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Abstract

Performance and dependability evaluation of complex systems by means of dynamic stochastic models
may be impaired by the combinatorial explosion of their state space. Among the possible methods to cope
with this problem, symmetry-based ones can be applied to systems including several similar components.
However, symmetry-based methods are less effective in case of partially symmetric systems (i.e., systems
with mostly symmetric behavior and occasional local asymmetric behavior). To cope with this limitation,
two approaches called Ezxtended Symbolic Reachability Graph and Dynamic Symbolic Reachability Graph
have been proposed in literature. In this paper we will discuss the effectiveness and applicative interest
of these two methods by means of four model patterns.

1 Introduction

As software systems and hardware architectures are more and more complex, their verification and evaluation
become critical issues. Analysis methods are often subject to the problem of combinatorial explosion due to
the increasing system complexity.

Several approaches have been undertaken to cope with this problem: decomposition methods take advan-
tage of the modular structure of the system; for performance evaluation, approximate and bounding methods



substitute a simpler system to the original one; diagram decision based methods symbolically manage sets
of states rather than representing states explicitly, etc. Among all these methods presented in literature we
will focus on the symmetry-based ones, and in particular on the Well-formed Net (WN) formalism and its
stochastic extension (SWN) [5].

The (S)WN formalism takes advantage from the system symmetries to cope with state space explosion
problem, and hence provide efficient solution techniques for both qualitative and quantitative analyzes.

Based on these symmetries, a quotient graph, called Symbolic Reachability Graph (SRG) [5], is automat-
ically constructed from an (S)WN. Each node of the SRG, called Symbolic Marking (SM), represents a set
of ordinary markings. In case of highly symmetric systems, the expected size of the SRG is significantly
reduced w.r.t. the one of the ordinary Reachability Graph (RG). However, it is less effective, in case of par-
tially symmetric systems, i.e., systems with mostly symmetric behavior and occasional locally asymmetric
behavior. In fact, in the SRG approach asymmetries are always taken into account, even if the asymmetric
behavior of the system is local.

To cope with this limitation, in [7] a more compact structure called Extended SRG (ESRG) has been
proposed. The idea is to group into Extended SMs (ESM) sets of (partially) similar SMs. In this repre-
sentation, in case of locally symmetric behavior, the set of SMs captured in an ESM are kept implicit and
represented by a unique symbolic Symmetric Representation (SR).

Unfortunately, the derivation of a CTMC from the ESRG is not straightforward: in the general case,
the SMs aggregation suggested in the ESRG approach does not satisfy the (strong or exact) lumpability
condition as on the SRG. Hence, the ESRG structure has to be refined according to the desired lumpability
condition. In [3, 6] an efficient refinement algorithm is proposed. It is based on the Paige and Tarjan
partition refinement algorithm and exploits the information contained in the ESRG.

Another approach, called Dynamic SRG (DSRG), was proposed in [1, 2]. It relies on a separate rep-
resentation of the system asymmetries in a so called control automaton. The DSRG is then obtained by
synchronizing the transitions of a (symmetric) SWN with the corresponding control automaton. It is worth
noting that DSRG satisfies the exact lumpability condition by construction, so that it does not need fur-
ther refinement. The criteria for states aggregation applied by DSRG method is such that the set of states
represented by different aggregates may have a non null intersection.

The presentation of the two methods is out of the scope of this document. This report is organized as
follows: in Sec. 2 we discuss how to compare the two approaches, while in Sec. 3 significant case studies are
presented and analyzed. We conclude in Sec. 4.

2 Expected efficiency of the behavior of the methods

It is not easy to characterize the kind of models for which ESRG and DSRG lead to a relevant reduction of
the state space size. There are least two problems related with this characterization:

e The “degree” of asymmetry of the system is not directly related with the number of asymmetrical
transitions of the system but it depends on when they occur in the dynamics of the system. This was
already experienced by the qualitative methods for partially symmetrical systems.

e The extent of the propagation of asymmetry is difficult to forecast due to the constraints associated
with the lumpability conditions.

