
Dipartimento di Informatica
Università del Piemonte Orientale “A. Avogadro”

Via Teresa Michel 11, 15100 Alessandria
http://www.di.unipmn.it

On-line Product Configuration using Fuzzy Retrieval and J2EE
Technology

Authors: Luigi Portinale, Maurizio Galandrino
(luigi.portinale@di.unipmn.it)

TECHNICAL REPORT TR-INF-2009-05-04-UNIPMN
(May 2009)

The University of Piemonte Orientale Department of Computer Science Research
Technical Reports are available via WWW at URLhttp://www.di.unipmn.it/.

Plain-text abstracts organized by year are available in thedirectory

Recent Titles from the TR-INF-UNIPMN Technical Report
Series

2009-03 GSPN Semantics for Continuous Time Bayesian Networks with Immediate Nodes,
Portinale, L., Codetta-Raiteri, D., March 2009.

2009-02 The TAAROA Project Specification, Anglano, C., Canonico, M., Guazzone, M.,
Zola, M., February 2009.

2009-01 Knowledge-Free Scheduling Algorithms for Multiple Bag-of-Task Applications on
Desktop Grids, Anglano, C., Canonico, M., February 2009.

2008-09 Case-based management of exceptions to business processes: an approach exploit-
ing prototypes, Montani, S., December 2008.

2008-08 The ShareGrid Portal: an easy way to submit jobs on computational Grids,
Anglano, C., Canonico, M., Guazzone, M., October 2008.

2008-07 BuzzChecker: Exploiting the Web to Better Understand Society, Furini, M., Mon-
tangero, S., July 2008.

2008-06 Low-Memory Adaptive Prefix Coding, Gagie, T., Nekrich, Y., July 2008.

2008-05 Non deterministic Repairable Fault Trees for computing optimal repair strategy,
Beccuti, M., Codetta-Raiteri, D., Franceschinis, G., July2008.

2008-04 Reliability and QoS Analysis of the Italian GARR network, Bobbio, A., Terruggia,
R., June 2008.

2008-03 Mean Field Methods in performance analysis, Gribaudo, M., Telek, M., Bobbio,
A., March 2008.

2008-02 Move-to-Front, Distance Coding, and Inversion Frequencies Revisited, Gagie, T.,
Manzini, G., March 2008.

2008-01 Space-Conscious Data Indexing and Compression in a Streaming Model, Ferrag-
ina, P., Gagie, T., Manzini, G., February 2008.

2007-05 Scheduling Algorithms for Multiple Bag-of-Task Applications on Desktop Grids: a
Knowledge-Free Approach, Canonico, M., Anglano, C., December 2007.

2007-04 Verifying the Conformance of Agents with Multiparty Protocols, Giordano, L.,
Martelli, A., November 2007.

2

2007-03 A fuzzy approach to similarity in Case-Based Reasoning suitable to SQL imple-
mentation, Portinale, L., Montani, S., October 2007.

2007-02 Space-conscious compression, Gagie, T., Manzini, G., June 2007.

2007-01 Markov Decision Petri Net and Markov Decision Well-formed Net Formalisms,
Beccuti, M., Franceschinis, G., Haddad, S., February 2007.

2006-03 New challenges in network reliability analysis, Bobbio, A., Ferraris, C., Terruggia,
R., November 2006.

2006-03 The Engineering of a Compression Boosting Library: Theory vs Practice in BWT
compression, Ferragina, P., Giancarlo, R., Manzini, G., June 2006.

2006-02 A Case-Based Architecture for Temporal Abstraction Configuration and Process-
ing, Portinale, L., Montani, S., Bottrighi, A., Leonardi, G., Juarez, J., May 2006.

3

Product Configuration with Fuzzy Retrieval and J2EE 1

Contents

1 Introduction 2

2 Fuzzy Queries in Databases 4

3 Conceptual Modeling 6

4 Implementation Framework and Architecture 10

5 Conclusions and Future Works 16

Bibliography 17

Product Configuration with Fuzzy Retrieval and J2EE 2

Abstract

Flexible retrieval of configurable products is one of the most challenging
task for e-commerce applications, since user requirementsare usually impre-
cise or approximate, in order to be interpreted in the right way by the appli-
cation, and in such a way that a set of relevant products is finally retrieved.
In many cases products are stored as a database of componentsand an au-
tomatic configuration process has to be provided. In the present paper, we
propose an approach to intelligent retrieval and configuration of component-
based products, starting from a set of possibly fuzzy user requirements pro-
vided at different levels of detail. A conceptual product model is introduced
and its use during the configuration process is discussed. The proposed ap-
proach exploits a fuzzy generalization of SQL and a bottom-up (from basic
to complex components) configuration process. Finally, a 3-tier system ar-
chitecture based on J2EE and standard RDBMS technology is presented and
its use for on-line fuzzy configuration is illustrated through a simple example
based on a PC assembly task.

