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Abstract 
The cooperative construction of data\knowledge bases has recently had a significant impulse (see Wikipedia 

[Wikipedia]). In cases in which data\knowledge quality and reliability are crucial, proposals of update\insertion\deletion 

need to be evaluated by experts. So far, no theoretical framework has been devised to model the semantics of update 

proposal\evaluation in the relational context. Since update proposal\evaluation deeply involves the notion of time, 

semantic approaches to temporal relational databases (specifically, BCDM [Jensen and Snodgrass 1996]) are the 

starting point of a theoretical framework definition. In this paper, we propose BCDMPV, a semantic temporal relational 

model that extends BCDM to deal with multiple update\insertion\deletion proposals and with acceptances\rejections of 

proposals themselves. We define the related data structures, manipulation operations and temporal relational algebra 

and show that it is a consistent extension of and that it is reducible to BCDM. These properties ensure consistency with 

most relational temporal database frameworks, facilitating future implementations. 

 

KEYWORDS: update proposal and evaluation, temporal relational databases, semantics of relational data and 

operations, data model, algebraic operators, Bitemporal Conceptual Data Model. 

1  Introduction 

In this paper we extend the temporal database data model and algebra in order to cope with proposals and evaluation of 

updates, as required in several emerging applications concerning cooperative modeling\update of shared 

data\knowledge. 

 

1.1 Context: the “proposal vetting” phenomena 

As widely discussed in Section 2, cooperative modeling\update of shared data\knowledge is nowadays a main 

paradigm in many areas, ranging from the collaborative definition of encyclopedias (e.g., Wikipedia) to the 

identification of specific goal-oriented workflows, protocols and guidelines. In some of such areas,  the need for quality 

demands for some form of evaluation process: users propose updates to the reference version of data\knowledge, and a 

team of domain experts evaluates them, so that only approved proposals modify the reference data\knowledge, leading 

to a new data\knowledge reference version (for short, in the following we term such a process “proposal vetting”). The 

history of versions is usually maintained (and tagged with their transaction time, i.e., with the time when data are 

inserted\(logically)deleted [Snodgrass and Ahn 1986]), and, in many cases, data\knowledge are temporal, so that also 

their valid time (i.e., the time when data hold in the modeled mini-world [Snodgrass and Ahn 1986]) must be explicitly 

dealt with. 

The relational model has a formal basis in set theory and logic, and relational databases are widely used also because 

the relational model is well understood in theory and practice. Despite the generality and the spread of the phenomena, in 

real world applications (e.g., Wikipedia [Wikipedia] and Citizendium [Citizendium]) update proposals and evaluations 

are coped with in an ad-hoc fashion (primarily at the application level) using relational databases. Clearly, this defeats the 

very purpose of the relational model: a high level of independence between the data and the application programs. Thus 

the need for a more comprehensive data model arises, where  update proposals and evaluations are an intrinsic part of the 

model. We are not aware of any theoretical framework coping with the above phenomena in a purely relational database 

context. In this paper, we provide a semantic analysis of the proposal vetting  phenomena extending the relational model 
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semantics. Our aim is to provide a clean and general (as opposed to ad-hoc) modeling of the phenomena, abstracting 

away from efficiency issues and implementation strategies, leading to both a deep understanding of the phenomena and a 

rigorous reference specification for future implementations. 

Since transaction time (and, in several cases, valid time) need to be supported, temporal relational databases are the 

natural starting point of our work. 

 

1.2 Context: temporal database models 

Given the relevance and diffusion of time-related issues in real-world phenomena, there has been much work over 

the last three decades in incorporating time into data models, query languages, and database management system 

(DBMS) implementations. In particular, all such approaches demonstrate that time is a peculiar aspect that deeply 

affects data semantics, so that it cannot be coped with just through the addition of one (or more) additional attribute in 

relational tables, but it deserves a specific treatment (see, e.g., Chapter 1 of the TSQL2 book [Snodgrass 1995]). Given 

the pervasive character of time, great efforts in terms of research were made in order to provide once-and-for-all a 

general solution to the problem (as opposed to ad-hoc solutions to be independently built in each application coping 

with time). In this spirit, many extensions to the standard relational model were devised, and more than 2000 papers on 

temporal databases (TDBs) were published over the last two decades (cf., the cumulative bibliography in [Wu et al. 

1998], the section about TDBs in the forthcoming Springer Encyclopedia of Databases [Liu and Ozsu 2008], which 

includes over 30 entries about TDBs, the entry “Temporal Database” in [Liu and Ozsu 2008], and the surveys in 

[McKenzie & Snodgrass 1991, Tansel et al. 1994, Özsoyolu & Snodgrass 1995, Jensen & Snodgrass 1999]. 

A core issue concerning most of such approaches is their compatibility and reducibility to the standard (non-

temporal) relational model, in order to grant (i) that if time is disregarded, the extended temporal model behaves like the 

standard one and (ii) interoperability with pre-existent non-temporal data. In such a sense, most temporal (relational) 

database approaches can be seen as a consistent layer built upon standard (relational) databases, providing once-and-

for-all users with the facilities (e.g., data structures, query  languages) to cope with temporal data in an easy and correct 

way. 

Despite such a common goal, the large variety of different approaches to TDBs in the literature is partly due to the 

fact that many diverse issues, including presentation and efficient implementation, have been taken into account. In 

order to identify the “essence” of modeling time in relational databases, and the common “core” between many of such 

approaches, the BCDM (Bitemporal Conceptual Data Model) relational data model and algebra have been identified 

[Jensen and Snodgrass 1996, Snodgrass 1995]. BCDM does not face issues such as data representation and storage 

optimization, aiming at a “semantic” approach, in the sense discussed in the below citation, quoted from [Snodgrass 

1995]: “It is our contention that focusing on data presentation (how temporal data is displayed to the user), on data 

storage with its requisite demands of regular structure, and on efficient query evaluation, has complicated the central 

task of capturing the time-varying semantics of data. […] We therefore advocate a separation of concerns. Time-

varying semantics is obscured in the representational schemes by other considerations of presentation and 

implementation. We feel that the conceptual data model to be discussed shortly [i.e., BCDM] is the most appropriate 

basis for expressing this semantics.” 

As BCDM, also our approach operates at the semantic level, in the sense discussed above (not to be confused with the 

“conceptual” -e.g., Entity-Relationship- level). 
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Although BCDM cleanly copes with both valid and\or transaction time (i.e., it supports bitemporal data), both its 

data model and operations are not expressive enough to support update proposals and evaluations (see the discussion in 

Subsection 3.1).  

 

1.3 Goals, methodology and main results 

Given the wide diffusion and increasing relevance of update proposal and evaluation phenomena (e.g., related to 

Citizendium-like activities: see the discussion in Section 2), as well as the deep impact it has on data semantics, we 

strongly believe that, once again, a general (non ad-hoc) solution is needed here. 

For the sake of generality and clarity, we have chosen to operate at the semantic level, proposing BCDMPV (where 

“PV” stands for “proposal vetting”), an extension of BCDM unifying semantic model. 

However, we still retain consistency with relational model and implementability as a fundamental goal for our 

approach. Just in the same way in which temporal database models can be regarded as a consistent upper layer upon 

standard (non-temporal) models (as granted by the consistency and reducibility properties) to cope with a new range of 

phenomena (namely, valid and transaction time), the goal of our work is to propose a new model which is a consistent 

upper layer upon temporal relational model to cope with proposals and evaluations of updates. 

The main original contributions of our approach lie in extending BCDM to support proposals and evaluation of 

updates, and, specifically, we propose: 

1. a new data model to cope with both “reference” (accepted) and proposed (to be evaluated) data; in particular, 

we support alternative data proposals (while in BCDM relations are defined as conjunctive sets of tuples only); 

2. new manipulation operations to propose insertions, deletions and updates (for proposers) and to accept\reject 

such proposals (for evaluators); 

3. new algebraic operations on the extended data model. 

Our extensions have been devised in such a way that BCDMPV can be regarded as a consistent upper layer built upon 

BCDM, i.e., we have proved that: 

i. BCDMPV data model is reducible to BCDM one (see Section 4); 

ii. BCDMPV manipulation operations are a “proposal vetting” consistent extension to BCDM ones (see Section 5); 

iii. BCDMPV algebraic operations are reducible to BCDM ones (see Section 6). 

By proving properties i-iii, we grant that our approach can be added as a support for proposal vetting on top of any of the 

temporal relational database approaches grounded on the BCDM semantics. This fact enhances the generality of our 

work, as well as its implementability (see also Section 9). Concerning implementability, it is worth noting that OracleTM 

Database, since version 10g, supports both transaction time and valid time consistently with BCDM [Oracle 2005]). 

 Additionally, uniqueness of (data) model is a major source of clarity for a semantic approach [Snodgrass 1995], and 

we proved that such a property holds for BCDMPV, i.e., 

iv. Uniqueness of model holds for BCDMPV (see Section 4). 

 

In summary, through the extensions 1-3 of BCDM and their properties i-iv we propose a general and implementable 

theoretical support to proposal vetting consistent with the relational model. 

 

1.4 Phenomena out of the scope of this paper 

To conclude, it is worth citing the phenomena that are outside the scope of the present paper: 
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• we do not propose any SQL-like extension to the query language, choosing, as in BCDM, to operate at the 

algebraic level only (this issue is left as a future work, see Section 9); moreover, as in BCDM – since we operate 

at the semantic level – we do not address issues such as query optimization, integrity constraint support, storage 

optimization, data indexing; 

• since we operate at the semantic level, for the sake of brevity we only focus on proposals and evaluations 

concerning one tuple in isolation with the others; while this suffices at the semantic level, at the implementation 

level a high-level interface should also provide users with the possibility of defining “macro-objects” (whose 

description may usually involve tuples in different relations), and supporting global operations on them (in the 

form of a unique transaction). Moreover, since we operate at the relational level, we do not cope with issues 

typically considered within the object-oriented environment, such as the development of a high-level language 

providing user-friendly facilities to manipulate versioning of complex objects, part-of relations, clustering of 

object versions, change propagation and configuration [see, e.g., Dittrich and Lorie 1988, Katz 1990, Vines et al. 

1988]; 

• we cope with (proposals\evaluations of) updates to data, not to schema. Therefore the treatment of schema 

versioning is outside our goals. 

  

1.5 Structure of the paper 

The rest of this paper is organized as follows: Section 2 settles the context of our approach, considering several 

possible application domains, and introduces a running example. Section 3 recalls the BCDM model and its properties. It 

also analyses the expressive limitations of BCDM as regards the treatment of update proposals and evaluations. Sections 

4, 5 and 6 are the core of the paper: they introduce BCDMPV. In particular, Section 4 goes into the technical details, by 

presenting the data structures. The reducibility and uniqueness of model properties for the new data model are also 

proven. Section 5 introduces the manipulation operations, and demonstrates that BCDMPV is a “proposal vetting” 

consistent extension of BCDM. Section 6 describes the algebraic operations we provide, and demonstrates their 

reducibility to BCDM ones. Section 7 discusses related work, and Section 8 is devoted to the analysis of alternative 

approaches. Section 9 draws some conclusions and discusses future work directions. Appendix A presents an example 

application of our proposal vetting approach to a collaborative encyclopedia. Appendix B completes the set of the 

manipulation operations we have defined, and Appendix C completes the set of the algebraic operators we have 

introduced. Appendix D is devoted to the proofs. Finally, Appendix E deals with data model and operations in the case in 

which only transaction time has to be considered. 

Please notice that appendices have been added for the sake of completeness and to help the reviewing work. However, 

we do not think that appendices should be part of the final version of the paper. In the same spirit, Sections 7 and 8 settle 

the context of our approach, describing a wide spectrum of (even loosely) related approaches and alternative approaches. 

Both sections might be shortened in the final version. 

 

2 Applicative contexts 

In this section, we first briefly analyze several areas in which cooperative modeling\update of data\knowledge is used, 

devoting more attention to some contexts in which proposal vetting on transaction or bitemporal (i.e., involving both 
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valid and transaction time) data is important.  Then, in Subsection 2.2 we introduce a running example, considering the 

application domain of clinical guidelines. 

2.1 Cooperative modeling\update of data\knowledge 

Computer Supported Cooperative Work (CSCW) is a widely spread paradigm. The CSCW time\space matrix [Johansen 

1988] has been introduced in order to classify the different possible modalities of computer-based interactions among 

cooperative users. Specifically, in this paper we focus on the class “different time \ different place” of interactions, 

meaning that users can interact asynchronously, being in different physical locations. 

Such a type of interaction, finalized to the cooperative modeling\update of shared data\knowledge, is an important 

paradigm in Computer Science, and seems to become more and more important and spread due to the large-scale 

availability of  the Internet. For instance, the construction of a free encyclopedia as Wikipedia, and of vocabularies like 

Wiktionary, to which hundreds of thousands of authors contribute, is a modern phenomenon with yet undiscovered social 

and cultural impacts. Among the others, the Wiki technology is also being used in order to build Citizendium, a free 

encyclopedia in which experts are called to approve the piece of data proposed by contributors, for the sake of reliability 

and quality. While the above phenomena are relatively recent, the cooperative paradigm has a long tradition in several 

other areas. For instance, in the field of software engineering, several versioning control tools such as, e.g., CVS [CVS] 

and in general Computer-Aided Software Engineering (CASE) tools, have been provided in order to support cooperative 

software development, starting from the 1970s. Analogously, cooperative software systems (such as, e.g., Bugzilla) have 

been provided in order to track software bugs. Many Content Management Systems, such as, e.g., Alfresco, support 

cooperative creation, update and publishing of documents. 

Although there are relevant differences of scope, goals and methodologies among the above-mentioned types of 

approaches, some similarities, which are relevant to the goals of our work, can be captured. First of all, most of the above 

approaches deal with data versioning: different versions of data have to be stored along time. In many cases, the whole 

history of data needs to be maintained: the set of data versions is stored, together with the time in which the version has 

been issued (i.e., the transaction time of the version). In several cases, it is useful to identify, among the alternative 

versions of data, a reference one. Depending on the approach, the reference version may be the latest issued version (i.e., 

in temporal database terms, the current version; consider, e.g., Wikipedia), or the latest approved version (consider, e.g., 

Citizendium, in which a team of experts is called to choose among alternatives). 

 

A range of different policies are used in order to regulate the interactions between cooperative users in these contexts. 

At one extreme of the range, all users are completely and equally trusted: for instance, in Wikipedia, any user can 

introduce a new term, or update a previously introduced one, leading to a new reference version. Stricter policies are 

adopted by other approaches, especially in cases in which data quality and reliability is a crucial issue. For instance, in 

the current effort of building a database encyclopedia by Springer, only selected authors are invited to contribute, and 

their contributions are reviewed by other domain experts. In general, a two-level process in which insertions\updates are 

first proposed and then evaluated for approval by a team of experts is a widely adopted policy, whenever data\knowledge 

quality must be granted (consider also, e.g., the Citizendium encyclopedia, based on the Wiki technology). 

 

In principle, all the above-mentioned applications can take advantage of relational DBMSs, exploiting their generality 

and efficiency. For instance, Wikipedia stores data into a relational database system (i.e., MySQL). However, the 

structured representation and structured query language features provided by the relational framework are fully 
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exploited especially in domains in which the data\knowledge to be captured is “structured” (as opposed to textual 

unstructured data). This is the case, for instance, of organizational knowledge like the one in workflows, protocols, 

guidelines and plans, which play an important role in many application contexts, providing useful tools to model, control, 

and\or optimize processes, granting for their efficiency, standardization and\or quality. In all such contexts, 

data\knowledge regards classes of entities (mostly modeling processes\activities) with a structured internal description, 

and their interactions (see, e.g., the example in Subsection 2.2, concerning clinical guidelines). In such cases, the valid 

time is usually an intrinsic part of the information to be captured, to describe the temporal extent of entities and\or the 

temporal constraints on their interactions. Modeling and keeping up-to-date workflows, protocols, guidelines and plans is 

usually a complex task, involving the cooperation of several contributors. Specifically, since workflows, protocols and 

guidelines are usually used as a normative reference for members of institutions adopting them, quality is an essential 

issue, so that the two-level (proposal vs. evaluation) policy is usually adopted. 

 

2.2 Case study: proposal vetting about clinical guidelines 

We introduce two real-world applications where proposal vetting has to be dealt with. The first application, described 

below, regards clinical guidelines and the second one regards a collaborative  encyclopedia such as Citizendium. The 

application about clinical guidelines is the more complex and interesting, since it involves the treatment of both valid and 

transaction time. Therefore, we use such an application as a running example in this paper. On the other hand, the 

collaborative encyclopedia application is simpler (requiring the treatment of transaction time only), so that it is only 

sketched in Appendix A (it is worth stressing that the case in which only transaction time has to be considered is a trivial 

restriction of the general bitemporal case described in this paper; see Appendix E for an explicit treatment). 

Our research group has a long-term cooperation with Azienda Ospedaliera San Giovanni Battista in Turin (henceforth 

called “Hospital” for short), one of the largest hospitals in Italy (more than 1000 beds), focusing on the development of a 

computer-based approach for the management of clinical guidelines.  

Clinical guidelines are usually built incrementally, and need to be kept up-to-date, whenever new therapeutic and\or 

diagnostic procedures are discovered. In practice, different alternative proposals of insertion\update\deletion, issued by 

specialists, are periodically evaluated by a team of experts who are responsible for the final result. Accepted proposals 

lead to a new version of the guideline, which becomes the reference one for all the medical and paramedical personnel of 

the hospital. However, past versions of the guideline must be maintained, e.g., for legal purposes. A very similar 

approach is also being followed by the Hospital in the creation of a(n internal) clinical vocabulary, which will be resorted 

to in order to standardize the terminology used in the hospital information system. 

As a running example, we consider the guideline for the management of suspected acute pulmonary embolism [BTS 

2003; MacDonald et al. 2005] adopted by the Hospital. 

The guideline indicates further diagnostic investigations (to confirm or discard the suspect of suspected acute 

pulmonary embolism) and, in case the suspect is confirmed, it dictates the proper set of therapeutic actions. The first 

action of the guideline is pulmonary embolus detection. In the initial version of the hospital guideline, such an action had 

to be executed through pulmonary ventilation perfusion scintigraphy, performed using isotope lung scanning (VQS). The 

estimated cost of such an operation is about 100 €, and image acquisition lasts about 15 minutes. 

In Figure 1, we show a little part of the Entity-Relationship (ER) model of the guideline clinical actions (for the sake 

of brevity, many parts of the whole model are omitted). For simplicity, we use standard ER diagrams, augmented with the 

possibility of introducing transaction time (Ts and Te stand for the start and the end of the transaction time respectively) 
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and valid time (Vs and Ve stand for the start and the end of the valid time respectively). The use of four atomic-valued 

timestamp attributes to represent bitemporal chronons, exploited in this example, is derived from the TSQL2 

representational approach [Snodgrass 1995]. A more accurate treatment of temporal aspects at the conceptual level could 

be obtained using, e.g., ST-USM [Khatri et al. 2004]; however, such a conceptual treatment is outside the goals of this 

paper. 

Notice, in particular, that all the entities and the relationships have a transaction time, since we need to model the full 

history of the evolution of the guideline into the database. The valid time associated with the “CLINICAL_ACTION” 

entity models the time when the action is to be executed (starting and ending time), expressed as a temporal distance from 

the beginning of the execution of the guideline to which the action belongs1. 

 

 

Figure 1: part of the guideline conceptual model. 

In Figure 2 we show three relations modeling this part of the conceptual model, where we refer to the “pulmonary 

embolus detection” action. The transaction time start (2/20/2001) denotes the timestamp when the tuples were entered 

into the database (i.e., when the guideline was acquired). The value “UC” in the transaction-time end (Te) stands for 

“Until Changed”, which is a special value used to denote the fact that the tuple is still present (not deleted) in the database 

(we import the use of UC from the BCDM model [Jensen and Snodgrass 1996], see Section 3). In the relation 

CLINICAL_ACTION, Vs is 0 to denote the fact that the action has to be executed as soon as the guideline about 

suspected acute pulmonary embolism is started. 

 

                                                           
1  It is worth noticing that, in this example, we adopt a non-standard notation for the valid time, since we represent it as a 

displacement from the starting point of the guideline instead of a displacement from a standard reference point (such as, e.g., the 

birthday of Christ in the Gregorian calendar) as, e.g., in BCDM. 
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INSTRUMENT 

Name Description Ts Te 

VQS ventilation perfusion 

scintigraphy 

2/20/2001 UC 

 

RESOURCE 

INSTR_name ACT_name Ts Te 

VQS 101 2/20/2001 UC 

 

CLINICAL_ACTION 

id name Description goal cost Ts Te Vs Ve 

101 pulmonary 

embolus 

detection 

detection by 

imaging  

techniques 

diagnosis of 

pulmonary 

embolism 

100€ 2/20/2001 UC 0s 3000s 

Figure 2: three relations modeling the part of the conceptual model in Figure 1. 

 

In 2002, such a guideline was modified, to reflect the availability of a more sophisticated tool: computed tomographic 

pulmonary angiography (CTPA), which can detect pulmonary emboli. Although the estimated cost of the action increases 

to about 300 €, the use of CTPA has several advantages: the execution time is much shorter (about 15 seconds); CTPA is 

relatively more available than VQS. Moreover, it is advantageous in term of sensitivity, specificity, positive predictive 

value, negative predictive value and accuracy [MacDonald et al. 2005]. 

 

In the following example, we show how the guideline can be updated, through a session of cooperative work in which 

different proposers (P1, P2, P3, and P4) introduce different update proposals, and an evaluator (E1) incrementally 

accepts\rejects such proposals. While the previous part of the example is real (although simplified, for the sake of 

brevity), the working session we describe is a hypothetical one, and aims at presenting the different possible operations of 

proposers and evaluators, to be used as a running example in the rest of the paper. The working session is introduced as a 

sequence of steps. Since in this paper we do not aim at capturing the notion of transaction, we deal with each atomic 

operation (proposal, acceptance or rejection) as a separate step (step 1 to step 12 below). In other words, 

proposals\evaluations concerning more than one tuple at the same time are not dealt with by our current approach. 

Notice, however, that, even if we do not show such a possibility in this example, our definition of update (see Section 

4.2.1) supports the update of the value of more than one attribute of the same tuple as a unique action (e.g. in the example 

operations at steps 4 and 5 could be done by P1 in a single proposal). The extension of our approach to cope with sets of 

operations performed as a unique transaction is left as a future work (see Section 9). 

