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Preface

Welcome to the Workshop Proceedings of the Eighteenth International Confer-
ence on Case-Based Reasoning (ICCBR 2010)! This year’s conference, which
consolidates ICCBR with the European Conference on Case-Based Reasoning
(ECCBR), is held in Alessandria, Italy, from July 19 through July 22, 2010.
The Workshop Program enables dissemination, demonstration, and discussion
of research in progress, facilitating interaction, feedback, and collaboration at
the forefront of CBR research and development. Five workshops are included in
this year’s program.

Case-Based Reasoning for Computer Games: This is the third in a series
of highly successful workshops focusing on CBR in computer gaming environ-
ments. The six papers included in this volume present work in meta-reasoning
for adaptive behavior, case extraction from game replay repositories, automated
feature selection, reinforcement learning, generic intelligent gaming frameworks,
and domain-independent learning.

Provenance-Aware CBR: Applications to Reasoning, Metareasoning,
Maintenance and Explanation: New this year is an exploration of case prove-
nance and its roles in trust and reputation, reasoning and metareasoning, and
explanation. Provenance encompasses the sources of cases, case acquisition con-
texts, derivation traces, and other meta-data. Five papers illustrate the use of
provenance-aware CBR for exploiting traces as knowledge sources and experi-
ence containers, supporting explanation, and enriching the CBR process.

WebCBR: Reasoning from Experiences on the Web: This second Web-
CBR workshop promotes CBR as a way to capture, represent and reuse un-
structured experiential Web content and Web usage data. Six papers represent
new research directions and applications. Technological issues addressed include
similarity and retrieval of textual content, case vocabulary mining, and the in-
teroperation of CBR with the Web of Data. WebCBR applications described
include support for authoring new product reviews, making proactive recom-
mendations, and adapting travel itineraries based on past knowledge searches.

CBR Startups: This novel workshop elucidates the opportunities and chal-
lenges of commercializing cutting-edge CBR research. In true CBR fashion, CBR
researchers who have created startup companies will share their own past expe-
riences with those who could benefit from retrieving and reusing the experiences
retained. While peer-reviewed technical papers would be out of place at this
venue, the organizers have provided a workshop overview for inclusion in this
volume.

Computer Cooking Contest: This will be the third workshop held in con-
junction with the Computer Cooking Contest (CCC), a competitive, entertaining



and lively arena for fostering the novel development of AI approaches, techniques
and integrations. Five teams will field running systems, completing diverse cook-
ing challenges, in a live competition. Technical papers describing the associated
research and development will be presented at this workshop.

Many thanks are due to the organizers of these workshops, the individual work-
shop program committees, and the contributing authors, who together have cre-
ated this vibrant Workshop Program. I would also like to express my appreciation
to last year’s Workshops Chair, Sarah Jane Delany, for her derivation traces, La-
TeX templates, and advice. The provenance, of course, extends back through the
first seventeen International and European Conferences on Case-Based Reason-
ing. As always, it is both an honor and a delight to work with ICCBR Conference
Chairs Isabelle Bichindaritz and Stefania Montani.

I hope that participants will find this year’s Workshop Program to be a fruitful
and stimulating experience, and that these proceedings will help to extend the
experience beyond ICCBR 2010.

Cindy Marling July 2010

Welcoming you, from left to right, are Isabelle Bichindaritz, Cindy Marling,
and Stefania Montani. Photo by Peter Funk
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Miguel Ballesteros, Raúl Mart́ın, Belén Dı́az-Agudo

TAAABLE 3: Adaptation of Ingredient Quantities
and of Textual Preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Alexandre Blansché, Julien Cojan,
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Preface

Computer games are an excellent testbed for artificial intelligence techniques
for two main reasons. First, they are exceptionally challenging domains that re-
quire real-time reasoning, uncertainty management, on-line learning, and strate-
gic reasoning among others. Second, the computer game industry is growing to
be larger every year, being closely matched with the movie industry. Therefore,
solving problems related to games has a direct strong impact in industry. For
those two reasons, in the last few years the community of artificial intelligence
and specially CBR researchers working in the domain of games is steadily in-
creasing.

Since the presence of the CBR community in the AI and games related confer-
ences such as AIIDE or CIG is ever increasing, the motivation for this workshop
is to encourage the exchange of ideas among the CBR and computer games
community. This workshop can be seen as the third in a series of successful
workshops, the first one held at ICCBR 2005 in Chicago, USA, and the second
one, last year at ICCBR 2009 in Seattle, USA.

Six papers are to be presented at this workshop. Various gaming environ-
ments are represented in these papers, from real-time strategy games and robotic
soccer. Notable of mention is the Starcraft domain, that is attracting a lot of
attention due to the Starcraft AI competition to be held at the AIIDE confer-
ence this year. The technical contributions of these papers range from generic
frameworks to connect AI to games, to meta-reasoning, feature extraction and
reinforcement learning.

Mehta et al. present advances on the use of meta-reasoning to achieve adap-
tive behavior in the context of real-time strategy games. They use Warcraft II
as their evaluation domain.

Weber and Ontañón present an approach for automatically extracting cases
from large collections of already existing replays for the real-time strategy game
Starcraft to be used in the context of a case-based planner. One of the most
interesting contributions of this paper is raising the idea that the enormous
amount of game replays available online for some games can be used as an
automatic source of cases.

Acosta et al. focus on the domain of the RoboCup to evaluate techniques for
automated feature selection. They compare a binary search-based technique to a
rough set-based technique, showing that rough sets, although achieving slightly
worse performance, perform feature selection in a much less computationally
expensive way, enabling the use of automatic feature selection when large col-
lections of features are available.

Mowery et al. combine CBR and reinforcement learning for learning how to
micro-manage in the domain of Starcraft. They study on-line learning techniques
that automatically learn cases while playing, and study the trade-offs resulting
from learning too many cases.

Gómez et al. present a generic framework to connect AI bots to computer
games, which has specifically been designed with CBR in mind. The main fea-
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tures of this framework with respect to alternatives are specific support for
storing game traces and a complex action representation which can be used to
monitor the execution of actions at run-time.

Floyd and Esfandiari focus on domain-independent learning by observation,
and present case studies in the domains of RoboCup, a space combat computer
game and on physical robots.

Overall, these papers represent a good sample of the recent trends in CBR
and computer games. Finally, we would like to thank everyone who contributed
to the success of this workshop, especially the authors, the program committee
members, and the organizers of the ICCBR 2010 conference.

Manish Mehta July 2010
Santiago Ontañón
Antonio A. Sánchez-Ruiz
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Meta-Level Behavior Adaptation in
Real-Time Strategy Games

Manish Mehta1, Santiago Ontañón2, and Ashwin Ram1

1 CCL, Cognitive Computing Lab Georgia Institute of Technology,
Atlanta, GA 303322/0280,

{mehtama1,ashwin}@cc.gatech.edu
2 IIIA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra (Spain),
santi@iiia.csic.es

Abstract. AI agents designed for real-time settings need to adapt them-
selves to changing circumstances to improve their performance and rem-
edy their faults. Agents typically designed for computer games, however,
lack this ability. The lack of adaptivity causes a break in player expe-
rience when they repeatedly fail to behave properly in circumstances
unforeseen by the game designers. In this paper, we focus on an AI tech-
nique for game playing agents that helps them adapt to changing game
circumstances. The agents carry out runtime adaptation of their behav-
ior sets by monitoring and reasoning about their behavior execution and
use this reasoning to dynamically carry out revisions on the behaviors.
The evaluation of the behavior adaptation approach in a complex real-
time strategy game shows that the agents adapt themselves and improve
their performance by revising their behavior sets appropriately.

1 Introduction

Faults during a problem solving episode provide both humans and artificial
agents strong cues on what needs to be learned [4]. AI agents can thus benefit
from approaches that provide them the ability to learn from their failed encoun-
ters in the world. The need for adaptivity for agents that play modern computer
games has been emphasized as well [11]. This paper presents an approach that
addresses this need for AI game playing agents to be adaptive, learning from
their experiences to improve their performance.

AI agents for games are typically created using hand authored behaviors that
are static in nature [10]. This results in agents that cannot dynamically adapt
themselves to changing scenarios within the game. Incorporating knowledge rep-
resentation and planning techniques can enable an agent’s behavior to become
more flexible in novel situations, but it does not guarantee success: when an
agent’s behavior fails to achieve its desired purpose, most agents are unable to
identify such failure and will continue executing the ineffective behavior. Ideally
we need self-adapting AI agents for games that can learn from their own ex-
perience and adapt themselves. The problem is harder for state of the art real
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time games. Most of them involve complex strategic behaviors, such as real-time
strategy (RTS) games, or involve characters that must behave human-like in a
believable way. Both kind of games have huge decision spaces and require real
time performance which complicate the creation of adaptive AI approaches.

In this paper, we address the problem of lack of adaptivity in RTS game
playing agents. Our proposal involves the use of meta-reasoning [3] to identify
the execution failures and their causes and carrying out appropriate revisions in
response. We have developed the meta-reasoning approach to address two classes
of failures. The first class of failures are based on deliberating over the analyzed
differences across successful and failed executions and appropriately addressing
the important differences. The second class of failures represent anomalous situa-
tions that can be identified from a game playing episode and need to be appropri-
ately addressed. In our previous work [7], we focused explicitly on addressing the
first class of failures and fixes needed to resolve the analyzed differences (across
successful and failed executions) and the corresponding experimental evaluation
looked at the performance of a specific game playing system, Darmok [13], with
and without the meta-reasoning layer.

In the work presented in this paper, our focus is on the second class of failures.
Our approach is based on using a collection of author-defined failure patterns,
which are used to represent explicit descriptions of anomalous situations. Failure
patterns provide a case-based solution for detecting failures in the execution of
the base reasoner. After failures have been detected, fixes are made in the system
to prevent those failures from happening again. These failure patterns explain
what went wrong with the executed actions in the world (and not just differ-
ences across successful and failed system executions). This paper has three main
contributions. First, we present a meta-reasoning approach that can be used in
real-time game domains with limited number of trials to improve the perfor-
mance. Second, instead of directly modifying the behaviors being run by the
game playing agent, our meta-reasoning module creates daemons, which operate
over the executing behaviors in real time to detect and prevent the anomalous
situations from happening again. Third, and most important, we propose to use
failure patterns. Instead of designing behavior sets which can generate correct
behavior in all situations, failure patterns allow the game designer to specify a
set of anomalous situations, and associate possible fixes for them (failure pat-
terns). We argue that this approach alleviates the behavior creation process, and,
coupled with the proposed meta-reasoning module, achieves adaptive behavior
for real-time games.

Our test results show that our proposal improves the performance over dif-
ferent game playing sessions. Meta-reasoning systems are composed of a base
reasoner that is in charge of the performance task (in this case playing an RTS
game), and a meta-reasoner that observes and modifies the base reasoner’s be-
havior. As in our previous work [7], in this paper we are going to use Darmok [9]
as the base reasoning system, that is a case-based planning system designed to
play RTS games. The resulting system by applying our meta-reasoning approach
to Darmok is called Meta-Darmok.
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The rest of the paper is organized as follows. First we present the related
work. Then, we introduce Darmok and the RTS game used in our experiments.
After that, we present our meta-adaptation approach, the Meta-Darmok system,
and the empirical evaluation of it. Finally we conclude the paper and discuss
future steps.

2 Related Work

Meta-reasoning [3] is the process of monitoring and control of reasoning. The
control part involves the meta-level control of the computational resources spend
in specific tasks (attention). The monitoring part involves figuring out what went
wrong and why through introspective reasoning. Our system explores the later
aspect of meta-reasoning. The Meta-Aqua system, for example, uses a library of
pre-defined patterns of erroneous interactions among reasoning steps to recognize
failures in the story understanding task [4]. The Autognostic system [12] uses a
model of the system to localize the error in the system’s element and and uses the
model to construct a possible alternative trace which could lead to the desired
but unaccomplished solution. IULIAN [8] uses questions about its own reasoning
and knowledge to re-index its memory and to regulate its processing. These
approaches typically assume the agent is the sole source of change, actions are
deterministic, take unit time, and their effects well defined, and that the world is
fully observable. In RTS games all these assumptions are violated. Furthermore,
these approaches are generally applied to detect failures in plans consisting of
STRIPS operators or minor extensions of STRIPS; using it for revising complex
behavior sets for game domains requires novel failure detection techniques, a
vocabulary of failure patterns pertinent to game domains and new behavior
modification strategies.

One of the approaches to planning that deal best with exogenous events and
non-determinism are those based on Markov decision processes (MDP), focusing
on learning a policy. These approaches, however, require a large number of iter-
ations to converge and only do so if certain conditions are met. In complex game
domains, these techniques are intractable (MDP learning algorithms require a
polynomial time in the number of states of a problem [5], which in the case
of complex games is prohibitively large). Further, these approaches generalize
poorly. The playing style of a human player can significantly change the game
dynamics; the learned static policy might have to be retrained to accommodate
such changes.

More recent work has relaxed these assumptions and has been applied to
more complex game domains [2, 14]. Another body of related work applied to
complex game domains is in Adaptive AI [11]. Dynamic Scripting is a technique
based on reinforcement learning, that is able to generate “scripts” by drawing
subsets of rules from a pre-authored large collection of rules. If the rules are
properly authored, different subsets of those rules provide meaningful and dif-
ferent behaviors. Dynamic scripting is a technique for learning which subsets of
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those rules work better under different circumstances, by learning which rules
work good or bad, altering their probability of being selected again.

3 Application Domain: WARGUS and Darmok

We have used WARGUS, a real time strategy game, as our game domain. Each
player’s goal in WARGUS is to survive and destroy the other players. Each
player has a number of troops, buildings, and workers (who gather resources such
as gold, wood and oil in order to produce more units). Buildings are required to
produce more advanced troops, and troops are required to attack the enemy. The
calculations inherent in the combat system make the game non-deterministic.
The game involves complex strategic reasoning, such as terrain analysis, resource
handling, planning, and scheduling, all of them under tight time constraints.
WARGUS (sometimes referred to as “stratagus”) is a well known domain, and
has been used by several researchers as a test bed for AI techniques [1, 6].

Darmok is a real time planning and execution system that has been designed
to play games such as WARGUS and is capable of dealing with both the vast de-
cision spaces and the real-time component of RTS games. [9]. Darmok combines
learning from demonstration with case-based planning:

– Learning from Demonstration: Darmok learns behaviors (stored as cases
to be later used using case-based planning), by analyzing annotated game
traces. An annotated game trace is a log of the actions executed by a human
expert to play and win a game, which includes annotations of which goals
were pursued with each action.

– Case-based Planning: Darmok uses the behaviors learnt from demonstration
through case-based planning. Cases are retrieved, executed and adapted on
real time. When plans fail, they are retracted, and new adaptations or new
cases are attempted.

Darmok plays the complete game without any abstraction, and it takes ev-
ery single decision in the game, beginning to end. Moreover, Darmok’s degree of
proficiency depends highly on the demonstrations being provided. If good demon-
strations are provided, Darmok can learn to defeat the built-in AI of WARGUS
in a variety of maps. Darmok is capable of taking behaviors observed from a
human in a demonstration and adapt them for different situations. However,
due to the complexity of the domain, this adaptation is a complex procedure,
and Darmok does not always succeed in producing a good enough adaptation.
Moreover, Darmok has to decide which behaviors, from the set of behaviors ob-
served from humans, to use in each map. This selection is performed by both
assessing game state similarity and goal similarity, however, sometimes Darmok
fails to assess the current situation, and a suboptimal behavior is selected. The
meta-level behavior adaptation approach presented in this paper uses Darmok
as the base reasoning system to execute the behaviors that play the game, and
monitors the behavior of Darmok, in order to fix it when failures are detected.
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Fig. 1. The proposed behavior modification architecture.

4 Meta-Level Behavior Adaptation

Once it has learnt, the Darmok system is not able to modify the behaviors it
has learnt. Although Darmok has the capability of learning from experience
(by remembering which behaviors succeeded and which ones failed in different
situations), it does not have any capability to fix the behaviors in its case base.
If the expert that Darmok learnt from made a mistake in one of the behaviors,
Darmok will repeat that mistake again and again each time Darmok retrieves
that behavior. The meta-reasoning approach presented in this paper provides
Darmok exactly with that capability, resulting in a system called Meta-Darmok,
shown in Figure 1. By analyzing past performances, Meta-Darmok can fix the
behavior resulting from the behaviors in its case base.

Our meta-level behavior adaptation approach consists of four parts: Trace
Recording, Failure Detection, Behavior Modification, and the Daemon Manager.
During trace recording, a trace holding important events happening during the
game is recorded. Failure detection involves analyzing the execution trace to find
possible issues with the executing behaviors by using a set of failure patterns.
These failure patterns represent a set of pre-compiled patterns that can identify
the cause of each particular failure by identifying instances of these patterns
in the trace. Once a set of failures has been identified, the failed conditions
can be resolved by appropriately revising the behavior using a set of behavior
modification routines. These behavior modification routines are created using a
combination of basic modification operators (called modops, as explained later).
The modifications are inserted as daemons, which monitor for failure conditions
to happen during execution when Darmok retrieves some particular behaviors.
A daemon manager triggers the execution of such daemons when required.
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4.1 Trace Recording

The behavior execution system during execution records a trace that contains
information related to basic events including the name of the behavior that
was being executed, the corresponding game state when the event occurred, the
time at which the behavior started, failed or succeeded, and the delay from the
moment the behavior became ready for execution to the time when it actually
started executing. All this information is recorded in the execution trace, which
the system updates as events occur at runtime. The trace provides a considerable
advantage in performing behavior adaptation with respect to only analyzing the
instant in which the failure occurred, since the trace can help localize portions
that could possibly have been responsible for the failure. Once a game finishes, an
abstracted trace is created from the execution trace that Darmok generates. The
abstracted trace is the one used by the rest of components of the meta-reasoning
module. The abstracted trace, consists of various relevant domain-dependent
features: like information regarding units such as hit points, or location, infor-
mation related to units that were idle, killed or attacked and the cycles at which
this happens. The abstracted trace also contains basic behavior failure data that
consists of the apparent reason for behavior failures, such as whether it was due
to insufficient resources or not having a particular unit available to carry out a
behavior. The abstracted trace is used to find occurrences of the failure patterns.

4.2 Failure Detection

Failure detection involves localizing the fault points. Although the abstracted
execution trace defines the space of possible causes for the failure, it does not
provide any help in localizing the cause of the failure. Traces can be extremely
large, especially in the case of complex RTS games on which the system may
spend a lot of effort attempting to achieve a particular goal. In order to avoid this
potentially very expensive search, a set of pre-compiled patterns of failures can be
used to help identify the cause of each particular failure by identifying instances
of these patterns in the trace [4]. The failure patterns essentially provide an
abstraction mechanism to look for typical patterns of failure conditions over the
execution trace. The failure patterns simplify the blame-assignment process into
a search for instances of the particular problematic patterns.

Failure patterns are defined as finite state machines (FSMs) that look for
generic patterns in the abstracted trace. An example of a failure pattern repre-
sented as FSM is Very Close Resource Gathering Location failure (VCRGLfail)
(shown in Figure 2) that detects whether a peasant is gathering resources at a
location that is too close to the enemy compared to other possible resource gath-
ering locations. This could lead to an opening for enemy units to attack early.
Other examples of failure patterns and their corresponding behavior modification
operators are given in Table 1. Each failure pattern is associated with modifica-
tion routines. When a failure pattern generates a match in the abstracted trace,
an instantiation of the failure pattern is created. Each instantiation contains
which were the particular events in the abstracted trace that matched with the
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init 
state 

<ResourceLoc beh> 
STRT 

beh 
start 

beh 
inapp. 

<ResourceLoc beh STRT> 
with PARAMInappr ==true 

 beh 
finish 

<ResourceLoc beh> END 

when UnitBusyOtherBeh 

<ResourceLoc beh> STRT 
with PARAMInappr == 

false 

Fig. 2. The figure shows the FSM corresponding to the failure pattern VCRGLfail.
STRT, END represent the status of the behavior. PARAMInappr. represents the rou-
tine that checks whether the location where peasant is gathering resources is at a
location that is too close to the enemy compared to other resource gathering locations.

pattern. This is used to instantiate particular behavior modification routines
that are targeted to the particular behaviors that were to blame for the failure.

4.3 Behavior Modification

Once the cause of the failure is identified, it needs to be addressed through appro-
priate modification. These modifications are in the form of inserting or removing
steps at the correct position in the failed behavior, or changing some parameter
of an executing behavior. Once the failure patterns are detected from the ex-
ecution trace, the corresponding behavior modification routines and the failed
conditions are inserted as daemons for the map in which these failed conditions
are detected. The daemons act as a meta-level reactive plan that operates over
the executing behavior at runtime. The conditions for the failure pattern become
the preconditions of the daemon and the behavior modification routine consist-
ing of basic modops become the steps to execute when the daemon executes. The
daemons operate over the executing behavior, monitor their execution, detect
whether a failure is about to happen and repair the behavior according to the
defined plan modification routines. Notice that Meta-Darmok does not directly
modify the behaviors in the case-base of Darmok, but reactively modifies those
behaviors when Darmok is executing them.

In the current system, we have defined 20 failure patterns and behavior modi-
fication routines for WARGUS. The way Meta-Darmok improves over time is by
accumulating the daemons that the meta-reasoner generates (which are associ-
ated to particular maps). Thus, over time, Meta-Darmok improves performance
by learning which combination of daemons improves the performance of Darmok
for each map. The adaptation system can be easily extended by writing other
patterns of failure (as described in [15]) that could be detected from the ab-
stracted trace and the appropriate behavior modifications to the corresponding
behaviors that need to be carried out in order to correct the failed situation.
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Failure Pattern Behavior Modification Operator

Resource Idle failure (e.g., resource like
peasant, building, enemy units could be
idle)

Utilize the resource in a more produc-
tive manner (for example, send peasant to
gather more resources or use the peasant
to create a building that needed later on)

Very Close Resource Gathering Location
Failure

Change the location for resource gathering
to a more appropriate one

Inappropriate Enemy Attacked failure Direct the attack towards the more dan-
gerous enemy unit

Inappropriate Attack Location failure Change the attack location to a more ap-
propriate one

Table 1. Some example failure patterns and their associated behavior modification
operators in WARGUS

5 Empirical Evaluation

To evaluate our behavior adaptation approach, we conducted two different ex-
periments turning the behavior adaptation on and off respectively. The exper-
iments were conducted on 8 different variations of the 2-player version of the
classical map “Nowhere to run, Nowhere to hide”(NWTR), one of the maps
from Battlenet regularly player by human players, characterized by a wall of
trees that separates the players. This map leads to complex strategic reasoning,
such as building long range units (such as catapults or ballistas) to attack the
other player before the wall of trees has been destroyed, tunneling early in the
game through the wall of trees trying to catch the enemy by surprise, or other
strategies. The focus of the experiments is the ability of meta-reasoning layer
to detect anomalous situations and revise the behavior sets. The results are re-
ported for 24 games in 6 different scenarios. These 6 scenarios correspond to 6
different expert demonstrations from NWTR maps. As Darmok can learn from
more than one demonstration, we evaluate results when Darmok learns from
one upto six demonstrations. Each one of the expert demonstrations exemplified
different techniques with which the game can be played: fighters rush, knights
rush, ranged attacks using ballistas, or blocking the enemy using towers.

Figure 3 shows the average results for all the 144 games in terms of number of
wins, draw and losses. The figure also shows average player and opponent score
(where the “score” is a number that WARGUS itself calculates and assigns to
each player at the end of each game). Finally, WP shows the win percentage,
presenting the improvement in win percentage comparing adaptation with re-
spect to no adaptation. The results show that behavior adaptation leads to an
improvement of the percentage of wins as well as the player score to opponent
score ratio. Figure 4 shows the overall system improvement plotted against the
number of traces. An improvement occurs in all cases irrespective of the num-
ber of traces used. Overall system performance improved considerably (overall
increase of 62.3% on average).
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Fig. 3. The figure shows the average results from experiments turning the behavior
adaptation on and off

6 Conclusion and Future Work

We aim to create adaptive agents for complex real-time games that learn from
their experience and avoid their mistakes. In this paper, we have presented an
approach based on meta-reasoning to behavior adaptation that achieves this.
It is based on the use of failure patterns in order to ease blame assignment, a
vocabulary of failure patterns to detect anomalous situations pertinent to game
domains and behavior modification strategies to figure out what went wrong and
the reasoning behind it. We have shown that daemons can be used to introduce
reactive elements in the execution of the system that will adapt the behavior if
failures are detected in real time. Our approach has been implemented and tested
in a real time strategy game WARGUS. Our experimentation results indicate
that overall performance of the system improves with the introduced behavior
adaptations. One of the issues in the current behavior modification system is
introduction of conflicting changes which can possibly result in degradation of
performance. Some of the introduced changes cause unwanted revisions of the
behavior causing a degradation in system performance. We plan to address this
issue in the future. We intend to run more experiments on different maps to
further test our approach and identify other potential issues in the future.
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Abstract. A major challenge in the field of case-based reasoning is
building case libraries representative of the state space the system will
encounter. We approach this problem by automating the process of con-
verting expert demonstrations, in the form of game replays, into cases.
To achieve this, we present a technique for annotating traces with goals
that can be used by a case-based planner. We have implemented this
technique in the case-based planning system Darmok 2 and applied it
to the task of playing complete games of StarCraft. By automating the
process of case generation, we enable our system to harness the large
number of expert replays available on the web.