1 Introduction

The wide use of e-commerce applications has produced a remarkable interest in
approaches able to provide flexible retrieval of specified items, in such a way that
the final user is able to deal with a limited but very significant amount of informa-
tion. When searching an on-line electronic catalog for a target product, the user
is asked to specify a set of requirements the product has to fulfill [1]; however,
very often either the user overspecifies the product (and then no item is returned)
or he/she underspecifies the product (and then a very large amount of items is re-
turned). Moreover, several products having a reasonable market on the WWW are
configurable products (e.g. personal computers, travels, music compilations, per-
sonal gifts, etc...). This means that the final target product is composed by a set of
components meeting a given set of (possibly imprecise) requirements. However,
a limitation of several WWW applications to e-commerce is the lack of automatic
configuration facilities. Very often the deployed application is not able to provide
a reasonable help in configuring the product, leaving the user alone in trying to
merge sub-components, in such a way of fulfilling every needed requirements.

In addition, even if web architectures offer flexible interfaces towards rela-
tional databases (where products are usually stored) standard SQL retrieval on a
database suffers of the so-called “boolean limitation”: either a tuple satisfies a
given retrieval condition or not. This is essentially the major source producing
the undesired behavior described above. In general, even ifa reasonable num-
ber of products is returned, only those products that completely satisfy the search
parameters are returned, missing those items that only partially match the query,

Product Configuration with Fuzzy Retrieval and J2EE 3

but that may be potentially interesting to the user. This problem is particularly
worth in B2C (Business to Customer) applications, where thefinal user is a cus-
tomer who is usually not an expert in the product field and is not usually able to
precisely specify every feature of the desired product or tocorrectly combine ele-
mentary components when a configurable product is the target. On the other hand,
RDBMS provides efficient data management and query facilities, and real-world
applications cannot leave aside the fact that the data of interest are usually stored
in a relational database.

Configuration problems are traditionally dealt with in AI either within the
constraint satisfaction paradigm [2, 3, 4, 5] or by structured logic approaches
[6, 7, 8, 9]. Common to every knowledge-based approach to configuration are
the following items ([10, 11])

• a set of concepts or domain objects, possibly organized in classes;

• a set of relations between domain objects, in particular taxonomical and
compositional relations;

• a configuration objective or task, specifying the demand andthe constraints
a created configuration must fulfill;

• control knowledge for the configuration process.

As recognized in [11], both declarative models and inference machineries must
be defined, in order to adequately accomplish the final task. In other words, oper-
ational processable models are needed. In order to achieve such a goal, different
methodologies can be adopted like compilation of models [12], the use of the
case-based reasoning (CBR) paradigm [13, 14, 15], the automatic decomposition
of the problem during state space search [16].

However, all the above mentioned approaches do not directlyaddress the issue
of flexibly exploiting, during the configuration process, the presence of the data of
interest in standard relational databases, and the corresponding data management
and query facilities. Moreover, most of the proposed frameworks (an exception
is provided by [14]) do not take into consideration the approximate nature of the
user requirements, that very often cannot be assumed to be totally precise. In the
present paper, we propose an approach for the definition of anarchitecture for
on-line searching and configuration of products based on thefollowing character-
istics:

• a conceptual model of the configurable products, representing the structural
decomposition of the modeled product;

• a set of approximate, i.e. fuzzy, user requirements on the desired target
product;

Product Configuration with Fuzzy Retrieval and J2EE 4

• a fuzzy knowledge base providing the semantics for the possible user re-
quirements;

• a fuzzy extension to the standard SQL query language, through which to
implement the retrieval and the composition strategy of theproduct compo-
nents, directly on top of a RDBMS.

In particular, the last point concerns the extension of the standard retrieval fea-
tures of SQL in such a way that vague and imprecise specifications could be used
to return items. We introduce an extended version of SQL, able to deal with fuzzy
predicates and conditions, defined over standard attributes of a table. This ap-
proach is based on theSQLf language proposed in [17], extending standard SQL
in order to deal withfuzzy queries. We will show how to exploit the conceptual
model and the user requirements and constraints, in order toautomatically derive
a set of fuzzy SQL queries able to retrieve the suitable components. A bottom-
up strategy on the conceptual model is then introduced with the aim of guiding
the application to suitably combine the results of such queries, within a standard
RDBMS framework. The advantage of this approach is that the whole power of
an SQL engine can be fully exploited, with no need of implementing specific re-
trieval algorithms. Moreover, the use of SQL and of standardDBMS allows us to
obtain an efficient retrieval in very large product catalogs.

We exploit the J2EE framework (JSP, Java Servlets and JDBC) for the imple-
mentation of the proposed approach.

The paper is organized as follows: section 2 introduces a short review of fuzzy
queries on a database, section 3 discusses the conceptual model used for the con-
figuration process while in section 4 the proposed architecture and the configura-
tion algorithm are presented and discussed through a specific example. Finally,
conclusions are drawn in section 5.