In the light of these two problems and with the help of numerous models that we have tested since
the development of these methods, we can suggest some model patterns for which our algorithms perform



efficiently. The behavior of these systems can be described as an infinite loop where every round of the loop
consists of:

e a synchronization point where the consequences of the past asymmetrical behavior are completely for-
gotten: this corresponds to reaching one or more “regeneration states” w.r.t. any past of asymmetrical
behavior.

e a symmetrical behavior phase and an asymmetrical behavior phase that may partially overlap.

We compare the proposed methods w.r.t. different criteria. The size of the lumped chain is often smaller
when applying the ESRG method as it is based on the minimization of a MC w.r.t. lumpability. However
the ESRG method requires to explicitly develop “asymmetrical” set of states during the refinement process
(that may then be aggregated in the final structure) thus facing the problem of a peak in memory usage,
contrary to the DSRG method. Moreover another peak in memory usage may also be experienced during the
ESRG generation; in fact the ESRG implementation maintains explicitly the eventualities already reached
of a saturated ESM expect if an its eventualities will be reachable.

The memory peak in the refinement process can be reduced by discarding all the eventualities in a block
and rebuilding them if needed, while the ESRG memory peak cannot be avoided, so that it may prevent the
termination of the algorithm.

On one hand, when a model is efficiently handled by the methods, the final sizes are of the same magnitude
order. On the other hand, when the asymmetry of the model propagates throughout the state space, it may
yield a combinatorial explosion and the size of the lumped chain of the DSRG method may become bigger
than the original one. This cannot happen by construction with the ESRG method. Notice that some
artificial partitioning added to DSRG method could also avoid this problem; however in this case, it is better
to apply the other methods. Finally, the DSRG method is parametrized in the following sense: as lumping
is based on labels the modeler can freely change the numerical values associated with labels without need to
recompute the graph associated with the lumped chain; only the numerical values have to be updated. In
order for the ESRG method to support such a parametrization the refinement phase should be adapted to
work on transition labels instead of rate values.

In the next section we check whether these assumptions agree with the experiments.

3 Case studies

In this section we present the following four “model patterns”: readers-writers, client-server, workflow and
cluster computing. For each pattern we discuss in details the obtained experiment results and we highlight

the model parameters that have a more significant impact on the reduction factor (i.e %, % and

%, where SRG, ESRG., ESRG, and DSRG denote the number of states of the SRG, the refined ESRG
w.r.t. exact lumpability, the refined ESRG w.r.t. strong lumpability, and DSRG respectively.

3.1 The readers-writers pattern

The readers-writers pattern models a database which is accessed by users for read or write operations. Read
operation may be simultaneous while write operation are mutually exclusive w.r.t any operation. Thus as
soon as a write request is queued, it waits for end of any currently ongoing operation before performing its
transaction without concurrent accesses.



Read operation duration has wless variability than writes. Thus we have chosen to represent their
distribution by an Erlang distribution while the duration of write operation has two possible exponential
distributions depending on the class of users : ordinary ones that perform unitary updates and administrators
that perform a batch of updates.

The net that models this pattern is shown in Fig. 1. A token in place Think represents a user performing
some local activity, while a token in a place WaitChoice represents an accepted request. A request is
received and accepted by the database (transition Start), if there are not pending write operations (inhibitor
arc between place ReadyWrite to transition Think).

After that, the request type is randomly chosen by the firing of transitions ChoiceRead or Choice Write.
If the operation is a read, then it can be immediately executed (transitions Read and EndRead), otherwise it
must wait until all the accepted read operations finish (inhibitor arc between place ReadyWrite and transi-
tions WriteAsMaster and WriteAsNormal). Moreover the guards associated with transitions WriteAsMaster
and WriteAsNormal ensure that the write task duration is chosen according to the user type.

We can observe that this pattern follows the general abstract schema described in the previous section.
The synchronization points occur after every writing. Then there is a (possibly empty) phase of readings
which corresponds to the symmetrical part of the behavior (submodel Ny). The asymmetrical part of the
behavior (submodel N») starts at the beginning of a writing since only in that case the kind of user matters.
Observe that there is no overlapping between the two phases since the readings are ended before the writing
starts.

The results for this model pattern are very good as witnessed by table 1. The experiment parameters are
(in order) the number of stages of the Erlang distribution, the number of administrators and the number of
ordinary users (see the first column).