1 Introduction

Video games provide an excellent testbed for research in case-based reasoning.
Games are increasingly providing data that can be used to automate the process
of building game AI, such as replays. Harnessing this data is challenging, because
game replays contain only game state and actions performed by players and do
not contain a player’s goals or intentions. Utilizing this data in agents that reason
about goals is problematic, because there is often a gap between the game actions
contained in a replay and the agent’s goals. This problem becomes apparent in
complex games in which players reason about the game at multiple levels of
granularity while performing tasks.

Real-time Strategy (RTS) games in particular are an interesting domain for
evaluating AI techniques [1], because they provide several challenges for build-
ing game AI. The decision complexity of RTS games is huge [2], and requires
simultaneously reasoning about both strategic and tactical goals. RTS games
are also real-time environments in which agents must react to events including
second-by-second world changes at the tactical level, as well as exogenous events
at the strategic level, such as an opponent switching strategies midgame.

There has been recent interest in addressing these challenges by building
agents that learn from demonstration, such as replays [3, 4]. The goal is to de-
velop techniques that automatically acquire domain knowledge by analyzing ex-
amples of gameplay from skilled human players. Building agents that learn from
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replays poses several challenges: defining a suitable representation for encoding
game state, extracting cases automatically from replays, specifying similarity
metrics for retrieval of cases, modeling the domain in order for the agent to rea-
son about goals, and supporting real-time execution in the game environment.
Previous work has addressed the issue of case extraction by either requiring
manual annotation of replays [3], or building hierarchical plans based on depen-
dencies between actions [5].

In this paper, we present a technique for annotating replays for use in case-
based planning. Our approach automates the process of extracting cases from
replays by labeling the actions performed in replays with the goals being pursued.
This enables the use of real-world data for generating huge case libraries. We
have implemented this technique within the Darmok 2 framework [5] using the
real-time strategy game StarCraft as our application domain.

2 Related Work

Applying case-based planning for building game AI requires formally modeling
the domain. Goal oriented action planning (GOAP) is a planning-based approach
to building AI for non-player characters in games [6]. In GOAP architectures,
a character has a set of goals that become activated based on a set of criteria.
Upon activation, a plan is generated to achieve the goal and then executed in
the game world. The main challenge in implementing this approach is defining
a suitable world representation and operators for building plans in real-time.
Our system differs from this approach, because Darmok 2 performs case-based
planning, while GOAP architectures utilize generative planning. Another aspect
of applying planning to game AI is specifying goals for the agent to pursue.
An approach implemented in the RTS game Axis & Allies is triggering goal
formulation when specific game events occur, such as capturing an enemy city
[7]. Darmok 2 does not explicitly perform goal formulation, but incorporates it
in the subgoaling process of plan retrieval.

In the domain of RTS games, two approaches have been utilized to build
game AI with case-based reasoning: systems that learn online, and systems that
bootstrap the learning process by generating an initial case library from a set
of replays. The first approach has been applied to strategy selection in Wargus
[2] and micro-management in WarCraft III [8]. The second approach has been
applied to building a complete game playing agent for Wargus [3] and build order
specifically in Wargus [4]. Our system differs from previous work in that we are
using a much larger case library in order to manage the complexity of StarCraft.

There has also been related work on annotating replays for RTS games. We-
ber and Mateas applied data mining to predicting an opponent’s strategy in
StarCraft [9]. Their approach labeled replays with specific strategies and repre-
sented strategy prediction as a classification problem. Metoyer et al. analyzed
how players describe strategies while playing Wargus and identified several pat-
terns [10]. There is also a large online community supporting StarCraft that
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manually annotates replays by identifying specific strategies [11] and providing
high-level commentary3.

3 StarCraft

StarCraft4 is a science fiction RTS game in which players manage an econ-
omy, produce units and buildings, and vie for control of the map with the
goal of destroying all opponents. Real-time strategy games (and StarCraft in
particular) provide an excellent environment for AI research, because they in-
volve both low-level tactical decisions and high-level strategic reasoning. At the
strategic level, StarCraft requires decision-making about long-term resource and
technology management, while at the tactical level, effective gameplay requires
both micro-management of individual units in small-scale combat scenarios and
squad-based tactics such as formations.

StarCraft is an excellent domain for evaluating decision making agents, be-
cause there are many complex tradeoffs. One of the main tradeoffs in StarCraft
is selecting a “build order”, which defines the initial actions to perform in the
game and is analogous to chess openings. There is no dominant strategy in Star-
Craft and a wide variety of build orders are commonly executed by top players:
economic-heavy build orders focus on setting up a strong resource infrastruc-
ture early in the game, while rush-based strategies focus on executing a tactical
assault as fast as possible. The most effective build order for a given match is
based on several factors, including the map, opponent’s race, and opponent’s
predicted strategy. An agent that performs well in this domain needs to include
these factors into its strategy selection process.

Another tradeoff in StarCraft is deciding where to focus attention. Star-
Craft gameplay requires simultaneously managing high-level strategic decisions
(macro-management) with highly-reactive actions in tactical scenarios (micro-
management). Players have a finite amount of time and must decide where to
focus their attention during gameplay. This is also an issue for game-playing
agents, because decisions must be made in real time for both macro-management
and micro-management actions.

StarCraft has a vast decision complexity, not just because of the game state,
but also due to the number of viable strategies in the strategy space. One of the
interesting aspects of StarCraft is the level of specialization that is applied in
order to manage this complexity. Professional StarCraft players select a specific
race and often train for that race exclusively. However, there is large amount
of general knowledge about StarCraft gameplay, and it provides an excellent
domain for transfer learning research (e.g. adapting strategies learnt for one
race to another race).

Our choice of StarCraft as a domain has additional motivating factors: despite
being more than 10 years old, the game still has an ardent fanbase, and there is

3 http://www.gomtv.net
4 StarCraft and StarCraft: Brood War were developed by Blizzard EntertainmentTM
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even a professional league of StarCraft players in South Korea5. This indicates
that the game has depth of skill, and makes evaluation against human players
not only possible, but interesting.

4 Darmok 2

Darmok 2 (D2) [5] is a real-time case-based planning system designed to play
RTS games. D2 implements the on-line case-based planning cycle (OLCBP) as
introduced in [3]. The OLCBP cycle attempts to provide a high-level framework
to develop case-based planning systems that operate on-line, i.e. that interleave
planning and execution in real-time domains. The OLCBP cycle extends the
traditional CBR cycle by adding two additional processes, namely plan expansion
and plan execution. The main focus of D2 is to explore learning from unannotated
human demonstrations, and the use of adversarial planning techniques. The most
important characteristics of D2 are:

– It acquires cases by analyzing human demonstrations.
– It interleaves planning and execution.
– It uses an efficient transformational plan adaptation algorithm for allowing

real-time plan adaptation.
– It can use a simulator (if available) to perform adversarial planning.

D2 learns a collection of cases by analyzing human demonstrations (traces).
Demonstrations in D2 are represented as a list of triples [〈t1, S1, A1〉, ..., 〈tn, Sn,
An〉], where each triple contains a time stamp ti game state Si and a set of
actions Ai (that can be empty). The set of triples represent the evolution of the
game and the actions executed by each of the players at different time intervals.
The set of actions Ai represent actions that were issued at ti by any of the players
in the game. The game state is stored using an object-oriented representation
that captures all the information in the state: map, players and other entities
(entities include all the units a player controls in an RTS game: e.g. tanks).

Each case C = 〈P,G, S〉 consists of a plan P (represented as a petri-net), a
goal G, and a game state S. A case states that, in a game state S, the plan P
managed to achieve the goal G. An example case can be seen in Figure 1. Plans
in cases are represented in D2 as petri-nets [12]. Petri nets offer an expressive
formalism for representing plans that can have conditionals, loops or parallel
sequences of actions (in this paper we will not use loops). In short, a petri net
is a graph consisting of two types of nodes: transitions and states. Transitions
contain conditions, and link states to each other. Each state might contain to-
kens, which are required to fire transitions. The distribution of tokens in the
petri net represent its status. For example, in Figure 1 there is only 1 token in
the top-most state, stating that none of the actions has executed yet.

When D2 executes a plan contained in a case, the actions in it are adapted to
fit the current situation. Each action contains a series of parameters referring to

5 Korea e-Sports Association: http://www.e-sports.or.kr/
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S0: 1 

S1: 0 

Minerals>50 

ExistsPath(E5,(17,18)) 

S3: 0 

S4: 0 

NewUnitBy(U4) 

!Exists(E4) 

S2: 0 

Status(E5)==“harvest” 

0 

Timeout(500) 0 

!Exists(E5) 0 

Train(E4,”SCV”) 

Harvest(E5,(17,18)) 

Timeout(500) 0 

<gamestate> 
      <map x = “128” y = “96”> 
         …      
      </map> 

<entity id=“E14“ type = “Player”> 
<minerals>50</minerals> 
<gas>0</gas> 
<owner>player1</owner> 

</entity> 
<entity id=“E15“ type = “Player”> 

<gold>50</gold> 
<wood>0</wood> 
<owner>player2</owner> 
</entity> 

<entity id=“E4“ type = “CommandCenter”> 
<x>6</x> 
<y>0</y> 
<owner>player1</owner> 
<hitpoints>1500</hitpoints> 

</entity> 
      … 
</gamestate> 

Harvest Resources 
GOAL: 

STATE: 

Plan: Episode 1: 

Fig. 1. A case in D2 consisting of a plan, goal and game state. The snippet contains two
actions and the game state representation is not fully included due to space limitations.

locations or units in the map, and other constants. For example, if a parameter
refers to a location, then a location in the current map which is the most similar
to the location specified in the action is selected. For assessing location similarity,
D2 creates a series of potential fields (one for each entity type in the game, in
the case of StarCraft: friendly-marines, enemy-marines, friendly-tanks, enemy-
tanks, minerals, etc.). Each location in the map, is thus assigned a vector, which
has one value for each potential field. This allows D2 to compare map locations
and assess which ones are more similar to others. For example, it can detect that
a location is similar to another because both are very close to enemy units.

In previous work [5] we explored a technique based on ideas similar to those of
the HTN-maker [13] in order to automatically learn cases from expert demonstra-
tions (traces). This strategy lets D2 effectively learn from traces automatically
without requiring an expert to annotate the traces as previous work required [3,
14]. However, it relies on the assumption that each action the expert executed
was carefully selected, and that each condition that becomes true during the
game as an effect of the executed actions was intended by the expert. Since
those conditions are too restrictive, sometimes the system learns spurious plans
for goals that were achieved only accidentally.

In this paper, we explore an alternative approach which exploits goal recogni-
tion techniques [15]. Our approach incorporates an expert provided goal ontology
to automate the process of case extraction. While it requires the application of
additional domain knowledge, it enables the extraction of cases that achieve
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high-level goals, rather than grouping action sequences based only on unit de-
pendencies. High quality annotations are important, since they provide a means
for D2 to break up a trace into smaller pieces, which will constitute cases.

5 Replay Annotation

Our goal is to make use of real-world StarCraft replays in order to build a case
library for D2. Our approach to achieve this goal requires automating the trace
annotation process, because manual annotation is impractical for large datasets
and presents language barriers for StarCraft, because the majority of profes-
sional StarCraft players are non-English speakers. By automating the process of
annotating traces, we enable D2 to make use of the large amount of StarCraft
traces available on the web.

There are several challenges faced when utilizing real-world examples. First,
unlike previous work in Wargus [4, 5], we were unable to specify a trace format
for storing examples. The replay format we use is a proprietary binary format
specified by Blizzard and we have no control over the data that is persisted.
Second, real-world replays are noisy and contain non-relevant actions, such as
spamming of actions. For example, in previous work [3] the traces used for learn-
ing were carefully created with the purpose of learning from demonstration, and
did not have any noise. Third, our StarCraft traces contain large numbers of
actions, because players execute hundreds of actions per minute, which can re-
sult in traces containing over a thousand actions. To overcome these challenges,
we developed a technique for automatically annotating replays, which is used to
break up the replays into cases which are usable by D2.

To automatically annotate actions in game traces with goals, we defined a
goal ontology for StarCraft and developed a rule set for recognizing when goals
are being pursued. To build our case library, we extracted action logs from replays
and labeled actions with a set of goals. The result of this approach is annotated
game traces that can be used to build a case library for D2.

5.1 Goal Ontology

Our approach utilizes a goal ontology which is used to specify the goals that are
being pursued by actions in a game trace. The goal annotations are equivalent to
tasks in a HTN planner [5] and are used by the case-based planner to decompose
the goal of winning the game into subgoals, such as the goal of setting up a
resource infrastructure. The case retrieval process incorporates goal similarity
as well as game state similarity when performing retrieval. In order to effectively
make use of OLCBP, the goal ontology should model the domain at the level at
which players reason about goals.

The goal ontology was formulated based on analysis of professional StarCraft
gameplay [11] as well as previous work [16], and is shown in Figure 2. The
economy subgoal contains tasks that achieve the goal of managing a resource
infrastructure, while the strategy subgoal contains tasks that achieve the goal

20



– Win StarCraft
• Economy

∗ Produce worker units
∗ Harvest resources
∗ Build resource facilities
∗ Manage supply

• Strategy
∗ Build production facilities
∗ Build tech building
∗ Produce combat units
∗ Research upgrade

• Tactics
∗ Attack opponent
∗ Use tech ability or spell

Fig. 2. Our goal ontology for actions in StarCraft

of expanding the tech tree and producing combat units. The ontology is not
specific to a single StarCraft race, and could be applied to other games such
as Wargus. It decomposes the task of playing StarCraft into the subgoals of
managing the resource infrastructure, expanding the tech tree and producing
combat units, and performing tactical missions. The main difference between
our ontology and previous work is more of a focus on the production of units,
rather than the collection of resources, because players tend to follow rules of
thumb for resource gathering and spend resources as soon as they are available.
Additionally, we grouped the expansion of the tech tree and production of combat
units into a shared subgoal, to manage contention of in-game resources.

Each goal in the ontology has a set of parameters that are used to evaluate
whether the given goal is applicable to the current game situation. Upon retrieval
of a subgoal, D2 first queries for goals that can be activated, and then searches
for cases that achieve the selected goal. Each subgoal contains parameters that
are relevant to achieving that specific goal. For example, the economy goal takes
as input the following parameters: the current game time, the number of units
controlled by the agent, the maximum number of units the agent can support,
the number of worker units, expansions and refineries, and the number of worker
units harvesting gas.

5.2 Case Extraction

The system uses a two part process in which cases are extracted from traces and
then annotated with goals. In the first part of the process, actions in a trace
are placed into different categories based on the subgoal they achieve and then
grouped into cases based on temporal locality. For example, an attack command
issued in StarCraft would be placed into the tactics category and grouped into
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a case with other attack actions that occur within a specific time period. The
second part of the process is the actual annotation phase in which cases are
labeled based on the game state of the first action occurring in the case. Our
approach currently groups actions into three categories, which correspond to the
direct subgoals of the Win StarCraft goal in the ontology. Different techniques
are used for grouping actions into cases for the different categories.

The economy and strategy categories group actions into cases using a model
based on goal recognition, which exploits the linear structure of gameplay traces
[15]. Given an action at time t in a trace, we can compute the game state at
time t + n by retrieving it directly from the trace, where n is the number of
actions that have occurred since time t. The game state at t + n, St+n, can be
inferred as the player’s goal at time t, given the player has a plan length of size
n. This model of goal recognition relies on the assumption that the player has
a linear plan to achieve a specific economic or strategic goal. This assumption
is supported by what is referred to as a “build order” in StarCraft, which is a
predefined sequence of actions for performing a specific opening.

Cases are built by iterating over the actions in a trace and building a new
case every n actions using the following algorithm:

C.S = St

C.P = petri net(At, At+1, . . . , At+n)

C.G = category.G

C.G.params = compute params(St+n)

where C is the generated case, S is the game state, P is a petri-net plan, petri net
is a method for building a petri net from a sequence of actions, A is an action
performed by the player in the trace, category.G is the economy or strategy
subgoal, C.G.params is the goal parameters, and compute params is a goal
specific function for computing the goal parameters given a game state. For
economy cases, n was set to 5 to allow the agent to react to the opponent, while
for strategy cases, n was set to 10 to prevent the agent from dithering between
strategies [15]. This approach can result in cases with overlapping actions.

The tactics category groups actions into cases using a policy similar to the
previous approach, but groups actions based on the game time at which they
occur, rather than the index in the trace. The motivation for this approach to
grouping actions is based on the tendency of players to rapidly perform several
attack actions when launching a tactical assault. A new case is created each time
an attack issue is ordered to a unit where the distance to the attack location is
above a threshold. Given an attack action, Ai, occurring at cycle t, subsequent
attack actions are grouped into a case using the following policy:

C.P = petri net(Ai, . . . , Aj)

Aj = max {An|An.gameframe ≤ (t + delay)}
where game frame is the time at which attack An occurred, in game cycles,
and delay is a threshold for specifying how much of a delay to allow between the
initial attack command and subsequent commands.
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6 Experimental Evaluation

We implemented our approach for automated replay annotation in the StarCraft
domain. To build a case library, we first collected several replays from profes-
sional players. Next, we ran the replays in StarCraft and exported traces with
complete game information, i.e. we generated D2 traces from the replay files.
Finally, we ran the case extraction code to build a library of cases for D2 to
utilize.

D2 was interfaced with StarCraft using BWAPI 6, which enables the querying
of game state and the ability to issue orders to units. D2 communicates with
StarCraft through BWAPI using sockets. This interface enables D2 to keep a
synchronized state of the game world and provides a way for D2 to perform
game actions.

We performed an initial evaluation with a case library generated from four
traces to explore the viability of the approach. While D2 was able to set up a
resource infrastructure and begin expanding the tech tree, the system is currently
unable to defeat the built in AI of StarCraft, which performs a strong rush
strategy. A full evaluation of this technique is part of our future work.

7 Conclusion and Future Work

We have presented a technique for automating the process of annotating replays
for use by a case-based planner. This technique was applied to replays mined from
the web and enables the generation of large case libraries. In order to annotate
traces with goals, we first defined a goal ontology to capture the intentions of a
player during gameplay. We then discussed our approach to breaking up actions
in a trace into cases and how we label them. Our system was evaluated by
collecting several StarCraft replays and converting them into cases usable by
D2. D2 was then applied to the task of playing complete games of StarCraft.

While our system hints at the potential of our approach, there are several
research issues to address. For example, the potential field technique used by
D2 to adapt examples to the current game situation provides a domain indepen-
dent mechanism for adaptation. However, there are several specific instances in
StarCraft where it may be necessary to hand author the adaptation function-
ality. Some units in StarCraft have several different uses, and determining the
intended result of an action may require the application of additional domain
knowledge.

Another aspect of related work is expanding the goal ontology to include
a larger number of player goals. For example, a player attacking an opponent
may be pursuing one of several goals: destroying an expansion, harassment of
worker units, pressuring the opponent, gaining map control, or reducing the
opponent’s army size. Increasing the granularity of the goal ontology will require
more sophisticated techniques for labeling traces.

6 http://code.google.com/p/bwapi/

23



Finally, as part of our future work, we plan to study scaling-up issues related
to using case-based planning systems in complex domains such as StarCraft with
a large collection of complex cases.
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Abstract. We present a comparison of two methods for selecting the
features employed in the representation of cases for a case-based reason-
ing approach to imitation of agents in the RoboCup simulation platform.
Feature Selection methods are compared empirically in terms of the im-
itation performance, the size of the resulting feature set, and execution
time. Differences and their implications are discussed.

1 Introduction

One central issue for every artificial intelligence problem is that of knowledge
representation. Decisions regarding what to represent and how to do it often
facilitate, and likewise constrain, the problem solving process and its success.

The most sensible way to deal with such sensitive decisions involves getting
expert advice. However, when there is no expert knowledge available, feature
selection methods can help to identify the pieces of information that are more
relevant in solving the task [1].

Another aspect in which expert knowledge eases the solution of an artifi-
cial intelligence problem regards the processes underlying the task itself. When
dealing with a new domain, or when the mechanisms leading to the problem’s
solution are not well known, case-based reasoning (CBR) provides a powerful
learning methodology [2].

Imitation is one such task in which there is no formal model of the behaviour
following a sequence of inputs. The RoboCup Simulation Imitation Agent Project
(RCIAP)[3] employs both case-based reasoning and feature selection for learning
to reproduce the behaviour of soccer playing agents based on the agent inputs.

We compare two feature selection methodologies in order to evaluate which
methodology would better help to overcome some of the limitations of the current
case recognition framework of the RCIAP.

2 Feature Selection

Feature (subset) selection is a machine learning sub-field that deals with select-
ing a set of relevant variables (features) from a large set of available features. The
aim of feature selection is to reduce the number of features considered by the
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learning task without deterioration to the learning performance. The employ-
ment of feature selection has a number of desirable advantages as a consequence
of the reduction in dimensionality of the learning problem, such as faster learning
and relatively smaller training sets.

Feature selection methods can be classified according to two parameters: the
feature selection model (a.k.a. feedback [4]), and search strategies [1].

Three feature selection models can be identified. When feature selection is
performed before the learning task in a pre-processing step, the method is called
a filter. A wrapper model is one in which the search for a feature set is guided
by a performance measure of the learned model. Embedded feature selection
occurs when the construction of the set of features is integrated in the learning
model (e.g. decision tree algorithms).

Different search strategies can be employed. The most common are forward
search (starts with a small feature set and larger sets are explored), and back-
ward search (starts with a large feature set and explores smaller ones). A
simplification of these strategies consists of sequential search, in which one
feature is included (or removed) at a time without backtracking. Other search
methods include random and float search.

3 The RoboCup Simulation Imitation Agent Project

The purpose of the RCIAP is to build Robo Cup agents that imitate other
(target) agents playing in the Robo Cup Simulation League, with as few domain-
specific assumptions as possible.

3.1 The RoboCup Simulation League

The Robo Cup Simulation League is a platform for testing software agents play-
ing on a soccer team. Each agent is a soccer player client that connects to a
soccer simulation server. The simulation server keeps track of the game, sends
messages to the clients and receives commands from them.

The server provides the agents with different kinds of information. There are
two types of messages sent by the server: sensory information ( the see, the
hear, and the sense body messages), and game state information such as play
modes (e.g. offside, goal kick, play on) and the match score. The see messages
describe an incomplete view of the soccer field in terms of objects such as other
players, the ball, field lines and flags. These objects also have properties such as
distance and direction.

In response, agents send back one or more commands to the server, such as
dash, kick, turn, or say. These commands also have properties such as power
and angle of a kick.
The Case-Based Reasoning Approach: In RCIAP, imitation of agents is
achieved using case-based reasoning. Observations are obtained from log files of
the communication between an agent and the server. The captured data is trans-
formed into a spatial representation (called a scene) that includes information
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from the see messages (other types of inputs are ignored for now) together with
the corresponding commands sent by the agent at each simulation cycle.

The obtained scenes constitute the knowledge of an imitative agent, which
is employed in a case-based fashion when playing a soccer game. The agent
transforms the current game situation into an scene representation, compares
it to the stored scenes, finds the k-nearest scenes (k = 1), and then selects the
command found on the 1-nearest scene.
Challenges: Since a RoboCup simulation cycle takes 100ms, the imitative agent
has to send a command back to the simulation server in less than 80ms (we
impose a smaller than 100 ms limit to account for lag and message processing.)
Thus the calculation of distance between the current simulation situation and
stored cases has to be performed as fast as possible.

Distance calculation is affected by the number of features used to represent
each case. The larger the number of features, the more complex the calculation
procedure. Also, the number of cases required to discern between game situa-
tions increases factorially with the number of features employed. Therefore, it is
convenient to consider as few features as possible.
Current Implementation: In the current RoboCup case-based agent [3], 160
visual input features and 3 output features were considered. The input features
correspond to the relative coordinates of up to 80 visible objects (7 object types
in bold face): the Ball, flags (up to 53 field landmarks,) players (up to 21, which
are classified as team mates, opponents, and not identifiable,) the visible
goal if any, and field boundaries (up to 4.) The output features correspond to
the agent command, as well as the power, and aimed direction of the action.

Distance calculation (between the current input and a case input) is per-
formed in the following way:

1. Seven lists of objects are generated, each ordered by nearest to farthest, and
from left to right.

2. The objects from each list are matched in order. Non-matching objects are
ignored. If only n objects can be matched, then let i be the set of matched
objects from the current input, and cm the corresponding set of matches in
case m. i.e.

i = {obj1, obj2, · · · , objn}
cm = {match(obj1),match(obj2), · · · ,match(objn)}

3. The euclidean distance between matched objects is obtained:
d (objk,match(objk))

4. All these distances are weighted and added up:

d(i, cm) =

n∑

j=1

wj × d
(
objj ,match(objj)

)

Weights are determined offline in a pre-processing step. The weight calcula-
tion method used in the current implementation is a backward sequential search
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binary wrapper algorithm [5, page 56]. Weights are 0 or 1 depending on the ob-
ject type. The idea is to assign weight 1 only to types of objects that are highly
relevant, and ignore object types with low relevance.

This approach is a feature selection algorithm that considers only 7 features,
one per object type. It starts with the 7 object types (all weights are 1) and
evaluates the CBR performance; this is the current best set of features. Starting
with the current best features set, the algorithm considers all the subsets of
features that obtain by removing only one feature (switching its weight to 0),
and evaluates the CBR performance of each of these sets. If one of those subsets
has the best CBR performance, and is at least 0.5% better than the current best,
then it becomes the new current best set of features and the process is started
again. Otherwise the algorithm returns the current best features set.