2 Fuzzy Queries in Databases

It is well-known that standard relational databases can only deal with precise in-
formation and standard query languages, like SQL, only support boolean queries.
Fuzzy logic provides a natural way of generalizing the strict satisfiability of boolean
logic to a notion of satisfiability with different degrees [18] 1; this is the reason
why considerable efforts has been dedicated inside the database community to-
ward the possibility of dealing with fuzzy information in a database. We are here
only interested infuzzy querieson anordinary (non-fuzzy) database. In particular,
in [17] standard SQL is adopted as the starting point for a setof extensions able

1We assume here the reader familiar with the basics of fuzzy logic (see [18] for a survey).

Product Configuration with Fuzzy Retrieval and J2EE 5

to improve query capabilities from boolean to fuzzy ones. The implementation
of the SQL extensions can be actually provided on top of a standard relational
DBMS, by means of a suitable module able to transform a fuzzy query into a
regular one, through the so calledderivation principle[17]. In the fuzzy SQL lan-
guage we consider in this paper, the WHERE condition can be a composite fuzzy
formula involving both crisp and fuzzy predicates (i.e. linguistic values defined
over the domains of the attributes of interest), as well as crisp and fuzzy opera-
tors (e.g. operatoraboutover the attributeprice to implement conditions like
product.price about $100);

By allowing fuzzy predicates and operators to form the condition of theWHERE
clause, the result of theSELECT is actually a fuzzy relation, i.e. a set of tuples
with associated the degree to which they satisfy theWHERE clause. Such a degree
can be characterized as follows: let

SELECT A FROM R WHERE fc

be a query with fuzzy conditionfc; the result will be a fuzzy relationRf with
membership functionµRf (a) = sup(x∈R)∧(x.A=a) µfc(x). The fuzzy distribution
µfc(x) relative tofc must then be computed by taking into account the logical
connectives involved and their fuzzy interpretation (usually min for conjunction
andmax for disjunction). In order to process a query using a standard DBMS, we
have to devise a way of translating the fuzzy SQL statement into a standard one.
The most simple way is to require the fuzzy query to return a boolean relationRb

which tuples are extracted from the fuzzy relationRf , by considering a suitable
threshold (or confidence level) on the fuzzy distribution ofRf . We consider, as in
[17], the following syntax

SELECT (λ) A FROM R WHERE fc

which meaning is that a set of tuples with attribute setA, from relation setR, sat-
isfying the fuzzy conditionfc with degreeµ ≥ λ is returned. In fuzzy terms, the
λ-cut of the fuzzy relationRf resulting from the query is returned. The interesting
point is that, when themin operator is adopted ast-norm for conjunction and the
max operator is adopted ast-conormfor disjunction, then it is possible to derive
from a fuzzy SQL query, an SQL query returning exactly theλ-cut required (see
[17] for details).

Example. Consider a generic relationPRODUCT containing the attribute
price over which the linguistic termmedium is defined. Figure 1 shows a
possible fuzzy distribution formedium as well as the distribution of a fuzzy op-
erator≪ (much less than), defined over the difference (a − b) of the operands,
by considering the expressiona ≪ b. Let C be a generic condition andD(C)
the fuzzy degree ofC; D(price = medium ∧ price ≪ 100) ≥ 0.8 will hold iff
min(D(price = medium), D(price ≪ 100)) ≥ 0.8, iff D(price = medium) ≥
0.8∧D(price ≪ 100) ≥ 0.8 iff (110 ≤ price ≤ 180)∧ (price−100) ≤ −18.

Product Configuration with Fuzzy Retrieval and J2EE 6

medium

price

1

0.8

110 180

<<

-20 -10 0

1

0.8

1

-18
a-b

(a) (b)

Figure 1: Fuzzy Distributions

The latter condition can be easily translated in a standard WHERE clause of SQL.

3 Conceptual Modeling

As already mentioned, any knowledge-based approach to product configuration
needs to define a suitable conceptual model [19], where both taxonomic (is_a) and
partonomic (composed_by) relations are of fundamental importance. The model
we adopt in our approach is based on the FPC model by Magro and Torasso [7],
which is in turn based on the KL-ONE framework [20].

We propose to adopt a conceptual framework based on a hierarchy of compo-
nents with the following basic ontology:entitiesdivided intocategoriesrepresent-
ing generic components (i.e. generic classes of components) of the final product,
andbasic categoriesrepresenting classes of components having specific instances
associated with them;composed_by linksconnecting a categoryA to an entityB,
meaning thatB is a component ofA; is_a linksconnecting a categoryA to an
entity B, meaning thatB is a subclass ofA (i.e. that the components inB are a
particular typology of the components inA). If B is a component ofA or if B is
a sub-class ofA we say thatB is a child ofA (i.e. composed_bylinks are from
parent to child, whileis_a link are from child to parent). We also consider car-
dinality information with respect to acomposed_bylink: in particular every such
a kind of link is provided with a so-callednumber restriction([20]) representing
the minimal and maximum number of sub-components that may occur in the link.

An example of a conceptual model for a (simplified) personal computer sys-
tem is reported in figure 22 (similar examples in the FPC framework are reported
in [7, 16, 9]). For instance, we read from the model that the PCsystem is com-
posed by exactly one computational system and exactly one storage system; the

2Dashed squares around some entities will be explained in section 4.