Moreover the columns labeled “St.” represents the number of constructed states for each structure. The
columns labeled “Peak” contain the total number of intermediate states stored to obtain the final structure
(only for ESRG and RESRGs). Finally the ratio columns show the reduction factor w.r.t the SRG obtained
using these three methods.

Observe that the parameter that has more impact on the reduction factor is the number of system users
(ordinary and administrator users), so that the reduction factor is increasing w.r.t to this parameter. For
instance, the experiment with 13 users leads to a reduction factor of approximately 30 whatever the method.

3.2 The client-server pattern

The client-server pattern, in Fig. 2, is composed of a finite number of terminals and a Remote Terminal
Server (RTS). In subnet Ni, the initial marking of place Clients corresponds to the number of terminals.
Via a terminal, a client tries to open a connection with the RTS. This connection is accepted if the maximum
load of the RTS has not been reached yet, then it is authenticated. The maximum load is given by the initial
marking of place MazReq. The authentication is performed within subnet Ns. Variable x associated with
transition AuthOk, memorizes the user class of the client.

Once authenticated, a client asks for a service that can be non-critical (e.g. a read transaction) or
critical (e.g. a write transaction). Non-critical services can be simultaneously handled (inside subnet N3)
while a critical service must be performed in mutual exclusion with any other service. The system ensures
a weak priority for non-critical services based on a wave mechanism. The wave consists of the clients
currently accepted by the RTS. Once a client chooses a critical service (transition ChCs) accepted by the
RTS (transition AccCs), no more clients can join the wave (inhibitor arc from place Wave to transition
AccR). Critical services are performed only when there are no more clients in the authentication stage and
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Figure 1: SWN model implementing the Reader-Writer pattern.
SRG ESRG RESRG (Exact) RESRG (Strong) DSRG
Z, M|, St. St. Peak St. Peak ratio St. Peak ratio St. ratio
IN| (Esm.+Ev.)

6,1,3 1.535 49143 141 492 492 3,12 491 491 3,12 491 3,12
6,1,6 21.338 4.951+3 1.263 4.952 4.952 4,30 4.951 4.951 4,30 4.951 4,30
6,1,8 75.968 15.731+3 3.625 15.732 15.732 4,82 15.731 15.731 4,82 5.732 4,82
6,1,10 216.218 41.40743 8.682 41.407 41.407 5,22 41.406 41.406 5,22 41.406 5,22
6,2,6 97.358 9.076+43 5.387 9.077 9.077 | 10,72 9.076 9.078 | 10,72 9.076 | 10,72
6,2,8 344.192 26.027+3 15.716 26.028 26.028 | 13,22 26.027 26.027 | 13,22 26.028 | 10,72
6,2,10 974.976 63.7014-3 37.896 63.702 63.702 | 15,30 63.701 63.701 | 15,30 63.701 | 15,30
6,3,6 321.638 15.731+4 16.641 15.732 15.732 | 20,44 15.731 15.731 | 20,44 15.731 | 20,44
6,3,8 | 1.131.671 41.406+4 49.369 41.407 41.407 | 22,92 41.406 41.406 | 22,92 41.406 | 22,92
6,3,10 | 3.195.194 95.2014+4 | 120.085 95.202 95.202 | 33,56 95.201 95.201 | 33,56 95.202 | 33,56
8,1,6 77.816 16732+3 3.667 16.733 16.733 4,65 16.732 16.733 4.65 16.732 4,65
10,1,6 228.230 46.4764-3 8.985 46.477 46.477 4,91 46.476 46.476 491 46.476 491
12,1,6 574.394 112.269+3 19.427 112.270 | 112.270 5,11 112.269 | 112.269 5,11 112.269 5,11

Table 1: Results for the Reader-Writer pattern in Fig. 1.




in a non-critical service execution. Place NbReq controls this requirement. When the last critical service of
the wave completes, a new wave can start.

Subnet N3 models the handling of a non-critical service. A service identity (variable ) is attached to the
two parallel tasks that perform the service in order for them to correctly synchronize at the end (transition
eNCs).

