
Dipartimento di Informatica

Università del Piemonte Orientale “A. Avogadro”

Viale Teresa Michel 11, 15121 Alessandria

http://www.di.unipmn.it

Verifying Business Process Compliance by Reasoning about Actions

D. D’Aprile, L. Giordano, V. Gliozzi, A. Martelli, G. Pozzato, D. Theseider

Dupré (davide.daprile@mfn.unipmn.it, laura.giordano@mfn.unipmn.it,

gliozzi@di.unito.it, mrt@di.unito.it, pozzato@di.unito.it,

dtd@mfn.unipmn.it)

TECHNICAL REPORT TR-INF-2010-05-02-UNIPMN

(May 2010)

The University of Piemonte Orientale Department of Computer Science Research

Technical Reports are available via WWW at URL http://www.di.unipmn.it/.

Plain-text abstracts organized by year are available in the directory

Recent Titles from the TR-INF-UNIPMN Technical Report Series

2010-01 A Case-based Approach to Business Process Monitoring, G. Leonardi, S. Montani,

March 2010.

2009-09 Supporting Human Interaction and Human Resources Coordination in Distributed

Clinical Guidelines, A. Bottrighi, G. Molino, S. Montani, P. Terenziani, M. Torchio,

December 2009.

2009-08 Simulating the communication of commands and signals in a distribution grid, D.

Codetta Raiteri, R. Nai, December 2009.

2009-07 A temporal relational data model for proposals and evaluations of updates, L.

Anselma, A. Bottrighi, S. Montani, P. Terenziani, September 2009.

2009-06 Performance analysis of partially symmetric SWNs: efficiency characterization

through some case studies, S. Baarir, M. Beccuti, C. Dutheillet, G. Franceschinis,

S. Haddad, July 2009.

2009-05 SAN models of communication scenarios inside the Electrical Power System, D.

Codetta Raiteri, R. Nai, July 2009.

2009-04 On-line Product Configuration using Fuzzy Retrieval and J2EE Technology, M. Ga-

landrino, L. Portinale, May 2009.

2009-03 A GSPN Semantics for Continuous Time Bayesian Networks with Immediate Nodes,

D. Codetta Raiteri, L. Portinale, March 2009.

2009-02 The TAAROA Project Specification, C. Anglano, M. Canonico, M. Guazzone, M.

Zola, February 2009.

2009-01 Knowledge-Free Scheduling Algorithms for Multiple Bag-of-Task Applications on

Desktop Grids, C. Anglano, M. Canonico, February 2009.

2008-09 Case-based management of exceptions to business processes: an approach exploit-

ing prototypes, S. Montani, December 2008.

2008-08 The ShareGrid Portal: an easy way to submit jobs on computational Grids, C.

Anglano, M. Canonico, M. Guazzone, October 2008.

2008-07 BuzzChecker: Exploiting the Web to Better Understand Society, M. Furini, S. Mon-

tangero, July 2008.

2008-06 Low-Memory Adaptive Prefix Coding, T. Gagie, Y. Nekrich, July 2008.

2008-05 Non deterministic Repairable Fault Trees for computing optimal repair strategy, M.

Beccuti, D. Codetta Raiteri, G. Franceschinis, July 2008.

2008-04 Reliability and QoS Analysis of the Italian GARR network, A. Bobbio, R. Terruggia,

June 2008.

Verifying Business Process Compliance

by Reasoning about Actions ∗

Davide D’Aprile1 Laura Giordano1 Valentina Gliozzi2

Alberto Martelli2 Gian Luca Pozzato2

Daniele Theseider Dupré1

1 Dipartimento di Informatica, Università del Piemonte Orientale

{davide.daprile,laura.giordano,dtd}@mfn.unipmn.it
2 Dipartimento di Informatica, Università di Torino

{gliozzi,mrt,pozzato}@di.unito.it

Abstract

In this paper we address the problem of verifying business process compliance with
norms. To this end, we employ reasoning about actions in a temporal action theory.
The action theory is defined through a combination of Answer Set Programming and
Dynamic Linear Time Temporal Logic (DLTL). The temporal action theory allows us
to formalize a business process as a temporal domain description, possibly including
temporal constraints. Obligations in norms are captured by the notion of commit-
ment, which is borrowed from the social approach to agent communication. Norms are
represented using (possibly) non monotonic causal laws which (possibly) enforce new
obligations. In this context, verifying compliance amounts to verify that no execution
of the business process leaves some commitment unfulfilled. Compliance verification
can be performed by Bounded Model Checking.

1 Introduction

Verifying the compliance of business processes towards normative regulations has become an
important issue to be addressed. Many organizations (banks, hospitals, public administra-
tions, etc.), whose activities are subject to regulations are required to justify their behaviors
with respect to the norms and to show that the business procedures they adopt conform
to such norms. In the financial domain, in particular, the Sarbanes-Oxley Act (commonly
named SOX), enacted in 2002 in the USA, describes mandates and requirements for financial
reporting, and was proposed in order to restore investor confidence in capital markets after
major accounting scandals. MiFID (Markets in Financial Instruments Directive) is a EU
law, effective from 2007, with similar goals, including transparency.

∗This work has been partially supported by Regione Piemonte, Project “ICT4Law - ICT Converging on

Law: Next Generation Services for Citizens, Enterprises, Public Administration and Policymakers”.