Product Configuration with Fuzzy Retrieval and J2EE 7

PC

Computational
System

Storage
System

(1:1) (1:1)

(1:2) (1:1) (1:1)

CPU Motherboard RAM

(1:2) (0:1)

Hard-disk CD-ROM

IntelCPU AMDCPU

AsusAMD AsusIntel

SDR DDR RAMBus

IBM Matrox

ASUS GygaByte

GBAMD GBIntel

DDRNormal

DDRCoarse

PRICE (+)
discount (disc_f)

CAPACITY
RPM

BUSTYPE
brand

speed

COMTYPE (ass_list)

FREQUENCY
SOCKET
SSETYPE

brand

BUSHDTYPE
#SOCKET
SOCKET

FSB
#USB
type_mb

BIOSPRESENT
brand brand

composed_by

is_a
category

basic
category

SIZE
ECCREG
type_ram

LATENCY
type_ddr

number restriction

Figure 2: Example of a conceptual model for a PC

computational system can be composed by one or two CPUs, one motherboard
(MB) and one set of RAM slots; the storage system of interest is composed by
one or two hard-disks and by one (optional) CD-ROM; Different typologies of
CPU, MB or RAM are possible, as well as different typologies of hard-disks. For
example MBs are differentiated into ASUS and GigaByte MBs, which are in turn
both distincted into Intel or AMD MBs. The ASUS entity is a category (i.e. there
are no specific stored instances of such category), while ASUSAMD is a basic
category with specific stored instances associated to such component. As we will
see, instances of non-basic categories are built, during the configuration process,
from instances of basic categories. Similar considerationhold for the other entities
in fig. 2.

Entities can have attributes. Attributes may be be specific to a given entity
(i.e. non-inheritable) or inherited from source to target in a composed_bylink
chain and from target to source in ais_a link chain. Inheritable attributed are
then associated only to categories; in case they are defined on a category having

Product Configuration with Fuzzy Retrieval and J2EE 8

sub-components, anaggregation functionmust be defined; the meaning is that
the value of the attribute is determined by combining the values of the inherited
attributes of its sub-categories (combination provided bythe aggregation function
specified). For example the attributePRICE is defined on the categoryPC and
inherited by every sub-component; however the price of the final product (i.e. the
assembled PC) is composed by summing the prices of each component, so the
aggregation functionsum (+) is defined overPRICE on categoryPC. The ag-
gregation function is inherited along acomposed_bylink chain (the inheritance
of the function is stopped when a category has not sub-components). Aggrega-
tion function can be standard mathematical function (assum for PRICE) or any
user-defined function with a specific aggregation task (e.g.the functionassoc_list
on attributeCOMTYPE of the storage system, building an associative list with the
possible communication standards of the storage devices present in the final prod-
uct). In figure 2 inheritable attributes are indicated in capital letters (possibly with
the associated function).
Besides aggregation functions, arbitrary functions can beattached to attributes
in order to compute their value; this is necessary in case theattribute is a non-
inheritable attribute defined on a (non-basic) category. Inthe example of figure 2,
functiondisc_f ia associated with the attributediscount of PC to compute tha
available discount for the assembled computer (this may be asimple percentage
on the attributePRICE or a more complex procedure taking into account the kind
of involved components). In categories being a target of anis_a link, a special
discriminant attributeis introduced, which aim is to distinguish the different ty-
pologies the category has (underlined attributes in fig. 2).For example attribute
brand in the categoryCPU determines the brand of the corresponding component
(and so identify the typology below)3.

In our framework, a fuzzy semantics can be associated to any attribute, by
considering its type (see [1]). The definition of suitable fuzzy sets or operators can
then be exploited to model a given level of approximation in the user requirements
for the target configured product. This means that the final user can specifies both
crisp (i.e. precise and well-defined) requirements over an attributes (e.g. “I need
an Intel CPU and an hard-disk with a capacity greater than 60Gb ”), as well as
imprecise (i.e. fuzzy) requirement (“I want a PC with a largememory size and
with a price of about $500 ”).

The definition of the fuzzy sets associated with the attributes can be made
at different levels of details. Indeed, the fuzzy semanticsof a linguistic value

3It is worth noting that the introduction of a typology is a modeling choice, often depending
by efficiency reasons: for example the introduction of basiccategories IntelCPU and AMDCPU
(with is_a links to CPU) can be justified when a large number of user queries make a distinction
on the brand of the CPU; an alternative could be to make CPU a basic category, with a standard
attributebrandof typeenum(’Intel’, ’AMD’).

Product Configuration with Fuzzy Retrieval and J2EE 9

depends in general from the entity we are considering; for instance, a linguistic
value “cheap” for attributePRICE of categoryPC has a different semantics (and
so a different fuzzy set definition) than the same value defined on the same (in-
herited) attribute on categoryCPU, since the price of a component may a have a
different order of magnitude than the price of the whole product. This means that,
if fuzzy user requirements are allowed on a given attribute of an entity, possible
different fuzzy semantics for the linguistic values are allowed for each entity that
defines or inherit the attribute, if the entity is part of acomposed_bychain. On
the other hand, entities in ais_achain sharing the same attribute (by inheritance),
also share the fuzzy semantics for that attribute. For instance, the fuzzy defini-
tion of the concept “high capacity” is shared by entitiesHard-disk, IBM and
Matrox.