Limitations: One important limitation of this approach is that by bundling
together all the objects of the same type into a single feature we are imposing
an overgeneralizing and strong constraint to distance weights, which also affects
the inductive bias of the k-nearest case search. By doing so, we end up using
many features that may not be very relevant, and ignoring others that may be
relevant.

For example, it may well be the case that the most relevant object is the
player that is closer to the ball, and that the output command depends on
whether that player is a team mate or an opponent.

If we performed feature selection over the original 160 features we would have
better chances of capturing such distinctions. However, this feature selection
algorithm is extremely slow, so it cannot scale to many more than 7 features.
Time is of the essence because one of our future goals involves being able to
build the case base and compute weights on line.

Improving Feature Selection: It would be useful to find a feature selection
algorithm that is faster and can be scaled to at least 160 input features. We must,
however, be systematic and attack each of these desiderata at a time. First we
need to find a feature selection method that is faster and obtains similar CBR
performance when we apply it to the same 7 features. Once we achieve that goal,
we can try to use it with larger feature sets.

Zhong, et al. [6] report a rough set based filter approach for feature selection
that is fast and effective in large databases. In the next section we propose a
similar algorithm. Our hypothesis is that this algorithm will achieve the first goal,
namely to perform feature selection faster without sacrificing CBR performance.
Then, in Section 5 we test our hypothesis by comparing both algorithms in terms
of CBR performance and feature selection performance.

Salamo and Golobardes [7] discuss two other (continuous) weighting methods
for CBR based on rough sets. Other applications of rough set theory for CBR
include case base reduction [8] and case representation [9].
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4 Rough Set Theory Approach to Feature Selection

Rough set theory (RST) [10] deals with the representational properties of sets
of finite discrete valued features.

In RST, a decision system is a tuple (U,C,D) where U is the universe of
considered objects, and C and D are two disjoint collections of features. Both
C and D induce equivalence classes in U , let us call their sets of equivalence
classes C and D respectively. The idea in a decision system is to approximate
classes in D in terms of the classes in C. In other words, we try to characterize
the different classes in D using only the feature set C.

This is relevant to machine learning if we think of C as the features used to
describe observations, and of D as the features of those objects that we want to
learn. Hence, we call them condition features and decision features respectively.

The positive region POSC(D) of D in terms of C is the set of objects in U
that can be correctly classified as belonging to one class in D using only the
information about features C.

4.1 Rough Set Theory methods for Feature Selection

Given a decision system S = (U,C,D), the feature subset selection problem
consists of finding a minimal family of features C ′ ⊆ C such that POSC′(D) =
POSC(D).

A solution C ′ to the feature subset selection problem is a D-reduct of C.
If f is a feature in C such that POSC−f (D) ( POSC(D), then f is D-

indispensable in C.
The union of all D-indispensable features in C is the D-core of C, CORED(C).

Some interesting properties of reducts are worth noticing:

multiplicity of solutions: There may be more than one D-reduct of C, i.e. the
feature selection problem may have more than one solution.

core and reducts: Every D-reduct of C contains the CORED(C).

These observations suggest a basic method for feature selection: we can start
by finding the core, and then add features to the core until we find a subset
of features with a positive region that matches that of the full set of condition
features (see Algorithm 3). Finding the core is as simple as testing every feature
in C for the indispensability property (see Algorithm 2). Each of these procedures
depend on calculating the positive region of D (as the feature set evaluation
metric) in terms of different subsets of condition features (see Algorithm 1).

Algorithm 3 returns the first solution it finds, thus, the order (rank() pro-
cedure) in which dispensable features are added to the core is one source of
inductive bias. The other source of inductive bias comes from the feature set
evaluation measure |POSG⊆C(D)| (PR() procedure.)

Algorithm 3 does not guarantee finding a D-reduct of C. Nevertheless, it
finds a feature set A such that A contains a D-reduct of C, and A ⊆ C,i.e. no
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Algorithm 1 Positive Region

Inputs: observations, conditionFeatures, decisionFeatures
Outputs: positiveRegion: number of discernible observations

PR(observations, conditionFeatures, decisionFeatures)

conditionClasses = { }

positiveRegion = 0

for(each observation Obs in observations)

cClass = determineConditionClass(Obs[Input],conditionFeatures)

dClass = determineDecisionClass(Obs[Output],decisionFeatures)

if(cClass does not exist in conditionClasses)

elementCounter = 1

outputClasses = set{dClass}

else

elementCounter = conditionClasses[cClass][0] + 1

outputClasses = conditionClasses[cClass][1]

outputClasses.set_add(dClass)

conditionClasses[cClass]= {elementCounter,outputClasses}

for(each condition class condClass in conditionClasses)

elements = conditionClasses[condClass][0]

outputs = conditionClasses[condClass][1]

if(number of different outputs == 1)

positiveRegion += elements

return positiveRegion

information is lost by using this algorithm. In most cases Algorithm 3 will return
a smaller set than C. Running the basic algorithm again on the first run solution
may help to further reduce the set of condition features.

If n is the number of training cases, c = |C|, and m is the maximum number
of values that a feature in C can take, then Algorithm 3 is of order O(nmc2).

4.2 Advantages of Rough Set Theory Methods

One consequence of RST is that the cardinality of the positive region |POSC(D)|
is the maximum number of objects in U that can be correctly categorized with
the information provided by any subset of the set of condition features. Thus, the
positive region is an upper bound for the learning performance of any machine
learning approach.

4.3 Proposed Feature Selection Method

Despite the fact that Algorithm 3 does not always find a reduct, we propose to
compare it with the current weight calculation employed in RCIAP.
Hypothesis: Algorithm 3 implies a filter feature selection model, which has the
potential for a faster execution time than the current wrapper approach. Thus,
we expect an important reduction in execution time.
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Algorithm 2 Core

Inputs: observations, conditionFeatures, decisionFeatures, maxPR
Outputs: coreFeatures

CORE(observations, conditionFeatures, decisionFeatures, maxPR)

coreFeatures = { }

for(each feature Feature in conditionFeatures)

complement = conditionFeatures

complement.remove(Feature)

complementPR=PR(observations, complement, decisionFeatures)

if(complementPR < maxPR)

coreFeatures.add(feature)

return coreFeatures

As for CBR performance, we do not expect statistically significant differences,
or important differences otherwise. The same hypothesis holds for the number
of selected features.

5 Feature Selection Methods Comparison

This section describes the comparisons performed between the current back-
ward sequential search binary wrapper algorithm and a rough set based forward
sequential search filter algorithm (Algorithm 3 with no ranking of dispensable
features).

5.1 Materials

Target Agents: Data from 3 RoboCup agents was used. In order of complexity:
Krislet a simple team that chases the ball and kicks it toward the opponents goal,
A1 based on Krislet (this agent will not follow the ball if it sees a team mate
closer to it,) and CMUnited 2000 RoboCup World Champions developed by
Carnegie Mellon University.
Case Base: The case base consisted of 15, 000 cases per agent. Each case en-
coded the 160 input features, as well as the 3 output features described in Section
3. For feature selection, only 7 seven features (the object types) were used.
Independent variables: The experiment consisted of 6 experimental condi-
tions with 2 independent variables: target agent (3 conditions), and feature se-
lection algorithm (2 conditions).
Performance metrics:

Feature set size: The number of features in the solution set.
Execution time: This is the execution time of the feature selection procedure.
Accuracy: The rate of CBR outputs that matched the output in the testing

case. This only takes into account the type of action.
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Algorithm 3 Forward Sequential Feature Selection

Inputs: observations, conditionFs, decisionFs
Outputs: reduct

RSFS(observations, conditionFs, decisionFs)

maxPR = PR(observations, conditionFs, decisionFs)

coreFeatures = CORE(observations,conditionFs,decisionFs,maxPR)

dispensableFeatures = conditionFs - coreFeatures

despensableRanked = rank(dispensableFeatures)

currentBest = coreFeatures

bestPR = PR(observations, currentBest, decisionFs)

for(each feature Disp in dispensableRanked)

testSet = currentBest

testSet.add(Disp)

testPR = PR(observations, testSet, decisionFs)

if(testPR > bestPR)

currentBest = testSet

bestPR = testPR

if(bestPR == maxPR)

return currentBest

return currentBest

Recall per action type: For each action type, this is the rate of testing cases for
which CBR selected the correct action.

Precision per action type: For each action type, this is the rate of CBR outputs
that correctly selected this action type.

f -measure per action type: The f -measure combine recall and precision into a
single metric

faction =
2×Recallaction × Precisionaction
Recallaction + Precisionaction

Global f : The global f -measure is the average of the collected f -measures.

The first two metrics regard to the feature selection performance, and the
remaining metrics regard to CBR performance with the resulting set of features.
The experiment, and CBR, were performed with the tools described in [5, section
9.5.].

5.2 Methodology

30 trials per condition were performed. On each trial, 1, 500 random cases were
used during feature selection, and 6, 000 random cases were used during CBR
performance evaluation.
Statistical analysis: In order to determine significance of the observed dif-
ferences between the two feature selection approaches, we performed a 1-factor
repeated measures analysis of variance per metric collected for each agent con-
dition.
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5.3 Results

The next two tables show the averaged metrics for CBR performance and Feature
Selection performance, as well as the result of the ANOVA performed for the
effect of the feature selection algorithm on the collected metrics.

CBR Performance:
Krislet A1 CMU

Algorithm Global f Accuracy Global f Accuracy Global f Accuracy
BS wrapper 0.84 0.98 0.81 0.89 0.70 0.74
RS filter 0.66 0.86 0.77 0.88 0.64 0.73

F (1, 29) F = 88.77 F = 77.67 F = 39.00 F = 5.36 F = 62.67 F = 0.56
p < 0.01 p < 0.01 p < 0.01 p < 0.05 p < 0.01 p = 0.46
η2 = 0.75 η2 = 0.73 η2 = 0.57 η2 = 0.16 η2 = 0.68 η2 = 0.02

Feature Selection Performance: Execution times are in minutes.
Krislet A1 CMU

Algorithm time set size time set size time set size
BS wrapper 66.29 1.13 77.59 2.90 56.57 3.93
RS filter 1.89 1.90 2.70 2.57 1.61 3.43

F (1, 29) F = 1030 F = 69.41 F = 759 F = 4.26 F = 572 F = 4.58
p < 0.01 p < 0.01 p < 0.01 p < 0.05 p < 0.01 p < 0.05
η2 = 0.97 η2 = 0.71 η2 = 0.96 η2 = 0.13 η2 = 0.95 η2 = 0.14

6 Discussion

All the metrics, except CBR accuracy for the CMU agent, had statistically sig-
nificant differences at the indicated significance levels (p value). As it was to
expect, CBR performance degraded with an increase of complexity of the target
agents, regardless of the feature selection method.

Although the current Backward Sequential Search binary wrapper algorithm
produces superior CBR performance than the proposed Rough Set based For-
ward Sequential Search filter algorithm, the gap in CBR performance diminishes
as the target agent complexity increases. The difference in CBR performance is
likely due to the feature selection model: the wrapper approach finds a solution
that best works with the particular learning algorithm.

The most impressive difference between the two feature selection approaches
is observed in the execution time of feature selection, being the proposed algo-
rithm almost 30 times faster than the current one. This difference is due to the
cost of the feature set evaluation employed; whereas the current approach evalu-
ates by observing the CBR performance that the feature set yields, the proposed
algorithm computes the positive region of the feature set. Notice that any other
wrapper approach (including most evolutionary approaches) would suffer from
the same problem.
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7 Conclusion

Although the proposed algorithm produced slightly, but significant, worse CBR
performance than the current algorithm, it impressively improved the feature se-
lection time. This makes the proposed algorithm a good candidate for performing
feature selection over more than the current 7 features.

Further work should focus on trying to use this algorithm with more features,
ideally the 160 employed in case distance calculation. Such improvement is likely
to lead to better imitation performance. Also, the proposed algorithm can be
improved both in speed, and in better approximating a D-reduct of the condition
features.
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Abstract. The specialization of artificial intelligence (AI) techniques within the 

gaming industry is becoming a fast growing field of study for academia and in-
dustry developers alike. Many of the AI techniques used in modern video 

games are unique to a gaming problem domain as game developers often face 

the challenge of implementing their game AI with limited resources (game 

frames, memory, and processor cycles), more so than traditional AI projects and 

studies. However, due to the technological advancement of modern video game 

consoles and PCs, previous AI techniques used in industry are quickly becom-

ing outdated and uninteresting to players. In this paper we outline a complete 

AI system that utilizes Case-based Reasoning and Reinforcement Learning 

components to provide new levels of player immersion. By utilizing real-time 

learning with Case-based Reasoning we can give a new outlook on games ar-

tificial intelligence as challenging and adaptive opponents for players. 

1 Introduction 

The competitive industry of video games has seen little slowdown of growth and as 

players continually demand new levels of challenging game play game developers 

have their hands full trying to keep up. Real-Time Strategy (RTS) games in particular 

are considered to be one of the most challenging game domains for building intelli-

gent AI agents as they are faced with decision making operations with limited infor-

mation about their opponents and the game world often contains more states than can 

be computed during a short game frame time period. 

RTS games require a focus on high-level strategies which generally govern some 

sort of resource and build management. Such macro-level strategies are important to 

the player as these decisions drive the in-game economy and allow the player to build 

and research structures or unit abilities that can be used to win during small and large 

scale unit combat. Additionally, focus must also be maintained at a tactical level in-

volving individual and group level micro-management skills. It is not uncommon for 

an expert player to exceed 300 actions per minute in order to command hundreds of 

units while playing an RTS game, thus, the micromanagement of game units consti-

tutes the defining aspect of an expert player over a novice. In this paper we present a 

game AI system that utilizes Case-based Reasoning for the selection and execution of 

unit-specific micro-behaviors and Reinforcement Learning for the online adaptation 
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of such unit behaviors in the RTS game Starcraft (Blizzard Entertainment™) in order 

to provide expert players a more challenging AI opponent.  

 

Figure 1. System Architecture and Overview 

2 Background 

The exploration of integrated Cased-based Reasoning (CBR) systems for RTS and 

other strategy-style games has recently seen a sharp increase in interest. The work of 

Aha et al. utilizes a sophisticated form of reactionary CBR that focuses on the spatial 

information derived from the formations of football teams in the game Rush 2008 [1]. 

Mateas and Weber have also adapted their version of CBR systems to the RTS game 

Wargus, an open source clone of Warcraft II (Blizzard Entertainment™) that is large-

ly used for academic purposes [2, 3]. Mateas and Weber's CBR implementations fea-

ture a build order specific focus which allows their systems to concentrate on macro-

level decision making and does not address the micromanagement of individual units 

during game play. Alternatively, Aamodt and Szczepański have built their CBR sys-

tem specifically for this micro-level (individual unit) decision making processes for 

the game Warcraft 3 (Blizzard Entertainment™) [4]. However, Aamodt and 

Szczepański's CBR relies on an expert player for case creation and adaptation. For 

example, during a training session in their system an expert must observe a particular 

game state for which the currently selected case does not cover or was not satisfacto-

ry. This expert would then pause the game and manually create a new case and insert 

it into the case library for further usage [4]. This means that all case adaptation or cre-

ation procedures must occur offline and must be constantly monitored by an expert 

player having the required domain knowledge to make authoritative decisions about 

case generation. Finally, the work of Manu Sharma et al. uses a very simliar approach 

to combining the use of CBR and Reinforcement Learning which focuses on the 
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transfer of learning game states across both the strategic and tactical layers of RTS 

games to provide effective case revisions [7]. 

Our micro-level decision CBR project implementation is an extension of the work 

performed by Aamodt and Szczepański's micro-level CBR system but is unique in 

that it integrates Reinforcement Learning (RL) techniques and a fully automated case 

generation framework meaning case adaptation and creation can occur online during a 

live game with an opponent. RL is a form of machine learning that can be used in 

games to allow agents to learn a policy/action to select during every state of the game. 

Our use of spatial temporal reasoning is fundamentally different from Aha et al.’s im-

plementation (much like Sharma et al.) as our revision steps do not require pre-

computed state lattices [1]. Sharma et al.’s implementation is also largely different 

from ours as they focus on the transference of generalized case learning between mul-

tiple layers of a hierarchical implementation which offers delayed online results [7]. 

The goal of RL in our system is to arrive at an optimal action for each state by max-

imizing the reward received through a process of both real-time and intermittent trial 

and error exploration feedback [5]. Using CBR coupled with RL eliminates the need 

for human feedback loop to learn effective strategies in the game. Additionally, our 

project integrates concepts from the fully integrated agent manager framework of Ma-

teas and Weber [6]. However, our unit managers are implemented on a smaller scale 

due to the requirements of small scale combat. Instead of utilizing a large network of 

managers, our implementation only requires the use of a scout and group manager to 

perform the basic micro-level tactical behaviors of individual units [6].  

 

 

Figure 2. Case Structure 

3 System Design 

This section outlines our system design in two logical steps: a case-based reasoning 

component and a reinforcement learning component (see Fig. 1). 
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3.1 Case-Based Reasoning 

3.1.1 Case Structure 

Our case structure is similar to the structure outlined by Aamodt and Szczepański [4]. 

We use three logical separations of the data contained within each case (see Fig. 2). 

First, there is the conditional data used by the CBR indexer module and containing 

specific environment conditions that must be met 100% by the problem description 

case. The second part contains the description of the input problem experience from 

which the case was generated. In our implementation the description data contains 

two feature vectors—one that contains all the currently viewable units of the oppo-

nent and one that contains all of our units in play. Each element of each of these vec-

tors represents an individual unit description and contains the health, shields, unit 

type, and positional features for the individual unit. Finally, each case also contains 

the associated behavior to execute upon case selection. This behavior data can contain 

an arbitrary number of actions that can either be singular or a sequential list. 

3.1.2 Case Retrieval  

The case retrieval process happens in three important steps. Our CBR module first 

transforms the current game state into a problem description object (query case). This 

is done by isolating specific environmental input features and mapping them to the 

query case (problem description) and conditional data containers. Next, this new 

query case is piped to the CBR indexing component which gathers all recorded condi-

tional information and performs a pre-matching operation over each case in the case 

library generating a set of cases that meet the conditional criteria of the current game 

state. For example, a Terran Marine unit can be upgraded to have a stimpak ability, 

that when used, generates more damage to an enemy at the expense of reducing its 

own health. However, it does not make sense to consider a case that uses this type of 

micro-behavior if the problem description case does not have a corresponding unit in 

play that currently has this ability. Thus, our indexer filters out cases that simply do 

not meet the conditional criteria of the current problem description, thus limiting our 

search space dramatically saving precious time for more computational operations 

such as case matching. Finally, the optimized set of cases is then passed to the Nearest 

Neighbor Selection case matching module which does an in-depth case description 

comparison using a Minkowski distance-based function for measuring the spatial 

proximity of each feature vector. The lowest distance-matched case is then selected 

and executed during the next game frame. Note that after a case has been selected and 

its action has been executed it is then released back to the case library for future reuse. 

3.1.3 Nearest Neighbor Selection Case Matching 

Upon completion of the indexer search space optimization, our CBR implementation 

performs the Nearest Neighbor Selection (NNS) case matching process by creating 

ordered feature vector distance values. This is done by taking an absolute weighted 

Minkowski distance of each feature n in the Case Description self unit vector and op-
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ponent vector for the query case q against case returned by the indexing module 
kc  

during a single CBR update (occurs every one second). We then select the smallest 

distance value as our closest matching experience to the query case problem (1), 

where kic  and iq  represent values of feature i in memorized case kc and in query 

case q, and iw the weight of this feature. 
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A caveat to our NNS case matching algorithm is the bias between the order and 

lengths of the self and opponent feature vectors in a case description. To address these 

issues we use a standard sorting measure which arranges the order of each feature 

vector element by health and shield values from greatest to least in value. In the case 

when the feature vectors do not match in length we use a simple metric which adds a 

base value of 100 to the distance for each additional unit in a feature vector that is 

greater in length. We do this because there are no corresponding features in compar-

ing case and thus, we cannot calculate the feature distance. Although these methods 

reduce the bias of each feature vector they should still only be considered as minimi-

zations as they cannot fully compensate for large differences in cases. 

3.1.4 Case Generation 

In order to facilitate the automatic generation of cases, our implementation uses a me-

tric which we call the case-generation threshold and is simply a non-negative integer 

value that specifies when our CBR system needs to generate a new case. This case 

generation metric is applied at the end of the NNS case matching process if, and only 

if, the closest matching case from our case library is greater than the metric value. If 

this check returns true, a new case is subsequently generated. This metric also con-

trols the active generalization level of each case in relation to the evaluation of prob-

lem/solution matching. Thus, a larger case generation value allows each case from the 

system library to be used over a larger spatial neighborhood of problem situations. 

3.2 Reinforcement Learning 

Machine learning is often a part of AI systems as it facilitates the ability to adapt and 

learn conveying a more natural approach to artificial intelligence. Using reinforce-

ment learning, an agent learns by receiving rewards for completing behaviors that re-

sult in positive outcomes and is punished for choosing behaviors which result in nega-

tive outcomes. We chose to implement an RL technique for dynamic learning because 

it enabled us to tune an agent’s intelligence in real-time (as the game is running) using 

both goal-oriented task completion and an intermediate performance feedback. 

With RL an agent gains information by interacting with the game environment. By 

(1) sensing the state of the environment, (2) choosing an action, (3) performing the 

action, and (4) receiving a reward or punishment based on the performance outcome 

of the action, the agent can perform learning in real-time as the game runs. Thus, RL 
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is tightly coupled to the process of our CBR system as the CBR component chooses 

the best case to represent a solution to a given problem situation. RL can then eva-

luate the action (e.g. the solution) that was performed from a case and learn from a 

delayed outcome. To do so, RL component stores a mapping of these actions and the 

current fitness score for each unique case that has been generated. In our testing we 

had six different actions the agent could select for any given case of the world. After a 

delay of five seconds, the RL system begins the learning process which evaluates the 

fitness data collected during that time period and then updates the case's action fitness 

score. This means learning is performed on an action that is executed following each 

case swap as well as when the same case has been active for over five seconds. Using 

these intermittent learning updates we are able to quickly adapt and learn on the ac-

tions that are being performed after each case selection. Additionally, we use long 

term rewards to supplement information about actions that typically take longer pe-

riods of time to complete. The difference being that short term actions are rewarded 

on kills and are punished by deaths, while long term rewards affect actions that may 

cover multiple problem situations in the game world and thus, multiple game updates. 

For example, moving from one tactical location to another generally results in a much 

larger reward than an intermittent reward would give. 

For intermittent rewards, we take into account all kills and deaths that have oc-

curred in the world since the last reward. If there are no kill and death occurrences 

(Eq. 2) during this cycle we gradually begin to decrease the desirability of the action 

currently associated with the case. This limits an agent from selecting actions that do 

not move the game towards completion and tends to make the agent slightly more ag-

gressive. Alternatively, if there have been kills and deaths during a learning cycle we 

immediately reward the action by using the number of kills and punish by each death. 

The death punishment is lowered to balance bias toward the reward-side. 

 

(2) 

 

After the adjusted reward for an action has been computed we then look at each of 

the actions the agent could perform from the current case-to-action reward map to de-

termine which action is the most desirable for the current problem situation of the 

world to the case. After we have selected the new action it is then inserted and replac-

es the previous case action so that the CBR system can process it in subsequent game 

cycles. We also make use of a 10% exploration chance to choose any action in the list 

which provides the agent with a way to experiment with possibly better action out-

comes that have not been discovered yet and to avoid runaway fitness values. 

4 Testing 

The initial testing phase of our AI system begins with adjusting and analyzing of our 

CBR metric that controls case generation and generalization. Since the testing of dif-

ferent case generation and generalization values is not enough to evaluate the perfor-

mance of our problem solving procedure, we pair the case generation metric against 

three different opponent strategies that are very common during standard game play. 
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This way we can evaluate which levels of case generalization result in the best prob-

lem solving performance in different tactical situations. These opponent strategies 

consist of an aggressive rush in which the opponent performs an immediate strike 

with little regard to caution, a defensive opponent that attempts to defend a single lo-

cation with all its units, and an opponent that uses random strategic strike patterns to 

attack which may include using all or just a subset of its units to attack. Additionally, 

we make use of an efficiency metric which is simply a weighted ratio of opponent 

kills over our bots unit losses. We use this metric primarily to judge how efficient 

each win really is. Higher win efficiency signifies a better use of unit or map re-

sources. Each test game takes place in a medium sized rectangular arena containing 

multiple ground height levels and narrowed terrain choke-points, both of which can 

be used to each player's advantage. Each player is also given an equal number of units 

to play with (in our tests 28 units) which are placed in equal standings on opposite 

sides of the arena. Currently, we are not allowing the gathering of resources or the 

building of structures during these small scale combat scenarios. 

 

Case generation 

threshold Rush Defense Random 

1000 0% 0% 100% 

2000 33% 3% 100% 

3000 45% 20% 100% 

Table 1. Average Wins per Test Set for Three Opponent Strategies 

 

Our testing process consists of running a total of 3 different case generation thre-

sholds against each strategy over 20 game traces for a series of 3 runs and then taking 

the average values for all recorded statistics resulting in 180 total games per case gen-

eration threshold. We save all generated cases in the case library during each test set 

(20 games) by automatically serializing all cases in the case library to an XML file 

and begin each new test run with a clean library. During each test set, our AI imple-

mentation must learn how to play a game of Starcraft as well as learn what it means to 

win and lose. This means that initially, our AI does not contain specific knowledge of 

how to win a game and can only explore these aspects of the game using un-weighted 

basic sets of micro-level behaviors assigned to six base cases. 