1

In this paper, in order to address the problem of business process compliance verification,
we introduce a language for reasoning about action which extends Answer Set Programming.
Temporal logic can be usefully exploited both in the specification of an action domain and in
the verification of its properties (see, e.g., [15]). In this paper, we provide the specification of
a business process as a temporal action domain and then we reason about it in the temporal
action theory. The same formalism is used for the representation of both processes and
norms towards which the process has to be compliant. In particular, causal laws of the
action theory are well suited to model norms as directional rules, and defeasible negation of
ASP can be exploited to model exceptions to the norms, by allowing norms to be defeasible.
To represent the obligations which can be enforced by the application of norms, we make use
of a notion of commitment, which is borrowed from the area of multi-agent communication
[24, 9, 15].

For the specification and verification of business processes, we rely on a Temporal Action
Theory [13], which combines Answer Set Programming with Dynamic Linear Time Temporal
Logic (DLTL) [20]. DLTL extends propositional temporal logic of linear time with regular
programs of propositional dynamic logic, that are used for indexing temporal modalities.
The action language allows for general temporal constraints to be included in the domain
description. The definition of action theories based on ASP presents several advantages over
the approach in [14], which is based on a monotonic solution for the frame problem. First, the
adoption of a non-monotonic solution to the frame problem, based on ASP default negation,
allows to avoid the limitation of the completion solution in [14], which requires action and
causal laws to be stratified to avoid unexpected extensions in case of cyclic dependencies.
Second, ASP allows for a simple definition of defeasible action laws and defeasible causal
laws, using default negation. Defeasibility of causal laws is needed if they are used to model
norms with exceptions. Finally, bounded model checking [4] can be used for the verification
of temporal properties of domain descriptions in temporal ASP. The approach developed in
[19] for bounded LTL model checking with Stable Models, has been extended in [13] to deal
with DLTL bounded model checking.

Given the specification of a business process as an action domain and the specification
of norms as a set of (defeasible) causal rules generating commitments, the problem of com-
pliance verification consists in verifying that there is no execution of the business process
which leaves some commitment unfulfilled. This verification can be done by making use of
bounded model checking thechniques.

2 Running example

As a running example we consider a fragment of the business process of an investment firm,
where the firm offers financial instruments to an investor. The description of the business
process in YAWL is given in Figure 1. We chose YAWL (Yet Another Workflow Language)
[25] as specification language for our running business process example, since it provides a
number of advantages with respect to several available alternatives:

• YAWL has been implemented in an open source workflow system and can be seen as a
reference implementation of the workflow patterns (the outcome of an analysis activity
based on business process modeling practice) [26].

2

Figure 1: Example business process in YAWL

• It is the most powerful business process modeling language, with respect to control-
flow, data and resource perspectives, the three orthogonal views in a business process
specification.

• It has been defined free from commercial interests.

• It provides a graphical user interface, based on a few basic elements, for business
process specification needs; this implies a better learning curve.

• It is heavily XML-based, which facilitates interoperability.

• It comes with a formal foundation, which gives the possibility to perform formal anal-
ysis for achieving validation and verification goals.

Let us consider a regulation containing the following norms:

(1) the firm shall provide to the investor adequate information on its services and policies
before any contract is signed;

(2) if the investor signs an order, the firm is obliged to provide him a copy of the contract.

The execution of each task in the process has some preconditions and effects. Due to the
presence of norms, the execution of a task in the process above may generate obligations to
be fulfilled. For instance, according to the second norm, signing an order generates for the
firm the obligation to provide copy of the contract to the investor.

Verifying the compliance of a business process to a regulation requires to check that, in
all the executions of the business process, the obligations triggered by the norms are fulfilled.

In the following, we provide the specification of the business process and of the related
norms in an action theory. The problem of verifying compliance of the business process to
the norms is then defined as a reasoning problem in the action theory. We first introduce the
action language used, which is based on a temporal extension of answer set programming.

3

3 Action theories in Temporal ASP

A domain description is defined as a set of laws describing the effects of actions as well as
their executability preconditions. Actions may have direct effects, that are described by
action laws, and indirect effects, that capture the causal dependencies among fluents and
are described by causal laws. The execution of an action a in a state s leads to a new state
s′ in which the effect of the action holds. The properties (fluent) which hold in s and are
not affected by the action a, still hold in s′. Let us first describe the notions of fluent and
fluent literal.

Let P be a set of atomic propositions, the fluent names. A simple fluent literal l is a
fluent name f or its negation ¬f . Given a fluent literal l, such that l = f or l = ¬f , we
define |l| = f . We will denote by Lit the set of all simple fluent literals. In the language we
also make use of temporal literal, that is literals that are prefixed by temporal modalities,
as [a]l and ©l. Their intended meaning is the following: [a]l holds in a state when l holds
in the state obtained after the execution of action a; ©l holds in a state if l holds in the
next state.

LitT is the set of (temporal) fluent literals: if l ∈ Lit, then l ∈ LitT ; if l ∈ Lit, then
[a]l,©l ∈ LitT (for a ∈ Σ). Given a (temporal) fluent literal l, not l represents the default
negation of l. A (temporal) fluent literal possibly preceded by a default negation, will be
called an extended fluent literal.

A domain description D is defined as a tuple (Π, F rame, C), where Π contains action
laws, causal laws, precondition laws and the initial state, Init; Frame provides a classification
of fluents as frame fluents and non-frame fluents; C is a set of temporal constraints.