For efficiency reasons, during a wave the RTS accepts a limited number of different concurrent user classes
(initial marking of place MazQueues) in the critical services. This management is modeled by subnet Ny. A
critical service request related to a user class not yet in competition (i.e., without its color in place Queues)
is rejected (transition Rej) if the maximum number of concurrent user classes has been already reached.

A critical service is divided into two sequential stages: a preprocessing step that can be performed
concurrently and a main step that is performed in mutual execution (see subnet Ng). If a priority rule is
applied then the requests access the critical section following the order of the user classes. Observe that in
this case the first critical service that has achieved its preprocessing step must wait if it does not belong to
the highest priority user class in competition (see subnet N3).

The priority among user classes is managed in N5 using a swap mechanism based on the asymmetric
guarded ([y < z]) transition Swap. It ensures that place Elected ends up by containing the highest user
class of the remaining critical services requests. In order to guarantee that Swap is always performed before
allowing the next critical section entry, transition Swap is given the highest priority (this is denoted prios).

Observe that this pattern can be interpreted as a refinement of the previous pattern when we consider
the critical services as write processes and the non-critical as read processes. First the synchronization step
occurs at the end of a wave which includes multiple critical services. Furthermore the overlapping of the
asymmetrical part of the behavior and the symmetrical one is more important since the preprocessing step
of critical service is symmetrical whereas the entrance in the critical section is asymmetrically managed. The
propagation of asymmetry depends on two factors: the maximal load of the RTS and the maximum number
of allowed simultaneous user classes.

Let us examine in more details table 2. The first column shows the experiment parameters: Local, GC,
LC, Prio.

e Local: representing the numbers of terminals, would affect only the “front-end” behavior of the system
(outside the server). The increase of the number of terminals does not affect the internal activities of
the server

e GC(< Local): representing the maximum number of users allowed to simultaneously access to the
server. This parameter has crucial impact on the global behavior of the server. Actually, its value
affects the symmetric part as well as the asymmetric one.

e Prio: represents the cardinality of the color class C. Since there is a bijection between this cardinality
and the number of different priorities, we observe a strong dependency between the value of this
parameter and the efficiency of the different approaches.

e LC(< Prio): the maximum number of user classes allowed to access, simultaneously, the critical part.
The value of this parameter will affect, essentially, the behavior of the asymmetric part (with some
side effect on the symmetric part).

The other columns have the same meaning of the columns in the previous table.
We notice here the significant reduction achieved by our approaches w.r.t. the SRG one. For instance,
in case 8,5,3,5 the ESRG reduction factor (both strong and exact) is 45,53, while the DSRG reduction is
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Figure 2: SWN model implements the Clients-Server pattern with critical section.

SRG ESRG RESRG (Exact) RESRG (Strong) DSRG
Local, GC St. St. Peak St. Peak ratio St. Peak ratio St. ratio
LC,Prio (Esm.+Ev.)
3,3,2,5 19.108 9814470 4.050 998 1.727 | 19,14 998 1.727 | 19,14 1.217 | 15,70
3,3,2,8 72.772 981+1.316 17.028 998 3.185 | 72,91 998 3.185 | 72,91 1.436 | 50,67
3,3,3,3 4.778 1.0284-179 846 1.064 1.128 4,49 1.060 1.228 4,49 1.142 4,18
3,3,3,5 19.918 1.0284-850 4.080 1.064 2.326 | 18,71 1.060 2.326 | 18,71 1.613 | 12,34
3,3,3,8 77.308 1.0284-3.444 17.196 1.064 6.498 | 72,93 1.060 6.498 | 72,63 2.765 | 27,95
8,5,3,3 496.618 90.4294-4.522 59.187 92.600 96.088 5,36 92.224 96.088 5,36 94.593 5,25
8,5,3,5 | 4.788.499 108.2054-28.040 | 691.390 110.376 | 159.104 | 45,53 110.000 | 159.104 | 45,53 134.553 | 35,58
8,5,3,8 - out of memory - - - - - - - 193.401 -

Table 2: Results for the clients-server pattern




27,95. Moreover, we remark that in this model the computation peaks of the two approaches based on the
ESRG are important. For instance, for 8,5,3,8 the ESRG cannot be computed due to its computation peak.
Hence the final aggregation obtained by the two approaches based on the ESRG is better, but the number
of real ESMs and eventualities stored during the computation is greater than the number of states of the

DSRG.