 

AVG Total Cas-

es Rush Defense Random 

1000 191 62 204 

2000 45 13 16 

3000 16 9 15 

Table 2. Average Number of Cases Generated per Test Set 

 

Looking at table 1 we can clearly see that our system was able to beat the random 

opponent strategy 100% of the time during all test runs, but when we switch to the de-

fensive opponent strategy we see a severe drop in wins. This is largely attributed to 

the fact that an equal number of opposing units can easily defeat an approaching 

group of units by simply not moving (in Starcraft units cannot attack while moving) 
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and only attacking when the opponent comes in range. As the case generation thr

shold increases (meaning cases become more generic) we can see that the win perce

tage increases against all strategies with exception of the random strategy opponent. 

Our highest win percentage comes from the games against the AI opponent that ut

lized the rush strategy, however, our implementation was only able to win 45% of the 

games. The crucial piece of information to take away from this table is that as the case 

generation thresholds increase our AI walk

on possible correlations in the foll

tion for roughly 8-12 games our AI would learn that it was best to draw a game en

ing in a stalemate rather than to keep assaulting the heavily defended positions of the 

enemy. Additionally, as the case generation thresholds reach 3000 our AI becomes 

aware of this fact much sooner than

Figure 3. Average Number of Cases Generated per Rush Test Set

 

In looking at the number of cases that were generated during each test run we can 

see in table 2 the number of cases created decreases as the case generation threshold 

increases. This is to be expected because 

likely to be reused over a larger set of problem situation instances. 

Figure 

 

In figure 3 we can see the total number of 

generation process over a period of time. Looking at the cases generated in the 1000 
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shold increases (meaning cases become more generic) we can see that the win perce

tage increases against all strategies with exception of the random strategy opponent. 

hest win percentage comes from the games against the AI opponent that ut

lized the rush strategy, however, our implementation was only able to win 45% of the 

games. The crucial piece of information to take away from this table is that as the case 

n thresholds increase our AI walked away with more wins (we will elaborate 

on possible correlations in the following sections). After playing against the oppos

12 games our AI would learn that it was best to draw a game en

mate rather than to keep assaulting the heavily defended positions of the 

enemy. Additionally, as the case generation thresholds reach 3000 our AI becomes 

t much sooner than with lower thresholds. 

 

 

Average Number of Cases Generated per Rush Test Set 

In looking at the number of cases that were generated during each test run we can 

see in table 2 the number of cases created decreases as the case generation threshold 

e expected because as cases become more generic they are more 

likely to be reused over a larger set of problem situation instances.  

 

 

Figure 4. Average Efficiency per Rush Test Set 

we can see the total number of cases generated and we observe this case 

generation process over a period of time. Looking at the cases generated in the 1000 

threshold we notice that cases never stop being generated nor do they show any sign
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of slowing. Conversely, at the 2000 threshold we see a severe tapering of new cases 

being generated, but still no plateau before reaching the end of the test set. At 3000 

thresholds there is a clear end to new case creation roughly around the 7th game trace.

If we now focus on the efficiency values for each case generation threshold in our 

best performing test runs against the rush opponent strategy we find that in fig

case 1000 generation threshold level produces an always decreasing efficiency

line which further makes it less viable 

the 2000 threshold level we notice that the line is always increasing suggesting that 

further tests should be performed on this threshold level to see the inevitable peak e

ficiency value. At the 3000 threshold it becomes clear that our AI was actually over 

trained and that further learning should have been withheld somewhere around the 

10th or 11th game as its efficiency peak

Figure 5. Average Efficiency vs. Learning Comparison in Rush test sets
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urther makes it less viable for a challenging game opponent. Looking at 

the 2000 threshold level we notice that the line is always increasing suggesting that 

further tests should be performed on this threshold level to see the inevitable peak e

lue. At the 3000 threshold it becomes clear that our AI was actually over 

trained and that further learning should have been withheld somewhere around the 

10th or 11th game as its efficiency peaked very quickly. 
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adaptation, operating within imperfect information domain constraints, and testing 

against specific strategic opponent AI scripts in challenging multi-dimensional envi-

ronments. Our results bring about a very interesting property of online dynamic learn-

ing in case-based reasoning systems. This property addresses the limits of effective 

learning during online game play and suggests that for a system such as ours, the 

amount of learning needs to be carefully moderated using case generalization tech-

niques such as the case generation threshold we use or the techniques suggested by 

Mateas and Weber as the amount of learning that is performed during play seems to 

be inversely proportional to the overall problem solving efficiency and therefore, a 

balance must be struck [2]. 

Although the current implementation of our project is functionally complete for the 

problem domain it solves, continued work with CBR regarding macro-level decisions 

and multi-CBR system integration is the next step. Additionally, we would like to 

take a second look at the reward/punishment system currently used by the RL compo-

nent to further refine the metrics used to control the rate of rewards and punishments. 

We would like to further evaluate higher case generation threshold levels. Finally, we 

would like to integrate a strategic macro-level CBR system on top of the current sys-

tem in order to expand the problem solving capabilities and challenge level of our AI. 
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Abstract. Computer games are excellent domains for the evaluation of AI and
CBR techniques. The main drawback is the big effort needed to connect AI sys-
tems to existing games. This paper presents MMPM, a middleware that supports
the connection of AI techniques with games. We will describe the features of
MMPM, and compare with related systems such as TIELT.

1 Introduction

As several authors have pointed out in the past [1, 5], computer games are excellent do-
mains for the evaluation of AI, machine learning, or Case-Based Reasoning (CBR) tech-
niques; strategy games are well suited for acting as a test bed for all these techniques.
The main drawback is the effort needed to connect AI systems to existing games.

A recurrent way used for testing machine learning (ML) techniques is to generate
games traces containing the complete story of the game sessions played by human
experts. Then, the ML algorithms use these traces to infer how to play the game. In a
Case-Based Planning (CBP) context, the learning process would extract plans the expert
seemed to follow in order to use them in future plays of a game.

These facts were what lead us to the MakeMEPlayME.com idea: an expert plays a
game and the game saves a trace that stores every event that has taken place in the ses-
sion (i.e. actions carried out by game characters) and how the game state has changed
afterwards (i.e. changes in entities parameters such as life or position). Traces are the
input data for the learning engine so it processes these traces and generates a data pack-
age which contains the knowledge inferred. This data is what we call a Mind Engine
(ME). In this moment the first stage (Make ME) is over. The second stage (Play ME)
consists on confronting the ME to play versus a human player or another ME, imitating
the behaviours learned from the expert.
? Supported by the Spanish Ministry of Science and Education (TIN2009-13692-C03-03)
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This paper presents MMPM, a middleware that supports the MakeMEPlayME.com
process. MMPM eases the connection between strategy games and Learning Engines
(AI and CBR game playing engines).

In order to prove MMPM, we have connected four different strategy games and a
learning engine. The learning engine, known as Darmok 2 (D2) [9] was based on the
MakeMEPlayME.com process, but from an engineering point of view it was tied to the
strategy games in such a way that both, games and learning engine, were difficult to
reuse. The experience of reengineering them demonstrate to us that MMPM is general
enough to support different learning engines and games.

This paper runs as follows: Section 2 is focused on a better explanation of the Make-
MEPlayME.com idea and the MMPM middleware architecture. Then, Sections 3 and 4
shows how to define a game domain in a declarative way and how creating Java classes
from it to ease the connection between games and Learning Engines. Sections 5 and 6
explained the process of creating a game and a Learning Engine. And the final sections
shows some related work and conclusions.

2 General MMPM Architecture

Though theoretically MMPM could be used for different game genres, our main focus
is strategy games. Specifically, MMPM expects strategy games with four main com-
ponents: maps, entities, actions and sensors. Maps are the board where the dynamic
elements (or entities) reside. Player and AIs modify the game state using a collection of
actions defined in the game rules. When one of the entities performs an action over the
map, it may take some time to be completely executed and it can even fail. The other
entities are able to inspect the state of the game using some sensors.

From the MMPM point of view, these are the only information it needs to know
about the concrete game being played, and it is known as the game domain. Section 3
details how the MMPM users may specify it in a declarative way.

Additionally to games, MMPM assumes the existence of learning engines such as
D2 [9] (MMPM is well suited for case-based planners, but other learning engines are
also possible). As we mentioned above, the essential feature is that they must be able to
learn through traces, taken from real player games, in such a way that they should react
during a play of a game in the same way as the real player did in the source traces.

From the MMPM point of view, learning engines have two different functionalities:
the one who learn from traces (what we call ME Trainer) and the one who interprets
and executes the previous learned behaviours (ME Executor).

With all this in mind, we can state the global experience in MMPM as the one shown
in Figure 1. The three steps of a global interaction are:

– An expert plays a game and the game generates a trace that stores every event (ac-
tion), which has taken place during the game, and how the game state has changed
due to these actions.

– After the expert has played some plays of a game, he decides to generate a new AI
based in his strategies. So, he gives one or more traces to the Learning Engine. Its
ME trainer processes these traces and generates a data package which contains the
knowledge inferred, in the form of a Mind Engine (ME).
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Game 1.- Play against a
hard-coded AI

<xml>

Traces

3.- Play a game
against the Tracesg
machine-

generated AI

LearningME Learning
stage

(ME trainer)

ME 
Executor 2.- Analyse games

Learning engine

Fig. 1: General Make Me Play Me architecture

– Once the ME has been created, a user may decide to play against this ME. Thus,
the game is launched with a ME executor that interprets the ME and it can compete
against the user imitating the behaviours learned from the traces. Note that it is also
possible to configure the game in such a way that we have two MEs generated from
different traces or different learning engines playing against each other.

This process is in fact what we call the MakeMEPlayME.com, and is not specific to
MMPM. The task of MMPM is to ease the communication between games and learning
engines. Furthermore the goal of MMPM is to allow the addition of new games and new
learning engines transparently.

This goal is accomplished by standardizing the three aspects where game and learn-
ing engines communicate with each other:

– The trace format in order for every learning engine can understand traces of every
game.

– The way in which learning engines can access the game state. In other words, how
a game sends the results of sensors used by learning engines to extract information
from game state.

– The way in which games receive actions from ME executors to execute them in the
world.

Traces are stored using an XML Schema. Figure 2 shows an XML fragment (adapted
for simplicity) of the trace of a strategy game called Towers (one of the four games
mentioned in Section 1). There, the player2 builds a new TTower. This example
makes clear that the traces depend on the concrete game being traced. In that sense,
MMPM XML Schema only specifies the scaffolding of the traces, and it delays the
complete trace format until the game domain has been declaratively specified using the
ideas described in Section 3.
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<gamet race>
<e n t r y t ime =”10”>

<g a m e s t a t e>
<e n t i t y i d =”3” t y p e =” TBase ” owner =” p l a y e r 1 ” coo r =”16 ,16 ,0”>

<h i t p o i n t s >20</ h i t p o i n t s >
</ e n t i t y >
<a c t i o n t y p e =” B u i l d ” i d =”4”>

<p a r a m e t e r name=” p l a y e r I D ”>p l a y e r 2 </ p a r a m e t e r>
<p a r a m e t e r name=” t y p e”>TTower</ p a r a m e t e r>
<p a r a m e t e r name=” coo r ”>{304 ,304 ,0}</ p a r a m e t e r>
<p a r a m e t e r name=” l i f e T i m e ”>10</ p a r a m e t e r>

</ a c t i o n >
</ g a m e s t a t e>

</ e n t r y>
</ gameTrace>

Fig. 2: Trace example of game Towers

The communication between games and learning engines is also game dependent.
As we will see in Sections 4, 5 and 6, MMPM has a set of tools that automatically gen-
erates Java classes from the game domain specification that extends games and learning
engines implementations. They should be integrated within the game to generate traces
and send the game state to learning engines. As well, they should be used in learning
engines to interpret traces during the learning stage (ME trainer), and to receive game
states from games, inspect them through sensors and emit game actions in a game ses-
sion (ME executor).

3 Game Domain

The game domain represents all the details about the concrete game and, to some extent,
its rules. From the MMPM point of view, it is composed of four kind of elements:

– Entities: they are each piece of interactive content in a game [6]. In other words,
they are dynamic objects such as non-players characters or items.

– Actions: all that can be done in the virtual world by players and other entities.
– Sensors: all the aspects that can be measured in the virtual world.
– Goals: the player aspirations in the game.

Each game must provide information about its particularities for all these elements
as declarative knowledge. MMPM specifies an XML schema that allows game devel-
opers to create the domain of the specific target game. The resulting XML will be later
used by the learning engines to adapt themselves to each game.

Each entity in the game is composed of a name and the name of the parent entity
(MMPM assumes that entities are organized in an entity hierarchy). The description
may also include a set of features (similar to “fields” or “attributes”) that are com-
posed of a name, a datatype and an optional default value. This definition provides an
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<E n t i t y >
<Name>TBase</Name>
<Super>P h y s i c a l E n t i t y </ Super>
<F e a t u r e s>

<F e a t u r e Name=” h i t p o i n t s ” DataType =” i n t ” D e f a u l t V a l u e =”20”/>
</ F e a t u r e s>

</ E n t i t y >

Fig. 3: TBase entity specification for Towers game

<Ac t i on name=” B u i l d”>
<P a r a m e t e r name=” t y p e ” t y p e =”ENTITY TYPE”/>
<P a r a m e t e r name=” coo r ” t y p e =”COORDINATE”/>
<P a r a m e t e r name=” l i f e T i m e ” t y p e =”INTEGER”/>
< . . .>

</ Act ion>

Fig. 4: Build action specification for Towers game

archetype of all the entities of the same type, in a similar way to classes in object-
oriented languages. When the game state is serialized into traces, the concrete feature
values for each entity instance is stored. Figure 3 shows the specification of an entity
called TBase for Towers.

Actions are the operators that players can apply in the virtual world. Figure 4 shows
a partial specification of the Build action that appeared in the trace on Figure 2, in-
cluding its name and parameters. When one action is instantiated in a trace, real values
must be provided for all its parameters.

Under the Make ME - Play ME context, learning engines must analyze when cer-
tain actions have been performed in the traces to learn when to use them. In order to
help guiding this learning process, and also to help the learning engine understand the
relations among actions and how to chain them together, actions specify different kind
of conditions. For instance, the Build action above can only be executed when the
coordinates where the building will be built are empty, the building is not blocking the
path between player and enemy, and he has enough gold.

Actions in MMPM define the following conditions:

– Valid Conditions: which capture the fact that some combinations of parameters in
some actions are not acceptable (e.g. coordinates have to be always inside of the
playing area).

– Preconditions: capture conditions which have to be true for the action to start (e.g.
the player has to have enough gold, etc.). The distinction between preconditions
and valid conditions is that if a precondition is not satisfied, the player might be
able to do something to correct this (i.e. mine more gold) but if a valid condition is
not satisfied, there is nothing the player can do to correct it.
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<Se ns o r name=” Gold ” t y p e =”INTEGER”>
<Code>I n t A t t r i b ( E n t i t y ( Type ( ” T P l a y e r ” ) , p l a y e r ) , ” go ld ”)< / Code>

</ Sensor>

Fig. 5: Gold sensor specification for Towers game

<P r e C o n d i t i o n>
<![CDATA[ B u i l d a b l e C o o r d i n a t e s ( coo r ) && NonBlock ingPa th ( coo r )

&& ( Gold ( ) >= B u i l d i n g C o s t ( t y p e ) ) ]]>
</ P r e C o n d i t i o n>

Fig. 6: Precondition of the Build action specification for Towers game

– Failure Conditions: MMPM does not assume that actions always succeed, nor that
they are instantaneous. Once an action is started, learning engines using MMPM
can monitor their execution to determine whether they succeeded or failed. If after
the execution of an action the failure conditions are satisfied, it means that the action
failed.

– Success Conditions: when these conditions are satisfied, the learning engine knows
the action succeeded. Success or failure of an action is thus determined by which
conditions get satisfied first: failure or success conditions.

– Postconditions: in addition to success conditions, MMPM allows the definition of
additional postconditions, which can be considered as side effects of executing an
action.

Thus, action definitions in MMPM differ from traditional action definitions in clas-
sical planing languages like STRIPS [3], TIELT [8], or other behavior languages such
as ABL [7], in that actions do not just specify preconditions and postconditions. But
specify a richer set of conditions, specifically devised to allow the learning engine to
reason about actions, and to monitor real-time execution of them.

Action conditions are satisfied or not depending on the world state. MMPM pro-
vides a set of native sensors that can be combined to specify basic queries about the
current world state. These sensors can be parameterized, and they return a concrete
value used in the condition expression. Sensors use the same basic datatypes available
for entities features and action parameters. MMPM also allows games to specify their
own complex sensors using the native ones. For example, in the Build precondition
mentioned previously, “has gold enough” is described using a new sensor created in the
game domain combining the MMPM sensors (Figure 5).

Using the new Gold sensor (and some others), the Build precondition could be
specified in the way shown in Figure 6.

Keep in mind that while entities and actions are serialized into traces, sensors and
conditions are static information, useful for the learning engines but that are not stored
in traces in any case. Sensors can be also used for communicating the game and the ME
executor while playing a game, in a similar way to actions.
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<WinGoal name=” WinGoal”>
<Code>

FLOAT( N u m b e r O f E n t i t i e s ( Type ( ” TBase ” ) , p l a y e r ) ) /
FLOAT( N u m b e r O f E n t i t i e s ( Type ( ” TBase ” ) ) )

</Code>
</WinGoal>

Fig. 7: WinGoal for Towers game

Finally, the domain is completed with goals. They are conditions specified by sen-
sors, boolean and relational operators, that are used by learning engines for guiding their
training. As sensors and actions, goals are also static information that is not serialized.

Games must at least specify one WinGoal which, when true, indicates the end of
the game and the victory of the player (Figure 7). They can also provide non-final goals
that act like desired milestones in the game session.

4 Supporting Tools

The communication process between games and ME Executors is not resolved yet.
Moreover, to promote developers work adapting games and Learning Engines to MMPM,
tools that eases the trace generation in games and trace reading in Learning Engines
should be provided.

A generic communication model (e.g. Web Services) could be used to connect
games with ME Executors, but this would make the integration quite complex and
would slow down the execution of games. To avoid these problems, we assume games
and Learning Engines will be implemented using Java is done in other research projects
such as Weka [4] and jColibri [2]. Furthermore the Java imposition still allows connec-
tions with other languages if the needed bindings were programmed.

Once we assume Java as implementing language, MMPM provides a a tool that
automatically generates classes from the domain specification mentioned in Section 3.
For instance, Figure 8 shows part of the TBase entity class automatically generated
from the XML domain (Section 3). Apart from translating information described in
the domain, the tool adds methods for serializing and deserializing traces in the XML
format mentioned in Section 2.

All these generated classes are based on several general classes that conform the
MMPM middleware. There are superclasses for entities, actions and sensors and sup-
port for MMPM native sensors and types. Binding our middleware to Java has an ad-
ditional advantage: when there is not a way to define a new game sensor using the
MMPM native sensors, it can be defined using plain Java in the XML domain. Al-
though Gold sensor (Figure 5) was able to be specified using a native expresion,
NonBlockingPath sensor that Build precondition used (Figure 6) cannot be spec-
ified in this way. Nevertheless it can be defined in the XML domain in Java code as in
Figure 9.
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p u b l i c c l a s s TBase e x t e n d s P h y s i c a l E n t i t y {
p u b l i c TBase ( S t r i n g e n t i t y I D , S t r i n g owner ) {

s u p e r ( e n t i t y I D , owner ) ;
h i t p o i n t s = 2 0 ;

} / / C o n s t r u c t o r
. . .
p r o t e c t e d i n t h i t p o i n t s ;
. . .

} / / c l a s s TBase

Fig. 8: Fragment of the java code generated for the TBase entity

<Se ns o r name=” NonBlock ingPa th ” t y p e =”BOOLEAN”>
<P a r a m e t e r name=” coo r ” t y p e =”COORDINATE”/>
<Code l a n g u a g e =” j a v a ”>

<![CDATA[
b o o l e a n [ ] b l o c k e d = new . . .

]]>
</Code>

</ Sensor>

Fig. 9: Java sensor example

As we will see in Section 6, this alternative and non declarative way for defining
sensors is not a problem for Learning Engines. They are written in Java too, so they can
evaluate these sensors executing them.

5 Developing a Game for MMPM

First of all, game developers must specify the game domain as explained in Section 3
and they should create and generate the Java classes (Section 4). These classes will be
very useful to generate game traces (the first stage in the MakeMePlayMe.com process
shown in Figure 1) and to let learning engines execute actions within the game (the third
stage).

If game developers wanted to adapt a previously created game, they would need
to write methods to convert the original game state representation into objects of the
MMPM classes and vice versa.

On the other hand, in case the game was not developed yet, the auto generated
classes could be even used as the skeleton of the logic of the game. Every entity, action
and sensor class would be generated with its features and ready to be serialized, so game
developers should save a lot of time using them as part of the game itself. They would
have to implement how actions modify the game but a lot of work would be already
done.
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During a play of the game, traces must be generated. So, the game must store its
game state and produced actions every certain period of time and then, the trace has to
be sent where the one who launched the game specified. MMPM provide a tracer, a set
of Java classes that the game invoke periodically with the MMPM game state objects to
be stored.

The other connection that must be made is between the game and a ME execu-
tor. First of all, MMPM has a ME executor factory that games may use to create the
machine-generated AIs. Afterwards, the game invoke them using MMPM game state
objects to produce the MMPM actions according to the strategy inferred by the Learning
Engine. Game code will translate these game-domain actions into the implementation-
dependent actions that are used to perform them into the game.

6 Developing a Learning Engine for MMPM

A Learning Engine is compound of two different systems: a ME Trainer and a ME
Executor. A ME Trainer is an off-line system that does not interact with games but with
their game traces. From the MMPM point of view, and to ensure independency between
systems, the Learning Engine is a black box that receives game traces and creates a ME
from them. In order to manipulate game traces easily, Learning Engines should use the
auto-generated domain classes. Furthermore, if the Learning Engine uses MMPM super
classes as native classes, it can make use of their serialization to store MEs in the ME
Trainer system and to load them again in the ME Executor.

On the other hand, a ME Executor is bound to games and it must react quickly.
It receives game states and reacts returning actions to be executed in the game. The
machine-generated classes must be used because game states are given, and actions
must be returned to games, as objects of these classes. Moreover, using these classes
is the only way that Learning Engines have to evaluate sensors and action conditions,
which are, somehow, the rules of the game. Action conditions should be checked before
returning them to the game in order to know if their execution in the actual game state
makes sense.

7 Related Work

The need for a system such as MMPM that ease the complexity of developing Learning
Engines and connecting them to games was identified in the past by Molineaux and Aha
[8], who designed the TIELT system to address this problem.

Our goal is to encourage progress in this area and offer an alternative to TIELT,
which is more suitable for certain kind of games. The main differences between TIELT
and MMPM are the problems they try to solve and the formalism to define some of
the game domain knowledge. For instance, while TIELT also attempts at solving the
problem of performing experiments, MMPM only attempts at bridging AI components
with games. Another big difference between TIELT and MMPM is the way actions are
specified. For TIELT, an action is defined by a set of capable roles (who can execute
this action), a set of preconditions, and a set of state changes (that define how the state
will change after executing this action). The state changes are defined as a script, which
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defines the state transformation done by the action. MMPM has a richer action defi-
nition language, allowing: valid conditions (restrictions on the input parameters), pre-
conditions, success conditions (conditions that if satisfied we can consider the action
succeeded), failure conditions (conditions that if satisfied after the action was initiated
we know that the action will never succeed), and additional postconditions (with a sim-
ilar meaning to the state changes in TIELT). This action definition was defined with the
goal in mind of allowing the AI systems to easily monitor the execution of actions at
run-time, which is hard to achieve using TIELT.

8 Conclusions

This paper has presented MMPM, a middleware that supports the connection between
games and learning engines, promoting the development of machine learning tech-
niques in games. In that sense, MMPM recalls some other research projects such as
TIELT.

We have also adapted an existing Learning Engine known as Darmok 2 (D2) to be
used with MMPM. D2, that uses Case-Based Planning to create machine-generated AIs
from expert traces, has been successfully used with up to four different games that were
also adapted to be used with MMPM.

Currently we are working on extending the game domain to allow more complex
actions (or operators).
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Abstract. We describe a domain-independent approach to learning by
observation that uses case-based reasoning to allow a software agent to
behave similarly to an expert when presented with a similar set of input
stimuli. Case studies have been performed in two simulated domains,
soccer and space combat, and a physical robotics domain and our exper-
imental results show that successful imitation is possible in each of those
domains.

1 Introduction

Transferring an expert’s knowledge to a software agent can be a difficult task.
This is especially true if the expert has difficulty modelling its knowledge, pos-
sibly if they lack computer programming skills, or they are not fully aware of
all details related to how they perform a task. Learning by observation attempts
to shift the burden of knowledge transfer from the expert to the software agent.
The agent learns by watching the expert perform a task and, when faced with
the same task, aims to behave in a similar manner.