 

Step 1. Proposer P1 proposes to insert the new instrument Computed Tomographic Pulmonary Angiography (CTPA) 

into the INSTRUMENT relation; 

Step 2. Evaluators E1 accepts the proposal made in step 1; 
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Step 3. Proposer P1 proposes to update the relation RESOURCES, to store the fact that now CTPA is the instrument 

to be used for pulmonary embolus detection within the guideline about suspected acute pulmonary embolism. 

Step 4. Proposer P1 proposes to update relation CLINICAL_ACTION to modify the end of the valid time of action 

101 (pulmonary embolus detection) from 3000 seconds to 15 seconds; 

Step 5. Proposer P1 proposes to further update relation CLINICAL_ACTION to modify the cost of action 101 from 

100 to 500; 

Step 6. Evaluator E1 accepts the proposal at step 3; 

Step 7. Evaluator E1 rejects the proposal at step 5; 

Step 8. Proposer P2 proposes to delete the tuple with key 101 from CLINICAL_ACTION; 

Step 9. Proposer P3 proposes to update the proposal issued by proposer P1 at step 4, by adding to such an update 

also the update (from 100 to 300) of the cost; 

Step 10. Proposer P4 proposes to update the current evaluator version of the tuple 101 in CLINICAL_ACTION 

changing the cost from 100 to 400; 

Step 11. Evaluator E1 queries the database to check all the active proposals concerning the tuple about pulmonary 

embolus detection in CLINICAL_ACTION; 

Step 12. Evaluator E1 accepts the proposal at step 9. 

 

The sequence of the different operations involving just the tuple about pulmonary embolus detection from 

CLINICAL_ACTION is graphically shown in Figure 3. 

 

 

Figure 3: the sequence of operations involving the tuple about the “pulmonary embolus detection” action (steps 

from 4 to 12) in our example.  

3  The BCDM model 

BCDM (Bitemporal Conceptual Data Model [Jensen and Snodgrass 1996]) is a unifying data model, which has been 

developed in order to isolate the “core” notions underlying many temporal relational approaches, including the 

“consensus” TSQL2 one [Snodgrass 1995]. 

In BCDM, tuples are associated with valid time and transaction time. For both domains, a limited precision is 

assumed (the chronon is the basic time unit). Both time domains are totally ordered and isomorphic to the subsets of the 

domain of natural numbers. The domain of valid times DVT is given as a set DVT={t1,t2,…,tk} of chronons, and the domain 
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of transaction times as DTT={t’1,t’2,…,t’j}∪{UC} (where UC –Until Changed– is a distinguished value). In general, the 

schema of a bitemporal conceptual relation R=(A1,...,An|T) consists of an arbitrary number of non-timestamp attributes 

A1, …,An, encoding some fact, and of a timestamp attribute T, with domain DTT×DVT. Thus, a tuple x=(a1,…,an|tb) in a 

bitemporal relation r(R) on the schema R, henceforth called a BCDM (bitemporal) tuple, consists of a number of attribute 

values associated with a set of bitemporal chronons tbi=(cti, cvi), with cti ∈ DTT and cvi ∈ DVT. The intended meaning of a 

bitemporal BCDM tuple is that the recorded fact is true in the modeled reality during each valid-time chronon in the set, 

and is current in the relation during each transaction-time chronon in the set. Valid-time, transaction-time and atemporal 

tuples are special cases, in which either the transaction time, or the valid time, or none of them are present. 

 

Notation. Given a tuple x defined on the schema R=(A1,...,An, B1,...,Bl |T), we denote with A the set of attributes 

(A1,...,An). Then x[A] denotes the values in x of the attributes in A, x[T] denotes the set of bitemporal chronons 

constituting the timestamp of x, x[Tv] and x[Tt] denote the valid and transaction time of a valid-time and transaction-time 

tuple respectively. ♦ 

 

The BCDM model explicitly requires that no two tuples with the same data part (i.e., value-equivalent tuples 

[Snodgrass 1995]) are allowed in the same relation. As a consequence, in BCDM the full time history of a fact is 

recorded in a single tuple. This choice enhances the semantic clarity of the model, and is essential in order to enforce the 

property of uniqueness of model introduced below (see property 3.1). 

A special routine makes explicit the semantics of the special value UC: as time passes, at each clock tick for each 

bitemporal chronon (UC,cv), a new bitemporal chronon (ct,cv) is added to the set of chronons, where ct is the new 

transaction-time value.  

 

Notation. A bitemporal BCDM tuple x is current if it is present at the current time (“now”) in the database (i.e., it has 

not been updated or deleted yet). Formally, this means that the bitemporal chronons of x contain UC as a transaction 

time, i.e., current(x): ∃cv : (UC,cv)∈x[T]. ♦ 

 

Insertion and deletion of tuples are directly defined in BCDM. 

For instance, insertB(r,(a1,…,an),tv) (where r is a BCDM relation, (a1,…,an) are the non-timestamp values of the tuple 

to be inserted and tv is a set of chronons denoting valid time) is defined by three cases: 

(i) if (a1,…,an) was never recorded in r, then it has to be added, with timestamp {UC}×tv; 

(ii) if (a1,…,an) was part of some previously current state, the tuple recording this is updated with the new valid-time 

information and is made current; 

(iii) if (a1,…,an) is already current in r, the insertion is rejected. 

Transaction-timeslice, valid-timeslice and algebraic operators are defined on the bitemporal model. For instance, let 

us consider the algebraic operator of bitemporal natural join which is defined as follows. Define two relation schemata 

R=(A1,...,An, B1,...,Bh |T) and S=(A1,...,An, C1,...,Ck |T), and let r and s be instances of R and S respectively. Let A, B, and 

C stand for A1,...,An, B1,...,Bh, and C1,...,Ck respectively.  
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rB s = {z : ∃ x ∈ r, ∃ y ∈ s  

(x[A]=y[A] ∧ x[T]∩y[T]≠∅ ∧  

z[A]=x[A] ∧ z[B]=x[B] ∧ z[C]=y[C] ∧ z[T]=x[T] ∩y[T]) )} ♦ 

 

In the BCDM model, the notion of snapshot equivalence [Snodgrass 1995] has been introduced. Informally, two 

relations are snapshot equivalent if and only if they are equal at each bitemporal chronon, i.e., if they have the same 

information content. It is a major source of semantic clarity that two relations have the same information content exactly 

when they are identical. In [Snodgrass 1995], it is proved that BCDM has such a property: 

Property 3.1: Uniqueness of data model.  

Identity and snapshot equivalence coincide for the BCDM conceptual model.♦ 

 

As a second important result, the authors have shown that the semantics of the representational relations in any of the 

five temporal relational data models considered in [Snodgrass 1995] is identical to that of the corresponding bitemporal 

conceptual relation in BCDM. This correspondence, known as structural equivalence, provides a way of converting 

relations between different representations, on the basis of the notion of snapshot equivalent conceptual relations. Thus, 

BCDM operates as a unifying link among different representation approaches, as stated as the main objective of the 

conceptual model BCDM itself. In particular, in [Snodgrass 1995] it has been proven that BCDM represents the semantic 

level underlying the TSQL2 approach as well as the approaches of Snodgrass, Jensen, Gadia (more precisely, Gadia-3), 

McKenzie, and Ben-Zvi. 

Finally, operational equivalence has been shown as well: namely, extensions to the conventional relational algebra 

operators, defined in any of the representational models dealt with in [Snodgrass 1995], can be meaningfully mapped to 

analogous operators in the BCDM conceptual data model.  

 

The following property also holds [Snodgrass 1995]:  

Property 3.2: Reducibility.  

BCDM algebraic operators reduce to the corresponding snapshot relational algebra operators: with identical 

arguments, they always return identical results. ♦ 

 

In summary, the BCDM model is, from the one side, a general unifying semantic model for several temporal database 

approaches, including TSQL2; from the other side, it can be seen as un upper “high-level” layer added upon the standard 

relational theory, since it is a “consistent extension” of snapshot relational model. 

However, the treatment of proposal vetting imposes on data structures and manipulation and algebraic operations new 

requirements, which were outside the scope (and, consequently, of the expressiveness) of BCDM. Such requirements are 

briefly explored in the next subsection. 

 

3.1 Limitations of BCDM considering proposal vetting 

In short, BCDM is intended to model “standard” interactions with temporal data, in which all users directly operate 

manipulations and arise queries on the given database. As a consequence, these are the major limitations of BCDM, in 

case proposal vetting phenomena have to be coped with: 
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1.a The data model supports only one level of data, shared by all the users. In particular, relations (and databases) 

are interpreted as conjunctions of tuples; 

2.a All the users can directly access data, through query and manipulation operations. In particular, manipulation 

operations directly affect the status of the database. 

On the other hand, in the proposal vetting context: 

1.b Two levels of data need to be supported: the “reference” (accepted) data, and the “proposed” (to-be-evaluated) 

data. In particular, proposals of update concerning the same tuple must be interpreted in a disjunctive 

(“exclusive or”) way (since the acceptance of one of them implicitly involves the rejection of all its alternatives); 

2.b Standard users must be distinguished from evaluators, and different manipulation operations must be provided 

for the two classes. In particular, standard users can only propose insertion\deletion\update of reference data, 

and the effect of such operations is delayed (since such operations affect reference data only if they are approved 

by evaluators). The “proposal” level of data is used to support such a delay. 

 

 Although, in principle, such limitations could be directly coped with in an ad-hoc way when developing specific 

applications, we strongly believe that the proposal vetting phenomenon, due to its generality and wide spread, and to the 

strong impact it has on relational data semantics, deserves a general theoretical approach (providing solid bases for future 

implementations). 

In the rest of the paper we propose BCDMPV, our extension to the BCDM data model’s data structures, manipulation 

operations and algebraic operations, to cope with the “proposal vetting” environment. 

4. Extending the data model 

In this section, we introduce the data structures of BCDMPV, which extends the BCDM data model to support two 

levels of data (evaluator data vs. proposer data) and to cope with proposals of insertion, deletion and update. Evaluator 

data are the “reference” (validated by evaluators) data for all the users of the database. In the “standard” relational (and 

BCDM) environment all manipulation operations are executed as soon as they are invoked by users. On the other hand, in 

the proposal vetting context the proposals of insertion, deletion and update need to be stored, waiting for evaluators to 

evaluate them. Only accepted proposals of operations have an impact on the reference (evaluator-approved) version of 

the data. Moreover, the history of all proposals is maintained. 

To cope with the above issues, in our data model we need to distinguish between accepted data and proposals that still 

need to be validated by evaluators. To this end, we introduce a two-layered approach, in which: 

(1) as anticipated in Section 1, we define two categories of users: a set of proposers, who issue proposals, and a set of 

evaluators, who can accept\reject them;  

(2) we split the data in two levels. Namely, all validated data, accepted by evaluators, are stored in the evaluator data 

level. Current data in the evaluator data level constitute the reference (accepted) version of data. On the other hand, 

all the proposals, generated by any proposer, are stored at the proposer data level.  

 

Definition 4.0.1: Proposers and Evaluators. 

We term Proposers={p1,…,py} and Evaluators={e1,…,ez} the set of proposers and evaluators respectively. ♦ 
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Notice that our approach is independent of whether Proposers and Evaluators are disjoint sets or not (so that different 

policies can be implemented). 

 

Definition 4.0.2: We define a database as a pair <DB_Evaluators, DB_Proposers>. DB_Evaluators is a set of 

relations {r1(R1),...,rk(Rk)} where ri (1≤i≤k) is an instance of the schema Ri. DB_Proposers contains, for each relation 

ri∈DB_Evaluators, three separate sets: 

- pi(ri), containing proposals of insertion into ri, 

- pd(ri), containing proposals of deletion of tuples in ri, and 

- pu(ri), containing the proposals of update (concerning tuples in ri, pi(ri), and pu(ri)). ♦ 

 

Both in DB_Evaluators and in DB_Proposers we have to deal with the valid time of tuples and with their transaction 

time. In particular, the transaction time is crucial in order to associate manipulation actions (proposals and evaluations) to 

the time when they are executed. As in BCDM (see Section 3), we denote with T the bitemporal attribute. 

Moreover, in DB_Proposers we keep track of the proposer who is the author of each proposal. We denote with P the 

attribute on the domain Proposers. 

 

In Table 1 we report a summary of the data structures of our extended data model. 

 

Evaluator 

level 

relation r∈DB_Evaluators  

 schema (A1,...,An|T) 

Proposer  

level 

set pi(r)∈DB_Proposers of tuples 

 schema (A1,…,An,P|T) 

set pd(r)∈DB_Proposers of tuples  

 schema (A1,…,An,P|Tt) 

set pu(r)∈DB_Proposers of Proposal-tuples  

 schema <(A1, …,An), (A1, …,An,P|T)> 

Table 1: summary of the data structures of BCDMPV. 

Terminology (value equivalence, weak value equivalence). In the case of tuples in DB_Evaluators, we use the term 

value equivalent in the standard way, to denote tuples that have equal values for the atemporal attributes. In the case of 

tuples in DB_Proposers, whose schema also includes the proposer attribute P, we consistently say that two tuples x1 and 

x2 on the schema (A1,…,An,P|T) are value equivalent if and only if x1[A1,…,An,P] = x2[A1,…,An,P], while we say that x1 

and x2 are weakly value equivalent if and only if x1[A1,…,An] = x2[A1,…,An], regardless of x1[P] and x2[P]. ♦ 

 

4.1 DB_Evaluators 

Definition 4.1.1: DB_Evaluators. 

DB_Evaluators is a BCDM database. We denote with R=(A1,…,An|T) the schema of a relation r∈DB_Evaluators. As 

in BCDM, we do not admit value-equivalent tuples in the same relation r∈ DB_Evaluators (Condition 4.1.2). ♦ 
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Here and in the following, T is an implicit bitemporal timestamp attribute, with domain DTT×DVT (as in the BCDM 

model). 

As in BCDM, we consider also relations in which only the transaction time is present (see, e.g., relations 

INSTRUMENT and RESOURCE in Figure 2 and the example application to a collaborative encyclopedia in Appendix 

A). However, transaction-time relations can be easily coped with as a special case of bitemporal relations (the simplified 

version of some of the proposal vetting operators to the case in which only the transaction time is considered can be 

found in Appendix E). 

 

4.2 DB_Proposers 

In this section, first we quickly introduce the definitions concerning proposals of insertion and of deletion, whose 

representation does not require extensions to the BCDM data model. Then we move to one of the core contributions of 

our approach, namely the definition of proposals of update. 

4.2.1 Proposals of insertion 

 

Definition 4.2.1.1: pi(r). 

Given a relation r∈DB_Evaluators with schema R=(A1,…,An|T), we define pi(r) as the set containing the tuples t 

which are proposed for insertion into r. The schema of pi(r) is R’=(A1,…,An,P|T). As in BCDM, in pi(r) we do not admit 

value-equivalent tuples (Condition 4.2.1.2). Moreover, in pi(r) we do not admit current weakly-value-equivalent tuples 

with different proposers (Condition 4.2.1.3). ♦ 

 

Therefore, also the tuples in pi(r) are standard (bitemporal) tuples in the BCDM model. 

 

Condition 4.2.1.3 is motivated by the sake of avoiding redundant situations: we allow different proposers to issue the 

very same proposal of insertion only at different times. Otherwise, in analogy with BCDM, if a different proposer wanted 

to issue a proposal weakly value equivalent to a current proposal, e.g., to change the valid time, we would force her\him 

to edit it as an update to the current proposal itself.  

 

4.2.2 Proposals of deletion 

Definition 4.2.2.1: pd(r). 

Given a relation r∈DB_Evaluators with schema R=(A1,…,An|T), we define pd(r) as the set containing the tuples t 

which are proposed for deletion from r. The schema of pd(r) is R’=(A1,…,An,P|Tt), where Tt represents the transaction 

time (defined over the domain DTT). As in BCDM, in pd(r) we do not admit value-equivalent tuples (Condition 4.2.2.2). 

Moreover, in pd(r) we do not admit current weakly-value-equivalent tuples with different proposers (Condition 4.2.2.3). 

♦ 

 

Notice that, in our approach, a tuple in pd(r) identifies the tuple in r to be deleted. Therefore, the valid time is not 

needed (in fact atemporal attributes univocally identify the evaluator tuples, since value-equivalent tuples are not 

admitted in the BCDM data model). Thus, tuples in pd(r) are standard transaction-time tuples in the BCDM model. 
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The motivation of Condition 4.2.2.3 is analogous to that of Condition 4.2.1.3 above. 

4.2.3 Proposals of update 

Given a relation r∈DB_Evaluators with schema R=(A1,…,An|T), the set pu(r) contains the proposals of updates 

concerning tuples in r, or in pi(r), or in pu(r). 

Notice that, in the proposal vetting context, a proposal of update cannot be simply implemented as a proposal of 

deletion followed by a proposal of insertion; in fact, in such a case, it would be possible for an evaluator to accept just 

one of the two operations, obtaining a very different result with respect to the acceptance of a proposal of update. 

Moreover, as we will see in Section 5, in the proposal vetting environment the acceptance of certain proposals of update 

may lead to an insertion (without deletion). Therefore, we need an ad hoc operation to define the semantics of the 

proposal of update atomically, as well as a proper data structure to store proposals waiting for evaluation. 

 

In order to define the set pu(r) of proposals of updates, we first have to introduce our representation of a proposal of 

update. 

In principle, each proposal of update could be modeled independently of the others. However, the underlying 

semantics is that all the proposals of modification concerning the same tuple must be interpreted as mutually exclusive 

alternatives, since the acceptance of one proposal implicitly involves the rejection of all the others. In other words, unlike 

the standard relational model and the BCDM model, the proposal vetting context involves coping with mutually exclusive 

disjunctions of pieces of information. We introduce a primitive semantic notion – the Proposal-tuple – to explicitly cope 

with such a new phenomenon. A Proposal-tuple groups together all the alternative proposals concerning a given tuple 

(thus resembling, e.g., the notion of Design Object in the approach in [Dittrich and Lorie 1988]). As we will see 

henceforth, defining such a grouping of disjunctive pieces of information as a primitive notion also provides several 

advantages to our approach, simplifying the definition of manipulation and algebraic operators. 

  

 

Definition 4.2.3.1: Proposal-tuple.  

A Proposal-tuple may either concern (i) a tuple in an evaluator level relation, or (ii) a tuple in a proposal of insertion2. 

In the case (i), given a relation schema R = (A1, …,An|T) (for a relation in DB_Evaluators), let r∈DB_Evaluators be 

an instance of R and x∈r a tuple in r. A Proposal-tuple pt∈pu(r) concerning x can be defined as follows: 

pt = <o, Alt(alt1,alt2,..,altm)> 

where o=x[A1, …,An] and alti (1≤i≤m) are BCDM tuples. alti in their turns are defined on the schema (A1, …,An,P|T), 

where the attribute P is used to model the author of the proposal. o (called origin) is used in order to univocally identify 

the tuple x to be updated. and Alt(alt1,alt2,..,altm) is a disjunctive non-empty set of mutually exclusive tuples referring to 

the tuple x, representing the different proposals of update concerning x (in other words, <o, Alt(alt1,alt2,..,altm)> is the 

notation we adopt to denote the disjunction <o, alt1> xor … xor <o, altm>). 

   In the case (ii) the schema of a set of proposals of insertion also includes the proposer attribute (i.e., it is of the form 

R’= (A1, …,An,P|T)). Apart from that, the definition of a Proposal-tuple in such a case is exactly the same as above. In 

                                                           
2 Notice that, in our approach, proposals of update concerning a preceding update proposal pt∈pu(ri) are directly referred to the 

origin of pt (which may be either a tuple in r or in pi(r)); see the explanations in Sections 5 and 8. 
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fact, the origin o is only used to uniquely identify the tuple to be modified. Since neither value-equivalent proposals of 

insertion, nor weakly-value-equivalent current proposals of insertions are allowed in our model (see Conditions 4.2.1.2 

and 4.2.1.3), the proposer attribute P can be omitted from the origin of the Proposal-tuple even in the case it is a tuple of 

proposal of insertion. 

As in BCDM, in a Proposal-tuple we do not admit value-equivalent alternatives (Condition 4.2.3.2). Moreover, in a 

Proposal-tuple we do not admit current weakly-value-equivalent alternatives, with different proposers, but with equal 

valid times (Condition 4.2.3.3). ♦ 

 

Differently from proposals of insertion and of deletion, we admit current weakly-value-equivalent alternative tuples in 

the same Proposal-tuple, since they have to be interpreted one as the update of the other, proposed by a different 

proposer. Obviously, in order to avoid redundancy, such an update must propose some change to the previous update 

proposal: at least as regards the valid time. That is why, through Condition 4.2.3.3, we allow different proposers to issue 

the very same proposal of insertion, but only with different valid times. 

 

Terminology (schema of a Proposal-tuple). Given the Definition 4.2.3.1, we call the pair <(A1, …,An), (A1, 

…,An,P|T)> the schema of pt. ♦ 

 

Terminology (origin, alternatives of a Proposal-tuple). Given the Definition 4.2.3.1, we call x the origin of the 

Proposal-tuple and {alt1,alt2,..,altm} its alternatives. In the definition, o is used in order to uniquely identify x; in the 

following, we therefore call both x and o “origin”. ♦ 

 

It is worth noticing that we devise our approach at an abstract (semantic) level. Accordingly, we conceive Proposal-

tuples as a purely abstract semantic notion, which can be implemented in different ways (for instance in Section 9 we 

discuss some issues concerning a possible implementation of Proposal-tuples). Also notice that, in order to group the 

alternatives, we need to identify the origin they refer to. Working at the abstract level, we simply choose to identify the 

origin tuple through the atemporal part of the tuple itself. . 

 

We now introduce the definition of the functions origin and alternatives. 

Definition 4.2.3.4: origin(pt) and alternatives(pt). 

Given a Proposal-tuple pt=<o,Alt(alt1,alt2,..,altn)>, 

• origin(pt) = o, and  

• alternatives(pt) = {alt1,alt2,..,altn}♦  

 

Notice that, given a Proposal-tuple pt, origin(pt) denotes a standard (atemporal) tuple, while alternatives(pt) denotes 

a non-empty set of standard bitemporal BCDM tuples.  