The action laws in Π have the form:

2([a]l1 or . . . or [a]lk ← l′1 ∧ . . . ∧ l′m)

where l1, . . . , lm and l′1, . . . , l
′

k are simple fluent literals. Its meaning is that executing action
a in a state in which the conditions l′1, . . . , l

′

m hold causes either the effect l1 or . . . or the effect
lk to hold. Consider, for instance, the nondeterministic action of order verification(T, C),
which checks if the order of the financial product T by customer C is correct or not. In the
first case, the order is accepted, otherwise it is not:

2([order verification(T, C)]confirmed(T, C) or

[order verification(T, C)]¬confirmed(T, C)

In case of deterministic actions, there is a single disjunct in the head of the action law.
For instance, the action of informing the investor has the effect that the investor has acquired
information:

2([inform(C)]informed(C)

Causal laws are intended to express “causal” dependencies among fluents. Static Causal
laws in Π have the form:

2(l ← l1 ∧ . . . ∧ lm ∧ not l′1 ∧ . . . ∧ not l′r)

where l, l1, . . . , lm are simple fluent literals. Their meaning is that: if l1, . . . , lm hold in a
state, l is also caused to hold in that state. For instance,

2(¬order confirmed(T, C) ← order deleted(T, C))

4

where “confirmed” means “confirmed by the firm” and is a possible effect of order verifica-
tion, while “deleted” means “withdrawn by the customer”, models the fact that the direct
effect “deleted” of withdrawal has the indirect effect of making the order no longer effective
for the firm as well.

Dynamic causal laws in Π have the form:

2(©l ← l1, . . . , lm,©lm+1, . . . ,©lk)

meaning that: if l1, . . . , lm hold in a state and lm+1, . . . , lk hold in the next state, then l is
caused to hold in the next state.

Precondition laws have the form:

2([a]⊥ ← l1, . . . , lm)

with a ∈ Σ and l1, . . . , lk are simple fluent literals. The meaning is that the execution of an
action a is not possible if l1, . . . , lk hold (that is, no state results from the execution of a in
a state in which l1, . . . , lk holds). An action for which there is no precondition law is always
executable. The precondition law

2([proposal evaluation(T, C)]⊥ ← ¬selected(T, C) ∨ ¬informed(C))

states that an investor can be requested to evaluate a proposed investment only if the
proposal has been selected and the investor has been already informed of the firm policy.
Similar preconditions can either be asserted in the model, or verified to be true. The second
option is suitable for the case where the process explicitly includes, as in figure 1, activities
that make the precondition true; the first one is suitable for the case where such activities
are abstracted away.

The initial state, Init, is a (possibly incomplete) set of simple fluent literals, the fluent
which are known to hold initially. For instance, Init = {investor, ¬informed,¬signed, etc.}.

The temporal constraints in C are arbitrary temporal formulas of DLTL. They are used
to restrict the space of the possible extensions. DLTL [20] extends LTL by allowing the
until operator Uπ to be indexed by a program π, as in Propositional Dynamic Logic (PDL).
In addition to the usual 2 (always) and 3 (eventually) temporal modalities of LTL, new
modalities [π] and 〈π〉 are allowed. Informally, a formula [π]α is true in a world w of a
linear temporal model if α holds in all the worlds of the model which are reachable from w

through any execution of the program π. A formula 〈π〉α is true in a world w of a linear
temporal model if there exists a world of the model reachable from w through an execution
of the program π, in which α holds. The program π can be any regular expression built
from atomic actions by making use of sequence (;), non-deterministic choice (+) and finite
iteration (∗). The modalities 2, 3 and © (next) of linear temporal logic can be seen to be
derivable. For instance, ¬sent contract U signed states that the contract is not sent to the
customer until it has been signed.

A temporal constraint can also require a complex behavior to be performed, through
the specification of a program. For instance (the complete version of the program for the
process in figure 1 will be given in Section 4), the program

π = inform(C); select financial instrument(T,C);
((sign order(T,C); send contract) + withdraw(T,C))

5

describes a process in which: the investor C is informed, a financial instrument T is selected
for C, C either signs the contract and a copy of the contract is set to him, or C withdraws.
The formula 〈π〉true requires that there is an execution of the program π starting from the
initial state.

As in [23, 22] we call frame fluents those fluents to which the law of inertia applies. We
consider frame fluents as being dependent on the actions. Frame is a set of pairs (p, a),
where p ∈ P is a and a ∈ Σ, meaning that p is a frame fluent for action a, that is, p is a
fluent to which persistency applies when action a is executed. Instead, non-frame fluents
with respect to a do non persist and may change value in a non-deterministicaly, when a is
executed.

Unlike [14], we adopt a non-monotonic solution to the frame problem, as usual in the
context of ASP. The persistency of frame fluents from a state to the next one can be enforced
by introducing persistency laws of the form:

2([a]l ← l, not [a]¬ l),

for each simple fluent literal l and action a ∈ Σ, such that (|l|, a) ∈ Frame. Its meaning is
that, if l holds in a state, than l holds in the state obtained by executing action a, if it can
be assumed that ¬l does no hold in the resulting state.

For capturing the fact that a fluent literal l which is non-frame with respect to a ∈ Σ
may change its value non-deterministically when a is executed, we introduce the axiom:

2([a]p or [a]¬p ← true)

for all p and a such that (p, a) 6∈ Frame. When a is executed, either the non-frame fluent
literal p holds in the resulting state, or ¬p holds. We will call FrameD the set of laws intro-
duced above for dealing with frame and non-frame fluents. They have the same structure as
action laws, but frame axioms contain default negation in their bodies. Indeed, both action
laws and causal laws can be extended for free by allowing default negation in their body.
This extension has been considered for instance in [8].