Ideally, such an agent should operate completely autonomously from the
expert and not require the expert to provide any prior knowledge. Existing ap-
proaches to learning by observation, however, require some level of background
knowledge. This background knowledge can include information about the tasks
or goals of the expert [1, 2], which sensory stimuli the expert reasons with [3] or
how specific actions influence the environment [4]. While all of this information
helps when learning a specific task, bias is added which makes it difficult to learn
other unrelated tasks. Ideally we want to be able to imitate unrelated behaviours
without adding extra expert knowledge so that the learning system can be de-
ployed in a variety of domains. The primary contribution of our own work [5–7]
is a learning by observation system that makes minimal prior assumptions about
the expert although we have only experimented in a simulated soccer domain.

The interactions between the expert and its environment can be thought of
as a series of environment states and actions by the expert [8]. Both the possible
environments states, S, and possible actions, A, are finite sets containing all
environment states and actions that may be encountered:
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S = {S′, S′′, . . . } (1)

A = {A′, A′′, . . . } (2)

When an agent is observed for a period of time, a run, R, of environment
states and actions will be observed:

R : S
A0−→

0 S
A1−→

1 S
A2−→

2 . . . S
Au−1−−−→

u−1 Su (3)

The goal, when learning by observation, is to use one or more runs of an
expert to approximate how the expert selects which actions to perform based on
the state of the environment:

Ai = f(Si, Ai−1, Si−1, Ai−2, . . . ) (4)

The remainder of this paper will detail our domain-independent approach
to learning by observing agents and examine what types of agents it is suitable
for imitating. Section 2 will provide the model of our agent and case structure.
An analysis of several properties of software agents, and their environments,
are described in Section 3. Three case studies in the domains of robotic soccer,
space combat, and physical robotics will be described in Section 4. These case
studies will be used to examine the relation between an agent’s properties and
the ability of our system to imitate that agent. A summary of related work will
be presented in Section 5, followed by conclusions and areas for future work in
Section 6.

2 Agent Model

When looking at the ability of a software agent to reason, we can think of the
current run as the problem that is to be solved and the performed action as the
solution. This leads us to define a case, C, as a pair containing the current run,
R, and the performed action, A.

C = {R,A} (5)

The run is, as shown in Equation 3, a sequence of past environment states and
actions. The state of the environment can be decomposed into the sensory stimuli
that can be observed. If, in a particular environment, an agent can observe m
types of stimuli then the environment state can be written as:

S = {V1, . . . , Vm} (6)

Each type of stimulus, Vi, is represented by a multi-valued attribute that contains
all ni instances, o, of that type of stimulus (Vi = {o1, . . . , oni

}). This implies that
the number of stimuli of a particular type can vary in different cases. The need
to allow for a varying number of instances of each stimulus type is related to the
fact that the agent may only have a partial view of its environment at any given
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time. For example, in a soccer domain the number of teammates an agent can
observe in its field of vision may change depending on where the agent is looking.
At different times the agent might see no teammates, all of the teammates, or any
number in between. Even in domains where an agent has a complete world view
it might still be necessary to treat each stimulus as a multi-valued attribute. This
is particularly true if objects can be added or removed from the environment, or
if the agent is unable to uniquely identify similar objects.

Using such an approach, cases can be generated in an automated manner
through passive observation. Using a passive approach, the expert, as shown
in Figure 1, interacts with the environment and may not be aware it is being
observed. The observer is able to view, and record, both the state of the envi-
ronment and the actions performed by the expert so that they can later be used
to construct cases.

Fig. 1. Passive observation of an expert interacting with the environment

After automatically building a case base by observing an expert, the learn-
ing agent will then be able to use that case base when it interacts with the
environment. When the agent observes a new environment state, it should ide-
ally perform the same action the expert would have performed had the expert
encountered a similar run. This requires using the current run as a query to
the case base. The case base is searched using a standard k-nearest neighbour
search to find a case with a run that is a minimal distance from the current run.
Once the nearest neighbour search has found the case that is most similar to
the current state of the environment, the action associated with the retrieved
case is used. Our approach does not perform any adaptation since the agent is
attempting to behave like the expert and has no idea what goal it is trying to
achieve (a more detailed description of our case description and retrieval can be
found in [5]).

The data flow of our approach can be thought of as a three step process: ac-
quisition, preprocessing and deployment. As we mentioned previously, the cases
are acquired in a completely automated manner by observing the interactions
between the expert and the environment. While this automatic case acquisition
allows for quick and inexpensive case generation it make no guarantees as to
what cases will be acquired or what information is contained in those cases. For
example, if the expert never performs a certain action or encounters a certain
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environment state then those actions and states will not be available in the case
base. Likewise, since no domain knowledge is provided by a domain expert such
knowledge will need to be extracted from the cases. This is addressed through
preprocessing the raw case base by performing automated tasks like feature se-
lection, removal of redundant cases and ensuring the case base can be searched
within real-time limits (a more detailed account of preprocessing can be found
in [6]). Once an acceptable case base has been created it can then be deployed
in order to allow the imitative agent to attempt to imitate the behaviour of the
expert.

3 Agent and Environment Properties

Now that we have described how case-based reasoning can be used to imitate
the behaviour of agents, we will turn our attention to the agents and their
environments. The following lists several properties that will be examined and
used to classify agents:
Goals: Each agent will perform a behaviour that attempts to achieve certain
goals. The imitation system should ideally be able to imitate agents regardless
of the goals they try to achieve and should require no knowledge of what those
goals are.
Observability: The agent can have either a complete or partial view of the
environment. With a complete view the agent is able to observe the entire en-
vironment at once, however this is often not possible due to limitations on the
available sensors. Instead, most realistic agents can only view a portion of the
environment at once. Partial observability can result in a variable number of
objects visible to the agent at any given time which may result in the need
to model sensory inputs as multi-valued attributes (it may also be necessary
in fully observable environments if objects can be added or removed from the
environment).
Noise: The sensory observations received by the agent may be subject to noise.
This noise can be small, resulting in values being different from their true values,
or large making some sensory information completely unknown to the agent. For
example, if an object was located far from an agent the agent might be able to
detect what type of object it is observing but not finer details about the object.
State: The agent may not reason exclusively with its current sensory inputs
but may maintain an internal state. Since this state information is not directly
visible to an observer it makes the imitation task significantly more complicated.
Environment Physicality: The agent could either be in a simulated environ-
ment or a physical environment (like controlling a robot).

4 Case Studies

We look to examine several agents with different goals and behaviours. Two
simulated domains, soccer and space combat, and one physical domain will be
used. A summary of the agents and their properties can be seen in Table 1.
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Domain Agent Noisy Fully Observable State Physical

Soccer Krislet Yes No No No

Soccer Sprinter Yes No No No

Combat Shooter No No No No

Robot Avoid Yes No Yes Yes

Robot Arm Yes No No Yes

Table 1. Summary of agents and their properties

4.1 Simulated Robotic Soccer

The first domain we examine is RoboCup [9] simulated robotic soccer (this
has been the focus of our previous research [5–7]) . The following types of ob-
jects exist in RoboCup: soccer balls, goal nets, boundary lines, boundary flags,
teammates, opponents, unknown players1. At any given time the agent may see
between 0 and 80 total objects, each of which is represented by its continuous-
valued distance and direction (relative to the agent). The state of the environ-
ment in a simulated RoboCup game can be represented as:

SSOCCER = {ball, goal, line, flag, teammate, opponent, unknown} (7)

Each item in SSOCCER represents a multi-valued attribute containing the objects
of that type that are currently visible in the agent’s field of vision. The agent
can kick, move forward (dash) or turn its body. This makes the set of possible
agent actions:

ASOCCER = {kick, dash, turn} (8)

In our experimentation we use two different agents as experts2. The first
agent we use, Krislet, actively attempts to achieve the goals of soccer. Krislet
agents turn until they can see the soccer ball, run toward the ball and then
try to kick the ball toward the opponent’s goal net. The second agent we use,
Sprinter, does not perform typical soccer behaviour. Sprinter agents repeatedly
run from one goal net to the other and make no attempt at scoring goals. These
agents were selected to show that even in the same domain agents can have very
different goals and behaviour, so any background knowledge about the goals of
a particular expert may not be transferable to other experts.

For each expert a case base containing 5000 cases was used (this size of a
case base was selected so that the case base could be searched within the real-
time limits of the agent). A series of 1000 testing cases, or more specifically the

1 Players can be of an unknown type if the agent can not tell what team they are
on due to noise. Although RoboCup is a simulated domain there is a built in noise
model to add realism.

2 While we refer to the agents as experts we do not imply they are complex in nature.
We use expert to refer to an agent with some amount of knowledge we wish to attain.
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environment states of the cases, were used as input to the imitating agent. The
action outputted by the imitating agent, who only considered the most recent
sensory input (a run of length 1), was then compared to the known action from
the case. The overall performance was measured using the f-measure statistic
with values ranging from 0 (low) to 1 (high).

The results are shown in Table 2. In general, the f-measure values are fairly
high for both agents (it should be noted that previous work [6] has shown that
these results can be significantly improved by automatically preprocessing the
case base, although no preprocessing was performed in these experiments). The
exception is the results associated with kick in Krislet and turn in Sprinter,
which lower the overall f-measure values. The reasons these values are lower
is because the data sets are severely imbalanced, with less than 1% of Krislet
cases having the kick action and less than 5% of Sprinter cases having the turn
action (Sprinter never kicks, which is why there is no f-measure value for the
kick action). However, even though the f-measure values are low for those actions
when the case-based reasoning system is deployed in a game of soccer the actions
appear to be performed properly. When watching the CBR agent play soccer, it
is difficult to differentiate between that agent and the original expert agent.

f-measure fdash fturn fkick
Krislet 0.59 (+/- 0.005) 0.71 0.80 0.25

Sprinter 0.69 (+/- 0.005) 0.91 0.48 —

Table 2. Results when learning from RoboCup agents

4.2 Simulated Space Combat

Thus far we have shown the ability of our system to imitate agents, with a
variety of different behaviours, in the RoboCup soccer domain but we now look
to extend our experiments into another simulated domain. The domain we use
is XPilot [10], a simulated space combat game, where an agent controls a space
ship and attempts to destroy enemy ships. In this domain the agent is able to
detect the location of enemy ships (between 0 and approximately 10 other ships)
and can move, turn or shoot:

SXPILOT = {ships} (9)

AXPILOT = {move, turn, shoot} (10)

The agent we imitate, which we will call Shooter, continuously turns until it
can see at least one enemy ship and then shoots at the nearest ship. The results,
when using a case base of 1000 cases and 1500 test cases, are shown in Table
3 (the Shooter agent does not perform the move action so that action is not
listed in the table). These results are similar to what we got in the RoboCup
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experiments and is what we would have expected given the similar properties
of the agents and the environments. Like with the RoboCup experiments the
poorest performance was related to rare actions, in this case the shoot action,
although this could likely be improved by preprocessing the case base to balance
the number of cases related to each action.

f-measure fturn fshoot
Shooter 0.64 0.77 0.50

Table 3. Results when learning from XPilot agent

4.3 Physical Robots

Our experiments up to now have exclusively examined simulated domains, but
now we turn our attention to two agents that control physical robots. The first
agent, which we will call Avoid, controls a small wheeled robot and attempts to
avoid collisions with obstacles. The robot has two sensors, sonar and touch, and
can perform four movement actions:

SAV OID = {sonar, touch} (11)

AAV OID = {forward, backward, left, right} (12)

If an object is detected as being close to the robot, using the sonar sensor, the
robot will turn left or right to avoid a collision. If it collides with an object, as
indicated by the touch sensor, it will move backward and then turn. Otherwise
it will just move forward. While this behaviour is mostly reactive in nature, the
agent does have a simple internal state that determines which direction it should
turn. The internal state ensures that the robot toggles between turning left and
right.

The second agent, called Arm, controls a robotic arm robot. This robot has
three sensors and can perform five actions:

SARM = {sound, touch, colour} (13)

AARM = {armForward, armReverse, armStop, closeClaw, stopClaw} (14)

Upon detecting a significantly loud sound, on the sound sensor, the arm
begins moving forward until the touch sensor signals it has come in contact with
an object. If the colour sensor ever determines a red object is within the claw’s
grasp the claw will be closed around the object and the arm will move in reverse.
However, if it ever determines a blue object is within the claws grasp it will not
close but instead move the arm in reverse.

There are three primary differences, not including that they control physical
robots, between these agents and the ones we have previously examined. First,
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these agents perform sequences of actions in response to each input instead of a
single action. Secondly, since a sequence of actions is performed each action in
that sequence is performed for a set amount of time. This requires each action
to have an associated parameter related to how long it should be performed.
Lastly, the sensory attributes are single-valued, with one attribute per sensor,
rather than multi-valued.

For both agents, our system was able to imitate the behaviour very well. For
each agent a case base was created by giving the agent 500 randomly created
sensory inputs and recording the resulting action sequence. Using a separately
generated set of 1000 testing cases each agent was able to perfectly reproduce,
with 100% accuracy, the expected behaviour of the agent. This includes selecting
the correct action sequence and executing each action for the correct duration3.
However, for the Avoid agent, this perfect accuracy is only achieve by consid-
ering left and right turns identical. This occurs because two cases can have
identical sensory information but different actions since the cases do not contain
the internal state of the agent when it selected which actions to perform. This
demonstrates that the presence of an internal state, even in a domain that can be
imitated with high accuracy, can significantly complicate the imitative process.

5 Related Work

Case-based reasoning has been successfully applied to a variety of games and
simulations including robotic soccer [11–13], American football [14], real-time
strategy [15] and first-person shooters [16]. One promising use of CBR in games
has been to create cases by observing experts. Examples of this include Tetris
[17], real-time strategy [1], poker [4], chess [18] and space invaders [19].

The primary difference between these works and our own is that the processes
for case generation and case retrieval are optimized for the specific domains and
therefore are not suitable for general purpose learning by observation. The work
most similar to our own involves using case-based planning in real-time strat-
egy games [2]. They show their approach to be applicable to several different
games, however domain knowledge is required for each new game. This knowl-
edge involves having an expert define the goals of the game and the state of the
environment associated with each goal.

Learning by observation has also been explored using other machine learn-
ing approaches. In robotics, learning from observation has been used in tasks
such as controlling a robotic arm [20] and teaching a robotic helicopter aerial
manoeuvrers [21]. Both of these approaches use a model for the movements of
the robots, with the model parameters learnt through observation. This requires
prior knowledge of an appropriate model to use and does not take into account
any external stimuli. Grollman and Jenkins [22] have developed a system that
allows a robotic soccer player to be simultaneously controlled by a human and

3 The agent only uses a finite set of discrete action durations. If there was more
variability in these durations then we would likely see error in the durations produced
by the imitating agent.
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an autonomous system. When the human is actively controlling the robot, the
autonomous system learns from observing the human. This approach has been
successful for learning simple behaviours, like moving or kicking, but has diffi-
culty identifying when transitions between simple behaviours should occur.

Multi-layered perceptrons have been used to control the behaviour of agents
in a first-person shooter game [3]. This approach requires a fixed set of input
features, so it is not suited for situations where the inputs are multi-valued at-
tributes. Similarly, learning by observation has been used to train virtual agents
to move in life-like ways [23]. The movements of the agents are rated based on a
fitness function, so each novel behaviour requires a user to define an appropriate
fitness function.

6 Conclusions and Future Work

The technique for learning by observation using case-based reasoning described
in this paper allows an agent to learn without any knowledge of the goals of
the expert being observed. Three domains with different environments and goals
have been studied. Software agents, with a variety of properties, were able to be
successfully used as experts. The primary contribution of this approach is that
a single case-based reasoning system is used in all domains. The only difference
is the data contained in the cases, with the types of sensory stimuli and actions
varying in the different domains.

While we have shown this approach to be applicable it three different do-
mains, there still exist several limitations that provide areas for future work.
The experts that have been observed have been largely reactive in nature, how-
ever more complex experts will likely have behaviour that is strongly related to
their internal state. Even for the obstacle avoidance robot, which only had a
simple internal state, it was not possible to fully account for the agent’s state.
We will look at how the entire run, instead of just the last environment state,
can be used to better imitate stateful behaviour.
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Preface

Provenance has emerged as an active research area in scientific computing and
the semantic Web. Case-based reasoning (CBR) systems exploit the results of
prior reasoning, by storing cases for reuse, but comparatively little attention has
been devoted to how CBR can exploit knowledge of the provenance of those
cases. Such knowledge may include information about external sources of cases
and the context in which they were captured, derivation traces of cases and other
meta-data. For example, case provenance information can be used to assess trust
in cases, based on their sources, or as a basis for metalearning to determine the
effectiveness of the various adaptation strategies, based on their results. This
workshop investigates the interplay of case provenance with areas such as trust
and reputation, reasoning and metareasoning, and explanation.

Many domains offer opportunities for capture of provenance and meta-data
useful for CBR applications. For example, in e-science, provenance information
from the execution of scientific workflows provides a knowledge source for gen-
erating workflow cases. In e-commerce, information about communities of rec-
ommenders may provide useful information for assessing and applying their rec-
ommendations. In help-desk domains, information about the context in which
faults occur (e.g., available technicians and client locations) may provide impor-
tant clues for fault diagnosis and recovery.

Likewise, the CBR cycle itself provides numerous opportunities for the cap-
ture and use of provenance information, for example to inform reuse and re-
tention. The use of such ‘internal’ provenance can inform many tasks in the
wider CBR process, such as case-base maintenance, explanation, and confidence
estimation.

The workshop’s broad goals include: (1) clarifying the nature of provenance,
trust, and reputation, as they relate to CBR; (2) examining how provenance
information may be used at multiple points in the CBR cycle, and (3) advancing
the state of the art in relation to how provenance and meta-data should be
captured, represented, and exploited in CBR systems. To enable a synthesis of
perspectives, the workshop program includes both paper presentations and time
for extensive discussion.

The five papers presented here illustrate some of the wide range of opportu-
nities for provenance-aware CBR, including using traces as a knowledge source
and container of experience (Cordier & Mille), using provenance to enrich the
CBR process (Leake & Kendall-Morwick, McSherry), and using it to support
explanation (Kofod-Petersen, Aamodt, & Langseth, Roth-Berghofer & Adrian).
We see this work as an exciting first step towards deeper understanding and
further exploration of provenance-aware case-based reasoning.

David Leake July 2010
Thomas Roth-Berghofer
Barry Smyth
Joseph Kendall-Morwick
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Amélie Cordier, Bruno Mascret, Alain Mille

Université Lyon 1, LIRIS, UMR5205, F-69622, France
{firstname.lastname@liris.cnrs.fr}

Abstract. This paper reviews Trace-Based Reasoning (TBR), a rea-
soning paradigm based on interaction traces left by users in digital envi-
ronments. Because interaction traces record the users’ problem-solving
experiences in context, TBR facilitates the reuse of such users’ experi-
ences. Moreover, interaction traces can be used as a knowledge source to
discover other knowledge useful for the reasoning process. This paper de-
scribes TBR principles and proposes a common framework for TBR ap-
plications. Especially, we focus on the articulation between Trace-Based
Reasoning and Trace-Based Systems in the context of user assistance. For
this purpose, we describe knowledge and knowledge models involved in
reasoning tasks. We discuss the advantages of using traces as knowledge
containers for reusing of experience and we show how TBR is related to
the research field of provenance. Finally, we report a brief state of the art
and a work agenda for TBR. We also show why TBR can take advantage
of the current dynamic of the work about traces while globally improving
trace-based applications.

1 Introduction

This paper takes up the challenge of developing dynamic and reactive systems
that can quickly and incrementally adapt to changes in users’ needs and habits.
It has been consistently argued that, in many cases, users’ needs and habits
cannot be fully anticipated a priori. The incomplete anticipation of user needs
complicates the development of reasoning mechanisms that could make the sys-
tem self-adaptable. Typically, in reasoning based on previous experiences, such
as Case-Based Reasoning, the system’s ability to adapt is limited by knowledge
models and by the fact that reasoning mechanisms are defined at design stage.

We introduce here the Trace-Based Reasoning (TBR) paradigm and argue
that this paradigm supports the development of more flexible and scalable sys-
tems. While interacting with a system, a user leaves behind interaction traces
that constitute digital inscriptions of the users’ experiences. We consider inter-
action traces as knowledge containers in which experiences are implicitly stored
but are not really organized in advance. Previous experiences, called episodes,
are only retrieved when a specific need appears. This mechanism ensures flexi-
bility and adaptability of the process, but also raises complex issues (e.g. how
to find a previous experience in a complex trace?). In TBR, episodes are always
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linked to the trace that contains them. Consequently, at any time, it is possible
to retrieve contextual elements related to the current episode and to use them
to improve the reasoning process. Hence, TBR allows us to handle experiences
in a much less constrained way than if they were caught in structured cases.

This paper is organized as follows. In section 2, we quickly describe recent
work that seeks to develop more dynamic and scalable applications, in particular
within the CBR field. Section 3 presents TBR, starting with a short description
of the Trace-Based System concept. Then, we discuss the issues raised by the
development of trace-based applications and we show the possible benefits of
TBR in the field of user assistance. The paper concludes with a discussion of
our research agenda for Trace-Based Reasoning.

2 Towards dynamic and evolving experience-based
applications

Recently, several suggestions have been made to push the limits of Case-Based
Reasoning. For example, the Agile CBR idea described by Susan Craw in [1]
makes one step towards a more dynamic approach to CBR. The main idea of
Agile CBR is to transform traditional CBR into a “dynamic, knowledge-rich,
self-organizing, cooperative problem-solving methodology”. Agile CBR draws
from agile programming and focuses, amongst other aspects, on individuals and
interactions as well as on quick responses to change. Hence, according to Susan
Craw, “Agile CBR’s opportunism, commitment and flexibility aims to providing
the adaptability needed to design processes and workflows, and focusing first on
enabling just-in-time information”. TBR works the same way. Traces provide
us with rich knowledge sources that should be helpful to address the knowledge
management issues raised by the Agile CBR challenge. For example, combin-
ing several users’ experiences to solve one specific problem can be efficiently
addressed with a reasoning process based on fusion of individual interaction
traces.

The notions of traces and provenance are also closely related. As it is shown
in [2], there is a growing interest on the concept of knowledge provenance and
on how to use provenance information for various tasks (capturing experience,
improving similarity assessment, maintaining case bases, etc.). In this work, the
authors show that CBR always records prior problem-solving experiences in
the form of cases, but does not record the case provenance. The authors also
show that provenance information is often valuable. With traces, we always
keep provenance information because we find “cases” in the trace only when we
need them. We believe that research on provenance in CBR and in TBR can be
usefully combined,

The idea of taking context into account in the reasoning process is also ex-
plored. For example, [3] shows that combining Case-Based Reasoning methodol-
ogy and context awareness is a new and powerful way of modeling and reasoning
from contexts. This contribution shows how user behaviors can be learnt in a
case-based way, which could be much more efficient with a TBR approach. Il-
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lustrating this idea, [4] uses time-stamped activity logs called paths. Paths are
collected by client-side tracking processes implemented in several tools (such as
web browsers and text editors, etc.). These paths are then exploited to gather
information used to feed recommender systems.

What we call episodes can be seen as historical cases as described by [5] in
the Historical Case-Based Reasoning (HCBR) framework. This framework allows
the expression of both relative and absolute temporal knowledge, representing
case histories in the real world. In HCBR, a case base is formally defined as a
collection of (time-independent) cases, together with its corresponding temporal
reference. A TBR approach includes all these features and adds several other
possibilities, such as context extension, abstraction level navigation, provenance
assessment, dynamic elaboration, etc.

Other researches, linked to experience sharing, such as described in [6], can
be related to the work described here. In HeyStaks (http://www.heystacks.com),
users try to share their search experiences with others. The authors propose a
classification approach to increase the relevance of a stak (a list of interesting
search results) because a stak may have been noised for several reasons (spam,
mistakes, out of date records, etc.). The most interesting point here is that even
though experience is collected, the system still needs help to determine which
real context is used. Instead of using only classifiers, we could combine them with
TBR in a revision step based on interesting elements contained in the history
of the stak construction. We think that traces can be helpful in such a situation
where context is changing and not given directly by the system.

As an example of what could be an assistant using traces and a CBR ap-
proach, we can cite [7] who uses Case-Based Reasoning techniques to predict the
user’s goal(s) from a sequence of his workspace (inter-)actions needed to achieve
this goal. A TBR approach generalizes this ability to assist the user for whatever
could be found in its interaction traces as previous experiences.

3 Trace-Based Reasoning

A Trace-Based System (TBS) is made of three main components: a Trace-Bases
Management System (TBMS), one or more observed applications and one or
more trace-based applications. The general architecture of such a system is pre-
sented on figure 1 and detailed below.

The core object of this architecture is the trace. A trace reflects the result of
the observation of a given situation. In figure 1, the observed situation is that of
the use of the application by the user. A trace consists of a set of elements called
obsels (for observed elements). A modeled trace is a trace to which is associated
a model that formally defines the structure and the types of obsels that can
be contained in the trace, as well as the relationships between these obsels .
The obsels are temporally located within the trace. We distinguish two types of
traces: primary traces, and transformed traces. Primary traces are the results
of the collect process. By definition, they are intended to be untransformed.
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Fig. 1. Trace-Based System: a general architecture. User produces traces stored in the
TBMS by interracting with an observed application. The trace-based application uses
traces to solve problems and may ask the TBMS to apply transformations. The solution
is proposed to the user and this process is also recorded on the trace.

Transformed traces are the results of transformation operations performed on
the primary trace or on other existing transformed traces.