3.3 A workflow pattern

A workflow is a set of tasks organized according to a model that describes the triggering conditions for every
task. It is usually described by operators like sequential flow, parallel flow, choice flow, etc. that are easily
modeled by an ordinary Petri net. In addition, with every task is associated a set of agents which are allowed
to perform it. A job is an instance of a workflow and we consider simultaneous executions of jobs with the
same workflow.

Our experiment is based on the fixed control flow shown in the SWN model in Fig. 3. The total number
of tasks in the system is given by the initial marking of place Idle while the total number of agents for each
type is given by the initial marking of colored place Agents. Moreover, the initial marking of places T'1, T2
and T8 represents the maximum number of simultaneous accepted tasks for each task type, while the initial
marking of places FzcT1, FxcT2 and EzcTS8 represents the maximum number of simultaneous ezecutions
for each task type.

The asymmetry is due to the set of agents which are divided in groups {G;};c1,2,31, according to their
authorization levels: an agent g € G; has less authorizations than an agent ¢’ € G; with j > i. We specify
for every task T' an execution threshold i(T): an agent in G; is allowed to perform task T if i > i(T).

The execution cost of a task depends both on the execution time and on its execution threshold. Thus
the WEFN model enforces a policy that aims at minimizing the execution time of special tasks with an high
execution threshold. So with every execution threshold we associate a maximum number of simultaneous
executions. Then, when a task is triggered, it is queued and later on it is executed. Most of the tasks can
be executed by every agent, we call it normal tasks; the other ones are called special tasks. This is granted
by the guards on the transitions StartTask2 and StartTask3, so that StartTask2 can fire if there is at least
one available agent with G; > 2, while StartTask3 if there is at least one available agent with G;= 3.

A task is executed (transition StartTaskl or StartTask2 or StartTask3 ) if the following conditions are
fulfilled:

e there is no running or waiting special task with higher execution threshold. This is ensured by the test
arcs with multiplicity & connecting 7 with StartTask; and j > i.

e there are only running tasks with the same execution threshold. This is ensured by the test arcs with
multiplicity a; connecting ExcT; with StartTask; and j > 1.

e the maximum number of simultaneous executions corresponding to its execution threshold is not
reached. This is ensured by the arcs connecting FzcT; with StartTask;.

Finally the completion of a task i is modeled by transition EndTask;.

The symmetrical behavior corresponds to a wave of executing normal tasks (submodel N7) whereas the
asymmetrical behavior corresponds to a wave of special task executions with the same execution threshold
(submodel N3). The synchronization steps occur after every wave execution. Observe here that between two
synchronization steps there is either a symmetrical behavior or an asymmetrical one but not both.

Let us examine in more details Table 3, that shows some experiments performed on this model for different
values of its parameters: the number of total tasks (K), the maximum number of simultaneous executions
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SRG ESRG RESRG (BExact) RESRG (Strong) DSRG