As concerns the initial state, we assume that its specification is, in general, incomplete.
However, we reason on complete initial states obtained by completing the initial state in
all the possible ways. and we assume that, for each fluent literal p, the domain description
contains the law:

p or ¬p ← true

meaning that either p is assumed to hold in the initial state, or ¬p is assumed to hold. This
approach is in accordance with our treatment of non-deterministic actions and, as we will
see, gives rise to extensions in which all states are complete, where each extension represents
a run, i.e. a possible evolution of the world from the initial state. We will call InitD the set
of laws introduced above for completing the initial state.

4 Specifying a business process as an action domain

In the following, we provide the specification of a business process as an action domain de-
scription. In the following, fi selection stands for financial instrument selection, p evaluation

stands for proposal evaluation, order verif stands for order verification and, finally, profiling

6

stands for investor profiling. The following action and causal laws describe the effect of the
actions in the process:

2([investor identification(C)]investor(C))
2([investor profiling(C)]investor classified(C, D))
2([profiling(C)](risk averse(C) or risk neutral(C) or risk seeking))
2([inform(C)]informed(C))
2([fi selection(t1, C)]selected(t1, C) or . . . or [fi selection(tn, C)]selected(tn, C) ←

financial instr(t1) ∧ . . . ∧ financial instr(tn) ∧ risk averse(C))
. . .
2([p evaluation(T, C)]accepted(T,C) or [p evaluation(T, C)]¬accepted(T, C))
2([sign order(T, C)]order signed(T,C))
2([order verif](T,C)]order confirmed(T,C) or

[order verif](T, C)]¬order confirmed(T, C))
2([send contract(T, C)]sent contract(T, C))
2([withdraw(T, C)]order deleted(T,C))
2(¬order confirmed(T, C) ← order deleted(T, C))
2([end procedure]end)

The following precondition laws can either be asserted or verified (see sect. 3):

2([p evaluation(T, C)]⊥ ← ¬selected(T,C) ∨ ¬informed(C))
2([send contract(T, C)]⊥ ← ¬confirmed(T, C))

The meaning of the second one is that it is possible to send a contract to the investor only
if the contract has been signed.

In order to specify business processes as programs, we introduce test actions. DLTL
does not include test actions. We define test actions as atomic actions with no effects. For
example, accepted(T, C)? is an action testing the result of proposal evaluation in figure 1.
Preconditions of accepted(T, C)? are given by the following precondition law:

2([accepted(T, C)?]⊥ ← ¬accepted(T,C)

stating that accepted(T, C)? is not executable in a state in which the investor has not
accepted the proposal.

A loop repeat activity until test can then be written as follows:

activity;
(¬test?; activity;)∗

test?;

Note that a regular expression e∗ represents the infinite set of strings where each string
formed by a finite number of occurrences of e. Therefore, only the (infinite) set of finite
executions of the loop is represented. This interpretation is consistent with the combination
of “classical soundness” and “strong fairness” in Workflow Nets, the class of Petri Nets which
form the basis for the semantics of YAWL; see, e.g., the comments in [27] after Definition
8 (“without this assumption, all nets allowing loops in their execution sequences would be
called unsound, which is clearly not desirable.”).

The control flow of the process in figure 1, which is defined quite rigidly, can be modeled
by the following program π:

7

investor identification(C);
investor classification(C);
inform(C);
fi selection(T, C);
p evaluation(T, C);
(¬accepted(T,C)?; fi selection(T, C); p evaluation(T, C))∗;
accepted(T, C)?;
sign order(T, C);
order verif(T,C);
(¬order confirmed(T, C)?; change order(T,C); order verif(T,C))∗;
order confirmed(T,C)?;
send contract(T, C);
(withdraw(T,C) + skip);
end procedure

where the action skip is defined as the empty action, with no effect.
Given the specification of the program π given above, we introduce the following constraints
in C:

〈π〉True

meaning that in each extension of the domain description, the sequence of the actions exe-
cuted must start with an execution of the program π.

The approach we adopt in this paper for reasoning about actions is well suited for
reasoning about infinite action sequences. To deal with finite computations we introduce
a dummy action, which can be repeated infinitely many times after the termination of the
process. We introduce the following constraints:

〈dummy〉True

2[dummy]〈dummy〉True

stating that: the dummy action must eventually be executed and, from that point on, the
dummy action is executed repeatedly. The precondition law:

2[dummy]⊥ ← ¬end

states that the dummy action cannot be executed if the process has not reached the end
point.

5 Normative Specification

As we have seen in the previous section, the action theory provides a specification of the
business process which allows the effect of atomic tasks in the process to be made explicit.
According to the normative specification, the execution of each task in the business process
can, in addition, trigger some normative position (obligation, permission, prohibition). For
instance, as said above, the identification task in the business process in Figure 1, which
introduces a new investor C, also generates the obligation to inform the investor. This obli-
gation must be fulfilled during the course of execution of the business process, if the process
is compliant with the norm stating that the firm has the obligation to inform customers.

