €xecution. This decision is taken through the so called
centralized way. scheduling policy, often referred to as scheduling heuris-

tic. In the current implementation of the TAAROA middle-

ware, the only available scheduling heuristic is the one tha
3.2.2 Machine Manager uses the First-Come-First-Served (FCFS) policy: requests

for Service submission are queued and served in the order

TheMachine Managecomponentis a software component ¢ yheir arrival, by assigning to each Service the first avail

that runs on a Physical Machine and waits for connections. able Physical Machine.

_The Machine Manager is in charge of managing €ach acyally, there is only one Scheduler component in
Virtual 'Mgchlne 'that is hosted by the Physical Machine TAAROA. This means that, from the point of view of a
where it IS running, by means of a software component TAAROA Client, the Scheduler component is the only sin-
named Virtual Machme Mc_)mtor (VMM). The VMM, alsg gle point of control for starting, monitoring and stopping
rgferrgd tc,) as hypervisor, is a softwgre Iaypr that prowdesthe execution of a Service in TAAROA: every request for
V|rtual!zat|on support 'and can run either d|reqtly on hard- submitting, managing and terminating a Service must go
ware, if that supports |t,_ or on top of the operating system. through the Scheduler component.

At startup the Machine Manager contacts the Informa-
tion Service and sends it the hardware characteristicsof th
Physical Machine on which resides. When the Repository3.2.5 TAAROA Client
Manager is asked to start a Service, it sends to the Machine
Manager the Virtual Machine image and the related con- The TAAROA Clientcomponent communicates with the
figuration file. The Virtual Machine image contains all the other TAAROA components in order to submit Services and
files that build up the Service runtime environment, while to monitor their execution. It represents the user intertac
the configuration file contains all the settings used by the the TAAROA middleware: all of the interactions occurring
VMM when starting, stopping and suspending the Virtual between a user (or a user application) and TAAROA happen
Machine. through this component.

A Machine Manager is also responsible for keeping the The TAAROA Web Portdb a specific type of TAAROA
Information Service up to date by communicating changes Client which offers an high-level user-friendly interfaice
in the amount of resources allocated to every managed Vir-order to make the interactions with the other TAAROA
tual Machine. components easier from the point of view of its users.

In the rest of this section we present the workflow con-
- cerning two of the most important TAAROA interactions:
P the Service submission workflow and the Service stopping
I workflow. The type of modelling diagram used for describ-

I | Scheduler ing these interactions is the UMtommunication diagram

l\ T [6]. This kind of diagram models the interactions between
|

TAAROA Client

AN
A TAAROA components by showing the flow of messages

]
I o

\ | | Repository Manage exchanged among them. In order to maintain the sequen-
[
[
[

\ tial ordering of interactions, messages are labeled with a
/’ P chronological number (usually starting from one), placed
near the link where the message is sent over.

\ | 7 | Machine Manage

\\ by P In the Service submission workflow, schematically
oy s~ shown on Fig4, the active actor is the TAAROA Client.
Information Service] When it wants to submit a Service, the first action it per-
forms is to request to the Information Service component
the list of the available Services. After having chosen the
Figure 3. Static relations between TAAROA Service it wants to run, denoted with Servicén the fig-
components. ure, it sends a request to the Scheduler component for sub-
mitting the selected Service and waits for a replay. In turn,
the Scheduler contacts the Information Service for obtain-
ing the list of Physical Machines along with their alloca-
3.3 Workflow tion statistics. The information needed to calculate these
statistics is sent to the Information Service by the Machine
In this section we describe the static relations and the Manager both when the Physical Machine, on which it is
dynamic interactions between the TAAROA components. running, is added to TAAROA and when one of the Virtual
Fig. 3 shows the structural relations between TAAROA Machine, running on that Physical Machine, changes its ex-
components. The TAAROA Client uses the Information ecution state. These statistics can be used by the Scheduler
Service for getting access to information about Services an for deciding, according to a proper scheduling heurisfic, i
other related entities; for instance, it queries the Infarm a Service can be immediately executed and on what Phys-
tion Service for retrieving the list of available Servicés. ical Machine. If the Service can be executed and a suit-
addition, the TAAROA Client uses the Scheduler for exe- able Physical Machine is found, the Scheduler instructs the
cuting, managing and stopping one or more Services. TheRepository Manager to submit the Virtual Machine asso-
Scheduler uses the Information Service for obtaining infor ciated to this Service on the chosen Physical Machine. In
mation about Services and resource utilization of Physicalthe figure, the Physical Machine chosen by the Scheduler is
Machines. This information might be used, for example, for namedy. Then, the Repository Manager contacts the Ma-
deciding to what Physical Machine a given Service is to be chine Manager of the chosen Physical Machine for starting
assigned for the execution. Moreover, the Scheduler uses new Virtual Machine for the given Service. It sends all the
the Repository Manager for submitting and stopping a spe-files composing the Virtual Machine to the Machine Man-
cific Service. The Repository Manager uses the Informationager which, in turn, instructs the virtualization layer tars
Service for registering and unregistering itself alonghwit the Virtual Machine. In the figure, the new Virtual Machine
the published Services. The Repository Manager also usess marked as:. In case of success, it registers the newly
the Machine Manager for controlling the execution of a Vir- created Virtual Machine to the Information Service along
tual Machine. Finally, the Machine Manager uses the Infor- with its parameters (network configuration, administratio
mation Service for registering and unregistering the Rhysi credentials and so on), for later retrieval, and notifies the
cal Machine on which it runs and every Virtual Machine it Repository Manager about the starting of the Virtual Ma-
manages. chine. When the Repository Manager receives the notifica-
The dynamic interactions between TAAROA compo- tion about the execution of the Virtual Machine, it contacts
nents are based on a message-oriented and stateless protitite Information Service, for updating the execution status
col; this means that each pair of TAAROA components ex- of that Virtual Machine, and the Scheduler, for passing to
changes messages with the rest of TAAROA components, init the Virtual Machine global identifier (i.e., the value tha
the form of request-reply messages, and each message neimniquely identifies the Virtual Machine inside the TAAROA
ther depends on previously sent messages nor on additionadystem) obtained from the Information Service. The Sched-
information stored on the receiving component. uler, in turn, notifies the requesting TAAROA Client, that

1: Gt Services 2: Get Services
- TAAROA > :
3: Submit Service x Client Service
—

5: Get Physical Machines statistics
——

|
User ‘4; Submit Service x

e ———
:Scheduler 6: Choose Physical Machine y
e

11: Update status of Virtual Macfine z T 10: Register Virtual Machine z
g

l 7: Submit Service x on Physical Machine y

8: Starts Virtual Machine for Service x on Physical Machine y

‘Repositor > :Machine
‘Repository srachine 9: Start Virtual Machine z
Manager Manager | —

Figure 4. The communication diagram for TAAROA service submission.

is the one that initially began the workflow. In the above the related information maintained by the Information Ser-
figure, all the replies are omitted for the sake of simplicity vice accordingly.