To sum up, user requirements represent a set of user constraints on the required
configuration that can be finally expressed through a complexpossibly fuzzy con-
dition involving both the set of considered entities, as well as the set of attributes.

Moreover, as the notion of configuration assumes, the conceptual model is
also augmented with a set ofconstraints. We can identify two different kinds of
constraints: (1)model constraints(MC) representing general constraints imposed
on the model and that must be satisfied by any allowed configurations; (2)user
constraints(UC) which are specified by the user only for the current configuration
process (user’s requirements). We assume that aMC is an expression according
to the following grammar:
<mc> ::= (<mc>) | not <mc> | <mc> and <mc> |

<mc> or <mc> | <expr>
<expr> ::= <expr1> <rel> <expr2>
<expr1> ::= <entity>.<attribute> | #<entity>
<expr2> ::= <entity>.<attribute> | #<entity> | <value>
<rel> ::= <relational_symbol>
where<entity> is the name of an entity,<attribute> the name of an
attribute,<value> represents any allowed value on the range of an attribute,
<relational_symbol> represents any standard relational symbol like equal-
ity, diversity, etc..., and#E represents the cardinality (number of occurrences) of
entityE.

User constraints can be either of the same form ofMCs or specific con-
dition of selection over component attributes. In the latter they can be either
crisp/boolean conditions or fuzzy conditions (see [1] and section 2). In the next
session we will show some examples.

Finally, in case a user requiresn > 1 occurences of a given entity (as allowed
by the corresponding number restriction), then such an entity E is supposed to be
replicatedn times (E(1), . . . E(n)).

Product Configuration with Fuzzy Retrieval and J2EE 10

4 Implementation Framework and Architecture

Given the conceptual model described in the previous section, a natural choice is
to associate a relation (table) with each basic category; they represent the basic
components to be used for the configuration, stored as tuplesof the corresponding
relation. Data structure corresponding to inner nodes willbe created during the
configuration process. In the example of figure 2 we will have the following tables
(table names represent the path in the hierarchy):

PC-CS-CPU-INTELCPU(id1,frequency,socket,ssetype,price)

PC-CS-CPU-AMDCPU(id2,frequency,socket,ssetype,price)

PC-CS-MB-ASUS-ASUSINTEL(id3,biospresent,bushdtype,
#sockets,socket,fsb,#usb,price)

PC-CS-MB-ASUS-ASUSAMD(id4,biospresent,bushdtype,
#sockets,socket,fsb,#usb,price)

PC-CS-MB-GB-GBAMD(id5,bushdtype,#sockets,socket,fsb,
#usb,price)

PC-CS-MB-GB-GBINTEL(id6,bushdtype,#sockets,socket,fsb,
#usb,price)

PC-CS-RAM-SDR(id7,size,eccreg,price)

PC-CS-RAM-RAMBUS(id8,size,eccreg,price)

PC-CS-RAM-DDR-DDRNORMAL(id9,latency,size,eccreg,price)

PC-CS-RAM-DDR-DDRCOARSE(id10,latency,size,eccreg,price)

PC-SS-HD-IBM(id11,bustype,capacity,rpm,comtype,price)

PC-SS-HD-MATROX(id12,bustype,capacity,rpm,comtype,price)

PC-SS-HD-CDROM(id13,speed,comtype,price)

where fieldsidi work as primary keys. Such fields are then supposed to be avail-
able to any entity in the model to identify their components (see below).
Let us suppose to have the following Model Constraints (MC):MC1:"ASUS MBs
are incompatible with DDRCOARSE memories";MC2:"the socket type of CPU
and MB must be the same";MC3:"the number of CPUs must not be greater than
the number of sockets in MB";MC4:"if there are more CPUs they must be the
same product";MC5:"the communication standard of storage devices (HDs and
CDROMs) must be the same". Their formalization is reported below:
MC1: not(Motherboard.type=’Asus’ and DDR.type=’Coarse’)
MC2: CPU.socket = Motherboard.socket
MC3: #CPU ≤ Motherboard.#sockets

Product Configuration with Fuzzy Retrieval and J2EE 11

MC4: CPU(1).id_cpu = CPU(2).id_cpu (iff #CPU=2)
MC5: Hard-disk.comtype = CDROM.comtype
UC1: CPU.brand = Motherboard.brand
These are considered as model constraints that must be satisfied by any configu-
ration; we also add a specific user constraintUC1:"CPUs and MB must be of the
same brand". Such a constraint can be added to the set of modelconstraints, but
only for the current configuration process.
Once the model and user general constraints are defined, the configuration can
start, by collecting specific user requirements as well. We have implemented a
bottom-up configuration algorithm based on the following steps:

1. following initial user requirements, user constraints and model constraints,
a part of the general conceptual model is identified and instantiated;

2. starting from basic categories, we ask the user to specify(possibly fuzzy)
requirements for the current entity and a fuzzy SQL query is automatically
generated;

3. when every child of a given entity has been queried, a view is generated
on the parent in the following way: in case ofis_a links an SQL UNION
operation is performed, otherwise an SQL JOIN (checking forconstraints)
is performed;

4. the procedure is iterated (going to step 2), until a view isgenerated on the
top of the model’s hierarchy.