8

In the following we make use of causal laws to represent norms in the action theory, and
we introduce a notion of commitment to model obligations. The use of commitments has
long been recognized as a “key notion” to allow coordination and communication in multi-
agent systems [21]. Their use in social approaches to agent communication is essentially
motivated by requirements of verifiability. Among the most significant proposals to use
commitments in the specification of protocols (or more generally, in agent communication)
are [24, 18, 9]. A notion of commitment for reasoning about agent protocols in a temporal
action logic have been proposed in [15]. In [1] an alternative notion to commitment called
expectation is proposed. We refer to section 7 for a discussion of this approach.

Following [15], we introduce two kinds of commitments (which are regarded as special
fluent propositions): Base-level commitments having the form C(i, j, A) and meaning that
agent i is committed to agent j to bring about A (where A is an arbitrary propositional
formula not containing commitment fluents); Conditional commitments having the form
CC(i, j, B, A) and meaning that agent i is committed to agent j to bring about A, if condition
B is brought about.

A base level commitment C(i, j, A) can be naturally regarded as an obligation (namely,
O A, ”A is obligatory”), in which the debtor and the creditor are made explicit. The two
kinds of base-level and conditional commitments we use here are essentially those introduced
in [28]. Our present choice is different from the one in [18], where agents are committed to
execute an action rather than to achieve a condition.

The idea is that commitments (or obligations) are created as effects of the execution
of some basic task in the business process and they are “discharged” when they have been
fulfilled. A commitment C(i, j, A), created at a given state of a run of the process, is regarded
to be fulfilled in the run if there is a later state of the run in which A holds. As soon as
committment is fullfilled in a run, it is considered to be satisfied and no longer active: it
can be discharged.

Given the notion of commitment introduced above, norms can be modeled as precondition
and causal laws which trigger new commitments/obligations. For instance, we can encode
the norms in Section 2 by the following precondition and causal law:

2([sign order(T, C)]⊥ ← informed(C))

2(C(firm,C, sent contract(T,C)) ← order signed(T, C))

The first one is a precondition for sign order(T, C), and it is quite obviously true in
the example process model, because informed(C) is the effect of the action inform(C)
which is always executed before sign order(T,C) is reached (and there is no action making
informed(C) false). Verifying preconditions may be more interesting in more complex
processes where the action may be reached via several paths.

The second one, a causal law, states that when an order is signed by C, the firm is
committed to C to send her the information required. The commitment remains active until
some action is executed, which makes sent contract(T, C) true. In the business process, the
commitment is fulfilled by the execution of the action send contract(T, C).

Causal laws are needed for modeling the interplay of commitments. In particular, for each
commitment C(i, j, α), we introduce the following causal laws in the domain description:

(i) 2(C(i, j, α)) ∧©α → ©¬C(i, j, α))

9

(ii)2((CC(i, j, β, α) ∧©β) → ©C(i, j, α))
(iii)2((CC(i, j, β, α) ∧©β) → ©¬CC(i, j, β, α))

A commitment to bring about α is considered fulfilled and is discharged (i) as soon as α holds.
A conditional commitment CC(i, j, β, α) becomes a base-level commitment C(i, j, α) when
β has been brought about (ii) and, in that case, the conditional commitment is discharged
(iii).

One of the central issues in the representation of norms comes from the defeasible nature
of norms. Norms may have exceptions: recent norms may cancel older ones; more specific
norms override more general norms; and in other cases, explicit priority information (not
necessarily related to recency or specificity) is needed for disambiguation. Consider the
following example from [17]:

r1: C(S, M, O, discount) ← sells(S, M, O) ∧ premium customer(M)
r2: ¬C(S, M, O, discount) ← sells(S, M, O) ∧ special order(S, M, O)

Rule r1 says the a seller has the obligation to apply a discount to premium customers. Rule
r2 says that premium customer are not entitled for a discount in case the order (O) is a
special order. Suppose that rule r2 is explicitly given priority over r1 (r2 > r1). The pri-
ority between the conflicting norms r1 and r2, with r2 > r1, can be modeled using default
negation. For instance, we can transform the rules as follows:

2(C(s,m, o, discount) ← sells(s,m, o) ∧ premium(m) ∧ not bl(r1));
2(¬C(s,m, o, discount) ← sells(s,m, o) ∧ special order(c) ∧ not bl(r2));
2(bl(r1) ← sells(s,m, o) ∧ special order(c) ∧ not bl(r2)),

so that rule r2, when applicable, blocks the application of r1, but not vice-versa.
In the context of ASP, more general and complex encodings of prioritized rules into

standard rules with default negation have been studied in [7] and in [5]. A similar approach
can be exploited in this setting to model defeasible norms as prioritized defeasible causal
laws.

One of the issues to be addressed when modeling norms is that of formalizing viola-
tions and reparation obligations. When an obligation is violated, another obligation can
be generated as a reparation of that violation. In [17] this problem is addressed through
the definition of reparation chains OA ⊗ OB ⊗ OC, where OB is the reparation of the
violation of OA, and OC is the reparation of the violation of OB, so that the rules rep-
resenting norms can have a reparation chain in the conclusion. For instance, the norm
OPay in time ⊗ OPay with Interest ← Invoice says that, after the invoice has been re-
ceived, the obligation to pay in time is generated but, if this obligation is not fulfilled, the
obligation to pay with interest is generated. We can represent this norm with the following
laws:

r1: C(i, j, Pay in time) ← Invoice(j, i)
r2: C(i, j, Pay with Interest) ←

Invoice(j, i) ∧ C(i, j, Pay in time) ∧ ¬Pay in time

r3: ¬C(i, j, Pay in time) ←
Invoice(j, i) ∧ C(i, j, Pay in time) ∧ ¬Pay in time

10

The first law states that after i receives the invoice from j, i is committed to j to pay in
time; r2 and r3 state that, if there is a commitment to pay in time and it is violated, then
this commitment is discharged and the commitment to pay with interest is generated. Rule
r3 has priority over r1.