The other important interaction between TAAROA com-
ponents s the stopping of a Service. In Fgs depictedthe 4 Database
workflow for stopping a Service. Likewise the Service sub-
mission workflow, the active actor is the TAAROA Client.
In this section we describe the databases maintained by

When it wants to stop a running Service, identified:as X . !
P 9 the Information Service, the Repository Manager and the

the figure, it sends a request to the Scheduler componentM hine M ts. Th delling di
Subsequently, the Scheduler contacts the Repository Man- achiné vlanager components. € modefling diagram

ager componentwhich, in turn, queries the Information Ser- g?ed tfor sgpwmg thgggfer_ﬁ?t i@tzbisde model; 'S thetData
vice for finding out what Physical Machine is hosting that ructure Diagram ()- This kind of diagram is an exten-

Virtual Machine. Once the Repository Manager obtains the sion of the C"".‘S.S'C Entity-Relationship (E-R) diagrafi [

requested information, it asks the Machine Manager, run-1t d|ﬁers from itin thgt the E'R.mOdEI focuses on the rela-
ning on that Physical Machine, to stop the involved Virtual tionships be'tweer? different entities, Whe.re?‘s a DSD.faEuse
Machine. In the figure, the hosting Physical Machine is de- " the relationships of the elements within an entity, en-

noted withy. The Machine Manager delegates the Virtual art])!lngbus{ers 0 bettr(]ar u?;jerlst?ald tdhe links andt_:he retation
Machine Monitor to stop that Virtual Machine, then unreg- SNips between each entily. In this diagram, entiies are rep

isters the Virtual Machine on the Information Service and, resented as boxes, entity attributes are specified insele th

on success, notifies the Repository Manager about the stop§3ntlty b?xest,hwglle binary relatlpnsmps arﬁ qlra\t/yn as Itl'r;es
ping of the Virtual Machine. Finally, the Repository Man- connecting tne boxes representing the participatingiest

ager updates the execution status of the stopped Virtual IVla_Forn—ary relationships, an additional entity is used; it might

chine and then notifies the Scheduler, which successivel)ﬁa.ve gttributg_s which specify the cqnstraints that pind par
notifies the requesting TAAROA Client. Similarly to the ticipating entities together. The cardmghty of an enfdya
diagram for the Service submission workflow, in the above partpular relationship is expressed using the "crow's'foo
figure, all the replies are omitted for the sake of simplicity notation.

The other kind of interactions that might occur between
TAAROA components mainly concern the updating of in-
formation kept in the Information Service. For example,
each Repository Manager registers or unregisters itself to N Fig. 6 is shown the DSD of the database used by the
the Information Service whenever it joins to or leaves the Information Service component. In the rest of this section,
TAAROA system, respectively. Likewise, when a Machine We describe the entities and the relationships contained in
Manager joins to or leaves the TAAROA system, it registers this database.
or unregisters itself, respectively, to the Informatiorr-Se
yice component, along with_ the Physical Mgchir)e onwhich 4 1 1 ThePhysicalMachines entity
it runs. Moreover, every time a new Service is added or
an existing Service is removed from TAAROA, it is stored The PhysicalMachine®ntity represents the Physical Ma-
on or deleted from a Repository Manager which, in turn, chine concept presented iB.8.1 A PhysicalMachines en-
takes care of registering or unregistering it to the Informa tity is uniquely identified by an integer positive number+ep
tion Service, respectively. When a Virtual Machine changes resented by the attribute. A Physical Machine can host
the state of its execution, the Repository Manager updatesone or more Virtual Machines, whereas a Virtual Machine is

4.1 The Information Servicedatabase

TAAROA

1: Stop Virtual Machine z
—
Client

User

Scheduler

l4: Stop Virtual Machine z

Repositon

l 2: Stop Virtual Machine z

9: Update status of Virtual Machine z
4

on Service x running on Virtual Machine z
.

5: Get information on Physical Machine y running the Virtual Machine z
o

6: Stop Virtual Machine z for Service x on Physical Machine y
—

:Information
Service

Manager

:Machine
Manager

T 8: Unregister Virtual Machine z

F——
7: Stop Virtual Machine z
S —

Figure 5. The communication diagram for TAAROA service stopping.

Legend

Primary Key

Foreign Key

Standard Column

Services

Id INTEGER lb

VirtualMachines

Id INTEGER
Serviceld INTEGER
PhyMachld INTEGER
Localld VARCHAR
Address VARCHAR
ProbePort INTEGER
AllocatedCpu | FLOAT
AllocatedRam | FLOAT
AllocatedDisk | FLOAT
Status INTEGER

Name VARCHAR
ReqDisk INTEGER Repositories D
Repositoryld | INTEGER Id INTEGER
Address VARCHAR
Port INTEGER
PhysicalMachines b UserName |VARCHAR
Id INTEGER UserPasswd | VARCHAR
Address VARCHAR
CpuType VARCHAR
NCpu INTEGER
CpuClock INTEGER
RamSize INTEGER
DiskSize INTEGER
NetSpeed INTEGER
MaxVmNumber [INTEGER
UserName VARCHAR
UserPasswd VARCHAR
VmmUserName [VARCHAR
VmmUserPasswd | VARCHAR
MachMngrPort INTEGER

Figure 6. The E-R schema of the Information Service database.

running on only one Physical Machine at a time. The maxi-

) Legend
mum amount of Virtual Machines a given Physical Machine Primary Key
can run is specified by the attribu#axVmNumber Foreign Key
The other attributes concern hardware and system prop- Standard Column

erties and administration information. Regarding the hard
ware and system characteristics, the attriliCpe Typerep-

resents the vendor and the model of the CPU, the attribute vmlist

NCpudenotes the number of cores or processors installed id [INTEGER

on the Physical Machine, while the attribu@puClock sid |INTEGER IS.Services
specifies the CPU clock frequency (in MegaHertz). The path [VARCHAR
attributesRamSize DiskSizeand NetSpeedepresent re- desc | VARCHAR

spectively the amount of system RAM (in MegaBytes), the
amount of disk space (in MegaBytes) and the speed of the
network card (in MegaBps) of the Physical Machine. Fi-
nally, the attributeAddressrepresents the IP address of the
Physical Machine.