 

Example. Consider our running example. The Proposal-tuple representing all the alternative update proposals issued 

until step 10 concerning the evaluator tuple “(101, pulmonary embolus detection, detection by imaging techniques, 

diagnosis of pulmonary embolism,100)” is shown in Figure 4. For the sake of brevity, here and in the following, we omit 

the values of the “name” “description” and “goal” attributes. Times are represented in seconds, and we suppose that step 
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i is performed at time i. For the sake of compactness, when we describe the temporal part of the tuples, we do not use 

the notation of BCDM model, but we use the TSQL2 notation. For example (101, 100) represents the origin of the 

Proposal-tuple, being 101 the identifier of the action, and 100 its original cost. In the first alternative, the identifier of 

the action and the cost are unchanged; P1 represents the proposer of the alternative itself; 4 is the transaction time start, 

i.e., the time at which the alternative is issued by P1, and UC is the transaction time end, meaning that such an 

alternative is still current in the database. 0 is the valid-time start (since the action must begin as soon as the guideline 

begins), and 15 is the proposed valid-time end (i.e., P1 proposes to record the fact that the action will last just 15 

seconds). 

 

 

Figure 4: the Proposal-tuple that describes all the proposals of update concerning the tuple with ID=101 until step 

10. 

 

Having shown how we cope with update proposals, we can finally define the set pu(r) of update proposals concerning 

an evaluator relation r. 

 

Definition 4.2.3.5: Proposal-tuple-set pu(r). 

Given a relation r∈DB_Evaluators with schema R=(A1,…,An|T), we define pu(r) (henceforth called Proposal-tuple-

set) as the set containing the Proposal-tuples pt=<o,Alt(alt1,alt2,..,altm)> whose origin o identifies a tuple in r or in pi(r). 

The schema of pu(r) is <(A1, …,An), (A1, …,An,P|T)>. As in BCDM, Proposal-tuples having the same origin are not 

admitted in the same Proposal-tuple-set (Condition 4.2.3.6).♦ 

 

Condition 4.2.3.6 is motivated by consistency with BCDM (notice that origins only include atemporal attributes, 

therefore value-equivalent origins would be identical). 

 

Additional operators can be introduced in order to select from a Proposal-tuple-set the set of all the origins and of all 

the alternatives. In particular in the case of the operator πAlt, which selects the set of all the alternatives, if there are m 

value equivalent alternatives, referring to k different Proposal-tuples, the output is one tuple having the atemporal 

attributes of the value equivalent alternatives and one bitemporal attribute consisting of the union of the m bitemporal 

attributes. For the sake of brevity, only an informal definition is given. 

 

Definition 4.2.3.7: Origin-projection and Alternative-projection.  

Let s be a Proposal-tuple-set whose elements are defined over the schema R=<(A1,...,An),(A1,...,An,P|T)>, and let A 

stand for A1,….,An. The origin-projection of s is defined as follows: 
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 πo(s)= {z : (z=origin(pt) : pt ∈ s)}. 

The alternative-projection of s is defined as: 

 πAlt(s)= {z : (z= alt 

if alt is an alternative in a Proposal-tuple in s, and there is no other alternative value equivalent to alt 

in any Proposal-tuple in s; 

 z[A,P] alt1[A,P] ∧ z[T] alt1[T] ∪...∪altm[T]  

if alt1,…,altm are value-equivalent alternatives in different Proposal-tuples pt1,..,ptk in s)}.♦ 

 

 
 

4.3 Properties of the data model 

In this section, we analyze the properties of the data structures of BCDMPV. Two properties are essential for the new 

data model: 

(i) uniqueness of the model, and 

(ii) reducibility to the BCDM model. 

The uniqueness of the model (see property 4.3.6 and corollary 4.3.7) is a very important property, especially for a 

semantic model, since “it is a major source of semantic clarity that two instances have the same information content 

exactly when they are identical” [Snodgrass 1995, page 221]. We demonstrate that such a property also holds for 

Proposal-tuple-sets.  

 

In BCDM, the notion of snapshot equivalence has been used in order to formally characterize (bitemporal) relations 

having the same information content (see property 3.1). In this section, we extend such a notion, in order to apply it also 

to Proposal-tuple-sets. As a preliminary step, we introduce the notion of transaction- and valid-timeslice operators on 

BCDM tuples (which is a trivial adaptation of the analogous operators on BCDM relations in [Snodgrass 1995]).  

Definition 4.3.1: Transaction-timeslice operator on BCDM tuples.  

Let x be a tuple belonging to a relation r in the BCDM model, defined over the schema (A1,...,An|T), and let A stand 

for A1,...,An. Let T1 be a transaction time not exceeding the current time. The transaction-timeslice operator on BCDM 

tuples is defined as follows:  

ρe
T1 (x)= {(a1,.. ,an|Tv) : x[A]=(a1,.. ,an) ∧ Tv ={ cv : (T1,cv) ∈ x[T]} ∧ Tv ≠∅}.♦ 

Definition 4.3.2: Valid-timeslice operator on BCDM tuples. 

Let x be a tuple belonging to a relation r in the BCDM model, defined over the schema (A1,...,An|T), and let A stand 

for A1,...,An. Let T2 be a valid time. The valid-timeslice operator on BCDM tuples is defined as follows:  

τe
T2 (x)= {(a1,.. ,an|Tt) : x[A]= (a1,.. ,an) ∧ Tt={ct : (ct ,T2) ∈ x[T]} ∧ Tt ≠∅}.♦ 

The transaction-timeslice operator on transaction-time tuples ρet
T1 and the valid-timeslice operator on valid-time 

tuples τev
T2 are straightforward special cases. We can now extend the above preliminary definitions to deal with Proposal-

tuples and Proposal-tuple-sets. 

Definition 4.3.3: Transaction-timeslice operator on Proposal-tuples and Proposal-tuple-sets.  

 Gia’ detto 
nella sezione 3, ma senza 
citazione. Uniformare o togliere? 
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Given a Proposal-tuple pt = <o, Alt(alt1, alt2,.., altk)> and a transaction time T1 not exceeding the current time, we 

define the transaction-timeslice operator as follows:  

ρPT
T1(pt)=<o, Alt(ρe

T1(alt1), ρe
T1(alt2) ,… , ρe

T1(altk))>, 

where ρe
T1 is the transaction-timeslice operator on BCDM tuples (see Definition 4.3.1). 

The transaction-timeslice operator on a Proposal-tuple-set s is: 

     ρPV
T1(s)={ρPT

T1(pt) : pt∈s}♦ 

 

 Alt(ρe
T1(alt1), ρe

T1(alt2), …, ρe
T1(altk)) denotes a disjunctive set of mutually exclusive valid-time BCDM tuples, 

derived from the alternatives originally stored in pt, after the application of the transaction-timeslice operator on BCDM 

tuples. Observe that if all ρe
T1(alti) (1≤i≤k) provide an empty output, the transaction-timeslice operator on Proposal-

tuples provides an empty output. 

The definition of valid-timeslice operator is similar. 

 

Definition 4.3.4: Valid-timeslice operator on Proposal-tuples and on Proposal-tuple-sets.  

Given a Proposal-tuple pt = <o, Alt(alt1,alt2,..,altk)> and a valid time T2, we define the valid-timeslice operator as 

follows:  

τPT
T2(pt)= <o,Alt(τe

T2(alt1), τe
T2(alt2) ,…, τe

T2(altk))>, 

where τe
T2 is the valid-timeslice operator on BCDM tuples (see Definition 4.3.2).  

The valid-timeslice operator on a Proposal-tuple-set s is: 

τPV
T1(s)={ τPT

T1(pt) : pt∈s}♦ 

 

Al({τe
T2(alt1), τe

T2(alt2), …, τe
T2(altk)) denotes a disjunctive set of mutually exclusive transaction-time BCDM tuples, 

derived from the alternatives originally stored in pt, after the application of the valid-timeslice operator on BCDM 

tuples. Observe that if all τe
T2(alti) (1≤i≤k) provide an empty output, the valid-timeslice operator on Proposal-tuples 

provides an empty output. 

 

The transaction-timeslice operator on transaction-time Proposal-tuple-sets ρPVt
T1 and the valid-timeslice operator on 

valid-time Proposal-tuple-sets τPVv
T2 are straightforward special cases. 

Definition 4.3.5: Snapshot equivalence on Proposal-tuple-sets.  

Two Proposal-tuple-sets r and s are snapshot equivalent if for all the transaction times T1 not exceeding the current 

time and for all the valid times T2: τPVv
T2(ρPV

T1(r))= τPVv
T2(ρPV

T1(s)). ♦ 

Given the above definitions, we can prove that property 4.3.6 holds (see Appendix D for the proofs). It is worth 

stressing that Conditions 4.2.3.2 and 4.2.3.6 (in the definitions of Proposal-tuple and Proposal-tuple-set) are essential to 

obtain such a fundamental property, which “certifies” the semantic clarity of the data model we use. 

 

Property 4.3.6: Uniqueness of model on Proposal-tuple-sets. 

Two Proposal-tuple-sets defined over the same schema are snapshot equivalent if and only if they are identical. ♦ 
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Corollary 4.3.7 trivially follows from property 4.3.6, and from the fact that in BCDMPV the uniqueness property 

trivially holds for the evaluator relations (which are standard BCDM relations; uniqueness of model has been proved for 

the BCDM model, see Section 3), for the sets of proposals of insertion (which, again, are BCDM tuples) and for the sets 

of proposals of deletion (which are transaction-time tuples in the BCDM model). 

Corollary 4.3.7: In our data model, identity and snapshot equivalence coincide, i.e., two databases over the same 

evaluator schema in our model are identical if and only if the corresponding evaluator relations and proposal sets are 

snapshot equivalent. ♦ 

 

Another important property is reducibility to the BCDM model. Intuitively, it guarantees that, in the same conditions 

of the BCDM model (i.e., in case only one level of users\data is taken into account), the BCDMPV model is equivalent to 

the BCDM one. Reducibility trivially holds, since the pair <DB_Evaluators, DB_Proposers> trivially reduces to a 

BCDM database in case only one level of data (i.e., DB_Evaluators) is taken into account. This case models the “non-

proposal-vetting” context in which users can directly operate insert\delete\update operations on the data. 

Property 4.3.8: Reducibility of BCDMPV data model.  

The BCDMPV data model reduces to the BCDM data model in case no proposals are proposed\evaluated. 

Note. Property 4.3.8 grants that BCDMPV data model is a consistent upper layer built upon BCDM data model to 

cope with proposal vetting (in turn, BCDM is a consistent upper layer built upon the standard relational model to cope 

with transaction and\or valid time). 

5 Manipulation operations 

In this section we define the manipulation operations of BCDMPV. In particular, in our model we introduce two levels of 

operations: evaluator operations and proposer operations. As regards proposer operations, we define proposal of 

insertion, proposal of deletion, and proposal of update (which has to be coped with as a primitive operation, as discussed 

in Subsection 4.2.3). On the other hand, evaluators can either accept or reject proposals.  

 

5.1 Proposer operations 

As already discussed, in the proposal vetting context, given any relation r∈DB_Evaluators, proposers can propose 

insertions, deletions and updates on r. Such operations have no direct effect on DB_Evaluators relations: they are stored 

into the sets pi(r), pd(r), and pu(r), waiting for an evaluators’ evaluation. In the following we present the definition of 

proposal of update, which is the most complex operation; the other proposal operations can be found in Appendix B. The 

simplified versions of the operators where only transaction time is dealt with, can be found in Appendix E. 

 

Given a relation r∈DB_Evaluators, a proposal of update can be used in order to modify (i) a tuple in r, or (ii) a tuple 

in pi(r), or (iii) an alternative of a Proposal-tuple in pu(r) (we thus allow chaining of update proposals, to support 

incremental update, i.e., further updating of an already existing proposal of update). As explained in the previous 

sections, proposal operations do not have a direct effect on DB_Evaluators relations, but are recorded in DB_Proposals 

waiting for an acceptance\rejection. Specifically, in all cases (i)-(iii) above, the result of a proposal of update is a 
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Proposal-tuple which, depending on the cases, may be a newly generated one or a modification of an already existing 

Proposal-tuple. The definition of propose_update is quite complex, since it has to cover the three cases, granting also that 

the operation is admissible (e.g., that it refers to existing tuples) and that it does not introduce incorrect Proposal-tuples 

(e.g., value-equivalent origins, or (weakly-)value-equivalent alternatives to the same origin, see Conditions 4.2.3.2, 

4.2.3.3 and 4.2.3.6).  

In the following, we provide a general definition of the propose_update operation, covering all the above issues. 

 

Given a relation r∈DB_Evaluators with schema R=(A1,…,An|T), the arguments of a propose_update operation 

regarding r are: (i) r itself, (ii) the old tuple to be modified, and (iii) the new tuple (i.e., (a”1,…,a”n,pnew|tvt_new)). While the 

new tuple always has the schema (A1,…,An,P|Tv) (where Tv denotes the valid time), we specify the old tuple in different 

ways, depending on the case (i)-(iii) we cope with. Specifically, if we cope with an update to an alternative of a Proposal-

tuple in pu(r), the alternative is uniquely identified by a pair <origin,alternative> (i.e., <(a1,…,an),(a’1,…,a’n,pold)>).3 On 

the other hand, if we cope with an update to an evaluator tuple or to a proposal of insertion, the old tuple is uniquely 

identified by its atemporal values (i.e., ( a1,…,an)). In order to shape this case within the above pattern, in such cases we 

assume that the old tuple is specified by the pair  <(a1,…,an),(a1,…,an)>. 

 

The propose_update operation first checks the applicability of the proposal operation, through the 

admissible_propose_update routine. 

 

Definition 5.1.1: admissible_propose_update.  

Given a relation r∈DB_Evaluators with schema R=(A1,…,An|T), let A stand for (A1,…,An), let <(A1, …,An), (A1, 

…,An,P|T)> be the schema of pu(r). We define admissible_propose_update, applied to an operation 

“propose_update(r,<(a1,...,an),(a'1,...,a'n,pold)>, (a''1,...,a''n,pnew|tvt_new))”,  as follows: 

 

admissible_propose_update(  propose_update(r,<(a1,...,an),(a'1,...,a'n,pold)>, (a''1,...,a''n,pnew|tvt_new))  ): 

(1) (∃x∈r : (x[A]=(a1,...,an)∧ current(x)) ∨ ∃x∈pi(r) : (x[A]=(a1,...,an)∧current(x))) ∧ 

(2) (∃pt∈pu(r) : (origin(pt)=(a1,...,an)  ∧ ∃ y ∈ alternatives(pt) :  

(y[A] = (a1',...,an') ∧ y[P]= pold ∧ current(y)) ∨ (a1,...,an)=(a'1,...,a'n))) ∧ 

(3) ∀pt ∈ pu(r) (origin(pt)=(a1,...,an))   ( ¬∃ z ∈ alternatives(pt) :  (z[A] = (a1'',...,an'') ∧   current(z) ∧ ρe
UC (z) [Tv] 

= tvt_new))) ∧ 

(4) ∀k∈ r  ((k[A]= (a1'',...,an'') ∧ current(k))  (a1'',...,an'')=(a1,...,an)) ∧ 

(5)  pnew ∈ Proposers♦ 

 

A proposal of update is admissible if a conjunction of five conditions (above tagged as (1)-(5)) holds:  

                                                           
3 Since in our model we may have value-equivalent alternatives which belong to different Proposal-tuples, a given alternative can be 

uniquely identified only if also the Proposal-tuple it belongs to is specified. Since, in our approach, each Proposal-tuple in a 

Proposal-tuple-set is uniquely identified by its origin, we specify a given alternative through the pair <origin, alternative>. Finally, 

notice that, since we disallow value-equivalent alternatives to the same origin (see Condition 4.2.3.2), the timestamp of the 

alternative is not needed to identify it. 



 22 

(1) (a1,...,an) identifies a tuple x in the evaluator relation r or in the proposal of insertion set pi(r) and such a tuple is 

current (see Section 3 for the definition of current(x));  

(2) either (i) the input <(a1,...,an),(a'1,...,a'n, pold)> identifies a current alternative of a Proposal-tuple pt in pu(r), or 

(ii) it identifies a tuple in r or (iii) in pi(r) (given the convention on the input format we have discussed above, 

the condition (a1,...,an)=(a'1,...,a'n) holds exactly in cases (ii) and (iii)); 

(3) there is not any alternative z of a Proposal-tuple pt ∈ pu(r) with origin (a1,...,an) which is weakly value 

equivalent to the input (a1'',…,an''), is current, and has (at transaction time equal to UC) the same valid time of 

the input (i.e., tvt_new; notice that ρe
UC(z) [Tv] denotes the valid time of the alternative z when its transaction time 

is equal to UC). Intuitively, this condition avoids that value-equivalent alternatives are inserted in the same 

Proposal-tuple (see Condition 4.2.3.2), and also that weakly-value-equivalent alternatives with different 

proposers, but with the same valid time, are inserted in the same Proposal-tuple (see Condition 4.2.3.3 and its 

explanation); 

(4) there is no current tuple k∈r which is value equivalent to the new proposal (a1'’,...,an''), except (possibly) the 

origin itself. In such a case, the proposal concerns an update to the valid time of the origin. This condition is 

used to disallow a new proposal (a1'',...,an'', pnew |tvt_new) which is value equivalent to a current tuple t’ in the 

evaluator level relation, which is not the origin of the Proposal-tuple to be modified. In fact, the acceptance of 

such a proposal of update would lead, in the evaluator relation, to the deletion of the old tuple, and to the 

insertion of the new proposal. However, since the new proposal would be value equivalent to t’, an insertion 

of (a1'',... ,an''|tvt_new) is not possible (insertion of value-equivalent tuples is explicitly disallowed in BCDM 

[Snodgrass 1995]); 

(5) the proposer pnew belongs to the set of proposers. 

 

We can now define our operator to propose updates. 

In order to simplify the formulae, we introduce a function to create Proposal-tuples.  

 

Definition 5.1.2: create_pt. 

Given a relation in DB_Evaluators with schema R=(A1,…,An|T), create_pt takes as an input an atemporal tuple o 

defined on the schema (A1,…,An) and a set {alt1,alt2,..,altm} of non-value-equivalent tuples on the schema (A1,…,An,P|T), 

and gives as an output a Proposal-tuple having o as an origin and {alt1,alt2,..,altm} as alternatives, i.e., 

create_pt (o,{alt1,alt2,..,altm}) =<o,Alt(alt1,alt2,..,altm)> ♦ 

 

Notation. The manipulation operations are described using the following general pattern: 

Operation(parameters) 

if admissibility_conditions 

then  

begin 

if conditions1 then actions1 

…. 

else if conditionsn then actionsn 

end 
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where we intend that the parameters and the (logical) variables quantified in admissibility_conditions are global to the 

whole operation, while the (logical) variables in each condition conditionsi (1≤i≤n) are local to the corresponding action 

actionsi.  

In simple cases, the begin-end part of the procedure may just reduce to a sequence of actions. ♦ 

 

Definition 5.1.3: propose_update. 

Given a relation r∈DB_Evaluators with schema R=(A1,…,An|T), let A stand for (A1,…,An), let <(A1, …,An), (A1, 

…,An,P|T)> be the schema of pu(r), and let (A1, …,An,P|T) be the schema of a new proposal of update. We define 

propose_update as follows: 

 

propose_update(r, <(a1,...,an,), (a'1,...,a'n, pold)>,(a''1,...,a''n, pnew|tvt_new)): 

if(admissible_propose_update(propose_update(r,<(a1,...,an),(a'1,...,a'n,pold)>,(a''1,...,a''n,pnew|tvt_new)))) then 

begin 

(1) if  (¬ ∃ pt ∈ pu(r) : origin(pt)=(a1,...,an)) 

 then pu(r)pu(r)∪{create_pt((a1,...,an),{(a''1,...,a''n, pnew|{UC}× tvt_new)})} 

(2) else if (∃ pt ∈ pu(r) : (origin(pt)=(a1,...,an)  ∧ ∀y ∈alternatives(pt)  (y[A]=(a1'',...,an'')  y[P]≠pnew))) 

then pu(r)pu(r)−{pt} ∪ {create_pt((a1,...,an),alternatives(pt)∪ {(a''1,...,a''n,pnew|{UC}×tvt_new)})} 

(3) else if  (∃ pt ∈ pu(r) : (origin(pt)=(a1,...,an)  ∧  ∃ y ∈ alternatives(pt) : (y[A] = (a1'',...,an'') ∧ y[P]= pnew))) 

then pu(r)pu(r)− {pt} ∪ {create_pt ((a1,...,an), alternatives(pt) − y ∪  

  {(a''1,...,a''n,pnew|y[T]- uc_ts(y[T]) ∪ {{UC}× tvt_new})})} 

end♦ 

 

First, the admissibility of the update proposal is checked. If admissibility holds, three different (mutually exclusive) 

cases must be considered (otherwise the operation has no effect, and an appropriate warning may be signaled): 

(1) the input (a1,...,an)  does not identify any already existing Proposal-tuple pt∈pu(r); in such a case a new 

Proposal-tuple is inserted into pu(r), having as an origin the input origin (a1,...,an)  and having the input proposal 

as the (unique) alternative. Notice that the bitemporal timestamp of the alternative has UC as a transaction time, 

and the input tvt_new as a valid time (i.e., it is obtained by performing the Cartesian product {UC}× tvt_new); 

(2) the input (a1,...,an)  identifies an already existing Proposal-tuple pt∈pu(r), and the proposer pnew has not 

proposed any alternative proposal in pt which is value equivalent to the current proposal (a1'',...,an'',pnew). In 

such a case the new alternative (a''1,...,a''n,pnew|{UC}× tvt_new) is added to the already existing alternatives of pt; 

(3) the input (a1,...,an)  identifies an already existing Proposal-tuple pt∈pu(r), and the proposer pnew has already 

proposed an alternative of pt value equivalent to (a1'',...,an''). In such a case the alternative is updated with the 

new temporal information: notice that, having satisfied condition (3) in Definition 5.1.1 implies that in this third 

case, we are just modifying the valid time. Adding (a1'',...,an'') as a new alternative would not be possible, since 

value-equivalent alternatives are not admitted in the same Proposal-tuple (see Condition 4.2.3.2). Note that 

uc_ts is a function that gives as an output the set of all bitemporal chronons (UC, cv) (i.e., all chronons having 

UC as their transaction time) from the timestamp of the tuple and it is defined as in BCDM [Snodgrass 1995]:  
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Definition 5.1.4:  uc_ts( tb) ={(UC, cv) : (UC, cv) ∈ tb}♦ 

The simplified versions of the operators where only transaction time is dealt with, can be found in the Appendix E. 