K,al,a2,a3, St. St. Peak St. Peak ratio St. Peak ratio St. ratio
|G1],|G2|+|G3s| (Esm.+Ev.)
5-4-2-1-2-2 3.550 1.0034-274 682 1.003 1.244 3,53 1.003 1.244 3,53 1.003 3,53
10-4-2-1-2-2 40.060 9.64342.199 5.447 9.643 11.444 4,15 9.643 11.444 4.15 9.643 4,15
15-4-2-1-2-2 151.045 34.9334-6.614 | 17.417 34.933 40.869 4,32 34.933 40.869 4,32 34.933 4,32
5-4-3-2-2-4 7.994 1.4294-1044 1.878 2.437 2.440 3,28 1.429 2.440 5,59 1.429 5,59
10-4-3-2-2-4 108.789 13.889+10.504 17.708 24.147 24,175 4,50 13.889 24,175 7,82 13.899 7,82
15-4-3-2-2-4 431.134 50.3994-38.289 | 63.413 87.932 88.010 4,90 50.399 88.010 8,55 50.399 8,55
15-4-2-1-3-2 200.467 34.9334-6.614 | 23.483 34.933 40.869 5,73 34.933 40.869 5,73 34.933 5,73
15-6-2-1-4-2 383.108 55.4974-6.814 | 40.776 55.497 61.433 6,90 55.497 61.433 6,90 55.497 6,90
15-8-2-1-6-2 655.095 74.9514-7.023 | 62.540 74.951 80.887 8,74 74.951 80.887 8,74 80.887 8,74
15-10-2-1-8-2 885.630 89.075+4-7.467 | 70.031 89.075 95.011 9,94 89.075 95.011 9,94 95.011 9,94
15-12-2-1-10-2 | 1.026.425 96.4014-9.453 | 71.517 96.401 102.337 | 10,64 96.401 102.337 | 10,64 102.337 | 10,64
15-15-2-1-13-2 | 1.086.911 98.556+4-10.345 | 71.573 98.556 | 104.492 | 11,02 98.556 | 104.492 11,02 98.556 | 11,02

Table 3: Results for the workflow pattern

for each threshold (a;), the number of normal agents (|G1|) and the number of special agents (|Gz| + |G3]).
We observe that both these methods reach the same reduction factor; moreover the parameters that have
more impact on the reduction factor are the number of total tasks and the maximum number of simultaneous
executions for normal tasks. The reduction factor is increasing w.r.t to these two parameters.

3.4 A cluster computing pattern

This pattern corresponds to a finite set of machines grouped in clusters. Each cluster has a master machine
and a set of slave machines. Every machine can fail while being idle or working. While idle, the failing
of a slave machine means its removing from the cluster, for (local) updating/maintenance reasons. It is
put back in its environment as soon as it is reconfigured. Instead, if it fails while working because of a
hardware/software problem then its last stable state is saved. Afterwards it is repaired and finally restarted.

The failing of a master has a different consequence: the whole cluster is no longer reachable. Actually,
even if the slave machines of the cluster are not in a fail state, the absence of a master makes the cluster in
an unstable state. In such a case, the cluster becomes unavailable until the recovery of the master machine.

The system presents a symmetrical behavior until the first failure. However after this failure we cannot
identify synchronization steps. Thus the results are poor as detailed in table 4.

The SWN model implementing the cluster computing pattern is shown in Fig. 4. It is divided in four
submodels: Nj, Ny, N3 and V4. N7 models the jobs submission to the computing system. A submitted job
marks place AJobs. The corresponding token is moved to place SJobs, when a machine m is assigned to its
execution (firing of transition AssMach).

N5, models the machine states and transitions between them: available machines are in place AvMach,
failed machines in place FMach, and frozen machines in place Freeze. Initially, all machines are available.
When a machine fails (transition FailedIdleMach), it is moved to FMach. If it is a master machine, then all
slaves of its cluster are also moved to Freeze (transition RemMach). Once the master is recovered (transition
Recover), its frozen slave machines are put back in AvMach.

Subnet N3 represents the behavior after a normal exit: the firing of transition End Work models the end
of a submitted job without failure.

Subnet N4 models the behavior in case of failing while working: if it is a slave machine then it is

11




SRG ESRG RESRG (BExact) RESRG (Strong) DSRG

|Job|, St. St. Peak St. Peak ratio St. Peak ratio St. ratio
|Cl|, |M]| (Esm.+Ev.)

[ 2222] 1.803 ] 220+1.601 |  1.634 [ 897 | 1.803 [ 2,10 | 625 | 1.795 [ 2,84 [| 2.008 [ 0,9
5,2,2,3 3.776 408+3.318 3.352 1.790 3.776 | 2,10 1.254 3.703 | 3,01 3.646 | 1,03
5,2,2,4 6.295 641+5.468 5.330 || 2.790 6.205 | 2,25 1.861 6.080 | 3,38 5.771 | 1,09
5,2,2.5 9.002 900 +7.642 7.202 [ 3.712 9.002 | 242 [ 2.474 8.507 | 3,63 7.565 | 1,18
52,52 [ 15.369 910+14.457 [ 15.198 || 7.625 | 15.369 | 2,01 [| 6.752 | 15.350 | 2,27 ]| 15.343 1
52,53 | 35.246 1.779+33.415 | 34.788 || 17.293 | 35.246 | 2,03 || 13.117 | 35.171 | 2,68 || 35.037 1