For what concerns the information for administration
purpose, the attributddserNameand UserPasswordep- 4.1.4 TheVirtualMachines entity
resent the credentials for remotely accessing to the Pdysic
Machine, the attributymmUserNamandVmmUserPass- The VirtualMachinesentity describes the Virtual Machine
word are the credentials for gaining access to the Virtual concept outlined in 81.3 A VirtualMachines entity is
Machine Monitor and the attributslachMngrPortis the ~ Uniquely identified by the attributiel, which is an integer

port at which the Machine Manager waits for requests. positive number. A Virtual Machine represents a solely
running Service instance and can live in only one Physi-

cal Machine (though Virtual Machine migration can change
the hosting machine along the time); the attributes thét lin

a Virtual Machine to its Service and to its Physical Machine
are Serviceldand PhyMachld respectively. On the other
hand, more than one Virtual Machine can execute the same
Service and a Physical Machine may contain several Vir-
tual Machines. Among the other attributes characterizing
this entity, those that are worth noting are the ones indicat
ing the amount of physical resources allocated to a Virtual
Machine and the state of the execution. The resource allo-
cation attributes include the CPU share allocation (attéb
AllocatedCpy, the fraction of allocated system memory
(attributeAllocatedRamand the fraction of allocated disk
space (attributé\llocatedDisk. For what concerns the ex-
ecution state of a Virtual Machine, it is represented by the
attribute Status an integer number whose possible values
are defined according to the TAAROA communication pro-
tocol (described in).

Figure 7. The E-R schema of the Repository
Manager database.

4.1.2 TheRepositories entity

The Repositorie®ntity represents the Repository Manager
concept stated in$2.3 A Repositories entity is uniquely
identified by the attributéd, which is an integer positive
number. The attribute&ddressandPort are used for con-
necting to the Repository Manager, while attributéser-
NameandUserPassware the credentials needed for gain-
ing access to it.

4.1.3 TheServices entity

TheServiceentity models the Service concept described in
83.1.2 A Services entity is uniquely identified by an integer
positive number represented by the attribigteThis entity

is uniquely associated to a Repositories entity (through th
attributeRepositoryld, meaning that a Service is provided)
by one and only one Repository Manager component. Fur-4-2 The Repository Managedatabase

thermore, a Services entity can participate in the assoniat

with one more VirtualMachines entities, but a VirtualMa- In Fig. 7 is shown the DSD of the database used by
chines entity is associated to exactly one Services entity.the Repository Manager component. The purpose of this
This basically means that the same Service can appear irlatabase is to store information that allow to associate
one or more Virtual Machines, but a Virtual Machine can TAAROA global descriptors with information that are local
only run exactly one Service. The remaining attributes are to each Repository Manager. For this reason, each Reposi-
the Service name (attributéame and the amount of disk tory Manager maintains a different copy of this database.
space (in bytes) needed by the Service for executing (at- In the rest of this section, we describe the entities and the
tribute RegDisk. relationships contained in this database.

Symbol Description

Legend ’
- <#> The literal character?’.
Primary Key
- A sequence of one or more blank characters
Foreign Key . . .
(whitespace or horizontal tabulation).
Standard Column Desls] The base64 decoding of the string
Es4[s] The base64 encoding of the string
o IS Abbreviation for Information Server.
_ ML MM Abbreviation for Machine Manager.
d i INTEGER]] RM Abbreviation for Repository Manager.
led. INTEGER I1S.VirtualMachines sc Abbreviation for Scheduler.
localid [INTEGER SiY/e Abbreviation for Service.
TC Abbreviation for TAAROA client.
VM Abbreviation for Virtual Machine.
WP Abbreviation for TAAROA Web Portal.

Figure 8. The E-R schema of the Machine
Manager database. Table 1. Notations and abbreviations for the
TAAROA communication protocol.

4.2.1 Thevmlist entity

attributeld. The attributevmid represents the TAAROA
Virtual Machine identifier, whereas the attribdtealid is
the local Virtual Machine identifier assigned by the Virtual
Machine Monitor.

Thevmlistentity is used by the Repository Manager for re-
trieving, from a given Service identifier, all of the files com
posing a Virtual Machine. The attribuggd represents the
Service identifier related to a particular Virtual Machiite;
is a foreign key referring to the attributd of the entity
Services stored in the Information Service database (see5 Communication Protocol
84.1.3. Thepathattribute is the actual path where all the

files for a given Virtual Machine are stored. .)) o
In this section we describe the communication protocol

used by the current version of TAAROA middleware. The

protocol is at the base of all the dynamic interactions oc-

, . curring between TAAROA components; it is a message-
In Fig. 8 is shown the DSD of the database used by the (,janted and stateless protocol, that is each TAAROA com-

Machine Manager component. This database contains only, e nt exchanges with the others a series of request-reply

information that is local to each Machine Manager; for in- messages that neither depend on previously sent messages

stance, the information regarding Virtual Machines is re- . oy aqditional information stored on the receiving com-
stricted only to the ones running on the Physical Machine ponent

on which the Machine Manager resides. For this reason,
each Machine Manager maintains a different copy of this

database. the symbols, along with their meaning, employed for de-

In.the rgst of thls_secn_on, we describe the entities and thescribing the format of the protocol messages. Instead, in

relationships contained in this database. 85.1, the format of the number, the unit of measurement
and the other constants is illustrated.

4.3 The Machine Managerdatabase

The specification of the protocol messages follows pre-
cise symbol and number conventions. In Takare shown

4.3.1 Thevmidlist entity

Thevmidlistentity is used by the Machine Manager for as- 5-1 ~Common formats

sociating a Virtual Machine concept (se& £.3 with areal

Virtual Machine implementation. Specifically, itlinksarVi 51,1 Integer Numbers representation

tual Machine global identifier, assigned by the Information

Service, to a local identifier associated to the correspond-The protocol supports the following integer number format
ing Virtual Machine running on the Physical Machine on (expressed as POSIX regular expression):

which the Machine Manager resides; this local identifier

is assigned to the real Virtual Machine by the underlying e \d+ (e.g.14).

Virtual Machine Monitor. Each vmidlist entity is uniquely

identified by an integer positive number represented by theNo negative value is allowed.