 

Example. Referring to our running example, the proposal of update issued by proposer P3 at step 9 is coped with in 

our approach as follows: 

 

propose_update(CLINICAL_ACTION,<(101,100),(101,100,P1)>, (101,300,P3|[0,15])) 

 

In particular proposer P3 makes a proposal of update to the proposal issued by P1 at step 4, which refers to the tuple 

with ID=101 in the DB_Evaluators relation CLINICAL_ACTION (see Figure 2). Before step 9, the status of the 

Proposal-tuple concerning tuple 101 in pu(CLINICAL_ACTION) is shown in the left part of Figure 5.  

 

The proposal of update is admissible, because (1) (101,100) identifies a current tuple that belongs to 

CLINICAL_ACTION; (2) <(101,100), (101,100,P1)> identifies a current alternative of a Proposal-tuple in 

pu(CLINICAL_ACTION); (3) there is not any alternative in the Proposal-tuple with origin (101,100) which is weakly 

value equivalent to the input (101,300), is current, and has (at transaction time equal to UC) the same valid time; (4) there 

is no current tuple in CLINICAL_ACTION which is value equivalent to the new proposal (101,300); (5) P3 belongs to the 

set of proposers. Action (2) in formula 5.1.3 is then performed, since the input origin (101,100) identifies an already 

existing Proposal-tuple in pu(CLINICAL_ACTION), and P3 has not proposed any alternative proposal in such a Proposal-

tuple which is value equivalent to the current proposal (101,300). The new alternative (101,300,P3|[9,UC],[0,15]) is 

added to the already existing alternatives of (101,100) as shown on the right part of Figure 5. 

 

 

Figure 5: the Proposal-tuple concerning the tuple with ID=101 in CLINICAL_ACTION, before (left side) and 

after (right side) the execution of the propose_update at step 9. 

 

It is worth noticing that, given a relation r∈DB_Evaluators and a Proposal-tuple pt=<o,Alt(alt1,…,altn)>∈pu(r), in the 

case a new tuple altnew is proposed to update an alternative <o,alti> (alti∈{alt1,…, altn}) of pt (as in the above example), 

the propose_update operation adds the new proposal as a new alternative <o, altnew> of pt (i.e., pt becomes 

<o,Alt(alt1,…, altn, altnew)>) instead of creating a new Proposal-tuple pt’=<alternative,{altnew}> having as an origin the 

alternative to be updated. In other words, although we cope with chains of proposals of update, we do not explicitly store 

the whole chaining of updates in Proposal-tuples, since we directly relate each proposal to the origin tuple to be modified 

(and not to the alternative proposal it directly modifies). This is a deliberate choice we made to simplify both the data 

model and the definition of the algebraic operations. We motivate such a choice in Section 8, where we discuss 

alternative approaches. 

 

5. 2 Evaluator operations 
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Besides performing insertion and deletion operations (which are standard BCDM operations on the DB_Evaluators 

database), in our approach evaluators can take into account DB_Proposers proposals, rejecting or accepting them.  

The rejection of a proposal has no effect on the DB_Evaluators database. Since we want to retain the whole database 

history, including the history of proposals, a rejected proposal is not physically deleted from DB_Proposers database; 

instead, its bitemporal timestamp is made not current by “closing” it: in other words, the bitemporal chronons with UC as 

a transaction time have to be removed from its timestamp (see for instance the transaction time [5,6] for the second 

alternative of the Proposal-tuple in Figure 4, representing the rejection of the alternative itself at time 7). As a specific 

policy, for the sake of space efficiency, vacuuming [Snodgrass 1995] can be used to prune “closed” tuples which are 

older than a given date from DB_Proposers. On the other hand, the acceptance of a proposal is used by evaluators to 

make a given current proposal effective, i.e., to execute it on the DB_Evaluators database. Notice that, besides causing a 

modification of the DB_Evaluators database, the acceptance of a proposal may also have some effects on the content of 

DB_Proposers, since proposals that are mutually exclusive alternatives of the accepted one need to be “closed”. 

As an example of an evaluator operation, in the following we describe our operation for accepting an update proposal. 

The other evaluator operations are simpler, and can be found in Appendix B.  

An acceptance of a proposal of update is used by evaluators in order to update the DB_Evaluators data according to 

the given proposal. Only proposals that are current may be accepted by evaluators. As anticipated, to enforce the 

semantics that alternative proposals in a Proposal-tuple are mutually exclusive, the acceptance of an update proposal must 

“close” the alternatives proposals. Moreover, the accepted tuple as well as the deletion and\or insertion proposals 

concerning the tuple itself must be “closed”. Such operations are performed through the delete_alternatives routine (see 

Definition B.10 in Appendix B). 

 

We can now define the operation of acceptance of a proposal of update. The arguments of the accept_update 

operation are the DB_Evaluators relation r to be modified, the selected alternative <(a1,...,an),(a'1,...,a'n, pnew)> of a 

Proposal-tuple in pu(r), and the evaluator e. 

As a first step, admissible_accept_update is invoked in order to check the acceptability of the operation. 

 

Definition 5.2.1: admissible_accept_update.  

Given a relation r∈DB_Evaluators with schema R=(A1,…,An|T), let A stand for A1,…,An, let <(A1, …,An), (A1, 

…,An,P|T)> be the schema of pu(r); we define admissible_accept_update as follows: 

 

admissible_accept_update(  accept_update(r, <(a1,...,an), (a'1,...,a'n, pnew)>, e)  ): 

(1)  ∃ pt∈pu(r) : origin(pt)=(a1,...,an)  ∧      

(2)  ∃y ∈ alternatives(pt) : y[A] = (a1',...,an') ∧ y[P] = pnew ∧ current(y) ∧ 

(3)  ∀ z∈r  (z[A]=(a1',...,an') ∧ current(z))  (a1',...,an') =(a1,...,an)) ∧ 

(4)  e ∈Evaluators♦ 

 

The operation is admissible if (the conjunction of) four conditions hold: 

(1) the input origin (a1,...,an) identifies a Proposal-tuple pt∈ pu(r); 

(2)  (a1',…,an', pnew) identifies a current alternative of pt; 
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(3) there is no current tuple z∈r which is value equivalent to the chosen alternative (a1',...,an'), except (possibly) the 

origin itself (see the comments to Definition 5.1.1, part (4)); 

(4) e is an evaluator. 

 

Concerning the admissibility conditions, notice that, since the data stored in the database could change, it is possible 

that a proposal is admissible when it is issued (i.e., it is consistent with the status of DB_Evaluators), but it is not 

admissible any more at acceptance time (e.g., because the tuple to be updated is no longer current in the database, e.g., 

due to a direct deletion operation performed by an evaluator). We choose to perform admissibility checks at acceptance 

time following a “lazy evaluation” policy in which every acceptance operation locally examines just the portion of the 

database it is concerned with (and the effect on the proposals in DB_Proposers of direct insertion and deletion operations 

performed by evaluators is not checked as soon as possible – but only in a “lazy” way, if some further operation 

regarding the modified data will be accepted\executed). Although our approach might be easily adapted to perform 

checks as soon as possible, a “lazy evaluation” strategy appears to us more efficient from a computational point of view. 

 

We can finally define the accept_update operation. 

Definition 5.2.2: accept_update. 

Given a relation r∈DB_Evaluators with schema R=(A1,…,An|T), let A stand for A1,…,An, let <(A1, …,An), (A1, 

…,An,P|T)> be the schema of pu(r); we define accept_update as follows: 

 

accept_update(r, <(a1,...,an), (a'1,...,a'n, pnew)>, e) 

if (admissible_accept_update(accept_update(r, <(a1,...,an), (a'1,...,a'n, pnew)>, e))) 

then 

begin 

(1)  if (¬ ∃ x ∈ r : x[A] = (a1,...,an)  ∧  current(x)) ∧ ∧ ∧ ∧ ( ∃ y ∈ pi(r) : y[A] = (a1,...,an)  ∧  current(y))  

 then  insertB (r,(a'1,...,a'n), ρe
uc(y)[Tv]); delete_alternatives(r, (a1,...,an)) 

(2) else if ( ∃ x∈ r : x[A]=(a1,...,an) ∧ current(x) ∧  ∃ pt∈pu(r) : origin(pt)=(a1,...,an)  ∧  

  ∃y ∈ alternatives(pt) : y[A] = (a1',...,an') ∧ y[P] = pnew ∧ current(y)) 

 then 

deleteB(r, (a1,...,an)); insertB (r,(a'1,...,a'n,), ρe
uc(y)[Tv]);  

delete_alternatives(r, (a1,...,an)) 

end♦♦♦♦ 

 

Accept_update first checks the admissibility of the operation. If it is admissible, two cases must be distinguished:  

(1) the evaluator is accepting an update to a proposal of insertion. In such a case, the accept_update operation uses 

the BCDM insertB routine [Snodgrass 1995] to insert into r the tuple (a'1,...,a'n|ρe
uc(y)[Tv])) where ρe

uc(y)[Tv] 

denotes the valid time of the tuple y when the transaction time is UC. Moreover, accept_update also “closes” 

the Proposal-tuple pt and (possibly) proposals of insertion and deletion concerning (a1,...,an) (through the 

delete_alternatives routine). Notice that, in this case, no tuple needs to be deleted from the evaluator relation r 

(since the update concerns a new tuple proposed for insertion, and not a tuple in r); 
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(2) the evaluator is accepting an update to a tuple in r. In such a case, the accept_update operation first deletes 

(using the BCDM deleteB operation [Snodgrass 1995]) the tuple (a1,...,an) from r, and then performs the same 

operations as in the first case. 

The simplified versions of the admissible_accept_update and accept_update operators where only transaction time is 

dealt with can be found in the Appendix E. 

 

Example. Referring to our running example, at step 12 the proposal of update issued by proposer P3 at step 9 is 

accepted by E1 as follows: 

 

accept_update(CLINICAL_ACTION,<(101,100),(101,300,P3)>, E1) 

 

 

 

Figure 6: the Proposal-tuple concerning the tuple with ID=101 in CLINICAL_ACTION, before (left side) and 

after (right side) the execution of the accept_update at step 12.  

 

The accept operation is admissible, because (1) the input origin (101,100) identifies a Proposal-tuple in 

pu(CLINICAL_ACTION), (2) (101,300,P3) identifies a current alternative of such a Proposal-tuple, (3) there is no current 

tuple in CLINICAL_ACTION which is value equivalent to the chosen alternative (101,300) and (4) E1 is an evaluator. 

The action (2) in formula 5.2.3 is performed because the evaluator is accepting an update to a tuple in 

CLINICAL_ACTION. Thus, the accept_update routine first deletes (using the BCDM deleteB operation [Snodgrass 

1995]) the tuple (101,100) from CLINICAL_ACTION, and then uses the BCDM insertB routine [Snodgrass 1995] to 

insert into CLINICAL_ACTION the tuple (101,300|[12,UC],[0,15]). Moreover, accept_update also executes the 

delete_alternatives routine on (101,100) in order to “close” such a Proposal-tuple. The resulting Proposal-tuple in 

pu(CLINICAL_ACTION) is shown on the right side of Figure 6. 

Figure 7 reports the updated content of the CLINICAL_ACTION relation after the acceptance at time step 12. 

 

CLINICAL_ACTION 

id name description goal cost Ts Te Vs Ve 

101 pulmonary 

embolus 

detection 

detection by 

imaging  

techniques 

diagnosis of 

pulmonary 

embolism 

100€ 2/20/2001 11 0 3000s 

101 pulmonary 

embolus 

detection 

detection by 

imaging 

techniques 

diagnosis of 

pulmonary 

embolism 

300€ 12 UC 0 15s 

Figure 7: the updated content of the CLINICAL_ACTION relation after the acceptance operation at step 12. 
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5.3 Properties of manipulation operations 

We now analyze the properties of our manipulation operations. The fundamental property is the fact that we have defined 

our manipulation operations in such a way that they are a consistent extension of the ones in the BCDM model, which 

guarantees that all the operations performed in BCDM can also be performed in our extended model, with the same 

syntax and the same results.  

The goal of our approach is to be as general as possible, given the proposal vetting typology of cooperative work on 

relational data. Since we aim at providing a general semantic framework, coping with specific domain\task-dependent 

policies is outside the goal of our work,  and we see these policies as refinements of our abstract framework, to be 

devised at the implementation level (for instance, whether the evaluation is performed by a specific evaluator alone, or 

through a voting mechanism between evaluators, basically does not affect our framework). However, in order to analyse 

the properties of our operators, two basic cases must be distinguished: 

(Policy 1) We let evaluators directly insert and delete relations in DB_Evaluators; 

(Policy 2) Direct insertion, deletion and modify operations on DB_Evaluators relations are not allowed to evaluators. 

 

Under Policy 1, property 5.3.1 holds, since BCDM insertB and deleteB operations can be performed by evaluators. 

 

Property 5.3.1: Consistent extension of BCDM.  

Under Policy 1 our manipulation language is a consistent extension of the BCDM model (supposing that all users are 

evaluators).♦ 

 

On the other hand, if Policy 2 is considered, in our model there is no direct way of inserting or deleting tuples in 

DB_Evaluators. In fact, changes to relations in DB_Evaluators can only be performed in two steps: first, a proposal must 

be issued (by proposers), and secondly, it has to be accepted by evaluators. We can therefore prove a less strict property. 

In fact, under Policy 2 our approach is a “proposal vetting” consistent extension of BCDM, in the sense that, in case we 

assume that the set of users in the BCDM model is equal to both the sets Evaluators and Proposers in our approach (i.e., 

each BCDM user is both an evaluator and a proposer in our approach), and each BCDM user operation OpB is actually 

implemented (in our model) as an atomic pair of operations <propose_Op; accept_Op>, then each operation in the 

BCDM model can also be performed in our approach, leading to the same results, as concerns the data in DB_Evaluators 

only. 

 

Property 5.3.2: “Proposal vetting” consistent extension of BCDM.  

Under Policy 2, considering that all users are both evaluators and proposers, our model in which each manipulation 

operation OpB is executed as an atomic pair of operations <propose_Op; accept_Op> is a “proposal vetting” consistent 

extension of the BCDM model (considering only data in DB_Evaluators). ♦ 

 

This means that, even if Policy 2 is enforced, users can obtain in our approach the same results that they could obtain 

in BCDM, by performing pairs of <propose_Op; accept_Op> operations instead of standard ones.  
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6 Relational Algebra  

In this section, we define algebraic operators on the new data model. 

At the evaluator level, since the relations are BCDM relations, algebraic operators are exactly the same as in the standard 

BCDM model. The same holds at the proposer level for the proposals of insertion, where standard bitemporal BCDM 

tuples are used, and for proposals of deletion, where transaction-time BCDM tuples are used. On the other hand, the 

treatment of proposals of update demands for the definition of new algebraic operators operating on Proposal-tuple-sets 

(as well as for the definition of operators allowing one to combine a Proposal-tuple-set with a set of BCDM tuples). 

By passing, notice that, given a relation r∈DB_Evaluators, and its Proposal-tuple-set pu(r), BCDM algebraic 

operators can also be applied on the origin-projection (i.e., πo(pu(r))) and on the alternative-projection (i.e., πAlt(pu(r))) 

of pu(r), which are sets of atemporal and bitemporal BCDM tuples respectively (see Definition 4.2.3.7). 

 

Algebraic operators on Proposal-tuple-sets are very useful, since they support the possibility of querying data, 

navigating and aggregating them. Therefore they can help evaluators in taking their acceptance\rejection decisions, as 

well as proposers in proposing updates to data. For example, selection can be used in order to focus the attention only on 

a subset of proposals that satisfy some conditions. Moreover, as highlighted in our running example, the data concerning 

the same guideline action can be stored into more than one relation. Therefore, join operations can be useful for 

proposers and evaluators, e.g., in order to have a global view of all the data concerning the same action. 

 

Notice that, in our approach, algebraic operators are used only to query data. On the other hand, the tuples in the 

relations resulting from the application of algebraic operators cannot be directly accepted\rejected by evaluators. In fact, 

such operations would be meaningless, since accepted proposals must conform the schema of data at the evaluators’ 

level.  

 

We present here the natural join operator. The other basic operators (union, difference, selection and projection) can 

be found in Appendix C. Other operators (e.g., cartesian product) can be defined on the basis of such operators. 

 

Notation. 

Here and in Appendix C we use the following notation in order to define the algebraic operators on Proposal-tuple-

sets: 

 

Operation = {z :: <origin(z),alternatives(z)> : 

if conditions  

then  

assignments_to_origin; 

alternatives(z) = {alt : 

 if alternatives_conditions 

 then assignments_to_alt; 

 …. 

} 
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….. 

} 

 

In other words, we characterize the output Proposal-tuple-set as a set of Proposal-tuples z of the general form 

<origin(z),alternatives(z)>, that can be defined by mutually exclusive cases. Each case concerning the origin is 

characterized by a set of conditions conditions and leads to a set of assignments (assignments_to_origin) defining the 

output origin. In turn, the corresponding alternatives are defined by mutually exclusive cases. 

In such formulae, we assume the standard “nesting” policy for the scope of the variables in the conditions (so that, 

e.g., assignments_to_alt can use only the variables introduced by the corresponding alternatives_conditions and by the 

conditions). 

Notice that, in some simple cases (such as the Definition 6.1 below), conditions are absent (so that assignments are 

directly used, instead of “if conditions then assignments” patterns). ♦ 

 

Definition 6.1: natural join . 

Given the Proposal-tuple-sets s1=pu(r1) and s2=pu(r2) corresponding to relations r1∈DB_Evaluators and 

r2∈DB_Evaluators with schema  R1=(A1,…,An,B1,…,Bm |T) and R2=(A1,…,An,C1,…,Ck |T) respectively, let the schema 

of s1 and s2 be <(A1,…,An,B1,…,Bm), (A1,…,An,B1,…,Bm,P|T)> and <(A1,…,An,C1,…,Ck), (A1,…,An,C1,…,Ck,P |T)> 

respectively. Natural join  (where “PV” stands for proposal vetting) provides as an output a Proposal-tuple-set 

defined over the schema <(A1,…,An,B1,…,Bm,C1,…,Ck), (A1,…,An,B1,…,Bm,C1,…,Ck,P|T)>.  is defined as follows 

(let A stand for A1,…,An, B for B1,…,Bm and C for C1,…,Ck): 

 

r PV s = { z :: <origin(z),alternatives(z)> : 

if ∃ pt1∈s1, ∃ pt2∈s2 : origin(pt1)[A]= origin(pt2) [A]  

∧  ∃alt1∈alternatives(pt1), ∃ alt2∈ alternatives(pt2) :  

alt1[A,P]= alt2[A,P] ∧  alt1[T] ∩ alt2[T] ≠∅  

then 

origin(z)[A]origin(pt1)[A];origin(z)[B]origin(pt1)[B];  

origin(z)[C]origin(pt2)[C]; 

alternatives(z) = {alt :  

  alt[A,P]alt1[A,P]; alt[B]alt1[B]; alt[C]alt2[C];   
  alt[T] alt1[T]∩ alt2[T]} 

 }♦     

 

The result of proposal-vetting natural join is a set of Proposal-tuples built as follows. Two proposal-tuples pt1 and pt2 

with origins value equivalent on the common attributes A1,…,An are merged into one Proposal-tuple having as an origin 

the standard (atemporal) natural join of the origins. The alternatives of the new tuple are built by performing the standard 

natural join on the atemporal attributes, and the intersection of bitemporal timestamps. Only alternatives whose temporal 

intersection is not empty are recorded as an output. Notice that the proposer attribute P can be renamed in order to avoid 

joining Proposal-tuples on the attribute itself (i.e., to merge also alternatives with different proposers). 
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We have defined our algebraic operators on Proposal-tuple-sets in such a way that they have the property of 

reducibility [Snodgrass 1995] with respect to BCDM algebraic operators.  

Reducibility is a fundamental property of our operators, since it guarantees that the semantics of BCDM operators is 

preserved in our more complex counterpart. To define reducibility, we define the convert operator, that maps a Proposal-

tuple to a set of standard BCDM tuples into a BCDM relation, in such a way that each tuple has as a schema the union of 

the schemata of the origin and of the alternatives (of course, renaming is used to retain common attributes). 

 

Definition 6.2: convert. 

Given a Proposal-tuple-set s defined over the schema <(A1, …,An), (A1, …,An,P|T)>, the result of convert(s) is a 

BCDM relation defined over the schema (A1, …,An, A’1, …,A’n,P|T) (where attributes A’1, …,A’n are a renaming of A1, 

…,An respectively) defined as follows: 

 

convert(s)={(a1 ,…,an,a’1 ,…,a’n , p |T) :∃pt∈s:  

   (a1,…,an)=origin(pt) ∧ (a’1 ,…,a’n,p |T) ∈alternatives(pt)}♦ 

 

Note. It is worth stressing that, although the convert operation produces as an output relations which “syntactically” 

conform relations in the BCDM model, this does not mean that the BCDM model can directly capture (the semantics of) 

Proposal-tuple-sets. As a matter of fact, BCDM relations only support conjunctions of tuples. On the other hand, due to 

the disjunctive semantics of Proposal-tuples (as it clearly emerges from the definition of the manipulation operations in 

Section 5), tuples in convert(s) must be interpreted as a conjunction (one for each Proposal-tuple in s) of disjunctions 

(one for each alternative in the same Proposal-tuple). In Section 9 we will briefly address implementation issues, 

sketching how such a disjunctive interpretation can be supported. 

 

Property 6.3: Reducibility. 

BCDMPV algebraic operators on Proposal-tuple-sets are reducible to BCDM algebraic operators, i.e., for each 

algebraic unary operator OpPV in our model, and indicating with OpB the corresponding BCDM operator, for each 

Proposal-tuple-set s, the following holds (the analogous holds for binary operators): 

convert(OpPV(s) ) = OpB(convert(s)) ♦ 

  

Property 6.3 can be trivially extended to consider also our algebraic operators on relations in r∈DB_Evaluators and 

on the corresponding pi(r) and pd(r) sets (where pi(r) and pd(r) can be trivially interpreted as BCDM relations). 