6 Temporal answer sets and the verification of compli-

ance

Once the specification of the business process has been given as a domain description in an
action theory, the problem of verifying its compliance with some regulation can be modeled
as the problem of verifying that all the executions of the business process fulfil the obliga-
tions that are generated during the execution of the process. In order to characterize the
executions of the business process and to check if they violate some obligation, we introduce
the notion of extension of a domain description.

A domain description D = (Π, F rame, C), is a general logic program extended with a
restricted use of temporal modalities. The action modalities [a] and © may occur in front
of simple literals within rules and the 2 modality occurs in front of all rules in Π. Following
[13], we introduce a notion of temporal answer set, extending the notion of answer set [10].
The extensions of a domain description are then defined as the temporal answer sets of
Π ∪ FrameD ∪ InitD satisfying the integrity constraints C.

We define a partial temporal interpretation S as a set of literals of the form [a1; . . . ; ak]l
where a1, . . . , ak ∈ Σ, meaning that literal l holds in S in the state obtained by executing
the actions a1, . . . , ak in the order.

Definition 1 Let σ ∈ Σω. A partial temporal interpretation S over σ is a set of temporal
literals of the form [a1; . . . ; ak]l, where a1 . . . ak is a prefix of σ, and it is not the case that
both [a1; . . . ; ak]l and [a1; . . . ; ak]¬l belong to S (namely, S is a consistent set of temporal
literals).

We define a notion of satisfiability of a literal l in a temporal interpretation S in the
state a1 . . . ak as follows. A literal l is true in a partial temporal interpretation S in the
state a1 . . . ak (and we write S, a1 . . . ak |=t l), if [a1; . . . ; ak]l ∈ S; a literal l is false in a
partial temporal interpretation S in the state a1 . . . ak (and we write S, a1 . . . ak |=f l), if
[a1; . . . ; ak]l ∈ S; and, finally, a literal l is unknown in a partial temporal interpretation S

in the state a1 . . . ak (and we write S, a1 . . . ak |=u l), otherwise.
The notion of satisfiability of a literal in a partial temporal interpretation in a given

state, can be extended to temporal literals and to rules in a natural way. For instance,
for the temporal literals [a]l: S, a1 . . . ak |=t [a]l if [a1; . . . ; ak; a]l ∈ S or a1 . . . ak, a is not
a prefix of σ; S, a1 . . . ak |=f [a]l if [a1; . . . ; ak; a]l̄ ∈ S or a1 . . . ak, a is not a prefix of σ;
and S, a1 . . . ak |=u [a]l, otherwise. Similarly for the temporal literals of the form ©l. For
default negation we have: S, a1 . . . ak |=t not l if S, a1 . . . ak |=f l or S, a1 . . . ak |=u l; and
S, a1 . . . ak |=f not l, otherwise.

The three valued evaluation of conjunctions and disjunctions of literals is defined as usual
in ASP (see, for instance, [10]). Finally, we say that a rule 2(H ← Body) is satisfied in a
partial temporal interpretation S if, for all action sequences a1 . . . ak (including the empty

11

one), S, a1 . . . ak |=t Body implies S, a1 . . . ak |=t H. We say that a rule [a1; . . . ; ah](H ←
Body), is satisfied in a partial temporal interpretation S if S, a1 . . . ah |=t Body implies
S, a1 . . . ah |=t H.

We are now ready to define the notion of answer set for a set of P of rules that do not
contain default negation. Let P be a set of rules over an action alphabet Σ, not containing
default negation, and let σ ∈ Σω.

Definition 2 A partial temporal interpretation S over σ is a temporal answer set of P if
S is minimal (in the sense of set inclusion) among the partial interpretations satisfying the
rules in P .

We want to define answer sets of a program P possibly containing negation. Given a
partial temporal interpretation S over σ ∈ Σω, we define the reduct, PS, of P relative to
S extending the transformation in [10] to compute a different reduct of P for each prefix
a1, . . . , ah of σ.

Definition 3 The reduct, PS
a1,...,ah

, of P relative to S and to the prefix a1, . . . , ah of σ ,
is the set of all the rules [a1; . . . ; ah](H ← l1 ∧ . . . ∧ lm), such that 2(H ← l1 ∧ . . . ∧ lm ∧
not lm+1 ∧ . . . ∧ not lk) is in P and, for all i = m + 1, . . . , k, either S, a1, . . . , ah |=f li or
S, a1, . . . , ah |=u li, (where l, l1, . . . , lk are simple or temporal literals). The reduct PS of P

relative to S over σ is the union of all reducts PS
a1,...,ah

for all prefixes a1, . . . , ah of σ.

Definition 4 A partial temporal interpretation S over σ is an answer set of P if S is an
answer set of the reduct PS.

The definition above is a natural generalization of the usual notion of answer set to
programs with temporal rules. Observe that, σ has infinitely many prefixes, so that the
reduct PS is infinite and answer sets are infinite. This is in accordance with the fact that
temporal models are infinite. Given to the laws for completing the initial state in InitD, we
can prove the following:

Proposition 1 Given a domain description D over Σ and an infinite sequence σ, any
answer set of Π ∪ FrameD ∪ InitD over σ is a total answer set over σ.