The Trace-Based Management System is the component that manages the
various trace bases. Trace bases contain primary traces as well as the whole set of
transformed traces, and the associated models. A TBMS provides input/output
primitive functions to manipulate these traces (read, write, update, transform).
Traces are stored in the TBMS during the collect process. This process exploits
one or several collect sources that can have various natures. Either the target ap-
plication is instrumented so that it automatically sends the elements that have
to be collected to the TBMS, or an intermediate process builds the primary
trace from available observation elements (such as log files of the observed ap-
plication). Hence, an application, a tool, a set of log files, a trace from another
provenance, etc. constitute as many collect sources. In brief, the collect process
builds the primary trace that can subsequently be transformed using existing
transformation operators.

The notion of trace transformation is of major importance. A transformation
is an operation on one or several modeled traces. The result of a transformation is
a new modeled trace, linked to the source traces. We can distinguish several types
of transformation operators, among them: filtering, merging and reformulating
operators. A filtering operator consists in applying a filter on a given trace in
order to produce a new trace containing only the obsels matching the rules
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of the filter. Here is a very simple example. If we consider a trace containing
obsels of several colors, we can define a filtering operator that will keep only
the ”red” obsels. Applying such a filter will transform the initial trace in a
transformed trace containing only red obsels. Obviously, transformations can be
more complex and may combine several operators. Merging and reformulating
operators work the same way but in addition, they can dynamically produce new
types of obsels (for example, two obsels in the initial trace may be combined and
represented by a third one, dynamically created) in the produced trace.

Transformations can be automatic, semi-automatic or manual. A TBMS
guarantees the possibility, at any time, to navigate between transformed traces.
Indeed, the TBMS always keeps a link between the transformed trace and the
traces from which it comes from. Besides, it records the transformation operators
that have been used to perform the transformation. In other words, the TBMS
stores a lattice of transformed traces in order to guarantee the possibility to
navigate between transformed traces. Transformed traces can be seen as various
representations of the same situation, at different abstraction levels (this idea is
illustrated in the example at the end of this section). Because traces at different
abstraction levels are linked to eachother, it is possible to consider a trace at a
specific level of abstraction, and, at some point, to consult another trace repre-
senting the same situation at a more specific abstraction level. This possibility to
navigate between various modeled traces thus provides an important flexibility.

Another way to understand transformations could be to simply consider them
as knowledge: a transformation is performed because some knowledge gets the
system to activate it. So transformations may be both knowledge and processes.
This new point of view raises open issues discussed later on this paper.

The last element of the architecture is the tool that uses traces. This kind of
tool can be connected with the TBMS through input/output primitive functions
provided by the TBMS. These tools can also connect with the observed applica-
tion, but this is out of the scope of this paper. These tools have various natures:
(interactive) visualization of traces, analysis of usages, user assistance, etc. Tools
have to rely on specific knowledge to accomplish certain tasks (described below)
with traces. We call this type of knowledge “reasoning knowledge”.

Trace-Based Reasoning. While reasoning, the first tasks consist in retrieving pre-
vious episodes in the trace to reuse them. For episode retrieving, we introduce
the concept of task signature that contains a set of distinctive elements charac-
terizing an episode. With each task signature, we associate a set of similarity
measures that allow us to retrieve the most similar episode in the trace, and a
set of adaptation rules (see below). Another difficulty adds up to the traditional
issue of finding similar episodes: the search has to be performed among the var-
ious transformation levels of the trace. Therefore, the search has to take into
account the various possible representations of a single problem.

Once retrieved, the episode can be reused in various situations: visualization,
interactive visualization, replay, or adaptation. In case of visualization task, we
have to exploit the available presentation knowledge in order to display the
episode to the user in a nice and understandable way. Interactive visualization
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relies on the same principle, but additionally allows the user to navigate between
the different abstraction levels of the trace. Interactive visualization allows us to
handle various viewpoints on the same problem in an efficient way: for the user,
it is possible to consider a problem at a high abstraction level and then to go
to a lower level (to more specific transformation traces) if more specific details
are needed. Replaying episodes consists in retrieving an episode and replaying
it the same way. The possibility to replay an episode implies strong constraints
on the collect phase. One of these constraints is to make sure that the whole
set of observations has been collected in the form of obsels. Last, adapting an
episode consists in reusing it and, possibly, transforming it to provide help to
the user (assistance, recommendations, automatic task execution, etc.). Within
the TBR context, it is necessary to rely on a specific (and possibly generic)
structure for adaptation. This structure has to offer a way for the system to
identify the elements that can be subject to an adaptation in the episode. We
face the same problem than in CBR and, as we have showed it in a previous
work [8], it is possible to reuse some of the solutions provided by CBR researches
in this context. In TBR, however, an episode adaptation can be envisioned at
several levels: content adaptation, interaction modality adaptation, presentation
adaptation, navigation between different abstraction levels (i.e. adaptation by
navigation between transformed traces). This diversity among the different types
of adaptation introduces an additional complexity from the point of view of the
knowledge representation necessary for the reasoning.

Figure 1 illustrates one specific issue, e.g. the issue of designing a trace-based
assistant. The challenge here is to reuse experiences to provide assistance to the
users. The system can reuse the same users’ interaction traces or can browse
interaction traces to reuse chunks of other users’ experiences.

Fig. 2. Several transformations of a single trace. Transformation operators are com-
bined to produce a more abstract trace. The more the trace is abstracted, the more it
contains knowledge.

An example with Abstract. To give an example of how traces can be col-
lected, transformed and used at several abstraction levels, we briefly describe
the Abstract project [9]. Abstract is a cognitive science project intended
to provide means for a better understanding of human activities using a com-
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puter recording of these activities. From a computer science point of view, this
project aims at discovering knowledge from traces of activity. The Abstract
application starts by observing the activity by various means (i.e. various kinds
of sensors) and collects a primary trace. The set of data collected is also at-
tached to a moment of the activity identified by a “time-code”. The trace can
then be manipulated and enriched with more abstract symbols through several
transformations. Figure 2 and figure 3 illustrate the way traces are manipulated
in Abstract. Figure 2 shows three abstraction levels of the primary trace from
a generic point of view. Figure 3 illustrates the same principle, but applied to a
specific application domain: driver behavior analysis.

Fig. 3. Abstract: an example of the user interface. The primary trace has been trans-
formed to produce traces ”understandable” by users (e.g. analysts).

Summary. In a trace-based application, the Trace-Bases Management System
(TBMS) has an operational role: it manages the traces and their transformations.
It also provides primitive functions to manipulate traces and allows navigation
between the different levels of representation. The trace-based application, mean-
while, relies on presentation and reasoning knowledge. Hence, the application can
achieve various goals: visualizing an episode, reusing it, adapting it, etc. A major
issue is that of knowledge evolution and of knowledge models. The implementa-
tion of mechanisms supporting knowledge evolution is an open problem. If the
update of certain knowledge is immediate (by definition of the concept of trace),
the update of knowledge models, particularly in the case of modeled traces, is
more tedious and may require a process involving an expert. We consider the
issue of updating a knowledge model as a major challenge for TBR.

4 Discussion and concluding remarks

Trace-Based Reasoning is a problem solving paradigm in which both the user
and the system solve problems and learn new knowledge at the same time. It is
through interactions that the user gives additional knowledge to the system and
that the system provides the user with solutions to specific problems. In this
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process, traces constitute a flexible support used at the same time by humans
and machines. Traces keep a record of interactions, and thus of the problem
solving process. In some extent, this is why we argue that they allow us to
record problem solving experiences “in context” and that they constitute a rich
knowledge container.

One way of introducing the concept of Trace-Bases Management System is
through the analogy with a file system. The file system organizes, stores, and
accesses the files, but the users can’t directly exploit the files without any specific
applications to read, modify or transform them. It is the same problem with
traces: without any specific software to manipulate them, the traces stored in a
TBMS usually have little interest for end users. We believe that TBR, because
it offers a dynamic, responsive, and scalable approach for the collect and reuse
of experience, is very promising. Moreover, the work about traces is currently
very active and TBR could advantageously benefit from it.

Among researches on TBR, we can distinguish two categories. The first
category includes work concerned with theoretical aspects of traces and their
management (modeled trace theory, mining traces to find relevant patterns, in-
teractive visualization, etc.). The second category includes researches that are
intended to produce trace-based applications (Trace-Based System for behavior
analysis, user assistance, learning purpose, etc).

Within the second category, issues related to transformation are challenging.
Indeed, the role of transformations is of utmost importance. A transformation
may be seen in several ways: historical, such as a TBR’s process using operators
to transform a trace in a higher abstraction level one; knowledge-oriented, which
considers transformations as knowledge containers; combined, which mix ideas
issued from these two approaches. This last question raises new issues: can all
kind of knowledge be represented through transformations, and are transforma-
tions a good way to represent knowledge?

Traces and provenance address complementary issues. The common under-
standing of provenance in CBR is that a system may improve its process if it has
knowledge on how cases have been elaborated. As shown previously, traces em-
bed information on provenance and consequently, this provenance information
can be used by the TBR approach. Provenance information may be exploited
for various purposes. For example, in an experience sharing system, provenance
is used for confidence purposes: provenance may help the system to determine
what ”kind” of experience should be reused in a given context. Let us consider
the copy/paste example (illustrated figure 4. Imagine a blind user trying to use
a sighted person’s trace. Most of the sighted people use the mouse to perform
a copy/paste with the contextual menu. However, blind people usually prefer
to perform this action with the keyboard only. To support experience sharing
between blind and sighted people, the first step is to consider the traces at the
right abstraction level. In this example, if we consider the low-level obsels (such
as ”Ctrl+C” or ”Right Click + Copy”), we cannot provide any help. However,
if we consider obsels that belong to a higher abstraction level (such as ”Copy”),
we can then support experience sharing between different users. Once the right
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level of abstraction is found, the second step consists of adapting the way of
performing the action (”Copy”) by taking into account the user preferences (e.g.
”only with the keyboard”). This example suggests an interesting observation:
while most users use the mouse to perform a Copy/Paste, blind users may pre-
fer less common solutions. Hence, provenance information may help a user to find
the best available episodes for him, or at least to give him relevant adaptation
knowledge (how to present “paste”: with mouse or with keyboard?). We think
this issue should open new paths especially in adaptive systems and assistive
technologies.

Fig. 4. Copy/paste example. The trace of the mouse-based copy/paste (above) is com-
pared to the trace of the keyboard-based copy/paste (below). At the highest abstraction
level, both traces are identical. However they represent two different ways of performing
the same task. Note that in both cases, the bottom traces are not primary traces, they
are already transformed from other traces (for example ”Right Click + Copy Selection”
has been transformed in ”Mouse-Based Copy”).

The issues raised by the implementation of TBR are various and many ques-
tions arise: how to gather experience through observing interactions? How to
define transformation mechanisms for modeled traces and how to make them
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evolve? How to adapt retrieved episodes and how to present the results of this
adaptation to end users? How to make the system knowledge evolve, and from
what sources? Are traces sufficient or should we rely on other sources of knowl-
edge, and if so, how to integrate them in the system? All these questions are
research issues that we intend to explore. We will focus our researches on assis-
tance systems which are a challenging experimentation field.
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Abstract. Bayesian Networks are useful for solving a wide range of
problems in many domains. Yet, they are exposed to one important
challenge when structural and parametrical changes occur. As Bayesian
networks lack memory regarding changes over time, there is currently
no good way of maintaining a history of changes and their provenance.
Thus, any variance in the network’s problem solving behaviour will not
be explainable to a user. Within the context of systems that integrate
case-based reasoning and Bayesian networks, we suggest to add a case-
based reasoning functionality that will retain changes and their prove-
nance, as well as approaches to explain any unexpected problem solving
behaviour.

1 Introduction

Explanations have been identified as one of the most important properties of
intelligent systems (see e.g. [1,2]). One important source of knowledge for gener-
ating useful explanations is the information related to changes in used knowledge
sources and changes in reasoning processes.

Although provenance-related information has been included in some case-
based reasoning (CBR) systems since the early days of the field, and often
referred to as book-keeping information, justifications, or meta-information: a
systematic treatment of provenance and its role was introduced by Leake and
Whitehead [3]. They identified two main roles of provenance in case-based rea-
soning; to compensate for delayed feedback in the REVISE phase of the case-
based reasoning cycle [4], and to improve case base maintenance. The role sug-
gested here is an additional one, namely to produce explanations for unexpected
results that stem from changes in parts of the domain model. In a philosophical
treatment of provenance and explanation [5] the focus is on ”how” and ”why”
type explanations relate to provenance, and in a treatment of explanation and
provenance within a Description Logics framework. An emphasis is on how to
track ”how-provenance” in a system, referring to how sources of provenance
contribute to the observed data.

In the work reported here the domain model could in principle be a case-
specific domain model as well as one containing generalised knowledge, but in
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the present paper we focus solely on changes in the general domain knowledge,
and more specifically in the Bayesian network (BN) component of a system.

Bayesian networks [6,7] constitute a modelling framework for uncertain knowl-
edge. With their formal grounding in probability theory and statistical inference,
Bayesian networks have become among the most used frameworks for reasoning
under uncertainty, and has found applications in areas as diverse as genetics,
failure detection, recommender systems, and speech recognition. One important
argument for using Bayesian networks is its ability to adapt both its structure [8]
and its parameters [9] as new training data is presented to the system; properties
which are crucial in domains that are partly unknown or changing.

The nature of Bayesian networks also allows for some explanations to be
given regarding the reasoning process (see Lacave and Dı́ez [10] for a review).
However, there is one important aspect where Bayesian networks cannot explain
changes. That is when the perceived behaviour of the system has changed via
learning (via adaptation of the Bayesian network, or – in a hybrid system –
by adding cases to the case base). In other words, a Bayesian network might
experience changes in structure, e.g. new observable parameters can appear,
or changes in parameters, e.g. a change in the probability distribution in the
probability function in a node. As Bayesian networks traditionally retains no
history of the provenance of such changes made during learning, any variation
in results coming from such changes are inexplicable.

In previous work [11], we have been looking into the benefits of combining
Bayesian networks and case-based reasoning into a hybrid system, with the goal
to utilise the Bayesian networks either as a reasoning engine in its own right, or
to help with the case matching in the integrated system. This is an endeavour
we have taken up again recently, and although in this paper we will exemplify
the reasoning processes using only a Bayesian network, we do still have the total
hybrid system in mind.

The work presented here suggests the use of case-based reasoning to address
the lack of ability to explain changes in the perceived behaviour of systems
including Bayesian components. In brief, we propose to construct cases based on
changes in the Bayesian network and use this in combination with a model of the
user to construct explanations. Sørmo et al. [12] identified five explanation goals:
Explain How the System Reached the Answer (Transparency), Explain Why
the Answer is a Good Answer (Justification), Explain Why a Question Asked
is Relevant (Relevance), Clarify the Meaning of Concepts (Conceptualization),
and Teach the User About the Domain (Learning). Our focus here is on the
transparency and justification goals.

The rest of this paper is organised as follows: Section 2 introduces a motiva-
tional example for augmenting Bayesian networks with a case-based reasoning
provenance part; Section 3 describes how case-based reasoning can be applied
and how the cases can be constructed; The paper ends with a summary and an
outlook on future work.
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2 Motivational Example

To exemplify the need for provenance of changes in a Bayesian network we will
use a very simple example. A simple Bayesian network, as depicted in Fig. 1, can
be used to tell a user whether to go to the beach or not. Real world application
would probably be much more complicated and even make recommendation
without being explicitly asked to do so. However, for pedagogical reasons we
will stick with simplicity.

Weather prediction

Current weather Go to beach?

Fig. 1. Bayesian network

The network can observe the current weather and if it is raining or cloudy
will tell the user to stay at home, and if it is sunny it will tell the user to go
to the beach. The column marked ’Historical recommendation’ in Table 1 shows
the mapping between weather conditions and expected recommendations. This
explicit mapping is naturally not visible to the user. However, we can assume
that a user who uses any system on a regular basis will develop some expectation
as to how they behave.

Table 1. Condition and response

Condition Historical recommendation New recommendation

Rain Stay at home Stay at home

Cloudy Stay at home Go to beach / stay at home

Sunny Go to beach Go to beach

Let us assume that the system now gets equipped with a barometer, which
to some degree can be used to predict the weather. The new Bayesian network,
including the barometer is depicted in Fig. 2. Using this new device the network
is able to predict that cloudy weather in some situations will improve and become
sunny. Thus, the system will sometimes suggest the user to go to the beach even
when it is cloudy, for example when the barometer shows a trend towards higher
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pressure. This new observed behaviour is shown in the column marked ’New
recommendation’ in Table 1.

Weather prediction

Current weather Go to beach?

Barometer

Fig. 2. Modified Bayesian network

The first time the system makes an unexpected prediction, i.e. suggests going
to the beach even when it is cloudy, the user might like to see an explanation
of the apparent inconsistency. A Bayesian network can supply an explanation
regarding the relation between the observed variables (the current weather and
the barometer reading), the weather forecast, and the query variable. However,
as aforementioned no explanation is readily available regarding the fact that
there has been a structural change. The types of explanation available from the
Bayesian net are clearly not sufficient as they do not include the real provenance
of the change in the reasoning process. Since the system behaves in an unexpected
manner, the user is likely to be interested in a justification of the change in the
expected outcome.

3 Case-based Reasoning as an Explanation Mechanism

The work presented here suggests to augment Bayesian networks with a case-
based reasoning component to explain changes in behaviour. This is achieved
by retaining the provenance of either procedural or structural changes in the
problem-solving network.

When a request for an explanation is received, the case-based reasoning sys-
tem will retrieve a case containing a relevant part of the previous network that
solved the problem (in the example predicting whether or not to go to the beach),
and the current network. New cases are constructed whenever a user asks a ques-
tion to the system. In this example, when a request for a recommendation for
visiting the beach is made. If the answer to the question and the input param-
eters are sufficiently similar to an existing case, no new case is retained. The
request for an explanation indicates an unexpected solution or insufficient con-
fidence in the suggested solution, for which a transparency and/or justification
explanation is called for. Figure 3 depicts an example case.

In the problem description part of a case, the findings are: a user model,
which can be used to influence the explanation goal to be solved and the way to
present it; the current network; and the last know accepted network (marked in
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Weather prediction

Current weather Go to beach?

Weather prediction

Current weather Go to beach?

Barometer

User model

Case

Has findings

Has findings

Has findings

Solution

Has solution

Explanation type

Has explanation type

Fig. 3. Case structure

light grey). The solution to the case contains the explanation goal and the two
Bayesian networks. The latter can be used as a knowledge container [13] where
relevant knowledge to construct the explanation can be acquired.

The user model contains information about the user in question. Typically it
would contain some user identifier, and importantly information about the level
of skills of the user. This information is important when deciding the type of
explanation to provide. As an example, if the user is a highly skilled expert the
transparency explanation is likely to be the preferred one, where as for novices
a justification is more likely to be preferred (for a relationship between user
competencies and transparency versus justification, see e.g. [14]).

In the case of the user requesting an explanation, as an example in the form
of: ”The last time it was cloudy, you told me to stay at home. However, now you
are telling me to go to the beach. Why?” The current case is matched against
the last case recommendation expected by the user. The current case contains
the current Bayesian network, which is then matched against the network in
the retrieved case. The difference between the two cases from the basis for the
explanation.

To continue the example from Section 2 and augment it with the case-based
reasoning provenance system, we can now supply an explanation as to why the
answer differs from the expected one. Comparing the two networks in question
(see Fig. 3) shows that the current network contains a new node, the barometer.
This barometer affects the system’s ability to predict the weather. Given that it
is cloudy and the barometer says that there is a high pressure, it will presumably
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be sunny shortly. So the explanation offered by the system might be: ”Since the
last time that cloudy weather was observed, when I suggested to stay at home, I
have received a barometer. The barometer tells me that even though it is cloudy,
there is a high pressure. Thus, it is very likely that it will be sunny at the beach.”

4 Summary and Further Work

We are currently investigating suitable approaches to implement the suggestions
made in this paper. A suitable implementation in a domain closer to the real
world must be carried out in order to test the validity of this Bayesian networks
and case-based reasoning hybrid approach.

So far we have suggested how augmenting the Bayesian network with the case-
based reasoning system allows the system to supply a transparency explanation,
to e.g. an expert, and a justification explanation, to e.g. a novice.

It is likely that with a suitable structuring of the knowledge model, other
types of explanation are possible, either directly from the Bayesian network or
from the case-based reasoning provenance system. These types of explanations
could include the complete list from [12]. Different types of explanations satisfies
different goals [2]. Among these are, perhaps the least explored, namely learning.
The learning type allows a user to learn about the domain in question. This
might be a two-way street, where the user might be able to teach the system
why a new solution is worse that an old one. Combined with the other types
of explanations –where the user is the producer and the system the consumer–
changes to the Bayesian network might be suggested to the system. However,
this conversational perspective on explanations is in an early stage, and for far
remains unexplored.

Finally, other types of relevant provenance information, such as the context
of the problem-solving system and the rationale for changes in the problem-
solver’s recommendations, could be combined with the suggested approach to
further improve users’ trust and acceptability of reasoning systems.
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Abstract. The capture, representation, preservation and sharing of prove-
nance information has become a central part of e-Science research, mo-
tivated by many benefits of integrating provenance into scientific pro-
cessing. Initial work on considering provenance in CBR is promising,
raising the question of whether provenance should become a core part of
CBR as well. This position paper illustrates the potential of provenance-
aware CBR by identifying the types of roles provenance can play for
CBR systems, and argues for the value of a CBR ”provenance revolu-
tion” enabled by systematically integrating provenance capture, reuse,
and sharing within CBR.

1 Introduction

Provenance traces information about the agents, actions, and inputs respon-
sible for the origin or current state of a product. In information technology,
provenance often refers to the derivation trace for a reasoning result. Extensive
research in the e-Science community addresses the capture and storage of prove-
nance information, motivated by the recognition that provenance can play many
roles in increasing the usefulness of results of in silico experiments. For example,
Simmhan, Plale and Gannon [1] observe that provenance can serve tasks such
as supporting attribution of scientific results, auditing data generation, auditing
resource usage, assessing data quality, and replicating results. Recently, CBR
researchers have begun to explore the use of provenance within CBR. This po-
sition paper identifies key potential uses of provenance within the CBR process
to argue for the systematic integration of provenance tracking and use within
CBR systems.

Some initial research forays have explored ramifications of provenance for
CBR systems [2–4]. Provenance tracing could play important roles in such diverse
CBR tasks as case capture, case adaptation, explanation, confidence, case-base

? This material is based on work supported by the National Science Foundation under
Grant No. OCI-0721674. We thank Beth Plale and the Indiana University SDCI
group at IU for shaping many of these ideas through their collaboration. We also
thank the anonymous reviewers for their helpful comments.
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maintenance, and introspective learning to refine case-based reasoning systems.
However, there has not yet been an attempt to categorize the many potential
roles of provenance in CBR. We see this as a crucial step.

However, we also note that the potential value of provenance collection frame-
works goes beyond any specific list of predefined tasks. As has been observed in
e-Science, collecting and retaining provenance is important even without imme-
diate benefits. The motivation for retention is that, as for any historical infor-
mation, routine information gathering can provide a wealth of information for
future study, information which might be difficult or impossible to collect after
the fact. With the right representations and capture mechanisms, CBR systems
will be positioned to take advantage of new provenance-aware enhancements
(e.g., learning methods) as they are developed.

To support both current and future steps in provenance-aware CBR, we pro-
pose a two-step agenda. The first step is to categorize ways in which provenance
may be used within CBR. The second step, building on the first, is to develop
a general scheme for representing, manipulating, and examining CBR system
provenance, ideally in concert with efforts to develop general tools to support
the capture and use of provenance. This position paper focuses primarily on the
first step, with an initial categorization of uses for provenance which both moti-
vate the development of a general provenance framework and determine require-
ments for what it must represent. It also briefly comments on the opportunity to
build CBR provenance representations on the existing Open Provenance Model
[5]. We intend this position paper as a step towards illuminating the nature of
provenance as a framework for broadening the provenance-based capabilities of
CBR systems by enabling cross-task sharing and exploitation of provenance.

2 Perspective on Provenance and CBR

Explicit consideration of a type of “external provenance”—the provenance of
CBR cases received from external sources—dates at least to the HOMER project
[6]. HOMER could capture cases from help desk operators as well as confirmed
cases, verified by a designated case author, and noted this distinction between
the sources of its cases.

The use of “internal provenance”—provenance during internal processing—
has deep roots, as well, but has generally been captured implicitly in system
processes. For example, early systems which explain in order to ascribe cer-
tain types of failures to indexing and learn new indices implicitly consider the
provenance resulting in a case retrieval (e.g., [7]). Derivational analogy systems
explicitly capture provenance as they record the derivation traces of solutions
for replay [8]; replay can also be used to facilitate the management of cases, for
example, by replaying the processing used for case adaptation [9, 10]. Metarea-
soning systems which diagnose problems by reference to a self-model [11–13] can
be seen as using the self-model to infer provenance after the fact. More recently,
internal provenance has been used to guide case-base maintenance and refine-
ment of case adaptation knowledge [2, 9]. In each of these examples, however,
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the management of provenance and provenance representations are developed
for the requirements of a single task.

This task-specific approach contrasts with the more general approach to
provenance taken in e-Science. There a central focus is on developing large-scale
provenance capture frameworks which can be made broadly accessible (e.g., [14]).
A general-purpose provenance framework could offer practical benefits for CBR,
by facilitating the capture and use of provenance. In addition, the availability
of such a framework could aid the development of domain-independent tools for
manipulating such information (e.g., by providing general explanation capabili-
ties). To enable the right type of information to be captured and to specify its
representation requires understanding how it may be used in CBR.