5.1.2 Real Numbers representation 5.1.5 Net Speed Unit of Measurement representation

The protocol supports the following real number formats The string MUST be an integer numbes.§.1 optionally
(expressed as POSIX regular expression): followed by a unit specifier character. Possible unit speci-
fiers are:
e Standard notatioryd + \. \d+ (e.9.14.5). « bps for bits-per-second (bit/s).
e Scientific notation:\d + \.\d + [eE][+—]\d+ (e.0. e Kbps for Kilobps (Kbit/s).
1.45¢ + 1).

Mops for Megabps (Mbit/s).
Gops for Gigabps (Gbit/s).
Tbps for Terabps (Thbit/s).
Pbps for Petabps (Phit/s).

No negative value is allowed.

5.1.3 Frequency Unit of Measurement representation

The string MUST be an integer number optionally followed . B . -
by a unit specifier character. Possible unit specifiers are: If no unit specifier character is specified, the default value
depends on the context where the unit of measurement has

e Hz for Hertz. to be specified.

e KHz for KiloHertz. 5.1.6 Execution Status Codification

o MHz for MegaHertz. The execution status of a Virtual Machine is coded as an
integer number:

e CHz for GigaHertz. 0: represents the UNKNOWN execution status.

THz for TeraHertz. represents the UNSTARTED execution status.

1:
o PHz for PetaHertz. 2: represents the READY execution status.
3: represents the STAGING_IN execution status.
If no unit specifier character is specified, the default value _
depends on the context where the unit of measurement has4: represents the RUNNING execution status.
to be specified. 5: represents the SUSPENDED execution status.

) . 6: represents the STOPPED execution status.
5.1.4 Memory Unit of Measurement representation

)] . 7: represents the CANCELLED execution status.
The string MUST be an integer number optionally followed

by a unit specifier character. Possible unit specifiers are: 8: represents the FAILED execution status.

« Bfor bytes. 9: represents the ABORTED execution status.

5.2 Messages issued to the Information
Server

KB for Kilobytes.

MB for Megabytes.
* gaby 521 GETPHYMACH — Physical Machine details re-

e GBfor Gigabytes. quest

Sent by a RM to the IS for getting information about a spe-
e TBfor Terabytes. cific physical machine.
e PBfor Petabytes. (GETPHYMACHPHY_I D)

. . : . where:
If no unit specifier character is specified, the default value

depends on the context where the unit of measurement has e PHY | D: integer number 8.1.1 representing the
to be specified. physical machine identifier.

Possible replies from the IS are:
e In case of success:
(OKPHY_I PMV_PORT)
where:

— PHY_I P: string containing the IP address of the
requested physical machine.

— MM _PORT: integer number 8.1.1 representing
the TCP port of the MM.

e (ERRCODE) otherwise, wher€ODE is an integer
number representing an error code.

5.2.2 GETVM —Virtual Machine details request

Sent by a TC to the IS when it wants to know the details
regarding a given submitted service (virtual machine).

(GETVMkb>VM I D)
where:

e VM I D: integer number 8.1.1containing the submit-
ted service (virtual machine) identifier.

Possible replies from the IS are:

e In case of success:

(OKS_| DPHY_| D
VM _LOCAL_| DVI RT_| PSTATUS)

where:
— S I D integer number 8.1.1containing the ser-

vice identifier.

— PHY_I D: integer number 8.1.1 containing the
identifier of the physical machine.

— VM _LOCAL_I D: string containing the identifier
used by the MM to uniquely retrieve a VM.

— VI RT_I P: string containing the IP address of the
virtual machine on which the service is running.

— STATUS: integer number 8.1.1 representing
the execution status of the submitted service
(83.1.3.

e (ERRCODE) otherwise, wher&ODE is an integer
number representing an error code.

5.2.3 GETVMMACHMNGR - Virtual Machine Ma-
chine Manager request

Sent by a RM (or other clients) to the IS when it wants to
know the machine manager associated to a given submitted
service (virtual machine).

(GETVMVACHWNGRVM | D)
where:

e VM I D: integer number 8.1.1containing the submit-
ted service (virtual machine) identifier.

Possible replies from the IS are:
e |n case of success:

(OKPHY_I DPHY_| P
MV_PORTVM LOCAL_I D)

where:

— PHY_I D: integer number8.1.1representing the
identifier of the Physical Machine where the MM
is running.

— PHY_I P: string representing the IP address of
the Physical Machine where the MM is running.

— MM _PORT: integer number 8.1.1 representing
the TCP port of the MM.

— VM _LOCAL_ I D: string containing the identifier
used by the MM to uniquely retrieve a VM.

e (ERRCODE) otherwise, wher€€ODE is an integer
number representing an error code.
5.2.4 GETVMSERV —Virtual Machine Servicerequest

Sent by a TC to the IS when it wants to know the service
associated to a given submitted service (virtual machine).

(GETVMBERVVM I D)
where:

e VM I D: integer number 8.1.1containing the submit-
ted service (virtual machine) identifier.

Possible replies from the IS are:
e In case of success:

(OKS_| DFg4 [NAVE|
RM | DRM | PRM PORT)

where:

— S_| D: integer number 8.1.1 representing the
service identifier.

— NAME: string representing the symbolic name of
the service.

— RM_I D: integer number 8.1.1representing the
RM identifier.

— RM_I P: string representing the IP address of the
RM.

— RM_PORT: integer number 8.1.1 representing
the TCP port of the RM.

e (ERRCODE) otherwise, wher€ODE is an integer
number representing an error code.

5.2.5 GETVMSTATUS - Virtual Machine Status re-
quest

Sent by a TC to the IS when it wants to know the execution

status of a given submitted service (virtual machine).
(GETVMBTATUSVM I D)
where:

e VM | D: integer number 8.1.1containing the submit-
ted service (virtual machine) identifier.

Possible replies from the IS are:
e In case of success:
(OKSTATUS)

whereSTATUS is an integer numbers1.1represent-
ing the service execution status3(8.3.

e (ERRCODE) otherwise, wher€ODE is an integer
number representing an error code.

5.2.6 LISTPHYMACH — List of Physical Machinesre-
quest

Sent by a TC to the IS when it wants to retrieve the list of
all registered physical machines.

(LI STPHYMACH)
Possible replies from the IS are:
e In case of success, returns:
(OKPhyMachLi st)
wherePhyMachlLi st is a list of entry messages:
(PHY_| DPHY_| PMMV _PORT)
where:

— PHY_I P: string containing the IP address of a
physical machine.

— PHY_I D: integer number8.1.1representing the
identifier of a physical machine.