It can be shown that, by persistency laws, the execution of an action in a complete state
produces a new complete state, which is only determined by the action laws, causal laws
and persistency laws executed in that state.

In the following, we define the notion of extension of a domain description D = (Π, F rame, C)
over Σ in two steps: first, we find the answer sets of Π∪ FrameD ∪ InitD; second, we filter
out all the answer sets which do not satisfy the temporal constraints in C. For the second
step, we need to define when a temporal formula α is satisfied in a total temporal interpre-
tation S. Observe that a total answer set S over σ can be regarded as a linear temporal
(DLTL) model [20]. Given a total answer set S over σ we define the corresponding temporal
model as MS = (σ, VS), where p ∈ VS(a1, . . . , ah) if and only if [a1; . . . ; ah]p ∈ S, for all
atomic propositions p. We say that a total answer set S over σ satisfies a DLTL formula α

if MS , ε |= α.

12

Definition 5 An extension of a domain description D = (Π, F rame, C) over Σ, is any
(total) answer set S of Π ∪ FrameD ∪ InitD satisfying the constraints in C.

Notice that, in general, a domain description may have more than one extension even
for the same action sequence σ: the different extensions of D with the same σ account for
the different possible initial states (when the initial state is incompletely specified) as well
as for the different possible effects of nondeterministic actions.

The extensions of the domain description define all the possible executions of the business
process. To check if there is an execution which violates some obligation we model the need
to fulfil a commitment C(i, j, α) as the temporal formula:

2(C(i, j, α) → 3α)

Such formulae, together with the precondition formulae corresponding to norms, is the set
of formulae to be verified in order to check compliance. We can then introduce the following
definition.

Definition 6 Let D be a domain description which includes the specification of a business
process B and of the norms in N as a set PN precondition laws and a set CN of causal laws.
The business process B is compliant with the set of norms N if for each extension S of the
domain description DB ∪ CN of B:

• for each precondition law P in PN , S satisfies P ;

• for each commitment C(i, j, α) occurring in CN , S satisfies the formula 2(C(i, j, α) →
3α).

Consider the domain description DB ∪ CN , including the specification DB of the business
problem example and the causal law

2(C(firm,C, sent contract(T,C)) ← order signed(T, C))

Each extension S of the domain description satisfies the temporal formulas

2(C(firm,C, sent contract(T,C)) → 3sent contract(T, C))
2([sign order(T, C)]⊥ ← informed(C))

Hence, the business process is compliant with the norms.
Observe that a weaker notion of compliance can be defined by weakening the fulfilment

condition to 2(C(i, j, α) → 3(α ∨ ¬C(i, j, α)), meaning that a commitment occurring on a
run is weakly fulfilled if there ia a later state in which either α holds or the commitment has
been discharged. This notion of fulfillment can be used to deal with reparation chains [17].

7 Conclusions and related work

The paper deals with the problem of verifying the compliance of business processes with
norms. Our approach is based on a temporal extension of ASP for reasoning about actions.
Both the business process and the norms are given a specification in a domain description.

13

In particular, defeasible causal laws are used for modeling norms and commitments are
introduced for representing obligations. The verification of compliance can be performed by
using bounded model checking techniques, which generalize LTL bounded model checking
[19].

Temporal rule patterns for regulatory policies are introduced in [12], where regulatory
requirements are formalized as sets of compliance rules in a real-time temporal object logic.
The proposed REALM approach is based on three central pillars: (1) the domain of discourse
of a regulation is captured by a concept model expressed as UML class diagrams (concept
model); (2) the regulatory requirements are formalized as a set of logical formulas expressed
in a real-time temporal object logic, namely a combination of Alur and Henzinger’s Timed
Propositional Temporal Logic and many-sorted first-order logic (compliance rule set). (3)
Information about the structure of the legal source as well as life-cycle data are captured as
separate metadata, which allow to annotate both the concept model and the compliance rule
set to ensure traceability from regulatory requirements to model elements and vice versa.
The approach is used essentially for event monitoring.

[11] proposes an approach based on annotations of business process models. In detail,
the tasks of a business process model in BPMN are annotated with their effects. A suitable
mechanism to propagate and cumulate the effects of a task to next ones is presented. Process
compliance verification establishes that a business process model is consistent with a set of
compliance rules. This approach does not introduce normative concepts.

[17] proposes an approach to the problem of business process compliance based on the
idea of annotating the business process. Process annotations and normative specifications
are provided in the same logical language, namely, the Formal Contract Language (FCL).
FCL combines defeasible logic [3] and deontic logic of violations [16] which allows to repre-
sent exceptions as well as to express reparation chains, to reason with violations, and the
obligations resulting from violations. The notions of ideal, sub-ideal and non-ideal situa-
tions are defined to describe two degrees of compliance between execution paths and FCL
constraints. Compliance is verified by traversing the graph describing the process and iden-
tifying the effects of tasks and the obligations triggered by the task execution. Algorithms
for propagating obligations through the process graph are defined. Obligations are dis-
charged when they are fulfilled. In this paper we provide a characterization the compliance
problem as a problem of reasoning about actions, which provides business process specifi-
cation, normative specification, and compliance verification in an integrated representation
and reasoning framework.