 

Corollary 6.4: Reducibility to BCDM. 

 The algebraic operators in our approach are reducible to BCDM algebraic operators. ♦ 

 

Finally, given property 3.2 of BCDM (i.e., BCDM algebraic operators reduce to relational algebra operators), also 

corollary 6.5 trivially holds. 

 

Corollary 6.5: Reducibility to relational algebra. 

The BCDMPV algebraic operators are reducible to relational  algebra operators. ♦ 
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In summary, we have that: 

(1) as regards evaluator data only, we adopt the BCDM model (see Section 4.1); 

(2) as regards manipulation operations, we provide a consistent extension of the BCDM’s ones (see properties 5.3.1 

and 5.3.2);  

(3) as regards algebraic operators, we provide an extension reducible to the BCDM’s ones (see corollary 6.4). 

We therefore provide an “upper layer” that is super-imposed to BCDM in order to cope with proposal vetting needs 

(see also the discussion in Section 9), adding to BCDM the expressiveness to cope with different levels of users, and with 

alternative proposals (while BCDM and SQL do not provide any support to cope with disjunctions of tuples)  

Notice also that, as we recalled in Section 3, BCDM is structurally equivalent to a set of representation models 

[Snodgrass 1995], including TSQL2. In turn, TSQL2 is upward compatible with SQL (i.e., all the data structures and 

legal queries in SQL are contained in TSQL2 syntax; moreover, all statements expressible in SQL evaluate the same 

results in both models) [Bohlen et al. 1995]. We operate at a semantic level (e.g., we do not provide any query language, 

so that our approach is not directly comparable with SQL). Nevertheless, given the discussion above, we may say that our 

BCDMPV model is “consistent” with SQL, in the sense that it provides a consistent extension of its underlying semantics 

(see also corollary 6.5) to cope with time (as in BCDM) and proposal vetting.  

7 Related works 

In this paper, we have discussed our extensions to the BCDM model, to cope with proposal vetting in a relational 

environment, in which both valid time and transaction time need to be supported.  

We are not aware of any other approach in the literature coping with such an issue. However, we think that it might be 

important to compare our approach with other approaches that share at least some of our goals. In particular, in the area 

of database versioning, many approaches have been devised to face changes to a database, due to the proposals of 

different versions, evolving in time. 

Our approach is related to the database approaches aiming at managing versioning at the data level (i.e., extension 

versioning, using the terminology in [Ozsoyoglu and Snodgrass 1995]). However, some main general differences with 

respect to such approaches are that: 

• they do not extend the relational model because: 

− they operate on object-oriented databases (or implement object-oriented concepts on relational databases), or 

− they operate mostly at the language level (and not at a semantic level, as in our approach), providing high-level 

constructs to manipulate object versions; as a consequence, they do not provide an algebra to query versions, or 

− they extend conceptual design models such as ER; 

• they do not allow an easy transition from existing relational data (see properties 5.3.1 and 5.3.2); 

• they do not cope also with valid and transaction time; in fact most approaches in the literature deal either with time 

or with alternative versions. 

Two more specific differences concern the fact that, in such approaches, there is not a direct management of: 

• two different levels of data (evaluator vs. proposer data levels) and two different sets of manipulation operations 

(accept\reject operations vs. insert\delete\update proposal operations); 

• mutually exclusive alternatives (i.e., when an alternative is accepted, the related alternatives must be disallowed).  
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Despite these relevant differences, in the following, we discuss in more detail some specific approaches. Please note 

that most of these approaches are meant for specific application areas, i.e., CAD and CASE domains; thus, they support 

features that are not accounted for in our approach, such as composite objects, types\classes of design objects, dynamic 

configurations and change propagation. 

The seminal approach by McLeod et al. [McLeod et al. 1983] is inscribed in the framework of conceptual design data 

models (however, it describes how to implement it in the relational model). It introduces the concepts of object 

composition and object version. 

The approach by Batory and Kim [Batory and Kim 1985] (later extended in [Chou and Kim 1986]) deals with VLSI 

CAD and is an ER model. They introduce object-oriented-like inheritance and they deal with versions as objects with the 

same interface but with different implementations. They describe a mechanism of version timestamps (e.g., “change-

notification timestamp”, “change approval timestamp”) for dealing with change notification. In [Chou and Kim 1986] the 

approach has been revised to deal also with different levels (types) of versions (i.e., transient, working and released), 

which loosely resemble our evaluator\proposer levels. 

Dittrich and Lorie in [Dittrich and Lorie 1988] introduced an influential approach in CAD domain. They describe the 

design of a mechanism to support versioning proposing an implementation based on relational databases. Their model 

comprises design objects with some associated versions. In this sense, the design object resembles the Proposal-tuples in 

our approach. Moreover, Dittrich and Lorie describe a mechanism for identifying the current (reference) version. 

However, they do not discriminate between accepted and rejected versions, and do not enable users to explicitly propose 

a deletion of a design object. 

[Vines et al. 1988] and [SUN 1988] are two works meant for the CASE domain and for software configuration 

management. In the first work - unlike the other works in this section and similarly to our approach - a version is 

identified with timestamps, rather than version identifiers. In the second one, similarly to our approach, versions are 

organized in levels (i.e., development, integration and release). 

[Katz 1990] reviews the various version data models and proposes a comprehensive approach inspired to the ER 

model. 

None of the works presented so far support transaction and valid time. More recently, several object-oriented 

approaches have been proposed for dealing both with versions and with valid and transaction times, such as [Sciore 

1994], [Gançarski 1999] and [Moro et al. 2001]. The work of [Rodríguez et al. 1999] supports only versioning and 

transaction time. In general, a main difference between object-oriented approaches and relational approaches has been 

pointed-out by Sciore [Sciore 1991, page 425]: “The relational model has a limited modeling capacity, and so 

researchers in historical relations have all being forced to extend the relational model in some way. On the other hand, 

object-oriented models are able to encapsulate the notion of time in classes. Thus there is no need to develop a new 

historical object-oriented model; what we need is a methodology for using these classes in our existing model”. 

Specifically, in [Sciore 1991, 1994], Sciore has proposed an approach coping with transaction and valid time, and 

alternative versions, while issues such as physical strategies to store versions, change notification and schema evolution 

are explicitly outside the scope of that approach. Transaction and valid time, and alternative versions are dealt with using 

the notion of annotated variables (roughly speaking, annotated variables in [Sciore, 1991, 1994] are variables whose 

intension can be addressed by  time and\or version indexes), and introducing proper methods to access and manipulate 

them. Separate annotations and methods are defined to cope with the different aspects (valid time, transaction time and 
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alternative versions), and examples are proposed about their interaction. On the other hand, as in BCDM (and, in general, 

in all relational approaches to bitemporal data), in our approach valid and transaction time are coped with explicitly and 

in an integrated way; following such a guideline, through the definition of Proposal-tuple, we give an explicit data model 

for data in which both bitemporal aspects and alternative version are taken into account. We have also defined new 

manipulation operations to cope with such a new data model, proving that it is a consistent extension of the BCDM 

model. 

The approach in [Gançarski 1999] is based on the notion of Database Version model (DBV) [Cellary and Jomier 

1990]. DBV is a model for dealing with versions in object-oriented databases: a database is a set of database versions, the 

objects can be versioned and a version of an object can be shared by more database versions, so that version stamps 

associate object versions with database versions. [Gançarski 1999] implements bitemporal databases using database 

versions expressed with DBV model. Branching alternatives are expressed using alternative identifiers managed at the 

application level. The approach has been implemented on top of O2 object-oriented DBMS. In [Gançarski 1999] the main 

goal is that of providing minimal extensions to DBV in order to cope with transaction and valid time, but neither the 

underlying semantics of the interplay of time and alternative versions, nor the formal properties of the extension being 

built are taken into account. 

More recently, another object-oriented data model has been proposed for dealing both with valid and transaction time 

and with versions, the Temporal Versions Model (TVM) [Moro et al. 2001, 2002, Machado et al. 2006]. TVM, 

implemented on an object-relational database, supports four version statuses (working, stable, consolidated and 

deactivated), where working and stable statuses loosely resemble our proposer level, consolidated status loosely 

resembles our evaluator level, and deactivated status loosely resembles our rejected proposal status. Time can be 

associated with objects, attributes and associations, and both transaction and valid times are supported. Although TVM is 

an object-oriented approach, it is implemented on top of a relational DBMS (i.e., DB2), and supports an SQL-based 

query language (TVQL). A mapping from examples of TVQL queries to SQL queries is provided [Moro et al. 2002]. 

However, although in [Machado et al. 2006] an operational semantics of (an extension of) TVQL is given, the treatment 

of the temporal aspects is not explicitly stated. Last, but not least, no property of being a consistent extension of any 

previous model is provided. 

At least in the recent years [ECDM2006; ECDM2004; ECDM2002], most approaches supporting changes in 

databases focused on schema evolution and schema versioning. Schema evolution is “the ability of the database schema 

to evolve by incorporating changes to its structure without loss of existing data and without significantly affecting the 

day-to-day operations of the database” [Shankaranarayanan and Ram 2003], while schema versioning requires “the 

maintenance of more than one schema” [Grandi and Mandreoli 2003] in order “to support different users\team 

concurrently working on parallel schema versions” [ibidem]. 

Roddick in [Roddick 1995] surveyed the main issues involved with schema versioning and evolution. When changes 

to the schema are performed, two main problems have to be dealt with: maintaining the consistency of the schema and 

handling the consistency of data with regard to the modified schema. A comprehensive survey of schema evolution works 

is [Shankaranarayanan and Ram 2003]. Several approaches have been proposed regarding the various data models: for 

the relational model (see, e.g., [De Castro et al. 1997]), for the object-oriented model (e.g., [Grandi et al. 2000; Grandi 

and Mandreoli 2003]) and for conceptual models such as ERM (e.g., [Liu et al. 1993]). 

Such approaches seem to us only loosely related with our one, since we operate at the level of data (tuples), not at the 

level of schema; specifically, our approach aims at managing the change to data values, not the change to the schema. On 
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the other hand, in the schema versioning approaches, data change is usually not managed as a “primitive” notion, but as a 

(possibly automatically managed) process induced by changes to the schema. 

 

8  Alternative approaches 

As mentioned above, comparisons to related works in the database literature are relatively limited. In fact, to the best of 

our knowledge, our approach is the only one facing proposal vetting in a temporal relational environment, and operating 

at the level of data model and algebra (i.e., at the semantic level). On the other hand, we think it is worth mentioning 

some alternative strategies we have explored to achieve our goals, motivating why we discarded them in favor of the 

approach we presented in this paper. 

(1) We could use a set of temporal relational database versions (each one consisting of a set of BCDM relations) to 

model the different possible versions of the database, in response to the proposers’ operations. In other words, in this 

solution, instead of maintaining a different level of data to store the proposals of proposers, and executing them only 

if\when accepted, one could directly execute each proposal, thus leading to a new version of the database, and model 

acceptance of operations by taking the corresponding version as the reference one. For instance, supposing for the 

sake of brevity that the database only consists of a relation r, we would initially have a unique version {r} which is the 

reference one for the evaluator. After a proposal of insertion of a new tuple x1 in r, we would have two versions {r,r1} 

(where r1 denotes the result of inserting x1 in r), after a successive proposal of insertion of x2 we would have four 

versions {r,r1,r2,r12} (where r12 is obtained by inserting both x1 and x2 in r) and so on. Proposals of update and of 

deletion could be managed similarly. Evaluating the different proposals therefore could be modeled as the selection of 

one of the versions by the evaluator. Since each version can be modeled as a standard BCDM database, at a first 

glance this approach seems very appealing, supporting an easy definition of manipulation and algebraic operations. 

However, it has several drawbacks. The first three drawbacks concern technical issues related to the expressiveness of 

the solution, while the fourth one concerns its (spatial) complexity and its implementability: 

a. this approach does not allow evaluators to accept\reject any single proposal in isolation from the others. As a 

matter of fact, in this approach, the selection of one of the proposal versions as the reference evaluator version 

involves a global evaluation of all the proposal operations, which is usually an impractical and not user-friendly 

task  in practice. In fact, each version V has been obtained by executing a subset O’ of the set O of proposed 

operations. Thus, selecting V corresponds to accepting all operations in O’ and rejecting all the others (i.e., O – 

O’); 

b. in this approach acceptance of a proposal does not automatically disallow all its “competing” alternatives 

(actually, in our approach the acceptance of a proposal involves an implicit rejection of all its alternative 

proposals). The versions keep no track of whether proposals concern the update of the same tuple. Therefore, 

there is no direct way of retrieving the mutually exclusive alternatives of an accepted proposal, in order to discard 

them. Of course, one could store in some dedicated “system table” the information about which tuple is modifying 

which other, and the connection between update operations and corresponding versions. Given such a piece of 

information, suitable algorithms could retrieve mutually exclusive alternatives of each proposals. However, the 

implementation of such a mechanism is not trivial and the notion of what are the alternatives of a tuple is not 

explicitly managed, so that it is not visible for the user (specifically, we think it is very important, for evaluators, 
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to have a “localized” picture of what are the alternative proposals of a given piece of information). On the other 

hand, one of the cue points of our approach is that we give to alternative mutually exclusive proposals the dignity 

of a “first class” explicit entity (called Proposal-tuple; in this way, for instance, this problem can be easily faced). 

Notice that an analogous choice has been made by several object-oriented data versioning approaches (see, e.g., 

the “design objects” in [Dittrich and Lorie 1988]); 

c. if we want to retain the history of the database (including all the proposals), we have no way to distinguish 

between an active and a rejected proposal of deletion; 

d. there is a combinatorial explosion of the number of versions (exponential in the number of proposal operations). 

This would not be a major drawback for an abstract (semantic) approach “per se”. However, it is a major 

drawback if the semantics is regarded as the basis for implementation; 

(2) we could use a different temporal relational semantic model, in which standard BCDM is extended with a new 

dimension, the “version dimension”, orthogonal to valid time and to transaction time, to cope with disjunctive 

(alternative) proposals. In such a way, each tuple could be indexed with the identifier of the version it belongs to. This 

solution is, at a first glance, very elegant and appealing. In particular, algebraic operators can be easily and clearly 

defined, and reducibility to the BCDM model can be easily obtained through the introduction of a “version slicing” 

operator, selecting all and only the proposals concerning a chosen version. There is a spectrum of alternative ways to 

implement such an approach, mostly depending on the extent to which version identifiers can be managed by 

proposers. The two extremes of the spectrum are sketched below: 

a. versions (and version identifiers) could be automatically managed by the system (e.g., using surrogates). In such a 

solution, in order to let evaluators to accept\reject any single proposal in isolation from the others , the system 

would have to generate a new version whenever a new proposal is issued. In such a case, the approach is 

conceptually close to the approach at point (1) discussed above, having the same limitations we discussed about it; 

b. versions (and version identifiers) could be directly managed by proposers. In such a way, we could avoid the 

combinatorial explosion of the number of versions which affects the above solution. However, this solution is not 

feasible from the practical point of view, since it involves demanding to the proposers the burden to identify a 

whole global version to include the proposed update (in other words, the proposers should be aware of all other 

proposals concerning the whole database, and state explicitly which subset of them must be considered, in addition 

with the proposer’s proposals, as a complete candidate new version of the database. This choice is not practically 

feasible in most practical contexts); 

(3) we could augment the BCDM model by distinguishing between two different types of transaction times (in addition to 

the valid time, which is orthogonal to them): the time of proposal and the time of acceptance. Initially, this approach 

seemed to us quite interesting, leading to a “three dimensional” treatment of time which has also a very nice “visual” 

counterpart. For instance, algebraic operations could be built considering the “visual” perspective (e.g., difference 

could be modeled, in the case of value-equivalent tuples, by the “spatial” difference between the three-dimensional 

objects representing their times). However, this very same “visual” perspective convinced us that such an approach 

was problematic, since certain unexpected and undesired behaviors arose in the definition of algebraic operations (for 

instance, using the “standard” intersection semantics, the natural join between accepted tuples having intersecting 

valid and acceptance time would be empty in case their proposal times did not intersect). We recognized that the 

reason of such a problem was the fact that, actually, proposal time and acceptance time cannot be dealt with as 

orthogonal temporal dimensions since, indeed, they are not orthogonal at all. Moreover, in principle, this approach 
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provides the possibility to deal with evaluator tuples and proposals of insertion in the same relation. In fact, the 

absence\presence of acceptance time could actually distinguish between proposals of insertion and evaluator tuples. 

However, we realized that this would not apply in the event that proposals of deletion and proposals of updates were 

to be considered. Nevertheless, if proposals of update have to be contained in dedicated relations, there is no need to 

have acceptance time for them (in fact, being proposals, their acceptance time would be null; if accepted, their 

acceptance time would be redundant with respect to the acceptance time of the corresponding evaluator tuple). 

Finally, in such an approach, there is no explicit notion of mutually exclusive alternative proposals; therefore, 

disallowing alternative proposals after an acceptance operations would be technically quite complex. Thus, we 

abandoned such an approach, moving towards the notion of Proposal-tuple and towards the distinction between 

evaluator relations and sets of (insertion\deletion\update) proposals which characterize our current approach; 

(4) finally, a slightly different approach would be to modify the approach in this paper with a different definition of 

Proposal-tuple, in which (in the case of updates of updates) the dependency between updates (i.e., the relationship 

between each update proposal and the tuple to be modified) is explicitly stored in a tree. For instance, considering the 

example in Figure 4 (see Section 4), the “extended” Proposal-tuple coping with the results of steps 4,5,7,8,9,10 could 

be the one shown in Figure 8. 

 

Figure 8: an alternative “tree-like” representation of Proposal-tuples (compare to Figure 4). 

 

With respect to our notion of Proposal-tuple, the “extended” representation is somehow more expressive, since it 

explicitly captures the notion of “what update depends on what other update” (compare Figure 8 with Figure 4 in 

Subsection 4.2.1). However,  

(1) on the one side, it seems to us that there is no significant expressive gain, and 

(2) on the other side, there is a very relevant additional complexity, and a loss of “desirable” properties. 

As regards issue (1), notice that the acceptance of an update proposal in the representation in Figure 8 would lead 

to the very same result, at the evaluator data level, than the corresponding acceptance in the simpler representation we 

proposed in this paper. 

As regards issue (2), we have proved that, using the above tree representation, the property of uniqueness of 

model (see property 4.3.6) does no longer hold. In other words, one can have different “extended” Proposal-tuples 

that are snapshot equivalent. This seems to us a relevant drawback, since, in such a context, snapshot equivalence can 

no more be considered as a synonym of “structural” equivalence. Moreover, the definition of the algebraic operators 

operating on “extended” Proposal-tuples is far from being clear and intuitive, and we could not provide any definition 

based on strongly motivating design criteria (such as, e.g., reducibility to BCDM algebraic operators in the approach 

in this paper). 
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9  Discussion and future work 

In this paper, we have proposed a semantic (in the sense discussed in the quotation from [Snodgrass 1995] reported in the 

introductory section) framework supporting proposal vetting (i.e., proposal and evaluation of update) about data in a 

relational environment, in which transaction time and (possibly) valid time have to be managed.  

The need for this kind of approaches is emerging in many different areas, including workflow, protocol and guideline 

management, and shared vocabulary development. As a matter of fact, some tools are being developed to support this 

kind of need in a relational context (consider, e.g., Citizendium [Citizendium], where – however - just transaction time is 

dealt with). Anyway, to the best of our knowledge, no theoretical framework has been designed to define the underlying 

semantics of these tools. In this paper, we have proposed a semantic approach overcoming such a limitation. In particular, 

our approach guarantees that a set of properties (see Sections 5 and 6) are satisfied by any implementation compliant with 

it.  

For the sake of generality, our approach has been defined at the semantic level, defining a new data model, 

manipulation operations and algebra. We have based our approach on the “unifying” BCDM semantic model, extending 

it to support cooperative sessions of work, in which proposals are issued and evaluated. Specifically, the most relevant 

extensions to the BCDM model are: 

(1) the treatment of mutually exclusive alternatives of relational tuples. This phenomenon has been faced with the 

introduction of the basic notion of Proposal-tuple, which is the core of our approach. Notice that, while the notion of 

alternative versions of data has been already explored by some database data versioning approaches (based on the 

object-oriented paradigm – see, e.g., [Sciore 1994]) this notion is, to the best of our knowledge, new in the relational 

environment, in which relations are usually interpreted as sets (i.e., conjunctions) of tuples. The extension to BCDM 

to cope with alternative (and mutually exclusive) tuples has involved substantial changes to BCDM itself at the level 

of (i) data model, (ii) manipulation language, (iii) algebra; 

(2) the treatment of two levels of data (the evaluator and the proposal levels) and of users (evaluators and proposers), 

each one with its manipulation operations. 

 

Our extensions have been devised in such a way that BCDMPV can be regarded as an upper layer built upon BCDM, i.e., 

we have proved that (i) BCDMPV data model and (ii) algebra are reducible to the BCDM one, and that (iii) BCDMPV 

manipulation operations are a consistent extension to BCDM ones. 

By proving properties i-iii, we grant that our approach can be added as a support for update proposal and evaluation on 

top of any of the temporal relational database approaches grounded on the BCDM semantics. This fact enhances the 

generality of our work, as well as its implementability. 

As a matter of fact, the above properties make quite easy to devise an implementation strategy for our framework, 

using a three-layered approach, as graphically shown in Figure 9. 
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Figure 9: a three layer approach as a strategy to implement our proposal vetting semantic model in practice. 

As a first step in this direction, as shown in Figure 9, by applying the convert operator (see Section 6), a set of 

Proposal-tuples can be converted into a set of tuples in the BCDM model. Observe that these tuples still need to be 

interpreted as “disjunctions” (while in a standard BCDM relation they would be interpreted as conjunctions): it is the role 

of the underlying operations (both the manipulation and the algebraic ones, properly converted to the BCDM model as 

well) to provide the correct interpretation. In other words, to use the object-oriented programming terminology, we could 

say that the manipulation and algebraic operations, working at the BCDM semantic level, act as methods operating on an 

object, which is somehow similar, but not identical to a BCDM relation, since its tuples may be in disjunction. By means 

of these methods, users can correctly manipulate or query the data, having preserved the correct semantics.  