Let us show some details of the above procedure with the modelof fig. 2. First of
all the user is asked to specify which parts of the final product he/she is interested
in; this will provide an instantiation of the whole model with specific cardinalities
and whith only some of the whole set of entities involved (i.e. those the user is
interested in). Let us suppose that the initial user requirements are the following:
“I’m interested in a single CPU system, in IBM disks, in Intelcomponents and I
don’t want a CDROM”; The first requirement states that#CPU=1, so no replica-
tion is needed and constraintMC4 is not activated. Moreover, the system caches
the value#CPU=1, since it will use it later on to checkMC3 when needed. The re-
maining requirements prune from the model all the entities surrounded by dashed
squares in fig. 2. Such user constraints can be easily implemented by allowing the
user to select the entities he/she’s interested in.

Now a bottom-up process starts from basic categories, asking the user to spec-
ify (possibly fuzzy) requirements over categories, by producing suitable (fuzzy)
SQL queries. For example the user may require an IBM hard-disk with high ca-
pacity with a confidence of0.7: the following view, representing the possible hard
disks the user is looking for is generated:

Product Configuration with Fuzzy Retrieval and J2EE 12

CREATE VIEW PC-SS-HD AS
SELECT (0.7) id11 as id_hd, brand=’IBM’, price,
comtype FROM PC-SS-HD-IBM WHERE capacity=high

wherehigh is a fuzzy linguistic values suitably defined over the attribute of in-
terest (capacity). Notice that only theid field (needed to retrieve the components
with all their inherited attributes) and the (non-inherited) discriminant attribute
are explicitly necessary in such a view. For the sake of convenience, we also store
in the view inherited attributes associated to an aggregation function; this avoids
the need of a further join condition whencomposed_bylinks are dealt with (see
below). The configuration process switches now to basic categories for RAM and
the user is asked to specify requirements over the RAM (remember that an inher-
ited attribute keeps its semantics along anis_achain); suppose the user decides
that the price of the RAM has to be not very expensive with a confidence of0.7,
the following query (building category DDR) is generated:

CREATE VIEW PC-CS-RAM-DDR AS
(SELECT (0.7) id9 as id_ddr, type_ddr=’ddrnormal’,
price FROM DDRNormal WHERE price<>very_expensive) UNION
(SELECT (0.7) id10 as id_ddr, type_ddr=’ddrcoarse’,
price FROM DDRCoarse WHERE price<>very_expensive)

Next step generates the RAM view:
CREATE VIEW PC-CS-RAM AS
SELECT id_ddr as id_ram, type_ram=’ddr’, price
FROM PC-CS-RAM-DDR

Concerning the CPU, suppose the user wants a CPU with high speed of the front
side bus (confidence0.9); the generated query is:

CREATE VIEW PC-CS-CPU AS
SELECT (0.9) id1 as id_cpu, brand=’Intel’, price FROM

PC-CS-CPU-INTELCPU
WHERE fsb=high

For the MB, the user asks (confidence0.9) a high speed front side bus and a large
number of USB ports; these are the generated views:

CREATE VIEW PC-CS-MB-ASUS AS
SELECT (0.9) id3 as id_asus, brand=’Intel’ , price FROM

PC-CS-MB-ASUS-ASUSINTEL
WHERE fsb=high AND #usb=large

CREATE VIEW PC-CS-MB-GB AS
SELECT (0.9) id6 as id_gb, brand=’Intel’, price FROM

PC-CS-MB-GB-GBINTEL
WHERE fsb=high AND #usb=large

CREATE VIEW PC-CS-MB AS

Product Configuration with Fuzzy Retrieval and J2EE 13

(SELECT id_asus as id_mb, type_mb=’Asus’, price FROM
PC-CS-MB-ASUS) UNION

(SELECT id_gb as id_mb, type_mb=’gb’, price
FROM PC-CS-MB-GB)

At this stage, all theis_a links have been processed and the configuration algo-
rithm starts to deal with compositional links. Concerning the storage system a
simple SELECT is sufficient4:

CREATE VIEW PC-SS AS
SELECT id_hd, price, comtype FROM PC-SS-HD

Regarding the computational system a JOIN merging the childcomponents and
checking for the available constraints is necessary as follows:

CREATE VIEW PC-CS AS
SELECT id_cpu, id_mb, id_ram, (c.price+m.price+r.price)

as price
FROM PC-CS-CPU c, PC-CS-MB m, PC-CS-RAM r
WHERE MC1 AND MC2 AND MC3 AND UC1

Constraints can be implemented as follows5:
MC1: NOT(m.type_mb=’Asus’ AND r.id_ram IN