3 Uses of Provenance in CBR

External provenance can play a crucial role in connecting a CBR system to the
outside world, by taking into account factors such as trust, uncertainty, and rep-
utation of information sources. Whether information comes from sensors, indi-
vidual users, social processes, Web knowledge repositories other sources, knowl-
edge of the source is important for reasoning about properties of the information.
Likewise, any knowledge transformation process applied to the raw sources (e.g.,
inference chaining) may affect how the CBR system should use that information.

Internal provenance tracks the lineage of cases—including the processes by
which those cases were built—developed over the life-span of an active CBR
application. Because aspects such as confidence are propagated as inputs to
internal processing, internal provenance helps to connect external provenance
from user inputs and parent cases to newer cases (and, in fact, for maximal
usefulness must track such information even if the parent cases themselves are
deleted). Likewise, it enables external feedback to be connected to relevant cases
from a reasoning episode.

Internal provenance can play at least seven major roles in CBR, supporting
the tasks of case capture and replay, explanation, assessment, metareasoning,
diagnosis and repair, and the interoperability of different learning processes.

1. Event capture: Provenance traces capturing a sequence of steps during
problem-solving naturally capture a problem-solving case, which can be
reused and adapted by transformational analogy [15, 16].

2. Derivational capture: If the provenance trace includes representations of
the decision-making processes underlying the steps, it can be replayed by
derivational analogy.

3. Explanation: The event information from (1) can provide a skeleton of steps
around which to build causal explanations; the derivational information of
(2) provides the basis for motivational explanations and derivational replay.

4. Result Assessment: Knowledge of internal provenance can be used to as-
sess confidence in conclusions or lack of trust in that confidence, for example,
for the results of case adaptations [9]. Such results can in turn drive main-
tenance processes [2].
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5. Metareasoning, Diagnosis, and Repair: Provenance can provide fodder
for metareasoning processes to diagnose and repair the functioning of a CBR
system. In existing metareasoning systems, the failure sources are sometimes
inferred in light of an abstract device model for the CBR system [12, 13]; the
routine capture of reasoning provenance would extend the range of usable
learning methods.

6. Interoperability: Routine provenance capture, coupled with a uniform
scheme for representing provenance, could transform individual components
of CBR systems from “black boxes” into “glass boxes” (cf. [17]). The routine
accessibility of provenance information across components can facilitate the
integration of components. For example, a simple CBR retention component
might store all new cases, while a more sophisticated one might store only
those which would require substantial adaptation effort to generate. In a sys-
tem which automatically captured provenance information, the amount of
derivation effort could be derived from the provenance trace already available
to all components. Consequently, the simple retention component could be
replaced by the more sophisticated one without requiring any changes to the
adaptation component. Thus the additional information channel provided by
provenance traces can facilitate the interoperability of components and the
substitution of alternative versions of components, potentially facilitating
development and testing of CBR systems.

7. Feedback propagation: Feedback about any parts of the reasoning process
must be correctly ascribed to the responsible parts of processing, through a
credit/blame assignment process which depends on knowledge of the deriva-
tions of the results receiving comment.

4 Interactive and Multi-Agent Processes

The distinction between internal and external provenance blurs when processes
are interactive. In such situations, external inputs may be an integral part of
the overall process. With multi-agent processes, or interactive processes with
rich sources of input, it may be possible—and worthwhile—to treat the external
information source at a finer grained level, considering its own internal prove-
nance. For example, fine-grained provenance for a user’s actions could include
any relevant and available knowledge about the user’s mental states and goals.

5 Specifying a Framework for Provenance in CBR

At first glance, the generation of a general CBR provenance framework is a
daunting task. However, recent research in provenance has led to the creation
of The Open Provenance Model (OPM)[5], a general purpose framework for
representing and communicating provenance. Although this framework is mostly
the product of studies of the needs of e-Science workflow users, its scope is
intended to be broad, and we believe that it provides a promising foundation for
a provenance framework for CBR.
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To illustrate OPM, Figure 1 shows an adaptation of a diagram of a prove-
nance sample included in the OPM specification.1 It represents a portion of the
provenance trace for an image generated by a workflow used in the first prove-
nance challenge, a competition testing the capabilities of systems to record and
exploit provenance information [18]. Edges in this graph represent relationships
between provenance entities, which are represented by various shapes. Ovals in
this graph represent “artifacts,” specifically data, in this case. The rectangle rep-
resents a “process” which both consumes and produces data. Finally, the pointed
oval represents an “agent,” in this case a user who executed the workflow. Ad-
ditionally, the process has been annotated with an execution time.

Fig. 1. Example of provenance from the OPM specification, based on [18, p. 8]

Our vision for representing internal provenance of CBR systems involves a
structure that, abstractly, matches up well with OPM. Figure 2 illustrates the
application of a similar representation scheme to capture parts of the prove-
nance record for an interactive case adaptation episode. As in Figure 1, the
representation notes a user who initiated the process. Cases are artifacts and
are produced and consumed by adaptation processes. The adaptation process in
this instance is annotated with the specific adaptation rule used to produce the
new case. We note that this is only an illustrative fragment; we do not claim
that it is a complete representation for the needed information. In fact, more
elaborated representations could be considered not only for for characterizing
the adaptation process, but for all entities in the graph, including relationships.

OPM is abstract, to facilitate interoperability, and does not attempt to spec-
ify a formal syntax for expressing provenance. Consequently, leveraging it into
a useful CBR provenance framework requires further specification, especially
to capture internal provenance. For example, a CBR specific framework must
extend abstract entities such as processes and artifacts to more specific ones

1 This sample can be found on the OPM website: http://openprovenance.org/
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Fig. 2. Example of internal provenance in CBR

such as adaptation processes and cases in order to provide a useful standard.
However, this can be built on a number of existing foundational pieces, such
as previous work on analytic frameworks and knowledge modeling of CBR [19,
20] and models of the CBR process [12, 13, 21]. Likewise, applying this specifica-
tion of OPM within a CBR application requires an agreed-upon syntax, e.g., an
XML schema for CBR provenance. Once such a schema is available, provenance
collection tools designed for other domains could potentially become usable in
the CBR context or dedicated CBR tools could be built with that schema as a
foundation.

6 Conclusions

Tracking external and internal provenance can aid a wide range of processing
and learning tasks in CBR systems. Fully reaping the benefits requires making
provenance capture a routine part of CBR and capturing that information in a
general form which can be used across different CBR systems and their compo-
nents. This in turn requires lowering the barriers to entry for provenance-aware
CBR systems, by developing a framework for provenance representation. The
combination of analysis of types of knowledge and processes in CBR, building
on prior studies, and general frameworks such as the Open Provenance Model,
provide a path towards this goal.
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Abstract. Recent research has highlighted the problems caused by delays in the 
feedback available to a case-based reasoning (CBR) system, and how prove-
nance–guided propagation of feedback to related and/or similar cases can help to 
alleviate these problems. We argue in this paper that the limited ability of tradi-
tional CBR systems to learn from feedback can be attributed to eager commitment 
to adaptation paths that establish case provenance but which may prove to be sub-
optimal in future problem solving. We also present initial work on a “lazier” ap-
proach to problem solving in CBR based on demand-driven discovery of adapta-
tion paths that change continuously as the case base grows and in response to 
feedback received during the system’s life cycle. 

 
Keywords: case-based reasoning, adaptation, provenance, feedback. 

 
 
1    Introduction 
  
In seminal work on the role of provenance in case-based reasoning (CBR), Leake and 
Whitehead [1] investigate the effects of delays in the feedback available to a CBR 
system on solution quality. They also demonstrate the benefits of propagating feed-
back on a given case’s solution to related and/or similar cases. In one such algorithm, 
feedback is propagated to all descendants of the reference case (defined as those 
cases that were generated from the reference case by a series of adaptations). Feed-
back propagation is guided by provenance information captured by the system as 
each new case is added to the case base (i.e., the set of cases that contributed – di-
rectly or indirectly – to the new case’s solution). A related issue noted by Leake and 
Whitehead [1] is that the solutions provided by a CBR system may depend on the 
order in which previous problems were presented to and solved by the system. 
 In this paper, we argue that the limited ability of traditional CBR systems to learn 
from feedback on cases whose incorrect solutions may have contributed to errors in 
other cases can be attributed to eager commitment to adaptation paths that establish 
case provenance but which may prove to be sub-optimal in future problem solving. 
We also propose that this departure from the lazy approach to problem solving that 
characterizes CBR [2] is the underlying problem that creates the need for mainte-
nance interventions such as the feedback propagation methods investigated by Leake 
and his co-workers [1, 3]. It is also a primary cause of the order dependence problem 
noted by Leake and Whitehead [1]. 
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 In Sections 2 and 3, we present initial work on a lazier approach to problem solv-
ing in CBR that aims to address this issue by avoiding eager commitment to adapta-
tion paths that depend on the order in which problems are presented to the system. 
Instead, demand-driven discovery of adaptation paths that change continuously dur-
ing the system’s life cycle is combined with a policy of allowing only the solutions of 
“confirmed” cases (i.e., cases whose solutions are known to be correct) to contribute 
to problem solving. Our conclusions are presented in Section 4. 
 
 
2    Lazier CBR  
 
In traditional CBR, a target problem is solved by adapting the solution of the re-
trieved case that is most similar to the target problem (or simply by reusing the solu-
tion from the most similar case without adaptation as in 1-NN) [4-5]. Lazy problem 
solving is a characteristic of CBR that sets it apart from eager learning algorithms that 
create abstractions such as decision trees from training data [2]. To simplify our dis-
cussion of how CBR might benefit from an even lazier approach to problem solving, 
we do not consider CBR approaches in which two or more retrieved cases may con-
tribute directly to the solution of a target problem, for example as in CBR approaches 
to estimation based on adaptation triples [6]. 
 
Adaptable Cases. The set of cases that can be adapted to solve a given problem plays 
an important role in Lazier CBR. For any problem P, we denote by adaptable-
cases(P) the set of cases that can be adapted to solve P. Thus for any case C, adapt-
able-cases(problem(C)) is the set of cases that can be adapted to solve problem(C), 
the problem described by C. In approaches to modeling the competence of a case 
base, this set of cases is often referred to as a case’s reachability set [7]. 
 
Confirmed/Unconfirmed Cases. We will refer to a case whose solution is known to 
be correct (e.g., a seed case provided by a domain expert, or a case whose solution is 
confirmed/corrected by feedback from a reliable source) as a confirmed case. All 
other cases are said to be unconfirmed in our approach. In contrast to traditional CBR, 
only the solutions of confirmed cases can contribute to the solution of a given prob-
lem in Lazier CBR. The aim of this policy is to prevent the propagation of possible 
errors in the solutions of unconfirmed cases. However, there is no loss of coverage in 
our approach because the coverage relinquished by disallowing the reuse of uncon-
firmed solutions is reclaimed by recursive adaptation. 
 
Solving a Target Problem in Lazier CBR. The problem-solving process in Lazier 
CBR is outlined in Fig. 1. A problem is solved using a discovered adaptation path 
from a confirmed case to the target problem. Our demand-driven approach to the dis-
covery of adaptation paths uses breadth-first search [8] to ensure the discovery of an 
adaptation path of the shortest possible length, if one exists, from a confirmed case to 
the target problem. However, the initial state in the search process is the target prob-
lem and the goal state is any confirmed case. On successful completion of the search 
process, the discovered search path from the target problem to a confirmed case is 
reversed to provide an adaptation path that can be used to solve the target problem.   
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____________________________________________________________________________ 
 

Algorithm: Problem Solving in Lazier CBR 
Input: A target problem P  
Output: A solution for P 
Process:  

1. Conduct a breadth-first search of the case base in which the initial state is P, the 
goal state is any confirmed case, children(P) = adaptable-cases(P), and chil-
dren(C) = adaptable-cases(problem(C)) for each case C    

2. If no search path from P to a confirmed case can be found then return failure  

3. Let P →C1 → ...→C k  be the discovered search path from P to a confirmed 
case Ck  

4. Reverse the discovered search path P →C1 → ...→C k  to provide an adapta-
tion path C k → ...→C1 → P of the shortest possible length from a confirmed 
case to P 

5. Return the solution obtained by using the discovered adaptation path to solve P  

____________________________________________________________________________ 

Fig. 1. Problem solving in Lazier CBR 
 
 
Retention in Lazier CBR. When a discovered adaptation path has been used to solve 
a target problem in Lazier CBR, the target problem is stored in the case base, with its 
solution, as an unconfirmed case. The new case’s status unchanged until such time as 
its solution is confirmed (or corrected) by feedback from a reliable source. When this 
happens, its status changes from unconfirmed to confirmed.  
 
Lazier CBR Example. Fig. 2 illustrates the use of Lazier CBR to solve a target prob-
lem (P). Of the 15 cases in the example case base, 3 are seed cases (black) with solu-
tions that are known to be correct, and the rest are unconfirmed cases (white). At this 
stage of the system’s life cycle, no feedback has been received for any case. The 
cases enclosed by the circle with P at its center are those that can be adapted (in a 
single step) to solve the target problem. The lines joining cases in the figure show the 
paths explored in breadth-first search. The confirmed case discovered by breadth-first 
search is C8 and the discovered adaptation path is C8 → C9 → C10 → P. Note that the 
adaptation path reverses the order of the search path from the initial state (P) to the 
goal state (C8) discovered by breadth-first search. (However, there is no assumption 
that adaptation is reversible in our approach.) The next stage in the solution of the 
target problem is to apply the discovered adaptation path. First, the solution for C8 is 
adapted to solve the unconfirmed case C9 (i.e., the unconfirmed solution for C9 is not 
reused). The new solution for C9 is then adapted to solve C10. Finally, the new solu-
tion for C10 is adapted to solve P. As the target problem has now been solved, it is 
retained with its solution as an unconfirmed case in the case base. The solutions for 
the unconfirmed cases C9 and C10 are also revised, but their status (unconfirmed) re-
mains unchanged.    
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Fig. 2. Solving a target problem (P) in Lazier CBR before any feedback is received. The short-
est adaptation path from a confirmed case to the target problem is C8 → C9 → C10 → P.  

 
Learning From Feedback. Fig. 3 illustrates the use of Lazier CBR to solve the same 
target problem (P) as in our previous example but in a slightly different context. The 
case base is the same as in Fig. 2 except that feedback on case C3 has been received 
from a reliable source, with the result that its status has changed from unconfirmed to 
confirmed. The shortest adaptation path from a confirmed case to the target problem, 
and therefore the one that will be used to solve the problem in Lazier CBR, is now C3 
→ C4 → P. Note that the solution provided by Lazier CBR in this example takes ac-
count of feedback on a case that would not be considered in a traditional CBR ap-
proach to solving the target problem. It is also worth noting that problem-solving 
efficiency benefits from the feedback on case C3, not only in terms of search effort 
but also in terms of adaptation effort. 
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Fig. 3. Solving the same target problem (P) in Lazier CBR after feedback on case C3 has been  
received. The shortest adaptation path from a confirmed case to the target problem is now C3 
→ C4 → P.  
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Coverage in Lazier CBR. One example of a CBR system in which recursive adapta-
tion is used to increase coverage is CREST [9]. However, in comparison with tradi-
tional CBR approaches that do not rely on recursive adaptation, Lazier CBR does not 
provide any additional coverage. Instead, it uses recursive adaptation to reclaim the 
coverage relinquished by disallowing the reuse of unconfirmed solutions. 
 
Meta-Data in Lazier CBR.  The current status of each case (i.e., confirmed / uncon-
firmed is used as meta-data to guide the demand-driven discovery of adaptation paths 
in Lazier CBR.  The solutions of unconfirmed cases in Lazier CBR can also be con-
sidered as meta-data insofar as they do not contribute to problem solving but can be 
used for maintenance purposes, for example as discussed in Section 3. 
 
 
3   Provenance in Lazier CBR  
 
As described in Section 2, Lazier CBR prevents the propagation of possible errors in 
the solutions of unconfirmed cases by allowing only the solutions of confirmed cases 
to contribute to the solution of a new problem. This means that there is no need for 
propagation of feedback received by the system to “repair” the case base as proposed 
by Leake and Whitehead [1], at least not if the goal is to improve the quality of future 
problem solving. There is also no need for case provenance information (i.e., the 
cases that contributed to each case’s solution) to be captured for this purpose. How-
ever, one of the issues to be addressed by future work is that a more proactive ap-
proach to the use of feedback in Lazier CBR could be beneficial in situations where 
the effects of a previous incorrect or inaccurate solution may be preventable or re-
versible by providing an improved solution in retrospect. An example in the real es-
tate domain would be a house whose estimated value was too high and has not yet 
sold for this reason.   
 While there is no need for feedback propagation based on provenance information 
to improve future problem solving in Lazier CBR, we expect case provenance to play 
an important role in enabling the effectiveness of adaptation strategies to be assessed 
in light of feedback on solution quality. Leake and Dial [3] have already shown how 
provenance information can be used to guide the maintenance of adaptation rules in 
traditional CBR approaches, and the fact that Lazier CBR eliminates one source of 
problem-solving errors (i.e., possible errors in the solutions of unconfirmed cases) 
may help to simplify the assessment of adaptation rule quality. In this context, an-
other important feature of Lazier CBR that we now discuss is the provenance shift 
that occurs in light of feedback on solution quality. 
  
Provenance Shift. In contrast to traditional CBR, case provenance changes dynami-
cally in Lazier CBR. To illustrate this point, suppose that all the cases in Fig. 3 were 
already in the case base before feedback on C3 was received by the system. Also sup-
pose that C1, C2, C3, and C4 were the first cases to be created in the case base, and that 
C4 was created using the adaptation path C1 →  C2 →  C3 → problem(C4) discovered 
when the problem represented by C4 was presented to the system. Thus, the cases that 
originally contributed to the solution of C4 were C1, C2, and C3 (though the confirmed 
case C1 is the only case whose previous solution would be reused in the adaptation 
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process). As the discovery of adaptation paths is demand driven in Lazier CBR, there 
is no immediate change in the provenance of C4 (or its solution) when feedback on C3 
is received by the system. In fact, it is only when the target problem P is presented to 
the system that the feedback on C3 begins to affect other cases. For example, when 
the discovered adaptation path C3 → C4 → P is used to solve P, an important side ef-
fect is that the solution of C4 is revised to take account of the shorter adaptation path 
C3 → problem(C4) from a confirmed case to problem(C4). The provenance of C4 also 
changes, as the only case that now contributes to its solution is C3.  
 
Assessment of Adaptation Strategies. While it is important to consider the prove-
nance shifts that occur in Lazier CBR, there is nothing to prevent the current prove-
nance of each case being captured by a Lazier CBR system and used to assess the 
effectiveness of the adaptation process in light of feedback on solution quality. In this 
context, an important feature of Lazier CBR is that problem-solving errors can occur 
only as a result of defects in the system’s similarity and/or adaptation knowledge, and 
not as a result of errors in the solutions of unconfirmed cases. Again with reference to  
the example case base in Fig. 3, suppose that the system learns from the feedback on 
C3 that its previous solution for C3 was incorrect, and that it also knows that C3 was 
created using the adaptation path C1 →  C2 → problem(C3). If we also assume that the 
retrieval process is reliable (cf. [3]), then the error in the previous solution of C3 can 
be attributed to one or both of the steps in the adaptation path. 
 
 
4    Conclusions 
  
The work presented in this paper is motivated by similar concerns to those expressed 
by Leake and Whitehead [1] in their analysis of the role of case provenance in CBR. 
In common with provenance-guided approaches to feedback propagation [1, 3], La-
zier CBR aims to address the limited ability of CBR systems to learn from feedback 
on cases whose incorrect solutions may have contributed to errors in the solutions of 
other cases in the case base. We have proposed an approach to achieving this goal by 
demand-driven discovery of adaptation paths that change continuously as the case 
base grows and in response to feedback received during the system’s life cycle. An-
other important feature of Lazier CBR is the use of meta-data about the current status 
of each case (i.e., confirmed/unconfirmed) to guide adaptation path discovery.  
 Lazier CBR does not rely on feedback propagation, for example as proposed by 
Leake and Whitehead [1], to improve the quality of future problem solving. Instead, it 
aims to prevent the propagation of incorrect solutions that creates the need for such 
maintenance interventions by allowing only previous case solutions that are known to 
be correct to contribute to the solution of a new problem. Also in contrast to tradi-
tional CBR, the solutions provided by Lazier CBR are independent of the order in 
which problems are presented to the system. As such, Lazier CBR addresses another 
important issue identified by Leake and Whitehead [1].  
 We briefly discussed the potential role of case provenance in enabling adaptation 
strategies to be assessed in light of feedback on solution quality (cf. [3]) in Lazier 
CBR. In this context, the fact that Lazier CBR eliminates problem-solving errors that 
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result from errors in the solutions of unconfirmed cases may help to simplify the as-
sessment of adaptation rule quality.      
 An interesting hypothesis to be investigated in future work is that Lazier CBR 
may tend to provide more accurate solutions than traditional CBR approaches in 
situations where solution quality tends to deteriorate as the lengths of adaptation 
paths increase. However, given the potential costs of demand-driven discovery of 
adaptation paths based on breadth-first search in large case bases, it will also be im-
portant to investigate the trade-offs between solution quality and computational effi-
ciency in the approach. 
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Abstract. Explanation-awareness in Case-Based Reasoning system de-
velopment aims at making such systems smarter in interactions with
their users. When using Linked Data for case acquisition from text one
aspect of being smarter is the provision of evidence for the trustwor-
thiness of the acquired cases. The Trustworthiness of such cases relies
not only on the provenance of the text but also on the provenance of
the used ontological knowledge. Users can only assess the quality of the
case-based reasoner’s results, i.e., the cases, if the system provides prove-
nance information and if such a system can justify its results. In fact,
explanation capabilities very much rely on provenance information.
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Explanation-awareness in Case-Based Reasoning system development aims at
making such systems much smarter in interactions with their users. It looks at
new ways to guide software designers and engineers to a purposeful explanation-
aware software system by making their designers and engineers explanation-
aware [14]. Systems that intend to exhibit explanation-awareness must be more
than simple reactive systems. When the word “awareness” is used in conjunction
with the word “explanation” it implies some consciousness about explanation.
When a system exhibits explanation awareness, it is capable of reasoning about
explanations. When we use the word aware make a strong statement about
the capabilities of the entity described. As being knowledgeable is central to
being aware, some kind of reasoning capabilities, or intelligence, is implied. Thus,
whether we aim at creating computer systems that are explanation-aware—or
provenance-aware for that matter—such systems must regard explanations and
provenance information from the knowledge level [11].

It has been established that there is a certain explanation quality in the use
of cases as explanations [5]. The general argument being that a similar past case
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will contain additional information, which (together with the target informa-
tion asked for) provides a context around the target information that should
be viewed as a situation-oriented explanation. However, there are also the other
knowledge containers [12] related to CBR, i.e., vocabulary, similarity measures,
and adaptation knowledge, that can be tapped into for providing additional ex-
planation capabilities [17]. As soon as the vocabulary container is not a closed
container anymore, but linked to the Web of Data, provenance issues such as
source of information, ownership and authorship arise and need to be dealt with.

Taking the term “provenance-awareness” one of the questions coming to mind
probably is: “Who needs to be aware?” Surely designers and users of such software
systems, e.g., CBR system developers and knowledge engineers, and the users
of the respective CBR system. CBR system developers need to provide means
for integrating provenance information and knowledge engineers need to model
provenance information or make it available to the CBR system user.

The Linked Open Data project is a Semantic Web effort using the Web (i.e.,
Web standards such as HTTP, URIs and RDF) to connect related data that was
not previously linked together [3]. One of the most visible examples for Linked
Open Data is DBpedia, “a community effort to extract structured information
from Wikipedia and to make this information available on the Web”. Govern-
ments and organisations have begun to provide Linked Data in vast amounts.

In [15], Roth-Berghofer et al. describe that case models published as Linked
Open Data can be interconnected to information from various data sources.
Thus, they can be enriched with additional knowledge from other ontologies.
Combining SCOOBIE, an ontology-based information extraction system [1],
and myCBR, a tool for rapid prototyping of similarity-based retrieval applica-
tions [18], allows leveraging available knowledge of the Web of Data for acquiring
cases from texts. As standard ontology representation formalism for expressing
the case model the Resource Description Framework language (RDF) [19] was
chosen, where meaning is expressed by facts encoded in sets of triples [2].

Representing a case model in RDF results in URIs for each attribute and
its possible values. If an HTTP request of these URIs delivers RDF triples with
additional information about the resource identified with this URI and if several
URIs in multiple web domains are interlinked with special types of predicates
(e.g., owl:sameAs) whether they represent a similar resource, we talk about
Linked (Open) Data .

Generating cases from texts using Linked Data from the Web of Data pro-
vides new challenges. Textual case-based reasoning (CBR) systems that com-
bine Linked Data from different sources are faced with quality and trust issues.
These issues have been recognised and are already addressed by the Semantic
Web community (e.g., [10, 9] and by the Web of Data community (e.g., [7]). Both
communities provide terminologies for explicitly describing provenance informa-
tion such as source name, date and author(s) of original information and any
updates. Typically, based on the provenance information the quality is assessed.
But the vocabularies have lots of weaknesses still and tools are missing.

104



As soon as CBR system developers and knowledge engineers rely on Linked
Data they need to have a vocabulary and tools to express provenance informa-
tion. They as well as need to provide access to that information for the final
recipient of provenance information, the CBR system user who should not only
be aware of that kind of information but should demand it.

myCBR provides some general means for extending the vocabulary knowl-
edge container and for accessing it in order to support CBR system users with
knowledge about the used terminology [16], namely concept explanations. A con-
cept explanation links concepts unknown to a user to already known concepts.
It is a comprehensive description in the form of a definition, an example, or
a reference to further characterisations, for which any kind of medium such as
text, images, audio, or video can be used.