Going further, as a second step, such a “BCDM semantic level object”, composed by the set of tuples in disjunction, 

and by its methods, can be easily implemented by relying on an extension of any of the temporal database models 

supported by the BCDM semantics, such as TSQL2 [Snodgrass 1995], or [Jensen et al. 1993], or on a recent extension of 

OracleTM (which, since version 10g, through the Workspace Manager facility, deals with both valid and transaction time, 

and is consistent with the BCDM semantic level [Snodgrass 2008]). Therefore our approach can be seen as a further layer 

(as it clearly appears by reading Figure 9 from right to left) which can be added on top of most current approaches to 

temporal relational databases, to extend them to cope with proposal vetting. We are currently starting to develop a 

prototypical implementation of our approach, on top of TimeDB [TimeDB] (a prototype implementing – an extension of 

– TSQL2 on top of Oracle 10g). Moreover, it is worth stressing once again that, since TSQL2 is upward compatible with 

(i.e., it is a “consistent extension” of) SQL, our approach may also be conceived as a further layer on top of SQL. 

Considering the specific application to clinical guidelines discussed in Subsection 2.2, we think that a further high-

level layer should be added on top of the core framework discussed in this paper, along the lines shown in Figure 9. The 

data model and algebraic level, at which our approach operates, is suitable for clearly defining the specifications of the 

work, and for providing the semantic basis of the implementation. Nevertheless, it is not directly usable by proposers and 

evaluators, to whom we cannot ask to manipulate quite unfamiliar constructs such as Proposal-tuples. A higher-level 

interface, exploitable to execute SQL-like queries, is thus required. In particular, considering also applications such as the 

one described in Section 2.2., the high-level interface should also provide users with the possibility of defining “macro-
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objects” (whose description may usually involve tuples in different relations), and supporting global operations on them 

(in the form of a unique transaction). For instance, in the case of the clinical guidelines domain, tuples from several 

relations are usually needed to model a single clinical action. On the other hand, for the sake of user friendliness, the 

interface should support the view of such an action as a unitary object for (medical) end-users. The definition of a 

TSQL2-like query language, and of the notion of  “macro-objects”, will be object of our future work. 

From a more theoretical viewpoint, in the future we also plan to extend our model in order to deal with more than 

two levels of users. For example, in CASE approaches such as [SUN 1988] three (and more) levels are supported: the 

level of developers, the level of integrators of modules and the level of supervisors for releasing a final version. In 

principle, we believe that such extensions should be quite easily supported by our approach, by treating each 

intermediate level i as an evaluator level with respect to level i+1 and as a proposer level with respect to level i–1. 

Moreover, we plan to extend our approach by defining more restricted (task\domain-dependent) policies.  
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Appendix A Case study: collaborative encyclopedias 

In order to illustrate the usefulness of a proposal vetting approach, we introduce a further example considering an 

emerging phenomenon, namely the cooperative creation of an encyclopedia. Specifically, we consider a simple session of 

work in which a proposal is further refined, and finally accepted by an evaluator. For instance, such a session of work 

could be a session with  Citizendium [Citizendium]. Citizendium – as Wikipedia –  is  a collaborative encyclopedia where 

an entry can be proposed and modified by multiple authors. It improves Wikipedia in the sense that it stresses reliability, 

so each entry must be approved by an editor4. 

Typically, while the history of proposals is maintained (so that transaction time should be supported), valid times are 

not accounted for in encyclopedias, so that we limit ourselves to showing transaction times. 

Let us consider a simple example of collaborative editing of the entry “Prime number” in Citizendium: 

Time 10. Proposer P1 writes (inserts) a definition of the entry; 

Time 15. Proposer P2 refines (updates) the definition; 

Time 20. Evaluator E1 accepts the proposal issued at time 15. 

In Figure 10 we depict a graphical representation of the example, in Figure 11 we show how the work session is 

supported in our approach, and in Figure 12 we represent the content of the data structures in our model. 

 

 
 

Figure 10: High-level description of a session of work adding a new entry in an encyclopedia. αααα stands for “A 

'prime number' is a whole number (i.e., one having no fractional or decimal part) that cannot be evenly divided by 

any numbers but 1 and itself.”; ββββ stands for “A 'prime number' is a number that can be evenly divided by exactly two 

positive whole numbers, namely 1 and itself.”. 

 

                                                           
4 Citizendium actually relies on a relational non-temporal DBMS, and it copes with versioning issues at the application level, in an ad-

hoc way. In this paper we provide a principled data model underlying the behavior of applications supporting collaborative 

encyclopedias such as Citizendium and so on. 

Steps 10 15 20 

Evaluators 

Proposers 

P1 
 
 
 
 
 
P2 

 
 

 

accept  
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propose_insert(PAGE, (“Prime number”, , P1)) 

propose_update(PAGE, <(“Prime number”, ), (“Prime number”, , P1)>, (“Prime number”, , P2)) 

accept_update(PAGE, <(“Prime number”, ), (“Prime number”, , P2)>, E1) 

Figure 11: Operations for implementing the work session depicted in Figure 10. 

 

Time 15 

Evaluator level PAGE 

∅ 

Proposer level pi(PAGE) 

(Prime number, α, P1 | [10, UC]) 

 

pu(PAGE) 

( Prime number, α)             (Prime number, β, P2 | [15, UC]) 

 

Time 20 

Evaluator level PAGE 

(Prime number, β | [20, UC]) 

Proposer level pi(PAGE) 

(Prime number, α, P1 | [10, 19]) 

 

pu(PAGE) 

( Prime number, α)            (Prime number, β, P2 | [15, 19]) 

Figure 12: Content of data structures in our model for the work session of collaborative editing at time 15 (upper 

table) and at time 20 (lower table).   
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Appendix B. Manipulation operations 

In this Appendix, we describe the basic manipulation operations we provide for proposers and evaluators. Direct 

insertion and deletion operations for evaluators (admitted in Policy 1 – see Section 5) are not described, since they are the 

same as in BCDM. 

 

 Given a relation r∈DB_Evaluators, defined on the schema R=(A1,…,An|T), proposals of insertion can be used (by 

proposers) to propose the insertion of a currently unrecorded tuple t into r. The result of such an operation is, if 

admissibility conditions hold, the insertion of t into the set pi(r). 

The arguments of the propose_insert operation are the relation r, and the valid-time tuple (a1,…,an,pnew|tvt_new) to be 

inserted (where tvt_new is a valid time). 

 

The admissibility of a proposal of insertion is defined as follows (where A stands for A1,…,An): 

Definition B.1: admissible_propose_insert(propose_insert(r, (a1,…,an,pnew| tvt_new)): 

(1)  ¬ (∃ x ∈ r : x[A] = (a1,…,an)  ∧  current(x)) 

(2)  ∧ ¬ (∃ y ∈ pi(r) : y[A] = (a1,…,an)  ∧  current(y))  

(3)  ∧ pnew ∈  Proposers♦ 

 

A proposal of insertion is admissible if the conjunction of three conditions holds: 

(1) (a1,…,an) does not identify a current tuple x∈r; 

(2) (a1,…,an) does not identify a current tuple y ∈ pi(r); 

(3) pnew is a proposer. 

 

Notice that conditions in (1) and (2) are used to avoid that one proposes an insertion of a new tuple which is a current 

one in r, or which is (weakly) value equivalent to a current one in pi(r) (see Conditions 4.2.1.2 and 4.2.1.3). Accordingly 

with the BCDM policy, in this case we enforce that such an operation can only be performed as an update to (the 

temporal part of) the existing tuple. 

 

We can now define our propose_insert operator (where A stands for A1,…,An): 

Definition B.2: propose_insert(r, (a1,…,an,pnew|tvt_new) ): 

if admissible_propose_insert(propose_insert(r, (a1,…,an,pnew|tvt_new))  

then 

begin 

(1)  if (¬ ∃z ∈pi(r) :   (z[A]=(a1,…,an) ∧ z[P]=pnew))  

  then pi(r)  pi(r) ∪ {(a1,…,an ,pnew |{UC}× tvt_new)} 

(2) else if (∃ z ∈pi(r) :   (z[A]=(a1,…,an) ∧ z[P]=pnew)) 

  then  pi(r)  pi(r) – {z} ∪ {(a1,…,an ,pnew | z[T] ∪ {{UC}× tvt_new })} 

end♦ 

 

Two cases can be distinguished: 
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(1) pnew has not previously made any insertion proposal value equivalent to (a1,…,an). In such a case, a new tuple is 

inserted in pi(r); 

(2)  pnew has previously made an insertion proposal value equivalent to (a1,…,an). In such a case, the time of the old 

proposal of insertion is properly updated. 

 

Notice that the conjunction of the admissibility conditions in admissible_propose_insert with the condition (2) implies 

the fact that only a value-equivalent proposal which is not current can be found in case (2) of propose_insert. This means 

that the old proposal has been already evaluated. In such a case, we still admit the possibility that the old proposer (or 

another one) makes the same proposal again. Finally, notice that the action in case (2) (i.e., the update of the timestamp 

of the old proposal) enforces the constraint that value-equivalent tuples with the same proposer cannot coexist in the same 

set of proposals of insertion (see Condition 4.2.1.2). 

 

Given a relation r∈DB_Evaluators, defined on the schema R=(A1,…,An|T), proposals of deletion can be used (by 

proposers) to propose the deletion of a current tuple t from r. The result of such an operation is, if admissibility 

conditions hold, the insertion of t into the set pd(r). 

The arguments of the propose_delete operation are the relation r, and the tuple (a1,…,an,pnew) to be deleted. 

 

The admissibility of a proposal of deletion is defined as follows (where A stands for A1,…,An): 

Definition B.3 admissible_propose_delete(propose_delete(r, (a1,…,an,pnew)) : 

(1) ∃ x ∈ r : (x[A] = (a1,…,an)  ∧  current(x))  

(2) ∧ ¬ ∃ y ∈ pd(r) : (y[A] = (a1,…,an)  ∧ current(y)) 

(3) ∧ pnew ∈  Proposers♦ 

 

A proposal of deletion is admissible if a conjunction of three conditions holds: 

(1) (a1,…,an) identifies a current tuple x∈r; 

(2) (a1,…,an) does not identify a current tuple y ∈ pd(r);  

(3) pnew is a proposer. 

 

Notice that condition (2) is used to avoid that there is already a current proposal of deletion of (a1,…,an) (i.e., that the 

given proposal is redundant), see Conditions 4.2.2.2 and 4.2.2.3. 

 

We can now define our propose_delete operator (where A stands for A1,…,An): 

Definition B.4: propose_delete(r, (a1,…,an,pnew)): 

if admissible_propose_delete(propose_delete(r, (a1,…,an,pnew))  

then 

begin 

(1) if (¬ ∃z ∈pd(r) :  (z[A]=(a1,…,an) ∧ z[P]=pnew ))  

  then pd(r)  pd(r) ∪ {(a1,…,an ,pnew |{UC})} 

(2) else if (∃ z ∈ pd(r) :  (z[A]=(a1,…,an) ∧ z[P]=pnew ))  

  then pd(r)  pd(r) – {z} ∪ {(a1,…,an ,pnew | z[Tt] ∪ {UC})} 
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end♦ 

 

Two cases can be distinguished: 

(1) pnew has not previously made any proposal of deletion of (a1,…,an). In such a case, a new tuple is inserted in 

pd(r); 

(2) pnew has previously made a proposal of deletion of (a1,…,an). In such a case, the time of the old proposal of 

deletion is properly updated. 

 

Notice that the conjunction of the admissibility conditions in admissible_propose_delete with the conditions in (2) 

implies the fact that only a value-equivalent proposal which is not current can be found in case (2) of propose_delete. 

This means that the old proposal has been already evaluated. In such a case, we still admit the possibility that the old 

proposer (or another one) makes the same proposal again. Finally, notice that the action in case (2) (i.e., the update of the 

timestamp of the old proposal) enforces the constraint that value-equivalent tuples with the same proposer cannot coexist 

in the same set of proposals of deletion (see Condition 4.2.2.2). 

 

An acceptance of a proposal of insertion is used by evaluators in order to insert the proposed tuple into the proper 

DB_Evaluators relation. As a side effect, the acceptance of the insertion proposal must “close” all proposals concerning 

the same tuple. 

Given a relation r∈DB_Evaluators with schema R=(A1,…,An|T), the arguments of the accept_insert routine are r 

itself and the new tuple (a1,…,an, pnew) to be inserted. Accept_insert is defined as follows (where A stands for A1,…,An): 

 

Definition B.5: accept_insert(r, (a1,…,an, pnew)): 

(1) if (∃ y ∈ pi(r) : (y[A]=(a1,…,an) ∧ y[P]=pnew ∧ current(y)) ∧ 

(2) (¬ ∃ x ∈ r : (x[A] = (a1,…,an)  ∧  current(x)))) 

 then  

begin 

insertB(r,(a1,…,an), (ρe
uc(y))[Tv]); delete_alternatives(r, (a1,…,an)) 

end♦ 

 

A proposal of insertion can be accepted if the conjunction of two conditions holds: 

(1) (a1,…,an, pnew) is a current proposal in pi(r); 

(2) r does not contain any current tuple value equivalent to (a1,…,an,). 

 

Notice that condition (2) is used to avoid to accept an insertion in r of a new tuple which is value equivalent to an 

already existing current one (see Condition 4.1.2). Accordingly with the BCDM policy, we enforce that such an operation 

can only be performed as an update to (the temporal part of) the existing tuple. 

If conditions (1) and (2) hold, the BCDM insertB routine is invoked in order to insert the proposal in r, with valid time 

(ρe
uc(y))[Tv]. Notice also that the BCDM insertB routine is defined in such a way that no value-equivalent tuples are 

generated in r (specifically, in the case r already contains a tuple x value equivalent to (a1,…,an,) which is not current, the 
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BCDM insertB routine properly modifies x’s bitemporal timestamp, without introducing any new tuple in r). 

delete_alternatives “closes” all proposals concerning (a1,…,an,) (see Definition B.10 in the following). 

 

An acceptance of a proposal of deletion is used by evaluators in order to delete the given tuple from the proper 

DB_Evaluators relation. As a side effect, the acceptance of a deletion proposal must “close” all proposals concerning the 

same tuple. 

Given a relation r∈DB_Evaluators with schema R=(A1,…,An|T), the arguments of the accept_delete routine are r 

itself and the proposal of deletion of (a1,…,an, pnew). Accept_delete is defined as follows (where A stands for A1,…,An): 

Definition B.6: accept_delete(r, (a1,…,an, pnew)): 

(1) if (∃ y ∈ pd(r) :   (y[A]=(a1,…,an) ∧ y[P]=pnew  ∧   current(y))  

(2)   ∧ (∃ x ∈ r : (x[A] = (a1,…,an)  ∧  current(x))))   

       then  

       begin  

deleteB(r, (a1,…,an)); delete_alternatives(r,(a1,…,an)) 

end♦ 

  

A proposal of insertion can be accepted if the conjunction of two conditions holds: 

(1) (a1,…,an, pnew) is a current proposal in pd(r); 

(2) r contains a current tuple equal to (a1,…,an,). 

 

If conditions (1) and (2) hold, the BCDM deleteB routine is invoked. Notice that such a routine does not “physically” 

delete the tuple from r, but simply “closes” its transaction time. delete_alternatives (see Definition B.10) “closes” all 

proposals concerning (a1,…,an,). 

 

Rejection operations are used by evaluators to give a negative evaluation to a given proposal. Since we are interested 

in maintaining the whole history of proposals, rejections do not cause a “physical” deletion of the proposals. In our 

approach, rejected proposals are simply “closed” (which means that they cannot be executed henceforth, since only 

current proposals can be accepted by evaluators). 

Three different rejection operators are provided, operating on proposals of update, insertion and deletion respectively. 

 

Evaluators can reject a proposal of update through the reject_update operation. Given a relation r∈DB_Evaluators 

with schema R=(A1,…,An|T), the arguments of the reject_update operation are r itself and the proposal of update 

<(a1,…,an), (a'1,…,a'n, pnew)> to be rejected. reject_update is defined as follows (where A stands for A1,…,An): 

Definition B.7: reject_update(r, <(a1,…,an), (a'1,…,a'n, pnew)>) 

(1) if (∃ pt ∈ pu(r) : (origin(pt)[A]=(a1,…,an)    

(2)      ∧∃ y ∈ alternatives(pt) : (y[A] = (a1',…,an', pnew)   ∧   current(y)))) 

  then  

  begin 

   pu(r)pu(r)− {pt} ∪ {create_pt((a1,…,an),alternatives(pt) − {y})  

   ∪ {(a'1,…,a'n,pnew|y[T]-uc_ts(y[T]))}} 
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  end♦♦♦♦ 

 

The rejection of an update proposal can be performed if the conjunction of two conditions holds: 

(1) (a1,…,an) identifies the origin of a Proposal-tuple pt ∈ pu(r) ; 

(2) (a'1,…,a'n, pnew) identifies a current alternative in pt.  

In such a case, reject_update “closes” such a proposal (i.e., it removes the bitemporal chronons with transaction time 

equal to UC from its timestamp). Notice that the DB_Evaluators relation r is unaffected by such a reject operation, which 

only operates on pu(r). 

 

Evaluators can reject a proposal of insertion through the reject_insert operation. Given a relation r∈DB_Evaluators 

with schema R=(A1,…,An|T), the arguments of the reject_insert operation are r itself and the proposal of insertion 

(a1,…,an, pnew) to be rejected. reject_insert is defined as follows (where A stands for A1,…,An): 

Definition B.8: reject_insert(r, (a1,…,an, pnew)): 

(1)  if (∃ y ∈ pi(r) : (y[A] = (a1,…,an, pnew) ∧   current(y))) 

then  

begin 

delete_alternatives(r, (a1,…,an, pnew)) 

end♦♦♦♦ 

 

The rejection of an insertion proposal can be performed if (a1,…,an, pnew) identifies a current proposal of insertion y ∈ 

pi(r). In such a case, reject_insert “closes” such a proposal, as well as other proposals (if any) concerning (a1,…,an, pnew), 

through the delete_alternatives routine. Notice that the DB_Evaluators relation r is unaffected by the such a reject 

operation. 

 

Evaluators can reject a proposal of deletion through the reject_delete operation. Given a relation r∈DB_Evaluators 

with schema R=(A1,…,An|T), the arguments of the reject_delete operation are r itself and the proposal of deletion 

(a1,…,an, pnew) to be rejected. reject_delete is defined as follows (where A stands for A1,…,An): 

Definition B.9: reject_delete(r, (a1,…,an, pnew)) 

(1)  if (∃ y ∈pd(r) :  (y[A]=(a1,…,an, pnew)  ∧   current(y))) 

then  

begin 

pd(r)pd(r)− {y} ∪ {(a1,…,an,u|y[T]-uc_ts(y[T]))} 

end♦ 

 

The rejection of a deletion proposal can be performed if (a1,…,an, pnew) identifies a current proposal of deletion y ∈ 

pd(r). In such a case, reject_delete “closes”  such a proposal. Once again, notice that the DB_Evaluators relation r is 

unaffected by the such a reject operation. 

 

Finally, notice that several of the above operations adopt the delete_alternatives routine. Such a routine takes as an 

input the origin (a1,...,an) of the Proposal-tuple that has to be “closed”, and its corresponding DB_Evaluators relation r. It 
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“closes” (through an application of the uc_ts function - see Definition 5.1.4) all the alternatives of the Proposal-tuple in 

pu(r) having (a1,...,an) as an origin (step 2). It also “closes” the current proposals of deletion in pd(r) (step 3) and of 

insertion in pi(r) regarding (a1,...,an), if they exist (step 4). 

 

Definition B.10: delete_alternatives. 

Given a relation r∈DB_Evaluators with schema  R=(A1,…,An|T), let A stand for A1,…,An. We define 

delete_alternatives as follows: 

delete_alternatives(r, (a1,...,an)): 

 (1) pt find((a1,...,an),pu(r)) 

  {alt1, … altn} alternatives(pt) 

(2) pu(r)  pu(r) − {pt} ∪  {create_pt(origin(pt), 

 {(alt1[A,P]|alt1[T]-uc_ts(alt1[T])),...,(altn[A,P]|altn[T]- uc_ts(altn[T]))})} 

 (3) if (∃ y : ( y∈ pd(r)∧ y[A]= (a1,...,an)) 

  then pd(r)  pd(r) – {y} ∪ {(y[A,P] |y[T]-uc_ts(y[T]))} 

 (4) else if (∃ z : ( z∈ pi(r) ∧ z[A]=(a1,...,an)) 

  then pi(r)  pi(r) – {z} ∪ {(z[A,P] |z[T]-uc_ts(z[T]))}♦ 

 

The function find is used to get the (unique) Proposal-tuple whose origin is (a1,...,an) from pu(r). Notice that, in the 

above definition, (t[A,P]| t[T]-uc_ts(t[T])) represents the tuple having as atemporal part t[A,P], and as bitemporal 

chronons the result of deleting from  t[T] the chronons having UC as transaction time.  
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Appendix C. Algebraic operators 

In the following, we define the basic algebraic operators operating on bitemporal Proposal-tuple-sets. Algebraic operators 

on proposals of insertion, on proposals of deletion, and on DB_Evaluators relations, are not reported, since they are the 

same as in BCDM. Also operators working on transaction-time or valid-time Proposal-tuple-sets are not explicitly 

reported, since they are straightforward special cases of the ones listed below. For the sake of brevity, also “mixed” 

operators, operating on a Proposal-tuple-set and on a set of BCDM tuples are not described.  

Please remember that operations have been defined using the notation introduced in Section 6. 

 

To define our union operator (∪PV) on Proposal-tuple-sets,  let r1∈DB_Evaluators and r2∈DB_Evaluators be two 

relations with the same schema R=(A1,…,An|T), let A stand for A1,…,An , and let s1=pu(r1) and s2=pu(r2) be two 

Proposal-tuple-sets. 