(SELECT id_ddr FROM PC-CS-RAM-DDR WHERE type_ddr=’ddrcoarse’))
MC2: c.socket=m.socket
MC3: m.#sockets >= 1
UC1: c.brand=m.brand

Finally, the last view representing the possible PC configurations is generated,
possibly imposing further requirements as, for instance, amedium final price with
confidence0.9:

CREATE VIEW PC AS
SELECT (0.9) id_cpu, id_mb, id_ram, id_hd,

(cs.price+ss.price) as price, disc_f as discount,
(price-discount) as disc_price

FROM PC-CS cs, PC-SS ss
WHERE disc_price = medium

The framework and the configuration algorithm we have described have been im-
plemented in a J2EE 3-tier architecture with JDBC interface. The resulting archi-
tecture is shown in figure 3. We tested the system using ORACLEXE, MySql and

4Notice that ifprice andcomtype would not been stored in thePC-SS-HD view, a join
on id attributes withPC-SS-HD-IBM would have been necessary to retrieve such aggregated
attributes.

5Notice that if the user had chosen#CPU=2, then constraintMC4 would have also been added
here. In addition, constraintMC3 is, in this example, trivially true (any motherboard has at least
1 socket), while user constraintUC1 could be safely removed, since from the initial user require-

Product Configuration with Fuzzy Retrieval and J2EE 14

AUTOMATIC
QUERY CONSTRUCTION

W
E
B
-
B
A
S
E
D

G
U
IUSER

MANUAL
QUERY CONSTRUCTION

Object Database
(Case Base)

Meta-Database
(Fuzzy KB)

Fuzzy
Information

DataBase SERVER FUZZY SQL SERVER

fuzzy SQL
Query

Fuzzy Data
Management Operations

SQL Query

Result Set

PARSER/
TRANSLATOR

System
Administrator

Target Case

Returned Cases

JDBC driver

Figure 3: J2EE Architecture

SQL Server DBMS, while the adopted web container has been Apache TomCat
(version 5.5.7). Fig. 4 shows a screenshot of a prototypicalweb application we
developed using the architecture of fig. 3 and the approach described in the present
work (http://caribe.mfn.unipmn.it:8080/mgalandr/store). Concerning the config-
uration example discussed above, we have tested it on an Oracle XE database;
table 1 reports the cardinalities of the tables in the DB (i.e. the number of stored
instances of basic categories).

Given the above number of instances, the PC configuration task discussed
in this section, would produce, without considering constraints,66640possible
configurations (i.e. 1CPU+1MB+1RAM+1HD=35 · 14 · 17 · 8 = 66640). By
considering the given model and user constraints, the number of possible solutions
reduces to4560.

User requirements collected during the configuration process furtherly reduce
such a number. In particular, table 2 reports the cardinalities of the generated
views. We can notice that user requirements, even if approximate, can reduce

ments (user’s exclusive interest in Intel devices) it is definitely satisfied.

Product Configuration with Fuzzy Retrieval and J2EE 15

Figure 4: A screenshot for the PC assembly web application.

Table Cardinality

PC-CS-CPU-INTELCPU 15
PC-CS-CPU-AMDCPU 10
PC-CS-MB-ASUS-ASUSAMD 3
PC-CS-MB-ASUS-ASUSINTEL 3
PC-CS-MB-GB-GBINTEL 5
PC-CS-MB-GB-GBAMD 3
PC-CS-RAM-DDR-DDRNORMAL 7
PC-CS-RAM-DDR-DDRCOARSE 4
PC-CS-RAM-SDR 3
PC-CS-RAM-RAMBUS 3
PC-SS-CDROM 4
PC-SS-HD-IBM 4
PC-SS-HD-MATROX 4

Table 1: Number of basic components (occurrences of basic categories) in the PC
assembly example application.

Product Configuration with Fuzzy Retrieval and J2EE 16

View Requirement (conf. lev.) Cardinality

PC-SS-HD capacity=high (0.7) 1
PC-CS-RAM-DDR price<>very_expensive (0.7) 3
PC-CS-RAM none 3
PC-CS-CPU fsb=high (0.9) 11
PC-CS-MB-ASUS fsb=high∧#usb=large (0.9) 5
PC-CS-MB-GB fsb=high∧#usb=large (0.9) 3
PC-CS-MB none 8
PC-SS none 1
PC-CS none 88
PC price=medium (0.9) 5

Table 2: Cardinalities of the views generated during configuration for the PC
assembly example application.

in a significant way the number of possibility to be considered. Of course, the
confidence level used for a given fuzzy requirement is also relevant for selecting a
reasonable number of results. In particular, in the above example, when building
the view concerning to the computational system (CS), the corresponding join
operation produces88 tuples (they results from 3 RAMs modules, 11 CPUs and
8 MBs, pruned out by the available constraints); by requiring a medium price for
the final PC (with a confidence level of0.9), only 5 tuples survive and are finally
presented to the user. It is worth noting that it would be really important to have the
possibility of measuring the sensitivity of the confidence threshold with respect
to the number of returned tuples, in such a way of defining suitable, possibly
interactive, configuration policies able to tune such a threshold in a flexible and
efficient way.