— MM _PORT: integer number 8.1.1 representing
the TCP port of the MM.

terminated by a dot message:
()

indicating the end of the list. In case of empty list the
following message is returned:

(OK.)

e (ERRCODE) otherwise, wher€€ODE is an integer
number representing an error code.

5.2.7 LISTPHYMACHSTATUS - List of Physical Ma-
chines along with Resource Utilization request

Sent by a SC (or other clients) to the IS when it wants to
retrieve the list of all registered physical machines along
with the status of their resources utilization.

(LI STPHYMACHSTATUS)
Possible replies from the IS are:
e In case of success, returns:
(OKPhyMachLi st)
wherePhyMachlLi st is a list of entry messages:

(PHY_| DAVAI L_CPUAVAI L_RANKb>
AVAI L_DI SKNETSPEED)

terminated by a dot message:

)
indicating the end of the list.
The fields in each entry has the following meaning:

— PHY_I D: integer number8.1.1representing the
identifier of a physical machine.

— AVAI L_CPU: real number §.1.2 representing
the available number of processors expressed as
a fraction of the total number of CPU/Core pro-
cessors:

NumOfCpus(PHY _ID)
Z AllocCpuFrac(VM_ID)

VM_ID
onPHY _ID

Admissibile values are in the range of
[0, NumOfCpus(PHY _ID)].

— AVAI L_RAM real number §.1.2 representing
the available RAM expressed as a fraction of the
total RAM size:

1 - Z AllocRamFrac(VM_ID)

VM_ID
onPHY _ID

Admissibile values are in the range[6f 1].

— AVAI L_DI SK: real number §.1.2representing
the available disk expressed as a fraction of the
total disk size:

R > AllocDiskFrac(VM_ID)

VM_ID
on PHY _ID

Admissibile values are in the range[6f 1].

— NETSPEED: string representing the total speed
of the network interface card, expressed as an in-
teger number followed by a unit of measurement
specifier .1.5

In case of empty list the following message is returned:
(OK.)
e (ERRCODE) otherwise, wher€ODE is an integer
number representing an error code.
5.2.8 LISTREPO —List of Repositories request

Sent by a TAAROA component to the IS when it wants to
know the list of available RMs.

(LI STREPO)
Possible replies from the IS are:
e In case of success, returns:
(OKRepolLi st)
whereRepoli st is a list of entry messages:

(REPO_| D| P_ADDRPORT
Eg4 [USER_NAME|Eg4 [PASSWD])

where:
— | P_ADDR: string containing the IP address of the
repository manager service.

— PORT: integer number 8.1.1 representing the
TCP port on which the repository manager ser-
vice must be contacted.

— USER_NAME: string containing the username
that must be used to authenticate with the RM.

— PASSWD: string containing the password that
must be used to authenticate with the RM.

terminated by a dot message:

)

indicating the end of the list. In case of empty list the
following message is returned:

(OK.)

e (ERRCODE) otherwise, wher€€ODE is an integer

number representing an error code.

5.2.9 LISTSERV —List of Servicesrequest

Sent by a TC to the IS when it wants to retrieve the list of
all registered services.

(LI STSERV)

Possible replies from the IS are:

e In case of success, returns:

(OKServlList)
whereSer vLi st is a list of entry messages:

(S_| DFEs4 [NAME|]RM | D
RM | PRM PORT)

where:
— S_I D: integer number 8.1.1 representing the

service identifier.

— NAME: string representing the symbolic nhame of
the service.

— RM I D: integer number 8.1.1representing the
RM identifier.

— RM_| P: string representing the IP address of the
RM.

— RM _PORT: integer number 8.1.1 representing
the TCP port of the RM.

terminated by a dot message:
()

indicating the end of the list. In case of empty list the
following message is returned:

(OK.)

e (ERRCODE) otherwise, wher€CODE is an integer

number representing an error code.

5.2.10 LISTVM - List of Virtual Machinesfrom Service
request

Sent by a TC to the IS when it wants to retrieve the list of all
submitted services (virtual machines) for the given servic
S ID.

(LI STVMkb>S_ID)
where:

e S_| D: integer number 8.1.1representing the service
identifier.

Possible replies from the IS are:
e In case of success, returns:
(OKVM.i st)
whereVMLi st is a list of entry messages:

(VM_I DPHY_| DVM LOCAL_| D
VI RT_| PSTATUS)

where:
— VM_I D: integer number 8.1.1 containing the

submitted service (virtual machine) identifier.

— PHY_I D: integer number 8.1.1 containing the
identifier of the physical machine.

— VM _LOCAL_ | D: string containing the identifier
used by the MM to uniquely retrieve a VM.

— VI RT_I| P: string containing the IP address of the
virtual machine on which the service is running.

— STATUS: integer number 8.1.1 representing
the execution status of the submitted service
(83.1.3.

terminated by a dot message:
()

indicating the end of the list. In case of empty list the
following message is returned:

(OK.)
e (ERRCODE) otherwise, wher€ODE is an integer
number representing an error code.
5.2.11 REGPHYMACH - Physical Machine Registra-
tion request

Sent by a MM to the IS for registering a specific physical
machine.

(REGPHYMACHPHY_| P FEg4 [CPUTYPE]
NCPUCPUCL OCKRAMSI ZE

DI SKSI ZENETSPEEDMAX_VM NUMBER
FEg4 [MACH_USERNAME] g4 [MACH_PASSWORD
FEe4 [XM_USERNAME| Eg4 [XM_PASSWORD|
MM_PORT)

where:

e PHY_| P: string representing the physical machine IP
address.

e CPUTYPE: string representing the model or architec-
ture or type of the CPU installed on the machine.

e NCPU: integer number 8.1.1 representing the total
number of CPU processors/cores installed on the ma-
chine.

e CPUCLQOCK: string representing the clock frequency
of a single CPU processor/core of the machine. See
85.1.3for the specification of frequency unit of mea-
surement. If no unit specifier character is specified, the
MegaHertaunit of measurement is assumed as default.

e RAMSI ZE: string representing the total memory avail-
able on the machine. Se&.8.4for the specification
of memory unit of measurement. If no unit specifier
character is specified, tidegabyteunit is assumed as
default.

e DI SKSI ZE: string representing the total disk space
available on the machine. Seé&.8.4for the speci-
fication of memory unit of measurement. If no unit
specifier character is specified, tMegabytaunitis as-
sumed as default.

e NETSPEED: string representing the speed of the
(main) network card installed on the machine. See
85.1.5for the specification of net speed unit of mea-
surement. If no unit specifier character is specified,
the Mbit/s unit is assumed as default.

e MAX_VM NUMBER: integer number 8.1.1represent-
ing the maximum allowed number of running virtual
machines. The value1 means “no limit”.

e MACH USERNANME: string representing the name of
the user used for logging in the machine.

e MACH PASSWORD: string representing the password
of the user used for logging in the machine.

e XM _USERNAME: string representing the name of the
user used for controlling the Xen Manager.

e XM PASSWORD: string representing the password of
the user used for controlling the Xen Manager.

e MM PORT: integer number 8.1.1 representing the
TCP port number where the MM is accepting connec-
tions.