5,2,5,4 66.413 2.971463.226 65.162 32.217 66.413 | 2,06 20.602 66.168 | 3,22 65.575 1,01

5,2,5,5 | 109.118 || 4.483+103.947 | 105.744 || 52.039 | 109.118 | 2,09 || 35.032 | 108.486 | 3,11 106.374 | 1,02

16,1,8,2 734 4594327 575 733 741 1 707 730 | 1,03 731 1
16,2,4,2 8.797 627+8.168 8.626 8.615 8.797 | 1,02 4.106 8.778 | 2,14 9.105 | 0,96
16,1,16,2 2.418 1.547+971 2.124 2.409 2.433 | 1,00 2.381 2.414 | 1,01 2.415 | 1,00

16,2,8,2 52.713 2.077+50.634 52.542 51.919 52.713 | 1,00 22.406 52.694 | 2,35 53.010 | 0,99

Table 4: Results for the cluster computing pattern

repaired and restarted (transition RestartSlave). In case of a failed master machine, it is moved (transition
MasterFail) to the fail state (place FMach), and all working machines of the same cluster are moved to a
frozen state, by use of transitions Ret WorMach and RetEndMach. In this last case, all served jobs of the
cluster must be rerun. They are put back in place AJobs.

Several experiments have been performed on this SWN model for different values of the system parame-
ters: the number of jobs (|Job|), the number of clusters (]CI|) and the number of machines per cluster (|M]),
but the best result obtained for the reduction factor is less than 3.

Observe that then number of ESM and eventualities stored during the generation of the ESRG and during
the refinement steps is close to the |SRG|.

4 Conclusion

Four model patterns, namely readers-writers, client-server, workflow and cluster computing have been pre-
sented to show the ESRG and DSRG methods effectiveness and their applicative interest.

The experiment results show that in systems matching the a pattern proposed in section 2 the two
approaches reach an high aggregation level. For instance, the first three case studies matching with the
proposed application pattern lead to an high reduction factor, while in the last one the RESRG and the
DSRG size is closed to the SRG one.

Moreover, we have to highlight that in our experiments the size of the lumped chain is generally smaller
with the ESRG method; however the ESRG method requires to explicitly develop “asymmetrical” set of
states during the refinement process thus facing the problem of a peak in memory usage, contrary to the
DSRG method. For instance in the case 8,5,3,8 of the client-server pattern the ESRG cannot be computed
due to its computation peak.
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A A brief introductin on to Stochastich Well-formed Net

The Well-formed Net (WN) formalism [4] was inspired by the Colored Petri Net (CPN) formalism and has
the same modeling power of CPNs (but unlike CPNs it includes transition priorities and inhibitor arcs).
However its color annotations syntax is peculiar: it was defined with the aim of developing efficient analysis
techniques able to automatically exploit the behavioral symmetries embedded in the model.

Definition 1 A Well-formed Net is a ten-tuple
N =(P,T,C,cd, 1,0, H,$,prio,w, mo)

P and T are the place and transition ! sets; transition input, output and inhibitor arcs are defined by I, 0, H,
which define also their color annotations (called arc expressions); mg is the initial (colored) marking. prio
defines the transition priorities (assigning a priority level prio(t) € N to each transition). The other elements
correspond to the model color annotations, described next.

Basic colour classes. C = {C1,...,Cp} is a set of pairwise disjoint basic colour classes. C; is a finite not
empty set and it can be partitioned into n; disjoint subsets C; j,j = 1,...,n; called static subclasses; |C;]
denotes the cardinality n; of the partition. A basic colour class C; may be (circularly) ordered, the order is
induced by a successor function: the successor of element c is denoted !c.

Color domain. cd defines the color domains of places and transitions, which are Cartesian products of
basic colour classes. The colour domain of a node k is denoted cd(k) = C7* x C5? x ... x Ct», where e; € N
is the number of occurrences of class C; in c¢d(k) and its value depends on the considered node.