 

Definition C.1  s1 ∪PV
 s2 =  {z :: <origin(z),alternatives(z)> : 

(1) if ∃pt1∈s1 , ∃pt2∈s2 : (origin(pt1)= origin(pt2))) 

  then  

 origin(z) origin(pt1); 

  alternatives(z)={alt : 

  if (∃alt1∈alternatives(pt1), ∃alt2∈alternatives(pt2) : (alt1[A,P]=alt2[A,P])) 

   then alt[A,P]alt1[A,P],  alt[T]alt1[T]∪alt2[T] ;  

   else if (∃alt1∈alternatives(pt1) : (¬ ∃alt2∈alternatives(pt2)  :  

      (alt1[A,P]=alt2[A,P]))) 

   then altalt1; 

   else if  (∃alt2∈alternatives(pt2) : (¬ ∃alt1∈alternatives(pt1)  :  

       (alt1[A,P]=alt2[A,P]))) 

   then altalt2} 

(2) else if (∃pt1∈s1 : (¬∃pt2∈s2 : (origin(pt1)=origin(pt2))))  

 then origin(z)origin(pt1); 

   alternatives(z)alternatives(pt1)  

(3)  else if (∃pt2∈s2 : (¬∃pt1∈s1 : (origin(pt1)= origin(pt2))))  

   then origin(z)origin(pt2);  

    alternatives(z)alternatives(pt2) 

}♦ 

 

The result of our union operator (∪PV) on two Proposal-tuple-sets s1 and s2 as above  is a new Proposal-tuple-set that 

contains the proposals which belong to s1 or to s2. Three cases can be distinguished: 

(1) if s1 and s2 contain two Proposal-tuples pt1 and pt2 with the same origin, a unique Proposal-tuple 

<origin(z),alternatives(z)> with such an origin must be given as an output. The alternatives of such a new 

Proposal-tuple are the set of all alt∈alternatives(z) obtained as follows: (i) any alternative alt1 in pt1 for which 

there is no value-equivalent alternative in pt2 is included into alternatives(z); (ii) any alternative alt2 in pt2 for 
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which there is no value-equivalent alternative in pt1 is included into alternatives(z); (iii) in the case of two 

value-equivalent alternatives alt1∈alternatives(pt1) and alt2∈alternatives(pt2), a unique alternative is added into 

alternatives(z), having as an atemporal part and as a proposer the common atemporal part and proposer, and as 

a bitemporal timestamp the union of the bitemporals of alt1 and alt2;   

(2) if s1 contains a Proposal-tuple pt1 such that there is not any Proposal-tuple in s2 having the same origin, then pt1 

is part of the result; 

(3) if s2 contains a Proposal-tuple pt2 such that there is not any Proposal-tuple in s1 having the same origin, then pt2 

is part of the result. 

 

Notice that case (1) above has been treated in such a way that (i) no Proposal-tuples with the same origin are provided 

in the result (see Condition 4.2.3.6), and (ii) in no one of the Proposal-tuples in the result there may be two (or more) 

value-equivalent alternatives (see Condition 4.2.3.2). This grants that the output of our union operator is still a Proposal-

tuple-set. 

 

To define our difference operator (−PV) on Proposal-tuple-sets,  let r1∈DB_Evaluators and r2∈DB_Evaluators be two 

relations with the same schema R=(A1,…,An|T), let A stand for A1,…,An , and let s1=pu(r1) and s2=pu(r2) be two 

Proposal-tuple-sets. 

 

Definition C.2.s1−PV s2 =  { z :: <origin(z),alternatives(z)> : 

(1)   if  ∃pt1∈ s1 , ∃pt2∈ s2 : (origin(pt1)= origin(pt2)))  

 then  

origin(z)origin(pt1); 

alternatives(z) = {alt : 

 if (∃alt1∈alternatives(pt1) : (¬ ∃alt2∈alternatives(pt2) :  

   (alt1[A,P]=alt2[A,P]))) 

 then  altalt1; 

 else if  (∃alt1∈alternatives(pt1) ∃alt2∈alternatives(pt2) : (alt1[A,P]=alt2[A,P])) 

 then alt[A,P]alt1[A,P]; alt[T]alt1[T]- alt2[T];  

 }  

 (2) else if (∃pt1∈s1 : (¬∃pt2∈s2 : (origin(pt1)=origin(pt2)))) 

   then origin(z)origin(pt1); 

                alternatives(z)alternatives(pt1)  

}♦ 

 

The result of our difference operator (−PV) on two Proposal-tuple-sets s1 and s2 as above  is a new Proposal-tuple-set 

that contains the proposals which belong to s1 and not to s2. Two cases can be distinguished: 

(1) if s1 and s2 contain two Proposal-tuples pt1 and pt2 with the same origin, a unique Proposal-tuple 

<origin(z),alternatives(z)> with such an origin must be given as an output. The alternatives of such a new 

Proposal-tuple are the set of all alt∈alternatives(z) obtained as follows: (i) any alternative alt1 in pt1 for which 

there is no value-equivalent alternative in pt2 included into alternatives(z); (ii) in the case of two value-
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equivalent alternatives alt1∈alternatives(pt1) and alt2∈alternatives(pt2), a unique alternative is added into 

alternatives(z), having as an atemporal part and as a proposer the common atemporal part and proposer, and 

as a bitemporal timestamp the difference of bitemporal timestamps of alt1 and alt2 (notice that such an 

alternative is included in the result only in case alt1[T] – alt2[T] ≠ ∅; Proposal-tuples with no alternatives are 

excluded by definition); 

(2) if s1 contains a Proposal-tuple pt1 such that there is not any Proposal-tuple in s2 having the same origin, then 

pt1 is part of the result. 

 

Notice that case (1) above has been treated in such a way that (i) no Proposal-tuples with the same origin are provided 

in the result (see Condition 4.2.3.6), and (ii) in none of the Proposal-tuples in the result there may be two (or more) value-

equivalent alternatives (see Condition 4.2.3.2). This grants that the output of our difference operator is still a Proposal-

tuple-set.  

 

The definition of our selection operator on Proposal-tuple-sets requires a brief preliminary discussion. Given a 

relation r∈DB_Evaluators with schema R=(A1,…,An|T), the schema of the corresponding Proposal-tuple-set is 

<(A1,…,An),(A1,…,An,P|T)>. Since atemporal attributes appear twice in the schema, we need a way of specifying, for 

each condition referring to an attribute Ai, if it concerns the values of Ai in the origin or in the alternatives part of the 

Proposal-tuple5. In the following, we assume that selection conditions can be split into two components (each of which 

may be empty): Po (conditions concerning the values of the attributes in the origin) and Pa (conditions concerning the 

values of the attributes in the alternatives). 

 

To define our selection operator (σPV
Po,Pa) on Proposal-tuple-sets,  let r∈DB_Evaluators be a relation with schema 

R=(A1,…,An|T), and let s=pu(r) a Proposal-tuple-set. 

 

Definition C.3 σPV
Po,Pa(s) = {z :: <origin(z),alternatives(z)> :  

  if ∃ pt∈s : (Po(origin(pt) ∧ ∃alt∈alternatives(pt) : Pa(alt)) 

then origin(z)origin(pt); 

         alternatives(z)={alt : alt ∈alternatives(pt) ∧ Pa(alt)}}♦ 

 

The result of our selection operator (σPV
Po,Pa) on a Proposal-tuple-set s as above  is a new Proposal-tuple-set that 

contains the Proposal-tuples <origin(z),alternatives(z)> obtained by selecting only the alternatives a that satisfy the 

condition Pa from the Proposal-tuples pt whose origin satisfies the condition Po. Notice that either Po or Pa may be empty 

(so that no selection condition is imposed on the origin/alternative part of the Proposal-tuples), and Proposal-tuples 

whose origin satisfies Po but such that none of their alternatives satisfies Pa are not part of the result. 

 

To define our projection operator (πPV
D) on Proposal-tuple-sets,  let r∈DB_Evaluators be a relation with schema 

R=(A1,…,An|T), let D⊆(A1,…,An) a subset of the atemporal attributes, and let s=pu(r) be a Proposal-tuple-set. 

                                                           
5  This can be easily done, e.g., by prefixing a keyword (e.g., origin vs alternatives) to the attribute (e.g., the condition origin.Ai=10 

regards attribute Ai in the origin). 



 55 

 

Definition C.4πPV
D(s) = {z :: <origin(z),alternatives(z)> :  

(1) if ∃! pt1,..,ptk∈s (k≥1) : (origin(pt1)[D]=…= origin(ptk)[D])   

 then origin(z) origin(pt1)[D] ; 

                  alternatives(z)={alt : 

(2) else if ∃! alt1,..,altm∈alternatives(pt1) ∪…∪ alternatives(ptk) (m≥1):  

(alt1[D]=…=altm[D])  

then  alt[D,P] alt1[D,P];  alt[T] alt1[T] ∪…∪altm[T])} 

}♦ 

 

Given the above definition, the result of our projection operator  πPV
D(s) is a Proposal-tuple-set with schema 

<(D),(D,P|T)>, whose Proposal-tuples only contain the values for the attributes in D (plus the proposer and the temporal 

attributes). In our data model  we do admit neither (i) Proposal-tuples with the same origin in the same Proposal-tuple-set, 

nor (ii) value-equivalent alternatives within the same Proposal-tuple. Therefore, in the definition of our projection 

operator, we had to pay attention to all the cases when, considering only the D part of the data, such cases could arise. 

 The condition (1) is used to partition the set of Proposal-tuples in s into maximal subsets {pt1,..,ptk} containing all 

and only the Proposal-tuples which, considering only the values of the attributes in D (e.g., origin(pt1)[D] denotes the 

values of the attributes in D for the origin of the Proposal-tuple pt1), have the same origin6. The output Proposal-tuple-set 

contains exactly one Proposal-tuple <origin(z),alternatives(z)> for each one of such subsets, having as origin the 

“common” origin. For the sake of simplicity, let us focus on just one of these maximal subsets, say {pt1,..,ptk}. In a first 

approximation, the set alternatives(z) for {pt1,..,ptk} should contain all the alternatives in {alternatives(pt1)∪ …∪ 

alternatives(ptk)}, properly “restricted” to the D attributes.  However, once again, we need to avoid value equivalences. 

Therefore, condition (2) is used to partition into maximal “value-equivalent” subsets the alternatives concerning 

Proposal-tuples in the same maximal subset. Finally, notice that, in the case of alternatives “to be merged”, the union of 

bitemporal chronons is performed. 

                                                           
6  Notice that k may also assume value 1, for certain values of  origin(pt)[D]. 
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Appendix D. Proofs 

Property 4.3.6: Uniqueness of model on Proposal-tuple-sets. 

Two Proposal-tuple-sets defined over the same schema are snapshot equivalent if and only if  they are identical. ♦ 

Proof:  If two Proposal-tuple-sets are identical, since Proposal-tuple-sets cannot include duplicates, every Proposal-

tuple in the first Proposal-tuple-set is identical to exactly one Proposal-tuple in the second Proposal-tuple-set. Let us 

denote two corresponding Proposal-tuples as pt = <o, Alt(alt1,…,altn)> and pt’ = <o’, Alt(alt’1,…,alt’n)>. Since pt=pt’, 

we have that o=o’ and for each i,=1,..,n, alti=alt’i. Since o=o’, and origins are made only by atemporal attributes, the two 

origins are necessarily snapshot equivalent. As regards the alternatives, since alti=alt’i, the two alternatives in each pair 

of snapshots produced by the application of the timeslice operators 4.3.1 and 4.3.2 on them are identical. The timeslice 

operators 4.3.3 and 4.3.4 on alternatives simply provide the set of all these alternative snapshots. The two sets are 

obviously identical. Since all corresponding Proposal-tuple pairs are snapshot equivalent, the two Proposal-tuple-sets 

are snapshot equivalent.  

 

In the other direction, if two Proposal-tuple-sets are snapshot equivalent, for every Proposal-tuple pt = <o, 

Alt(alt1,…,altn)> in the first set there is a set of Proposal-tuples {pt1’,..,ptk’} in the second set, with pti’= <oi’, 

Alt(alti’1,…,alti’m)>, such that (1)  for all the transaction times T1 not exceeding the current time and for all the valid 

times T2  (henceforth, ∀T1∀T2)  τPVv
T2(ρPV

T1{pt})= τPVv
T2(ρPV

T1{pt1',…,ptk’}).  

We first aim at showing that 

(A) pt1’=…=ptk’. 

By Definitions 4.3.3 and 4.3.4  

(2)  τ
PVv

T2(ρPV
T1{pt})=τPTv

T2(ρPT
T1(pt)) and  

(3)  τ
PVv

T2(ρPV
T1{pt1',…,ptk’})={τPTv

T2(ρPT
T1 (pt1’)),…, τPTv

T2(ρPT
T1 (ptk’))}.  

Therefore, substituting (2) and (3) in (1) we have  

(4) ∀T1∀T2 τ
PTv

T2(ρPT
T1(pt))={τPTv

T2(ρPT
T1 (pt1’)),…, τPTv

T2(ρPT
T1 (ptk’))} where, by Definitions 4.3.3 and 4.3.4, 

(5)  τ
PTv

T2(ρPT
T1(pt))=<o,Alt(τev

T2(ρe
T1(alt1)),…, τev

T2(ρe
T1(altn)))> and,  

 

(6)  for every 1<=i<=k 

τPTv
T2(ρPT

T1(pti’))= <oi’,Alt(τev
T2(ρe

T1(alt i’1)),…, τev
T2(ρe

T1(alti’m)))>.   

Let us consider just origin components. To have the equality in (4), given (5) and (6), we must have {o}={o1’,…,ok’}, so 

that o= o1’=…= ok’. Henceforth we denote  with o’ the oi’ (since o1’=…= ok’).  

Note that origins uniquely identify Proposal-tuples (see Definition 4.2.3.1), thus  

(7) pt1’=..=ptk’ which proves (A).  

 

Henceforth we denote with pt’ the pti’ (since pt1’=..=ptk’). 

Secondly, we now need to show that: 

(B) pt = <o, Alt(alt1,…,altn)> = pt’ = <o’, Alt(alt’1,…,alt’m)> where 

(8) o=o’ 

 

From (6), having proved (A), we can easily deduce that 
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(9) ∀T1∀T2 τ
PTv

T2(ρPT
T1(pt’))= <o’,Alt(τev

T2(ρe
T1(alt ’1)),…, τev

T2(ρe
T1(alt’m)))>.   

 

By substituting (5) and (9) in (4), we thus have  

 

(10)∀T1∀T2 <o,Alt(τev
T2(ρe

T1(alt1)),…,τev
T2(ρe

T1(altn)))>= 

<o’,Alt(τev
T2(ρe

T1(alt’1)),…,τev
T2(ρe

T1(alt’m)))> 

Given (8), this implies 

(11)∀T1∀T2{τev
T2(ρe

T1(alt1)),…,τev
T2(ρe

T1(altn))}= 

{τev
T2(ρe

T1(alt’1)),…,τev
T2(ρe

T1(alt’m))} 

By Definitions 4.3.1 and 4.3.2, (11) corresponds to (12) below 

(12) ∀T1∀T2 τ
Bv

T2(ρB
T1({alt1,…,altn})) = τBv

T2(ρB
T1({alt’1,…,alt’m})) 

where ρB
T1 and τ

Bv
T2 are the BCDM’s transaction- and valid-timeslice operators [Snodgrass 1995].  

Notice that, by hypothesis, {alt1,…,altn} are alternatives of the same Proposal-tuple. Thus, from Condition 4.2.3.2, 

alt1,…,altn are bitemporal not-value-equivalent tuples, so that {alt1,…,altn} is a set of BCDM tuples (the same holds for 

{alt’1,…,alt’m}). 

Therefore, (12) states that the two sets of tuples {alt1,…,altn} and {alt’1,…,alt’m} are snapshot equivalent in the BCDM 

approach.  

Given property 3.1, snapshot equivalence of BCDM sets of tuples (i.e., of BCDM relations) implies that the sets are 

identical, so that, 

(13) {alt1,…,altn} = {alt’1,…,alt’m} 

From (13) and (8), we can conclude pt=pt’, which proves (B). 

 

In conclusion, every Proposal-tuple pt in the first Proposal-tuple-set has exactly one exact match pt’ in the second 

Proposal-tuple-set. 

By the symmetrical argument, each Proposal-tuple pt’ in the second set has an exact match pt in the first set, and the two 

Proposal-tuple-sets are consequently identical. ♦ 

 

Corollary 4.3.7 In our data model, identity and snapshot equivalence coincide, i.e., two databases over the same 

evaluator schema in our model are identical if and only if the corresponding evaluator relations and proposal sets are 

snapshot equivalent. ♦ 

Proof: The proof follows: 

1. from the similar property in the BCDM model [Snodgrass 1995], as regards relations ri∈DB_Evaluators, pi(ri) 

and the pd(ri);  

2. from property 4.3.6 for the sets pu(ri).♦ 

 

Property 5.3.1: Consistent extension of BCDM.  

Under Policy 1 our manipulation language is a consistent extension of the BCDM model.♦ 
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Proof. Under Policy 1, evaluators can perform BCDM operations of insertion and deletion of tuples in relations in 

BD_Evaluators. Therefore, our approach is trivially a consistent extension of the BCDM one, supposing that all BCDM 

users are included in the Evaluators set (and that only DB_Evaluators data are taken into account). ♦ 

 

Property 5.3.2: “Proposal vetting” consistent extension of BCDM.  

Under Policy 2, considering that all users are both evaluators and proposers, our model in which each manipulation 

operation OpB is executed as an atomic pair of operations <propose_Op;accept_Op> is a “proposal vetting” consistent 

extension of the BCDM model (considering only data in DB_Evaluators). ♦ 

The operations Op defined in BCDM [Snodgrass 1995] are the insertB and the deleteB operations. Regarding the 

update operation, in [Snodgrass 1995] there is not a definition of an update operation; in fact Snodgrass in [Snodgrass 

1995] defines only the modify operation as a sequence of deleteB and insertB; moreover, such a modify operation is also 

very limited, since it is used only in order to change the valid time of a bitemporal tuple. That is why we prove the 

Property in two steps. First we consider the operations of insertB and deleteB only. Secondly we generalize the BCDM 

modify operation introducing an updateB(r, (a1,…,an,), (a''1,…,a''n), tvt_new) operation that allows one to modify also the 

atemporal values in the BCDM model, and we prove the property also with respect to the updateB operation. 

In this proof, we suppose that the operations are applied on “equivalent” relations in the two models, in the sense that, 

since BCDM does not support proposals, also in our approach there are no current proposals, i.e., all previous proposals 

have been accepted or rejected. 

More formally, for any relation r∈DB_Evaluators, we suppose that the following conditions hold: 

Assumptions D.1. 

a. ∀t∈pi(r) ¬current(t), and 

b. ∀t∈pd(r) UC∉t[Tt], and  

c. ∀pt∈pu(r) ∀alti∈alternatives(pt) ¬current(alti); 

d. moreover, we assume that all users are both proposers and evaluators, so that both the proposal-level and evaluator-

level operations are allowed. 

 

Proof. 

insert. 

Let us consider the case of the sequence of operations <propose_insert; accept_insert> in our approach. We prove 

that it is equivalent (as regards the DB_Evaluators relation) to an insertB operation in the BCDM model, i.e.: 

<propose_insert(r, (a1,…,an,pnew|tvt_new) ); accept_insert(r, (a1,…,an, pnew))> 

is equivalent to 

insertB(r, (a1,…,an), tvt_new) 

 

For the sake of commodity, we recall here the definition of insertB from [Snodgrass 1995] (adapting the notation to 

our one): 

 

insertB(r, (a1,…,an), tvt_new): 

(1) if (¬∃tb: (a1,…,an | tb) ∈ r)  

then r  r ∪ {(a1,…,an | {UC} × tvt_new) 
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(2) else if (∃tb: ((a1,…,an | tb) ∈ r ∧ ¬current(r))) 

then r  r – {(a1,…,an | tb)} ∪ {(a1,…,an | tb ∪ {{UC} × tvt_new})} 

 

Let us consider Definition B.1 (admissible_propose_insert). Under the assumptions D.1, it is possible to write the 

Definition B.1 in a simpler form. We report in Definition B.1’ the definition of admissible_propose_insert striking 

through the parts trivially true: 

 

Definition B.1’: admissible_propose_insert(propose_insert(r, (a1,…,an,pnew| tvt_new)): 

(1)   ¬ (∃ x ∈ r : x[A] = (a1,…,an)  ∧  current(x))   

(2)   ∧ ¬ (∃ y ∈ pi(r) : y[A] = (a1,…,an)  ∧  current(y))  

(3)   ∧ pnew ∈  Proposers♦ 

 

In fact, a propose_insert is admissible if (1), (2) and (3) are true; i.e.: 

(1) (a1,…,an) does not identify a current tuple  x∈r 

(2) since we assume that all alternatives in pi(r) are not current, row (2) is trivially true (see Assumptions D.1a-D.1c); 

(3) since we assume that all users are both proposers and evaluators, row (3) is true (see Assumption D.1d). 

 

We have two cases:  

a) there exists in r a current tuple value equivalent to the tuple to be inserted (i.e., ∃ x ∈ r : x[A] = (a1,…,an)  ∧  

current(x)); 

b) there not exists in r a current tuple value equivalent to the tuple to be inserted. 

In case a), the propose_insert(r, (a1,…,an,pnew| tvt_new))  operation is not admissible; in fact, condition (1) in Definition 

B.1’ is false. Also the subsequent accept_insert operation has no effect because there are no current proposals to be 

accepted. 

In this case (and only in this case), also the insertB operation does not have any effect, because both conditions in 

rows (1) and (2) of insertB are false. 

 

In case b), the propose_insert(r, (a1,…,an,pnew| tvt_new)) operation is admissible, because condition (1) in Definition 

B.1’ is true. Then, after the propose_insert operation is executed, we have in pi(r) a tuple (a1,…,an,pnew| tb) such that (UC, 

tvt_new) ∈ tb. 

Now let us consider the accept_insert operation (Definition B.5). Condition (1) is true because of the propose_insert 

operation (see above) and also condition (2) is true since, in case b), the conditions of admissible_propose_insert are 

satisfied. Then, an insertB(r,(a1,…,an), ρe
uc(y)[Tv]) operation is executed, which is equivalent to an insertB(r, (a1,…,an), 

tvt_new) operation since y is the tuple inserted by the propose_insert operation and ρe
uc(y)[Tv] = tvt_new. 

Moreover, the delete_alternatives(r,(a1,…,an, pnew)) operation “closes” in pi(r) the tuple inserted by the propose_insert 

operation, in such a way that also for the subsequent operations we can assume that there are no current proposals. 
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delete. 