Possible replies from the IS are:

e (OKPHY_ID) in case of success, wheRHY | D
is the integer identifier of the new registered physical
machine.

e (ERRCODE) otherwise, wher€QODE is an integer
number representing an error code.
5.2.12 REGREPO —Repository Manager Registration
request
Sent by a RM to the IS for registering itself.

(REGREPO| P_ADDRPORT
Eg4 [USER_NAVE|Eg4 [PASSWD])

where:
e | P_ADDR: string containing the IP address of the RM.

e PORT: integer number8.1.1containing the TCP port
on which the RM waits for requests.

e USER_NAME: string containing the username that
must be used to authenticate with the RM.

e PASSWD: string containing the password that must be
used to authenticate with the RM.

Possible replies from the IS are:

e (OKRM I D) in case of success, wheRM | D is
the integer identifier of the new registered RM.

e (ERRCODE) otherwise, wher€ODE is an integer
number representing an error code.

5.2.13 REGSERYV -Service Registration request

Sent by a RM to the IS when it wants to register a new

service.
(REGSERVRM | DEg4 [NAVE]REQ DI SK)
where:

e RM I D: integer number 8.1.1 containing the RM
identifier.

e NAME: string containing the symbolic name of the ser-
vice.

e REQ DI SK: string representing the disk requirements.
See $.1.4for the specification of disk unit of mea-

surement. If no unit specifier character is specified,

theKilobyteunit is assumed as default.

Possible replies from the IS are:

e (OKS_ID) in case of success, whe®& | Dis the
integer identifier of the new registered service.

e (ERRCODE) otherwise, wher€€ODE is an integer
number representing an error code.
5.2.14 REGVM -Virtual Machine Registration request

Sent by a MM to the IS when it wants to register a running
VM (i.e., a VM that has been started on a physical machine).

(REGVMkb>S_| DPHY_| DVM LOCAL_| D
VI RT_I PALLOCATED_CPU
ALLOCATED RANKb>ALLOCATED_ DI SK)

where:

e S | D: integer number 8.1.1 containing the service
identifier.

e PHY_I D: integer number8.1.1containing the identi-
fier of the physical machine.

e VM LOCAL_I D: string containing an identifier used
by the MM to uniquely retrieve a VM.

e VI RT_I P: string containing the IP address of the
physical machine on which the VM is running.

e ALLOCATED_ CPU: real number §.1.2 representing
the number of CPU/Core processors allocated to the
VM.

e ALLOCATED RAM real number §.1.2 representing
the amount of RAM allocated to the VM.

e ALLOCATED_DI SK: real number §.1.2representing
the amount of disk allocated to the VM.

Possible replies from the IS are:

e (OKVM I D) in case of success, whe¥é@ | Dis
the integer identifier of the new registered virtual ma-
chine.

e (ERRCODE) otherwise, wher€€ODE is an integer
number representing an error code.

5.2.15 SRVPROTOVER —Protocol Version request

Sent by a client to the IS for getting information about the
TAAROA protocol version implemented by the IS server.

(SRVPROTOVER)
Possible replies from the IS are:

e In case of success:

(OKVERSI ON)
where:

— VERSI ON: string containing the TAAROA pro-
tocol version implemented by the server.

e (ERRCODE) otherwise, wher€ODE is an integer
number representing an error code.

5.2.16 UNREGPHYMACH —Physical Machine Unreg-
istration request

Sent by a MM (or other clients) to the IS for unregistering
a specific physical machine.

{ UNREGPHYMACHPHY_I D)
where:

e PHY_| D: integer number 8.1.1 representing the
physical machine identifier.

Possible replies from the IS are:

e (OKPHY_I D) in case of success, whapelY | Dis
the integer identifier of the unregistered physical ma-
chine (the same received in the request message).

e (ERRCODE) otherwise, wher€ODE is an integer
number representing an error code.

Side Effectsall virtual machines running on this machine

MUST be unregistered as well.

5.2.17 UNREGREPO —Repository Manager Unregis-
tration request

Sent by a RM (or other clients) to the IS for unregistering
itself (a specific repository manager).

{ UNREGREPORM | D)
where:

e RM | D: integer number8.1.1representing the repos-
itory manager identifier.

Possible replies from the IS are:

e (OKRM I D) in case of success, wheRM | D is
the integer identifier of the unregistered repository

manager (the same received in the request message).

e (ERRCODE) otherwise, wher&QODE is an integer
number representing an error code.

Side Effectsall services and related virtual machines regis-
tered by this RM MUST be unregistered as well.

5.2.18 UNREGSERYV -Service Unregistration request

Sent by a RM to the IS for unregistering a specific service.
(UNREGSERVS_ID)

where:

e S_| D: integer number 8.1.1representing the service
identifier.

Possible replies from the IS are:

e (OKS_ID) in case of success, whe® | Dis the
integer identifier of the unregistered service (the same
received in the request message).

e (ERRCODE) otherwise, wher€€ODE is an integer
number representing an error code.

Side Effectsall virtual machines associated to this service

MUST be unregistered as well.

5.2.19 UNREGVM - Virtual Machine Unregistration
request

Sent by a MM to the IS for unregistering a specific running
service (virtual machine).

(UNREGVMcb>VM | D)
where:

e VM | D:integer number$.1.1representing the virtual
machine identifier.

Possible replies from the IS are:

e (OKVM I D) in case of success, whexé@ | Dis
the integer identifier of the unregistered virtual ma-
chine (the same received in the request message).

e (ERRCODE) otherwise, wher€CODE is an integer
number representing an error code.
5.2.20 UPDATEVMSTATUS —Virtual Machine Status
Update request

Sent by a RM to the IS when it wants to update the execution
status of a given submitted service (virtual machine).

(UPDATEVMBTATUSVM | DSTATUS)
where:

e VM I D: integer number 8.1.1containing the submit-
ted service (virtual machine) identifier.

e STATUS: integer number 8.1.1representing the exe-
cution status of the submitted servic&(8.3.