Elementary Function. I,0O and H are defined on T' x P and can map a pair ¢,p to an empty function,
meaning that there is no input, output or inhibitor arc connecting ¢ and p, or to an arc function f : cd(t) —
Bag(cd(p)), defined next.

Let us consider the colour domain c¢d = C}! x C5? x ... x C¢m: an elementary colour function is a linear
mapping from cd to Bag(C;) (for some ¢ € 1,...,n) chosen among the following functions:

1T can be partitioned into two subsets of timed and immediate transitions
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- the projection denoted X! defined as: X!(..., f, cee 2'2, N

- the successor denoted !X} defined as: 'X!(..., ", ..., 2, ... cir..) =l

- the diffusion function (also called synchronization function, depending if it annotates an output or an input
arc), which is constant, denoted S; and defined as follows: S;(...,cl*, ..., 3, ... cin...) Zvceci c

Notice that in practice the symbols X! used above to denote the projection function are substituted by names
of transition variables (representing the transition parameters) in the models; each variable has a type C;.
The variable-based notation makes the model more readable, since variables can be given meaningful names.
The diffusion(synchronization) function can be restricted to a static subclass, denoted S;; and defined as
follows: Sii(....c1',... e, el ) = Pveec,, ©

Due to the linear property of the the elementary functions, they can be just defined on the single elements
of the domain. Abusing notation, the elementary functions and their linear extension are usually denoted in
the same way.

Class function. A colour function f on class Cj, also called C; class-function, is a linear combination of
elementary functions (with same domain and codomain):

||

fi=) 0 XI 4D By Sigt ) X]
j g=1 J

The coefficients 3, € N, aj,7; € Z must satisfy the following constraint: if f;” and f;" are respectively the
multisets of elements with negative and positive coefficients in the formula above (so that f; = f;" — f,7),
then it must hold f;” C f;'.

Arc function. An arc function F' on an input, output or inhibitor arc, connecting transition ¢ and place

p, is a sum so defined: v
F oY @@
k

i=1 j=1

where i’fj :cd(t) — Bag(Cy), A € N and ¢; is the number of occurrences of class C; in ¢d(p). The symbol
& denotes the Cartesian product quantifier, in the text we shall also use the alternative representation
(fi, f2,... f2;‘>, briefly called function tuple (or simply tuple).

Transition and colour function guards. A guard is a Boolean expression defined on a transition colour
domain whose basic terms are standard predicates. Standard predicates allow to compare colour elements
from the same colour class C;, and can take the following form:

- [ X! = XF(c), it evaluates to true iff the j** component of type C; in ¢ is equal to the k*" component of
same type;

- [d(X]) = C;.1)](e), it evaluates to true iff the j* component of type C; in ¢ belongs to C; ;

- [d(X7) = d(X])](c), it evaluates to true iff the 5 and k' components of type C; in ¢ belong to the same
static subclass.

In WNs the ¢ function associates a guard with each transition, the default guard is [¢true]. Moreover,
guards may be employed in arc expressions. Let F' be a function tuple and g a guard, then the guarded
tuple is defined as

F [g] © g g(c) then F(c) else 0

A guarded arc function is then a linear combination of guarded tuples.
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The transition instance weights w. The fuction w is defined as a set of functions w; : ed(t) — R expressed
in the following form:

w(t)=
{
case cond; : 1
case conds : 7o

case cond,, : Ty,
default: 74efqui

}

where cond; is a boolean expression comprising standard predicates on the transition color instance and
predicates on the marking (defined in terms of static subclasses) so that the firing rate of a transition
instance can depend only on the static subclasses of the objects assigned to the transition parameters, and
not on the assigned objects themselves.

Definition 2 (Marking) A marking m is expressed as a distribution of colored tokens in the all places.

Definition 3 (Transition instance) A transition instance (t,c) in m is a binding ¢ of the transition vari-
ables to the objects in the appropriate color class.

The evolution of an WN system is defined through a firing rule applied to a given transition instance (t, c).
The new marking obtained by the transition instance firing satisfies: Vp € P,m’(p) = m(p) — I(p,t)[c] +

O(p,t)]c]-
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