The case of deletion is analogous. Let us consider the case of the sequence of operations <propose_delete; 

accept_delete> in our approach. We prove that it is equivalent (with regards to the DB_Evaluators relation) to a deleteB 

operation in the BCDM model, i.e.: 

<propose_delete(r, (a1,…,an,pnew) ); accept_delete(r, (a1,…,an, pnew))> 

is equivalent to 

deleteB(r, (a1,…,an)) 

 

For the sake of commodity, we recall here the definition of deleteB from [Snodgrass 1995] (adapting the notation to 

ours): 

 

deleteB(r, (a1,…,an)) 

if (∃tb: (a1,…,an | tb) ∈ r)  

then r  r – {(a1,…,an | tb)} ∪ {(a1,…,an | tb – uc_ts(tb))} 

 

Let us consider Definition B.3 (admissible_propose_delete). Under the Assumptions D.1, it is possible to write it in a 

simpler form. We report in Definition B.3’ the definition of admissible_propose_delete striking through the parts trivially 

true: 

 

Definition B.3’ admissible_propose_delete(propose_delete(r, (a1,…,an,pnew))  

(1) ∃ x ∈ r : (x[A] = (a1,…,an)  ∧  current(x))  

(2) ∧ ¬ ∃ y ∈ pd(r) : (y[A] = (a1,…,an)  ∧ current(y)) 

(3) ∧ pnew ∈  Proposers♦ 

 

In fact, a propose_delete is admissible if (1), (2) and (3) are true, i.e.,: 

(1) (a1,…,an) does identify a current tuple  x∈r; 

(2) row (2) is trivially true because we assume that all alternatives in pd(r) are not current (see Assumptions D.1a-

D.1c); 

(3) row (3) is true because we assume that all users are both proposers and evaluators (see Assumption D.1d). 

 

We have two cases: 

a) there is not in r a current tuple value equivalent to the tuple to be deleted (i.e., ¬∃ x ∈ r : (x[A] = (a1,…,an)  ∧  

current(x))); 

b) there exists in r a current tuple value equivalent to the tuple to be deleted. 

Let us consider case a). The propose_delete(r, (a1,…,an,pnew)) operation is not admissible, in fact, condition (1) in 

Definition B.3’ is false. Also the subsequent accept_delete operation has no effect because there are no current proposals 

to be accepted. 

In this case (and only in this case), also the deleteB operation does not have any effect, because either  

(i) the condition of deleteB is false (i.e., there is not any tuple in r value equivalent to the one to be deleted), or  
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(ii) the assignment in deleteB has no effect (i.e., there is a tuple in r value equivalent to the one to be deleted but it is 

not current, so that uc_ts(tb)=∅). 

 

Let us consider case b). The propose_delete(r, (a1,…,an,pnew) operation is admissible, because condition (1) in 

Definition B.3’ is true. Then, after the operation is executed, we have in pd(r) a tuple (a1,…,an,pnew| tt) such that UC ∈ tt. 

Now let us consider the accept_delete operation (Definition B.6). The first conjunct in row (1) is true because of the 

propose_delete operation (see above) and also condition (2) is true because, in case b), the conditions of 

admissible_propose_delete are satisfied. Then, a deleteB(r, (a1,…,an)) operation is executed. 

The delete_alternatives(r,(a1,…,an, pnew)) operation “closes” in pd(r) the tuple inserted by the propose_delete 

operation, in such a way that also for the subsequent operations we can assume that there are no current proposals. 

 

update. 

As stated above, in this part of the proof we generalize the BCDM modify operation and we define the updateB(r, 

(a1,…,an,), (a''1,…,a''n), tvt_new) operation that allows one to modify also the atemporal values in the BCDM model. 

updateB(r, (a1,…,an,), (a''1,…,a''n), tvt_new) is a sequence of deleteB and insertB executed as an atomic operation, i.e., if 

the deleteB or the insertB operation fail, the updateB operation has no effect. 

 

updateB(r, (a1,…,an,), (a''1,…,a''n), tvt_new): 

<deleteB(r, (a1,…,an,));  insertB(r, (a''1,…,a''n), tvt_new)> 

 

Since there is no current proposal in DB_Proposers sets (see Assumptions D.1), the possible tuples to be updated are 

only the tuples belonging to DB_Evaluators relations, i.e., an update cannot update a proposal. Therefore, the sequence 

of proposal and acceptance of update in our approach has the following parameters: 

propose_update(r, <(a1,…,an,), (a1,…,an)>,(a''1,…,a''n, pnew|tvt_new)) 

accept_update(r, <(a1,…,an), (a''1,…,a''n, pnew|tvt_new)>, e) 

 

In particular, notice that, since we update a DB_Evaluators tuple, in the second parameter of propose_update the 

origin and the alternative coincide (see discussion in Section 5.1). 

 

We prove that a sequence <propose_update; accept_update> in our approach is equivalent (with regards to the 

DB_Evaluators relation) to an update operation in BCDM, i.e.: 

<propose_update(r, <(a1,…,an,),(a1,…,an)>,(a''1,…,a''n,pnew|tvt_new)); accept_update(r, <(a1,…,an), (a''1,…,a''n, pnew)>, e)> 

is equivalent to 

updateB(r, (a1,…,an,), (a''1,…,a''n), tvt_new) 

 

Let us consider Definition 5.1.1 (admissible_propose_update). For the sake of  convenience, we report the definition 

here: 
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Definition 5.1.1: admissible_propose_update.  

admissible_propose_update(propose_update(r,<(a1,...,an),(a'1,...,a'n,pold)>, (a''1,...,a''n,pnew|tvt_new))): 

(1) (∃x∈r: (x[A]=(a1,...,an)∧ current(x)) ∨ ∃x∈pi(r): (x[A]=(a1,...,an)∧current(x))) ∧ 

(2)   (∃pt∈pu(r) : (origin(pt)=(a1,...,an)  ∧ ∃ y ∈ alternatives(pt) :  

(y[A] = (a1',...,an') ∧ y[P]= pold ∧ current(y)) ∨ (a1,...,an)=(a'1,...,a'n))) ∧ 

(3) ∀pt ∈ pu(r)  (origin(pt)=(a1,...,an))   ( ¬∃ z ∈ alternatives(pt):  

(z[A] = (a1'',...,an'') ∧   current(z) ∧ ρe
UC (z) [Tv]  = tvt_new))) ∧ 

(4) ∀k∈ r  ((k[A]= (a1'',...,an'') ∧ current(k))  (a1'',...,an'')=(a1,...,an)) ∧ 

(5)  pnew ∈ Proposers♦ 

 

Under Assumptions D.1, it is possible to write the definition in a simpler form, in fact: 

(1) the second disjunct of condition (1) (i.e.,  ∃x∈pi(r) : (x[A]=(a1,...,an)  ∧  current(x))) is trivially false for 

Assumption D.1a;  

(2) the first disjunct of condition (2) (i.e., ∃pt∈pu(r) : (origin(pt)=(a1,...,an)  ∧ ∃ y ∈ alternatives(pt) : 

(y[A] = (a1',...,an') ∧ y[P]= pold ∧ current(y)) is trivially false for Assumption D.1c; while the second disjunct of 

condition (2) (i.e., (a1,...,an)=(a'1,...,a'n)) is trivially true because we are considering only updates of  tuples in a 

DB_Evaluators relation; 

(3) condition (3) is trivially true for Assumption D.1c; 

(5) condition (5) is trivially true for Assumption D.1d. 

 

Taking into account the above simplifications, we report the Definition 5.1.1 in Definition 5.1.1’’: 

Definition 5.1.1’’: admissible_propose_update.  

admissible_propose_update(propose_update(r,<(a1,...,an),(a'1,...,a'n,pold)>, (a''1,...,a''n,pnew|tvt_new))): 

(1) (∃x∈r : (x[A]=(a1,...,an) ∧ current(x)) ∧ 

(4) ∀k∈ r  ((k[A]= (a1'',...,an'') ∧ current(k))  (a1'',...,an'')=(a1,...,an)) ♦ 

 

Specifically, under Assumptions D.1, a proposal of update is admissible if: 

(1) (a1,…,an) identifies a tuple x in the evaluator relation r and such a tuple is current , and 

(4) there is no current tuple k∈r which is value equivalent to the new proposal (a1'',…,an''), except (possibly) the 

origin itself.  

 

There are three cases: 

a) there is not a current tuple x in the evaluator relation r such that x[A]=(a1,…,an); 

b) there exists a current tuple k∈r value equivalent to the new proposal (a1'',…,an'') and (a1'',…,an'')  (a1,…,an); 

c) otherwise 

 

In both cases a) and b) operation propose_update(r, <(a1,…,an,), (a1,…,an)>,(a''1,…,a''n, pnew|tvt_new)) is not admissible 

(and the propose_update operation has no effect).  

In case a) (and only in case a)), also the deleteB operation in the sequence <deleteB(r, (a1,…,an,)); insertB(r, 

(a''1,…,a''n), tvt_new)> has no effect (see the proof for propose_delete operation). 
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In case b) (and only in case b), also the insertB operation in the sequence <deleteB(r, (a1,…,an,)); insertB(r, (a''1,…,a''n), 

tvt_new)> has no effect (see the proof for propose_insert operation). 

Therefore, in both cases, the updateB operation has no effect. 

 

Now let us consider case c). In this case, the propose_update(r, <(a1,…,an,), (a1,…,an)>,(a''1,…,a''n, pnew|tvt_new)) 

operation is admissible. Then, after the operation is executed, we have in pu(r) a Proposal-tuple pt with 

origin(pt)=(a1,…,an) and with an alternative (a''1,…,a''n, pnew|tb) such that the valid time of the tuple at transaction time UC 

is tvt_new, i.e. ρe
uc(a''1,…,a''n, pnew|tb)[Tv] = tvt_new.  

 

Now let us consider the admissible_accept_update function (Definition 5.2.1) and the accept_update operation 

(Definition 5.2.2).  

The accept_update(r, <(a1,...,an), (a''1,...,a''n, pnew)>, e) operation is admissible because (see Definition 5.2.2): conjuncts 

(1) and (2) are true because of the result of the propose_update operation; conjunct (3) is true since the case in which 

condition (3) does not hold has been already analyzed (case b) above); conjunct (4) is true because of Assumption D.1d. 

In the accept_update operation (Definition 5.2.2), case (1) is not executed because we assume that there is no current 

proposal in pi(r) (see Assumption D.1a). Case (2) is executed since, in case c) there is a current tuple x in r such that 

x[A]= a1,…,an and, as a result of the propose_update operation, there is a current Proposal-tuple with origin (a1,…,an) and 

with an alternative (a''1,…,a''n, pnew|tb) such that the valid time of the tuple at transaction time UC is tvt_new, i.e. 

ρe
uc(a''1,…,a''n, pnew|tb)[Tv] = tvt_new. In this case, the operation performs a sequence of operations <deleteB(r, (a1,…,an)); 

insertB(r, (a''1,...,a''n,), ρe
uc(a''1,…,a''n, pnew|tb) [Tv]))>, which is equivalent to <deleteB(r, (a1,…,an)); insertB(r, (a''1,...,a''n,),  

tvt_new)>. 

Finally, the delete_alternatives(r,(a1,…,an, pnew)) operation “closes” in pu(r) the tuple inserted by the propose_update 

operation, in such a way that also for the subsequent operations we can assume that there are no current proposals. ♦ 

 

Property 6.3: Reducibility of Proposal-tuple-sets. 

Our algebraic operators on Proposal-tuple-sets are reducible to BCDM algebraic operators, i.e., for each algebraic 

unary operator OpPV in our model, and indicating with OpB the corresponding BCDM operator, for each Proposal-tuple-

set s, the following holds (the analogous holds for binary operators): 

convert(OpPV(s) ) = OpB(convert(s)) ♦ 

Proof: 

For the sake of brevity, we prove the property considering the natural join operator. The proofs for the other operators 

are similar. 

Let r and s be Proposal-tuple-sets, with schemata <(Aorig,Borig), (A,B|T)> and <(Aorig,Corig), (A,C|T)> respectively, 

where Aorig, Borig, Corig, A, B and C are sets of atemporal attributes, and A and Aorig denote the join attribute(s), then  

convert(r PV s) = convert(r) B convert(s), 

where PV is the natural join operator of our approach (see Definition 6.1), B is the natural join operator of BCDM 

([Snodgrass 1995], see Section 3) and convert is the operator introduced in Definition 6.2. 

We show the equivalence by proving the two inclusions separately, i.e., we prove that the left-hand side of the 

formula (henceforth lhs) implies the right-hand side (henceforth rhs) and that the rhs implies the lhs. 
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(x’’ ∈ lhs  x’’ ∈ rhs) 

Let x’’ ∈ lhs. Then, by the definition of convert, there exists a Proposal-tuple x’ ∈ r PV s such that 

origin(x’)=x’’[Aorig,Borig,Corig] and there exists an alternative alt’ ∈ alternatives(x’) such that alt’[A,B,C]=x’’[A,B,C] and 

alt’[T]=x’’[T]. 

By the definition of PV, there exist Proposal-tuples x1 ∈ r and x2 ∈ s such that origin(x1)[Aorig]= 

origin(x2)[Aorig]=origin(x’)[Aorig], origin(x1)[Borig]= origin(x’)[Borig], origin(x2)[Corig]= origin(x’)[Corig] and there exist 

alternatives alt1∈ alternatives(x1) and alt2∈alternatives(x2) such that alt1[A]=alt2[A]=alt’[A], alt1[B]=alt’[B], 

alt2[C]=alt’[C] and alt1[T]∩alt2[T]=alt’[T]. 

Then, by the definition of convert, there exists a tuple x1’ ∈ convert(r) such that 

x1’[Aorig,Borig]=origin(x1)[Aorig,Borig]=origin(x’)[Aorig,Borig], x1’[A,B]=alt1[A,B]=alt’[A,B], x1’[T]=alt1[T] and there exists 

a tuple x2’∈ convert(s) such that x2’[Aorig,Corig]=origin(x2)[Aorig,Corig]=origin(x’)[Aorig,Corig], x2’[A,C]= 

alt2[A,C]=alt’[A,C], x2’[T]=alt2[T]. 

Then, by the definition of B, since x1’[Aorig]=x2’[Aorig] and x1’[A]=x2’[A], there exists x12’’ ∈ rhs such that 

x12’’[Aorig,Borig]=x1’[Aorig,Borig], x12’’[Aorig,Corig]=x2’[Aorig,Corig], x12’’[A,B]=x1’[A,B], x12’’[A,C]=x2’[A,C] and 

x12’’[T]=x1’[T]∩x2’[T]. 

By construction, x12’’=x’’. 

 

(x’’ ∈ rhs  x’’∈ lhs) 

Now assume x’’∈ rhs. Then, by definition of B, there exist tuples x1’∈ convert(r) and x2’∈convert(s) such that 

x1’[Aorig]=x2’[Aorig] and x1’[A]=x2’[A] and x1’[Aorig,Borig]=x’’[Aorig,Borig], x2’[Aorig,Corig]=x’’[Aorig,Corig], 

x1’[A,B]=x’’[A,B], x2’[A,C]=x’’[A,C] and x1’[T] ∩ x2’[T]=x’’[T]. 

By the definition of convert, there exists a Proposal-tuple x1∈r such that origin(x1)[Aorig,Borig]=x1’[Aorig,Borig] with an 

alternative alt1∈alternatives(x1) such that alt1[A,B]=x1’[A,B] and alt1[T]=x1’[T], and there exists a Proposal-tuple x2∈s 

such that origin(x2)[Aorig,Corig]= x2’[Aorig,Corig] with an alternative alt2∈alternatives(x2) such that alt2[A,C]= x2’[A,C] and 

alt2[T]= x2’[T]. 

Then by definition of PV, since x1[Aorig]=x2[Aorig] and x1[Ao]=x2[A], there must exist a Proposal-tuple  x’∈ r c s 

such that origin(x’)[Aorig,Borig]=x1[Aorig,Borig], origin(x’)[Aorig,Corig]= x2[Aorig,Corig] and there must be an alternative 

alt’∈alternatives(x’) such that x1[A,B]=x2[A,C], alt’[A,B]=x1[A,B], alt’[A,C]=x2[A,C] and alt’[T]=alt1[T]∩alt2[T]. 

Then, by definition of convert, there exists a tuple x12’’ ∈ lhs such that 

x12’’[Aorig,Borig,Corig]=origin(x’)[Aorig,Borig,Corig], x12’’[A,B,C]=alt’[A,B,C] and x12’’[T]=alt’[T]. 

By construction, x12’’=x’’. ♦ 

 

Corollary 6.4: Reducibility. 

 The algebraic operators in our approach are reducible to BCDM algebraic operators. ♦ 

Proof: It is trivial, considering Property 6.3 for pu(r) and the reducibility property proved in [Snodgrass 1995] for 

BCDM relations (in fact, pi(r) and pd(r) sets can be interpreted as BCDM relations). ♦ 
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Appendix E. Focusing on transaction-time relations 

In this Appendix, we explicitly deal with the case in which only transaction-time relations (i.e., relations which have no 

valid time in their schema) are to be taken into account. This is the case, for instance, of the example in Appendix A. 

Although this is a quite trivial restriction of the general approach described in the paper, we mention it here, for the sake 

of completeness.  

Also in case the database contains only transaction-time relations, the general Definition 4.0.2 applies. Specifically, a 

database is still a pair <DB_Evaluators, DB_Proposers>. Of course, the schema of the relations in DB_Evaluators  is now 

R=(A1,…,An| Tt), where Tt is an implicit timestamp attribute with domain DTT. Analogously, for each relation r having 

schema R=(A1,…,An| Tt)  belonging to DB_Evaluators, the schema of the set pi(r) is now R’=(A1,…,An,P|Tt), and the 

schema of pu(r) is now  <(A1, …,An), (A1, …,An,P|Tt)> (pd(r) is unchanged, since also in the original model it did not 

contain the valid time).  

 

As concerns manipulation operations, in this Appendix, we describe only the new version of propose_update (called 

propose_update’), because the other adaptations are analogous. 

Notice that, when only transaction time is used, the definition of the function current must be adapted, i.e., given a  

(transaction time) tuple x, current’(x): (UC ∈ x[Tt]). 

 

The propose_update’ operation first checks the applicability of the proposal, through the admissible_propose_update’ 

routine. 

 

Definition E.1: admissible_propose_update’.  

Given a relation r∈DB_Evaluators with schema R=(A1,…,An|Tt), let A stand for (A1,…,An), let <(A1, …,An), (A1, 

…,An,P|Tt)> be the schema of pu(r). We define admissible_propose_update’ as follows: 

 

admissible_propose_update’(propose_update’(r,<(a1,...,an),(a'1,...,a'n,pold)>,(a''1,...,a''n,pnew))): 

(1) (∃x∈r: (x[A]=(a1,...,an)∧ current’(x)) ∨ ∃x∈pi(r): (x[A]=(a1,...,an)∧current’(x))) ∧ 

(2) (∃pt∈pu(r) : (origin(pt)=(a1,...,an)  ∧ ∃ y ∈ alternatives(pt) :  

(y[A] = (a1',...,an') ∧ y[P]= pold ∧ current’(y))  

∨ (a1,...,an)=(a'1,...,a'n))) ∧ 

(3) ( ∀pt ∈ pu(r) (origin(pt)=(a1,...,an))   ( ¬∃ z ∈ alternatives(pt):  

(z[A] = (a1'',...,an'') ∧   current’(z)))) ∧ 

(4) ∀k∈ r  (k[A]= (a1'',...,an'')  ¬ (current’(k)))  ∧  

(5)  pnew ∈ Proposers♦ 

 

Conditions (1), (2), and (5) are the same as in Definition 5.1.1. 

In the condition (3) in Definition 5.1.1 there is another conjunct (i.e., ρe
UC (z) [Tv] = tvt_new) that is used to allow the 

case in which a new proposal (a1'',...,an'') is weakly value equivalent to an already existing alternative z in the Proposal-

tuple pt with origin (a1,...,an), but differs from z due to its valid time (at transaction time equal to UC).  
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Also condition (4) is more restrictive than condition (4) in Definition 5.1.1. In this version, we do not admit that the 

new proposal (a1'',...,an'') is value equivalent to any current tuple k∈r while in Definition 5.1.1 we admit new proposals 

value equivalent to the origin in case they have a different valid time. 

 

The new version of propose_update is similar to the one in Definition 5.1.3; the only difference consisting in the 

action part of the operation. As a matter of fact, in all the cases in the definition, the new tuple has to be inserted, having 

UC in its transaction time. However, in the case in which no valid time has to be considered, this simply amounts to 

adding UC to the (transaction) time of the tuple (while in the general case in Definition 5.1.3 the bitemporal chronons 

holding at UC must be introduced). 

 

Definition E.2: propose_update’. 

Given a relation r∈DB_Evaluators with schema R=(A1,…,An|Tt), let A stand for (A1,…,An), let <(A1, …,An), (A1, 

…,An,P|Tt)> be the schema of pu(r), and let (A1, …,An,P|Tt) be the schema of a new proposal of update. We define 

propose_update’ as follows: 

 

if(admissible_propose_update’(propose_update’(r,<(a1,...,an),(a'1,...,a'n,pold)>,(a''1,...,a''n,pnew)))) then 

begin 

(1) if  (¬ ∃ pt ∈ pu(r) : origin(pt)=(a1,...,an)) 

then pu(r)pu(r)∪{create_pt((a1,...,an),{(a''1,...,a''n, pnew|{UC})})} 

(2) else if (∃ pt ∈ pu(r) : (origin(pt)=(a1,...,an)  ∧  

 (∀y ∈alternatives(pt) (y[A]=(a1'',...,an'')  y[P]≠pnew))) 

then pu(r)pu(r)−{pt} ∪ {create_pt((a1,...,an), alternatives(pt)∪ {(a''1,...,a''n,pnew|{UC})})} 

(3) else if (∃ pt ∈ pu(r) : (origin(pt)=(a1,...,an)   ∧  

 ∃ y ∈ alternatives(pt) : (y[A] = (a1'',...,an'') ∧ y[P]= pnew))) 

then pu(r)pu(r)− {pt} ∪ {create_pt((a1,...,an), alternatives(pt) − y ∪  {(a''1,...,a''n,pnew|y[Tt] ∪{UC})})} 

end♦ 

 