Possible replies from the IS are: 5.3.3 SUBMITVM — Service Submission request

e (OKSTATUS) in case of success, WheBFATUS is Sent by a SC to the RM for submitting a given service.
the new execution status of the submitted service (vir- (SUBM TVMkb>S | DPHY_I D)

tual machine).

where:
e (ERRCODE) otherwise, wher€ODE is an integer e S_| D: integer number 8.1.1representing the service
number representing an error code. identifier.
e PHY_I D:integer number8.1.1representing the iden-
5.3 Messages issued to the Repository tifier of the physical machine where the service has to
Manager be executed.
Possible replies from the RM are:
5.3.1 SRVPROTOVER —Protocol Version request e (kVM 1D) in case of success, whe¥d | D is

the integer identifier of the virtual machine where the

Sent by a client to the RM for getting information about the . , i A i
submitted service (virtual machine) is running.

TAAROA protocol version implemented by the RM server.
e (ERRCODE) otherwise, wher€€ODE is an integer

(SRVPROTOVER) number representing an error code.
Possible replies from the RM are: 5.4 Messages issued to the Scheduler
e In case of success: 5.4.1 SRVPROTOVER —Protocol Version request
(OKVERSI ON) Sent by a client to the SC for getting information about the

TAAROA protocol version implemented by the SC server.
where: (SRVPROTOVER)

— VERSI ON: string containing the TAAROA pro- Possible replies from the SC are:

tocol version implemented by the server. e In case of success:

. . . { OKVERSI ON)
e (ERRCODE) otherwise, wher€QODE is an integer

number representing an error code. where:
— VERSI ON: string containing the TAAROA pro-
5.3.2 STOPVM —Service Stop request tocol version implemented by the server.

e (ERRCODE) otherwise, wher€€ODE is an integer

Sent by a SC to the RM for stopping a given submitted ser- number representing an error code.

vice (virtual machine).
(STOPVMKb>VM I D) 5.4.2 STOPSERYV -Service Stop request
Sent by a TC to the SC for stopping a given submitted ser-

where: vice (virtual machine).
e VM | D: integer number 8.1.1representing the sub- (STOPSERVVM.ID)
mitted service (virtual machine) identifier. where:

e VM | D:integer number$.1.1representing the identi-

Possible replies from the RM are: ' ’ S
fier of a running service instance.

e (OKVM ID) in case of success, whe¥d | D is Possible replies from the SC are:
the identifier of the stopped submitted service (virtual

) e (OKVM I D) in case of success, whexé | D is
machine). L

the identifier of the stopped service instance.

e (ERRCODE) otherwise, wher&ODE is an integer e (ERRCODE) otherwise, wher€CODE is an integer
number representing an error code. number representing an error code.

5.4.3 SUBMITSERYV —Service Submission request e (OKVM I D) in case of success, whe¥@ | Dis
the integer identifier of the virtual machine where the

Sent by a TC to the SC for starting the execution of a given submitted service (virtual machine) is running.

service.
e (ERRCODE) otherwise, wher€CODE is an integer

(SUBM TSERVS ID) number representing an error code.

where:

.) , 5.5.3 STOPVM -Virtual Machine Stop request
e S_| D: integer number 8.1.1representing the service

identifier. Sent by a RM to the MM for stopping a given submitted

)) service (virtual machine).
Possible replies from the SC are:

_ _ (STOPVMkb>VM LOCAL_I D)
e (OKVM I D) in case of success, whe¥d | D is

the integer identifier of the running instance of the where:

given service. e VM LOCAL_I D: integer number 8.1.1representing

e (ERRCODE) otherwise, wher€®ODE is an integer the submitted service (virtual machine) identifier.
number representing an error code. Possible replies from the RM are:
5.5 Messages issued to the Machine Man- e (OK0) in case of success.

ager . . .
e (ERRCODE) otherwise, wher€CODE is an integer

5.5.1 SRVPROTOVER —Protocol Version request number representing an error code.
Sent by a client to the MM for getting information aboutthe 5.6 Workflows Diagrams

TAAROA protocol version implemented by the MM server.

To illustrate the communication protocol at work, we

{ SRVPROTOVER) present in this section the two sample workflows previously

Possible replies from the MM are: described in 8.3, The type of modelling diagram used for
introducing the interaction between the different TAAROA
e In case of success: component is the UMLsequence diagrarf6]. This kind

of diagram shows how components communicate with each

OKVERSI ON ;)
{) other in terms of a sequence of messages. Furthermore, it

where: indicates the lifespans of components relative to those mes
. N sages.

— VERSI ON: string containing the TAAROA pro- Fig. 9 shows the sequence diagram for the service sub-

tocol version implemented by the server. mission request corresponding to the Service submission

workflow presented in&3

Fig. 10shows the sequence diagram for the service stop-
ping request related to the Service stopping workflow de-
scribed in 8.3

e (ERRCODE) otherwise, wher&ODE is an integer
number representing an error code.

5.5.2 STARTVM - Virtual Machine Execution request

Sent by a RM to the MM for starting a virtual machine given 6 Conclusions and Future Work
all the file necessary for running it.

In this paper we presented the TAAROA middleware,
a software system that tries to add the concept of service
where: and Service Level Agreement (SLA) to the Grid computing
.) . paradigm, by using the virtualization technology. The cur-
° S_I p:_mteger number §.1.1representing the service rant version of TAAROA has some limitations. The most
identifier. important of these are the lack of a logic for mapping a
high-level SLA specification to a low-level resource allo-
cation and, as a consequence, the absence of a scheduling
heuristic that properly assigns a Physical Machine to a Vir-
Possible replies from the MM are: tual Machine taking into account the preservation of SLA

(STARTVMKD>S | D + <VM | MAGE>)

e <VM | MAGE>: all the file necessary for running the
virtual machine.

|

[LEGEND

Ic Is

- e I
T T IIS: Information Service
Service Submission Request | LiSTSERY | |MM: Machine Manager I
! RM: Repository Manager I
ISC: Scheduler
OK{S_IDBase64(NAME)RM_IDRM_IPRM_PORT}* IIC:_ TﬁRO_A Cﬁnt_]
. | ERRCODE

{NAME}Y*

Choose S_ID_x

7
|
|
|
|
|
|
|
|
|
|
|

Select S_ID_x !

i

gns 391AI3S YOY VYL 10} weibelp aouanbas ayl ‘6 24nbi

‘uolssiw

Contact SC

SUBMITSERVS_ID_x |
N

| LISTPHYMACHSTATUS s
I

OK{PHY_IDAVAIL_CPUAVAIL_RAMAVAIL_DISKNETSPEED}"