An approach to compliance based on a commitment semantics in the context of multi-
agent systems is proposed in [6]. In this work, the authors formalize notions of conformance,
coverage, and interoperability, proving that they are orthogonal to each other. The basic idea
of the authors is that for an agent to be compliant with a protocol, it must be confromant
with it, and conformance can be checked at design time. Another approach to the verification
of agents compliance with protocols, based on a temporal action theory, has been proposed
in [15]. These papers do not address the problem of compliance with norms.

The notion of expectation, which is alternative to the notion of commitment, has been
proposed in [1] for the specification of agent protocols. Expectations are used for mod-
elling obligations and prohibitions in the abductive computational framework SOCS [2].
Intuitively, obligations and prohibitions are mapped into abducible predicates, expressing
positive and negative expectations, respectively; norms are formalized by abductive integrity

14

constraints. The paper points out that the abductive proof procedure SCIFF can be used
for on-the-fly verification of agents conformance to norms.

References

[1] M. Alberti, D. Daolio, P. Torroni, M. Gavanelli, E. Lamma, and P. Mello. Specification
and Verification of Agent Interaction Protocols in a Logic-based System. SAC’04, pages
72–78, 2004.

[2] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, P. Torroni, and G. Sartor. Mapping of
Deontic Operators to Abductive Expectations. NORMAS, pages 126–136, 2005.

[3] G. Antoniou, D. Billington, G. Governatori, and M. J. Maher. Representation results
for defeasible logic. ACM Trans. on Computational Logic, 2:255–287, 2001.

[4] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model checking.
Advances in Computers, 58:118–149, 2003.

[5] Gerhard Brewka and Thomas Eiter. Preferred answer sets for extended logic programs.
Artificial Intelligence, 109(1-2):297–356, 1999.

[6] A.K. Chopra and M.P. Sing. Producing compliant interactions: Conformance, coverage
and interoperability. DALT IV, LNCS(LNAI) 4327, pages 1–15, 2006.

[7] James P. Delgrande, Torsten Schaub, and Hans Tompits. A framework for compiling
preferences in logic programs. Theory and Practice of Logic Programming, 3(2):129–187,
2003.

[8] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Planning under Incomplete
Knowledge. Computational Logic, pages 807–821, 2000.

[9] N. Fornara and M. Colombetti. Defining Interaction Protocols using a Commitment-
based Agent Communication Language. AAMAS03, pages 520–527.

[10] M. Gelfond. Answer Sets. Handbook of Knowledge Representation, chapter 7, Elsevier,
2007.

[11] A. Ghose and G. Koliadis. Auditing business process compliance. ICSOC, LNCS 4749,
pages 169–180, 2007.

[12] C. Giblin, S. Müller, and B. Pfitzmann. From Regulatory Policies to Event Monitoring
Rules: Towards Model-Driven Compliance Automation. IBM Reasearch Report, 2007.

[13] L. Giordano, A. Martelli, and D. Theseider Dupré. Reasoning about Actions with
Temporal Answer Sets. Submitted.

[14] L. Giordano, A. Martelli, and C. Schwind. Reasoning About Actions in Dynamic Linear
Time Temporal Logic. The Logic Journal of the IGPL, 9(2):289–303, 2001.

15

[15] L. Giordano, A. Martelli, and C. Schwind. Specifying and Verifying Interaction Pro-
tocols in a Temporal Action Logic. Journal of Applied Logic (Special issue on Logic
Based Agent Verification), 5:214–234, 2007.

[16] G. Governatori and A. Rotolo. Logic of Violations: A Gentzen System for Reasoning
with Contrary-To-Duty Obligations. Australasian Journal of Logic, 4:193–215, 2006.

[17] G. Governatori and S. Sadiq. The journey to business process compliance. Handbook
of Research on BPM, IGI Global, pages 426–454, 2009.

[18] F. Guerin and J. Pitt. Verification and Compliance Testing. Communications in Mul-
tiagent Systems, Springer LNAI 2650, 2003.

[19] K. Heljanko and I. Niemelä. Bounded LTL model checking with stable models. Theory
and Practice of Logic Programming, 3(4-5):519–550, 2003.

[20] J.G. Henriksen and P.S. Thiagarajan. Dynamic Linear Time Temporal Logic. Annals
of Pure and Applied logic, 96(1-3):187–207, 1999.

[21] N.R. Jennings. Commitments and Conventions: the foundation of coordination in
multi-agent systems. The knowledge engineering review, 8(3):233–250, 1993.

[22] G.N. Kartha and V. Lifschitz. Actions with Indirect Effects (Preliminary Report).
KR’94, pages 341–350, 1994.

[23] V. Lifschitz. Frames in the Space of Situations. Artif. Intellig., 46:365–376, 1990.

[24] M. P. Singh. A social semantics for Agent Communication Languages. Issues in Agent
Communication, LNCS(LNAI) 1916, pages 31–45, 2000.

[25] W. van der Aalst and A. ter Hofstede. YAWL: Yet Another Workflow Language.
Information Systems, 30(4):245–275, 2005.

[26] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow Patterns.
Distributed and Parallel Databases, 14:5–51, 2003.

[27] W.M.P. van der Aalst, K.M. van Hee, A.H.M. ter Hofstede, N. Sidorova, H.M.W.
Verbeek, M. Voorhoeve, and M.T. Wynn. Soundness of Workflow Nets: Classification,
Decidability, and Analysiss. BPM Center Report BPM-08-02, BPMcenter.org, 2008.

[28] P. Yolum and M.P. Singh. Flexible Protocol Specification and Execution: Applying
Event Calculus Planning using Commitments. AAMAS’02, pages 527–534, 2002.

16