5 Conclusions and Future Works

We have presented an approach to product configuration, based on a hierarchical
conceptual model and on fuzzy user requirements on the product features. The ap-
proach can be implemented on top of a relational database, exploiting the whole
power of an SQL engine to implement both retrieval of productcomponents, com-
ponent composition and constraint checking. The proposed framework is a first
step towards the definition of a flexible configuration architecture, where suitable
strategies of system-user interactions can be defined. Indeed, future works will
concentrate on such strategies, in such a way of providing the user with the guar-
antee of getting a reasonable set of acceptable configurations, by checking when

Product Configuration with Fuzzy Retrieval and J2EE 17

constraint are too strict or too large, by defining suitable policies on the definition
of either hard or soft requirements, by tuning the sensitivity of the fuzzy seman-
tics of attributes and by allowing a suitable ranking (possibly exploiting fuzzy
membership) of the obtained solutions.

Acknowledgments

We are grateful to Gianluca Corazza who implemented the original fuzzy SQL
compiler.

References

[1] L. Portinale and S. Montani. A fuzzy case retrieval approach based on
SQL for implementing electronic catalogs. InLNAI 2416, pages 321–335.
Springer, 2002.

[2] G. Fleischanderl, G. Friedrich, A. Haselbock, H. Scheiner, and M. Stumpt-
ner. Configuring large systems using generative constraintsatisfaction.IEEE
Intelligent Systems, 13(4):59–68, 1998.

[3] D. Sabin and E. Freuder. Configuration as composite constraint satisfac-
tion. In Proc. Artificial Intelligence and Manufacturing Research Planning
Workshop, pages 153–161, Albuquerque, NM, 1996. AAAI Press.

[4] M. Veron and M. Aldanondo. Yet another approach to CCSP for configura-
tion problem. InProc. ECAI’00 Workshop on Configuration, pages 59–62,
Berlin, GE, 2000.

[5] D. Magro. Using constraint optimization to enhance the diversity in the set
of computed configurations. InProc. ECAI’06 Workshop on Configuration,
Riva del Garda, IT, 2006.

[6] G. Friedrich and M. Stumptner. Consistency-based configuration. InProc.
AAAI Workshop on configuration. AAAI Press, 1999.

[7] D. Magro and P. Torasso. Supporting product configuration in a virtual store.
In LNAI 2175, pages 176–188. Springer, 2001.

[8] T. Soininen, I. Niemela, J. Tiihonen, and R. Sulonen. Representing con-
figuration knowledge with wieight constraint rules. InProc. AAAI Spring
Symposium on Answer Set Programming. AAAI Press, 2001.

Product Configuration with Fuzzy Retrieval and J2EE 18

[9] D. Magro and P. Torasso. Decomposition strategies for configuration prob-
lems.AI for Engineering Design, Analysis and Manufacturing, 17(1):51–73,
2003.

[10] A. Gunter and C. Kuhn. Knowledge-based configuration: survey and future
directions. InLNAI 1570. Springer, 1999.

[11] T. Krebs, L. Hotz, and A. Gunter. Knowledge-based configuration for
configuring combined hardware/software systems. InProc. PUK 2002,
Freiburg, GE, 2002.

[12] C. Sinz. Knowledge compilation for product configuration. In Proc.
ECAI’02 Workshop on Configuration, pages 23–26, Lyon, FR, 2002.

[13] Eyke Hullermeier. Case-based search techniques for solving configuration
problems. citeseer.ist.psu.edu/79018.html.

[14] L. Geneste and M. Ruet. Fuzzy case-based configuration.In Proc. ECAI’02
Workshop on Configuration, pages 1–10, Lyon, FR, 2002.

[15] H-E. Tseng, C-C. Chang, and S-H. Chang. Apllying case-based reasoning
for product configuration in mass customization environments. Expert Sys-
tems with Applications, 29(4):913–925, 2005.

[16] L. Anselma, D. Magro, and P. Torasso. Automatically decomposing config-
uration problems. InLNAI 2829, pages 39–52. Springer, 2003.

[17] P. Bosc and O. Pivert. SQLf: a relational database language for fuzzy query-
ing. IEEE Transactions on Fuzzy Systems, 3(1), 1995.

[18] L. Zadeh. Fuzzy logic.IEEE Computer, 21(4):83–93, 1988.

[19] J.R. Wright, D.L. McGuiness, C.H. Foster, and G.T. Vesonder. Concep-
tual modeling using knowledge representation: configurator applications. In
Proc. of Artificial Intelligence in Distributed Information Networks, 1995.

[20] R. Brachman and J. Schmolze. An overview of the KL-ONE knowledge
representation system.Cognitive Science, 9(2):171–216, 1985.