. | ERRCODE
Choose PHY_ID_y
Contact RM at RM_IP_x:RM_PORT_x
RMRM_ID_x
SUBMITVMS_ID_xPHY_ID_y !
GETPHYMACHPHY_ID_y 1

‘ ‘ OKPHY_IP_yMM_PORT_y | ERRCODE

Contact MM at PHY_IP_y:MM_PORT_y

MM:MM_ID_y

STARTVMS_ID_xServicelmage(S_ID_x)

REGVMS_IDPHY_IDVM_LOCAL_IDVIRT_IPALLOC_CPUALLOC_RAMALLOC_DISK

‘ ‘ OKVM_ID | ERRCODE

UPDATEVMSTATUSVM_IDSTATUS

‘ ‘ OKSTATUS | ERRCODE

OKVM_ID | ERRCODE

T OKVM_ID | ERRCODE T

Success / Failure

—

i
|
!
OKVM_ID | ERRCODE i
T
|
I
|
I
|
I
i

‘Buiddols 82InI8S YOH VYL 10} welbelp souanbas ayl 0T @1nbi4

Stop Service VM_ID_x

Success / Failure

STOPSERVVM_ID_x

5 GETVMSERVVM_ID_x

OKS_ID_yBase64(NAME_y)RM_ID_zRM_IP_zRM_PORT_z | ERRCODE

GETVMVM_ID_x

Contact RM at RM_IP_z:RM_PORT_z

STOPVMVM_ID_x

i i |
[LEGEND |
IIS: Information Service
|MM: Machine Manager I
RM: Repository Manager I

| SC:. Scheduler
JTC._ TAAROA Client_ |

RM:RM ID z

‘ ‘ OKS_IDPHY_ID_wVM_LOCAL_ID_xVIRT_IPSTATUS | ERRCODE

UNREGVMVM_ID_x

Contact MM at PHY_IP_w:MM_PORT_w

MM:MM_ID_w

STOPVMVM_LOCAL_ID_x D

‘ ‘ OKVM_ID_x | ERRCODE

UPDATEVMSTATUSVM_ID_xSTATUS

OK0 | ERRCODE

‘ ‘ OKSTATUS | ERRCODE

OKVM_ID_x | ERRCODE

OKVM_ID_x | ERRCODE

constraints. This means that actually TAAROA is only able
to provide a best-effort service: each service is scheduled
for execution with a First-Come-First-Served policy and is
assigned to the first available Physical Machine. In the fu-
ture, we plan to provide a better support for proactively or
reactively avoiding SLA violations, by creating specificpe
formance models and exploiting, for instance, the Virtual
Machines migration.

References

[1] C. Abrams. Service-oriented business applicationsalore
down barriers. Research Note AV-22-1413, Gartner Research
February 2004.

[2] N. Bieberstein, S. Bose, L. Walker, and A. Lynch. Impact
of service-oriented architecture on enterprise systemgs-o
nizational structures, and individual$BM System Journal
44(4):691-708, 2005.

[3] P. P.-S. Chen. The Entity-Relationship model — towardhia u
fied view of data. ACM Transactions on Database Systems
1(1):9-36, 1976.

[4] L. Cherbakov, G. Galambos, R. Harishankar, S. Kalyand, a
G. Rackham. Impact of service orientation at the business
level. IBM System Journak4(4):653—668, 2005.

[5] M.R. Garey and D. S. Johnso@omputers and Intractability;

A Guide to the Theory of NP-Completene¥g H. Freeman
& Co., New York, NY, USA, January 1979.

[6] O. M. Group. Unified Modeling Language: Superstructure
v2.1.2. Specification formal/2007-11-02, OMG, November
2007.

[7] P. Liegl. The strategic impact of service oriented atietH
tures. InProc. of the 14th Annual IEEE International Con-
ference and Workshops on the Engineering of Computer-
Based Systems (ECBS'Qfages 475-484, Los Alamitos,
CA, USA, 2007. IEEE Computer Society.

	Introduction
	Overview of TAAROA
	Architecture
	Concepts
	Physical Machine
	Service
	Virtual Machine

	Components
	Information Service
	Machine Manager
	Repository Manager
	Scheduler
	TAAROA Client

	Workflow

	Database
	The Information Service database
	The PhysicalMachines entity
	The Repositories entity
	The Services entity
	The VirtualMachines entity

	The Repository Manager database
	The vmlist entity

	The Machine Manager database
	The vmidlist entity

	Communication Protocol
	Common formats
	Integer Numbers representation
	Real Numbers representation
	Frequency Unit of Measurement representation
	Memory Unit of Measurement representation
	Net Speed Unit of Measurement representation
	Execution Status Codification

	Messages issued to the Information Server
	GETPHYMACH -- Physical Machine details request
	GETVM -- Virtual Machine details request
	GETVMMACHMNGR -- Virtual Machine Machine Manager request
	GETVMSERV -- Virtual Machine Service request
	GETVMSTATUS -- Virtual Machine Status request
	LISTPHYMACH -- List of Physical Machines request
	LISTPHYMACHSTATUS -- List of Physical Machines along with Resource Utilization request
	LISTREPO -- List of Repositories request
	LISTSERV -- List of Services request
	LISTVM -- List of Virtual Machines from Service request
	REGPHYMACH -- Physical Machine Registration request
	REGREPO -- Repository Manager Registration request
	REGSERV -- Service Registration request
	REGVM -- Virtual Machine Registration request
	SRVPROTOVER -- Protocol Version request
	UNREGPHYMACH -- Physical Machine Unregistration request
	UNREGREPO -- Repository Manager Unregistration request
	UNREGSERV -- Service Unregistration request
	UNREGVM -- Virtual Machine Unregistration request
	UPDATEVMSTATUS -- Virtual Machine Status Update request

	Messages issued to the Repository Manager
	SRVPROTOVER -- Protocol Version request
	STOPVM -- Service Stop request
	SUBMITVM -- Service Submission request

	Messages issued to the Scheduler
	SRVPROTOVER -- Protocol Version request
	STOPSERV -- Service Stop request
	SUBMITSERV -- Service Submission request

	Messages issued to the Machine Manager
	SRVPROTOVER -- Protocol Version request
	STARTVM -- Virtual Machine Execution request
	STOPVM -- Virtual Machine Stop request

	Workflows Diagrams

	Conclusions and Future Work