CBR system users can only assess the quality of the case-based reasoner’s
results if the system provides access to provenance information and if such a
system can justify its results. The users might have questions about the history
of the case model, which part of the case model was generated by the knowledge
engineer and which part comes from other sources. They might ask about why,
where, and how provenance information came to pass.

In database research, Buneman et al. [4] distinguished exactly this: why-
and where provenance. Why-provenance provides information on the origins that
were involved in computing a result, and where-provenance describes the location
of the source. Green et al. [6], finally, added how-provenance, which describes
how the origins were involved in the computation. These questions are directly
feeding into why- and action explanations [13, 17].

Making CBR system developers and knowledge engineers provenance-aware
is one step in the direction of making a CBR system provenance-aware. As soon
as such CBR systems have provenance information they can act upon it, giving
the CBR system user a feeling of how trustworthy a case is or if the data on
which the case relies has lost its reliability, as Linked Data today may be different
from Linked Data tomorrow [8]. Last but not least, provenance information is
also be a good opportunity for triggering maintenance operations.
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Preface

We are pleased to present the proceedings of the Second Workshop in Rea-
soning from Experiences on the Web (WebCBR), which was held as part of the
Eighteenth International Conference on Case-Based Reasoning in Alessandria,
Italy, July 2010.

This workshop, which follows a very successful first WebCBR workshop that
was held at ICCBR in Seattle in July 2009, promotes CBR as a means to support
Web users in at least two ways: firstly by enabling better capture and represen-
tation of explicit yet unstructured experiential Web content, and secondly by
harnessing Web usage data to improve searching and browsing.

Advances in Web technology have led to vast amounts of user-generated Web
content in the form of blogs, emails, reviews and comments. Increasingly, people
search and browse other people’s experiences on travel, medicine, retail, enter-
tainment, etc. While these records of experience can be treated as documents, we
take the view that they are more appropriately seen as a rich source of untapped
experience data, a valuable asset that can be used to generate Web experience
bases through Case-Based Reasoning (CBR) technology.

Proliferation of Web content also means significant increases in Web usage
and data about this usage. Many users will have similar searching and browsing
needs and should ideally benefit from the search and browsing experiences of
others. Better capture of usage data and its greater reuse to enhance subsequent
searching and browsing is another opportunity for CBR research.

The workshop provided a forum for discussion of these new research direc-
tions, provoked by the presentation of six papers, which are collected in these
proceedings. The papers include Web 2.0 applications that reuse experiential
Web content and usage data to support the authoring of new product reviews,
to proactively make recommendations in a conversational setting, and to reuse
searches for knowledge that can be used to adapt travel itineraries, for exam-
ple. Other papers address underlying technological issues such as the similarity
and retrieval of textual content, the mining of case vocabulary, and the inter-
operation of CBR with the emerging Web of Data.

We wish to thank all who contributed to the success of this workshop, espe-
cially the authors, the Program Committee, the additional reviewers, the pan-
elists, and Cindy Marling (the ICCBR Workshop Chair).

Derek Bridge July 2010
Sarah Jane Delany
Enric Plaza
Barry Smyth
Nirmalie Wiratunga
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Abstract. This paper presents and approach for knowledge extraction
for Case-Based Reasoning systems. The recent development of the WWW,
especially the Web 2.0, shows that many successful applications are web
based. Moreover, the Web 2.0 offers many experiences and our approach
uses those experiences to fill the knowledge containers. We are especially
focusing on vocabulary knowledge and are using forum posts to create
domain-dependent taxonomies that can be directly used in Case-Based
Reasoning systems. This paper introduces the applied knowledge extrac-
tion process based on the KDD process and explains its application on
a web forum for travelers.

Key words: case-based reasoning, knowledge container, vocabulary ex-
traction

1 Introduction

Since the very beginning and the expansion of the World Wide Web (WWW)
the information available increased rapidly. This information overhead lead to
new technologies and developments that ended up in the Web 2.0. Moreover,
these technologies enhanced the information palette for multimedia data and
boosted the amount of user-generated content. Further, the Web 2.0 changed
the documents provided in the WWW from rather statical documents on a web-
site towards smaller pieces of user-driven information like forum posts, tweets1

or ratings for products [19]. The user generated content often contains pieces
of user experiences expressed in an explicit or implicit way[15]. However, us-
ing these information is still challenging because most of it is still unsystematic
and therewith hardly to be efficiently retrieved and reused [3]. In the last years
many kinds of web communities that had some kind of structure to the experi-
ence available were mostly develop around a certain type of topic and assemble
WWW users that share an interest. Nevertheless the amount of web communi-
ties that develop based on common interests is still quite large, however, those

1 So called 140 character messages on twitter.com
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communities can be classified into a manageable amount of community types.
Those community types can be characterized by their technical realization and
the way how knowledge and experiences are presented and shared. Both aspects
can be used to differentiate between communities and provide a first type of
structure [12]. The information provided in web communities can be described
as a combination of experiences. So the information web have to deal with con-
tains common information and information artifacts like web sites or documents
that are interwoven with information given during interactions or conversations
in web communities.

1.1 The Role of Knowledge Extraction within SEASALT

The work presented in this paper is a part of the further development of the
SEASALT (Sharing Experience using an Agent-based System Architecture Lay-
ouT) architecture [16], which is especially suited for the acquisition, handling
and provision of experiential knowledge as it is provided by communities of prac-
tice and represented within Web 2.0 platforms. It is based on the Collaborative
Multi-Expert-Systems (CoMES) approach presented by Althoff et. al. [1] which
is a continuation of combining established techniques and the application of the
product line concept (known from software engineering) creating knowledge lines
[10]. The knowledge extraction is a part of the knowledge provision component in
SEASALT that is based on software agents representing heterogeneous domains.
Each software agent can be realized as an independent Case-Based Reasoning
system that is maintained by a Case Factory [2]. Each agent retrieves new knowl-
edge from individual knowledge sources like wikis, blogs or web forums in which
users provide different kinds of information.

1.2 Discussion of Related Work

According to Richter [17], the knowledge of Case-Based Reasoning systems can
be provided in all four knowledge containers that include vocabulary, similarity
measures, transformational knowledge and cases. We focus on the problem (task)
on how the knowledge containers can be filled using the experiences provided in
web communities. For this purpose we have to extract the knowledge before it
can be stored.

Further on, we deal with data sources that are mostly free text what usually
requires a symbolic representation of keywords. That is the reason why we cur-
rently focus on the extraction of taxonomies that can be used for both, enhancing
the vocabulary and assigning the similarity. Since we use user experiences to de-
velop our taxonomies, we are able to create taxonomies tailored to represent
experiences provided in the according community. However, besides extracting
cases from experiences there are many more pieces of knowledge that can be
extracted and used by Case-Based Reasoning systems. The work of Smyth et.
al. [19], Milne et.al [14], Plaza and Baccigalupo [15] as well as Ihle et. al [9] show
the potential of web communities for Case-Based Reasoning systems.
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For the generation and the improvement of a Case-based Reasoning system’s
vocabulary or its domain model different knowledge extraction approaches can
be applied. For example, light ontologies can be used for domain modeling and
directly extracted from the web community. This can be carried out by creating
taxonomies after analyzing social tags, like the extraction of folksonomies [13].
The benefit of using light ontologies and folksonomies is quite clear: the more
people are working and contributing in a web community, the more detailed the
result gets with almost no increase of the cost.

Another major point while extracting vocabulary knowledge is the fact that
the information has to be put into a certain context to be organized in a knowl-
edge model. Mika [13], Chakrabarti [4] and Liu [11] for example present ap-
proaches in which they take the role of the user into account. Even if only little
information is available: certain properties of the information, the explicit or im-
plicit scope of the web community, or the role of a user can provide information
on the context.

2 Knowledge Extraction

Knowledge acquisition is still the bottleneck within the development of Case-
Based Reasoning systems. Our approach aims at automatization and for this
purpose we propose a schema that extracts knowledge from web community
sources and provides it for CBR systems. In the remaining parts of this paper we
introduce our approach and apply it in our current real-life application docQuery.
docQuery is a SEASALT instantiation that provides travel medicine information
based on data extracted from a web community [16].

Currently we work on the extraction of taxonomies that are used to build the
vocabulary, to assign similarity values between two symbols as well as provide
basic adaptation knowledge. The vocabulary is derived by transferring each term
of a taxonomy into the vocabulary repository. Taxonomically ordered symbolic
types provide similarity values between two nodes based on their distance in the
taxonomy and sibling nodes in taxonomies represent basic adaption possibilities.

Besides the creation of taxonomies, also the improvement of those taxonomies,
the adjustments of term weights for the similarity assignment as well as the pos-
sibility to resolve disambiguation also has to be focused on. The aforementioned
approaches take the web usage or the links pointing at a certain resource of the
extracted terms into consideration. Techniques from Information Retrieval and
the analysis of social networks are necessary to put the extracted information
in the domain context. The goal of our approach is structuring the available in-
formation and organizing them within the knowledge model, so the experiences
can used by the Case-Based Reasoning system.

2.1 Process

Our approach of extracting knowledge from web communities and applying this
knowledge within a Case-Based Reasoning system can be compared to the knowl-
edge discovery in databases (KDD) presented by Fayyard [7].
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Fig. 1. Knowledge Extraction Process Model for CBR Systems

The knowledge extraction process presented here does not only apply for
CBR systems, of course it can be employed in all kinds of knowledge based
systems. In comparison to KDD, we do not create views on data, instead we
are extracting knowledge, reorganize it and provide it in knowledge containers.
Therefore we do not concentrate only on one particular data type by applying
and refining information extraction techniques on it. Instead, our source data is
different, because we get our source data delivered from web mining technologies,
most of them are web (content) crawlers. The extraction of knowledge and fur-
ther on its provision in the Case-Based Reasoning system’s knowledge containers
can be described as an active transformation of knowledge, because we create
and/or extend knowledge models, i.e. taxonomies. Figure 1 gives an overview of
the Knowledge Extraction processes based on the KDD process. The following
nine steps describe successively what kinds of tasks have to be executed in each
step to create knowledge from community data:

1. Domain Detection: This first step describes the identification of the do-
main properties and results in the assignment of what kind of information
can be extracted and in which knowledge container it should be integrated.
Further auxiliary data like word lists or rules that are required for the knowl-
edge extraction are defined and, if possible, created.

2. Web Community Selection: In this step an appropriate web community
has to be identified. This covers not only technical issues, it also requires
the permission to use the knowledge provided within a web community.
The technical requirements include the availability of a certain amount of
accessible data. This usually starts with structure mining techniques before
continuing with the next step.

3. Content Mining: This describes the connection of the knowledge extrac-
tion process to the source data. Usually web crawlers access the content and
transform it so the data can be provided. Also intelligent web forums, as
they are described by Feng [8] and further developed within the SEASALT
architecture [16] where intelligent agents pass on relevant data, can serve as
source web community.

4. Processing Raw Data: Noise, stop words and duplicates are removed and
the retrieved data from step 3 is transformed to be processed in the next
step. This step ensures that the extraction methods receive ”clean” data.
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5. Processed Data: The result of the refining process applied to the raw data.

6. Knowledge Extraction: Based on experience an extraction method (like
a Named-Entity-Recognition (NER)-Tagger) has to be selected. This step
relies on the methods available and the experiences made in past extrac-
tion processes as well as it depends on the kind of knowledge that has to
be extracted. Each extraction method requires different types of additional
input data like vocabulary lists (stop words), rules or ontologies (WordNet)
to carry out the information extraction tasks. In this steps this input is pro-
vided (if not already done in the domain model step (step 1)) as well as the
information extraction application has to be configured (represented by the
lower arrow in Figure 1. Within this step this data has to be provided to
finish up the final preparation of the knowledge extraction.

7. Extracted Knowledge: The knowledge extraction is carried out by ex-
ecuting the extraction processes using the previously described auxiliary
material. After this step the extracted knowledge is ready for further use.

8. Application in Knowledge Container: The obtained knowledge is trans-
ferred to its according knowledge container so it can be applied in the Case-
Based Reasoning process. In case new knowledge models have been built,
they have to be integrated in the knowledge representation and made avail-
able to the processes they are supporting.

9. Evaluation: The knowledge obtained is evaluated using the Case-Based
Reasoning system(s): this describes evaluation processes of each of the four
kinds of knowledge within its application domain. Information on the quality
of knowledge can be obtained to further develop the extraction processes by
applying experiences made while executing the knowledge extraction process.

The Knowledge Extraction steps are carried out interactively and the degree
of automation highly depends on the web community and the target data. The
following sections will introduce an interactive knowledge extraction application
that uses a discussion forum to build taxonomies.

3 Interactive Knowledge Extraction from Community
Data

The knowledge extraction process for Case-Based Reasoning systems we have
introduced will now be applied in a real life application domain travel medicine.
We use a web forum in which experts, ex-pats and travelers discuss various top-
ics regarding traveling to South East Asia. First, we will introduce the knowl-
edge extraction workbench, the graphical user interface presenting the knowl-
edge extraction results to the knowledge engineers, followed by an explanation
of our experimental results after applying the knowledge extraction process on
the aforementioned forum.
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3.1 Knowledge Extraction Workbench

Figure 2 shows the Knowledge Extraction Workbench that we have developed for
extracting taxonomies from web community data. This user interface supports
the knowledge extraction process steps 4 – 7.

One the left hand side the knowledge engineer can browse forum posts and se-
lect the analysis method. The right hand side displays the extracted taxonomies
and allows the knowledge engineer to load and save different taxonomies as well
as manipulate similarity measures. Further, the knowledge engineer can edit the
taxonomy and recalculate the similarity assignments for any node within the
taxonomy. A more detailed explanation of the workbench can be found in [18].

Fig. 2. Screenshot of the Knowledge Extraction Workbench

The domain detection and provision of the web community data has been
done in advance as well as a web forum equipped with intelligent agents was
created. The agents are monitoring the forum and pass on posts that belong to
a certain topic, currently we deal with the topics location, diseases and medica-
ments. In advance, we have ensured that our experts agree with the fact that we
further process their posts. The intelligent web forum is built upon a data base
so we can access the free text via an odbc connection.

Currently, the workbench supports building taxonomies that can be directly
imported in the Protégé2 plugin of MyCBR [20]. Further on, the workbench is
connected to GATE, a text engineering tool [6], that we use for information

2 http://protege.stanford.edu/
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extraction. The according GATE component is called ANNIE (A Nearly-New
Information Extraction System) that we configured using lists of keywords and
rules. The goals of the Knowledge Extraction Workbench is creating taxonomies
using forum posts. The forum posts can be analyzed in two ways - either post
by post - or the whole thread in the forum. In both cases we do a quantitative
analysis of the data and based on the number of occurrences of terms we create
a parent node for those terms that occur most frequently and add child nodes
that occur second most frequently. We are assuming that according to Church
and Hanks [5], two terms are more similar the more often they occur next to
each other. For example a forum post contains four times the term children’s
disease and three times the term measles. Our approach takes children’s disease
as parent node and assigns measles as its child node.

3.2 Experimental Results

The experiments are carried out on a forum containing posts of travelers, ex-
pats and experts who are discussing various issues on travel medicine aspects,
especially prevention and travel preparation issues. On the other hand, we have
a web forum that contains posts discussing all kinds of travel related topics. In
total our experimental data contains about 6500 forum posts and we are ex-
tracting knowledge for a medicament, location and disease case base. During the
development of the docQuery application, our travel medicine experts provided
key word lists for medicaments and diseases that we use in combination with a
set of rules for setting up the information extraction environment of ANNIE.

Since the Knowledge Extraction Workbench offers two types of analysis, we
tested the performance of those. The first type analyzes the discussion thread
in the way that the whole thread is treated as an isolated text. In this process,
the term chains are created covering the whole thread. A term chain is a sorted
list, descending according to the number of occurrences, of all extracted terms.

In comparison, the second analysis type treads each post as an isolated text
and executes the aforementioned process, thus building term chains only covering
the isolated post.

Figure 3 depicts two resulting taxonomies with he upper one after the full
thread analysis and the lower one post-by-post analysis. The full thread analysis
always created deeper taxonomies, because the term chains are longer if built
over the whole text of a thread.

4 Discussion

The work presented in this paper focused on web communities and how to sys-
tematically use the experiences provided by users of this communities in Case-
Based Reasoning systems. We are positive that Case-Base Reasoning can handle
and benefit from the information given during discussions, because it is a flexible
methodology for integrating different kinds of knowledge in a knowledge based
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Fig. 3. Taxonomy Depth Comparison

system. We have discovered three different scenarios in which the knowledge ex-
traction process we introduced can be applied: First, the knowledge extraction
process can be applied once during the development of a Case-Based Reasoning
system supporting the system’s design. Second, it can be used for initially filling
the knowledge containers and third it can be completely integrated in the main-
tenance process of Case-Based Reasoning systems. Therefore the extraction has
to be scheduled regularly and processes have to be defined that allow a further
development of the knowledge structure, comprehending updating, evaluating
the knowledge and assuring its quality. Within docQuery, we use the last sce-
nario because web communities are the main type of knowledge sources. Using
the third scenario of the extraction process allows us to react to changes in these
communities and allows us to discover and integrate new terms quickly.

Web Communities already exist on many topics, however, using those for pro-
cessing user generated content systematically requires the approval of its users.
We have used a web forum that we have built for the docQuery project and that
has been designed for extracting knowledge from user discussions. Disadvantages
of this approach are the requirement of a sufficient amount of users with exper-
tise and the tendency of web based discussions to cover a broad range of topics
thus often failing to concentrate on a given topic.

Usually the discussions are centered around a manageable amount of topics.
On the other hand, working with data from existing communities requires their
permission. We have made the experience that when communicating why and
how their data is processed, they usually agree. However, the recent development
of the Web 2.0 focuses more and more on the collaboration and participation of
users which both provide further support for automatic experience and knowl-
edge processing.

Applying Case-Based Reasoning within the Web 2.0 can also lead towards
demand-oriented and web-based systems that integrate their functionalities in
daily working routines of users and therewith provide knowledge gained from
their contributions and behavior. Therefore, the technologies for knowledge ex-
traction have to be further developed and semantic web technologies, multi-

118



agent-technologies as well as soft-computing technologies can improve todays
systems. Also, a deeper integration of users is possible: it might be feasible to
allow the community member actively participate in knowledge modeling.

According to the case factory approach [2], we can also imagine using Case-
Based Reasoning systems for supporting or even executing the information ex-
traction. Therefore we have to first fill a case base covering information on what
type of extraction method can be applied on which source data to retrieve a
certain type of knowledge. In this context, Case-Based Reasoning might be able
to keep up with very knowledge intensive IE methods that require additional
information like thesauri, gazetteer or annotated training data, because it can
handle incomplete information and the similarity-based search might be able to
cope with today’s problems of achieving an exact analysis and mining of text
segments.

5 Summary and Outlook

This paper picks up the task of realizing knowledge extraction for Case-Based
Reasoning systems from web communities. First we discussed how experiences
occur on the web and in which way they can be further used. Afterwards we
presented a selection of related approaches before we have introduced a knowl-
edge extraction process that has later on be applied and evaluated in the travel
medicine domain. The paper sums up with a discussion of the results and the
further potential of the approach we presented.

The knowledge extraction process is a first realization based on well known
and applied methods that have been applied in a new way. After establishing a
knowledge extraction process we will now concentrate on applying and develop-
ing new approaches that improve the quality of the retrieved data or integrate
different sources obtained from Web 2.0 developments. For example folksonomies
as a result of social tagging analysis can serve as case base vocabulary.

Another aspect of further research is the application of the knowledge ex-
traction process on topics that are more open like free time activities or more
general travel experiences. Currently we are focusing on key word centered data
and the transition towards the extraction of more various data with more flexible
case representations. Further on, the knowledge extraction workbench is still a
prototype and has to be improved aiming at a better usability for knowledge
engineers.
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Abstract. In this paper, we present GhostWriter-2.0, a Case-Based
Reasoning system that supports a user who is writing a product re-
view. GhostWriter-2.0’s case base is populated with relevant and helpful
reviews from Amazon. It extracts phrases from these reviews and offers
these as suggestions to the user. In a trial, users made considerable use
of the suggested phrases.

1 Introduction

A lot of user-generated content on the Web takes the form of records of personal
experiences [5, 7, 6]. Epitomizing these records of personal experience are the
reviews and ratings that users contribute on everything from movies to books
to music to hotels to consumer goods to professional services and to on-line
content, whether user-generated or otherwise. Interestingly, Web sites that solicit
user reviews often solicit meta-experiences too: users can review or rate other
reviews or reviewers. For example, Amazon users vote on reviews, so the site
can report review helpfulness; Epinions users additionally vote on reviewers, so
the site can report reviewer trustworthiness.1 Meta-experience like this provides
a partial remedy for the problem of how to ignore noisy reviews.

Once shared on the Web, one user’s experiences can be reused by another
user to support her in some task that she is performing. Case-Based Reasoning
(CBR), often defined as reasoning from experiences [4], offers one way to support
such a user. Examples of using CBR in this way include the Poolcasting system,
which uses CBR to select music to play in social situations [6]; the work of [1],
which uses CBR to recommend data visualizations; and CommunityCook, which
extracts recipe adaptation knowledge from Web-based recipe corpora [2].

Our position is that there are in fact at least two ways in which records of
experience on the Web can be reused:

– to support the user in her real-world task, e.g. booking a hotel, selecting
music to play, installing software, and visualizing data; and

– to support the user when she authors new content, e.g. writing a new review.

1 www.amazon.com, epinions.com
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In our own work, we have been developing the GhostWriter family of systems,
which uses CBR in the second of these two ways. In GhostWriter-1.0, we showed
how CBR could help the user to write more comprehensive descriptions in Web-
based exchange systems [8]. GhostWriter-2.0, described for the first time here,
is our system which uses CBR to help the user to write reviews.

We developed GhostWriter-2.0 in response to the WebCBR Challenge associ-
ated with this workshop.2 The Workshop Organizers challenged CBR researchers
to apply CBR ideas to the Experience Web, the only constraint being that the
researchers should “showcase their research in the form of a demonstration sys-
tem using Amazon’s API”. The GhostWriter-2.0 case base is populated with
existing relevant and high quality Amazon product reviews; and the system uses
the case content to assist the user to author a new review.

GhostWriter-2.0 has the potential to create a virtuous circle: if its assistance
results in the user writing and submitting a better review than she otherwise
would, then a new higher quality record of experience becomes available both
to users making purchasing decisions but also to GhostWriter-2.0 next time it
assists someone to write a review of a similar item.

Section 2 presents GhostWriter-2.0 from the user point of view; section 3
describes how GhostWriter-2.0 converts Amazon reviews into cases; section 4
explains how GhostWriter-2.0 populates its case base, and how it uses the cases
to make suggestions; section 5 reports the results of a real user trial.

2 An End-User View of GhostWriter-2.0

A user who wishes to review an Amazon product with support from GhostWriter-
2.0 accesses GhostWriter-2.0 through her browser. We give a screenshot in Fig-
ure 1. The user starts at the top of the screen by using the drop-down select list
to choose the category of product that she will review; in the example, the user
has chosen Music. In the adjacent text-field, she enters keywords to describe the
product. This might be the author of a book, the artist for a music CD, or the
manufacturer of a digital camera, for example; in the screenshot, the user has
entered “Leonard Cohen”.3

The user next presses the Start GhostWriter! button. The GhostWriter-2.0
server takes the user’s category and keywords and uses them to query the Ama-
zon information servers. The search returns products and their reviews. These
are not shown to the user. Instead, we use the best of these reviews to populate
the case base (see Section 4.1).

The user may now type her review into the right-hand text-area. After ap-
proximately every 60 characters that the user types, GhostWriter-2.0 will make
a set of suggestions, which the browser displays in the selection form to the left
of the text-area. GhostWriter-2.0 selects these suggestions from the case base
(see Section 4.2).

2 www.comp.dit.ie/aigroup/?page\_id=549
3 The text-field in the top-left of the screenshot allows us to identify users when we

are running user trials (Section 5) and is otherwise not used.
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Fig. 1. A screenshot from GhostWriter-2.0

A user, glancing at the suggestions, may take one of three actions:

– She might decide to include a suggestion exactly ‘as is’ in her review. To do
this, she double-clicks on the suggestion.

– She might decide that none of the suggestions can be included verbatim, but
one or more of them may inspire her to write on a related topic.

– She may find none of the suggestions helpful. In this case, she continues to
type her review.

When she has finished her review, she presses the I’m finished! button to
submit her review to the GhostWriter-2.0 server, where statistics about the
review are logged. Unfortunately, the Amazon API appears not to allow the
GhostWriter-2.0 server to directly upload the review to Amazon.

3 Cases in GhostWriter-2.0

Fundamentally, cases in GhostWriter-2.0 are Amazon product reviews. We con-
vert an Amazon product review r into a three-part GhostWriter-2.0 case c =
〈W,S, h〉 as follows. The first part, W , which can be thought of as the problem
description part of the case, is the set of words that occur in the text of review r.
Information about which product is being reviewed is not needed in the problem
description part of the case because this contextual focus is already provided
by the case base as a whole (see Section 4.1). The second part, S, which can
be thought of as the problem solution part of the case, is a set of suggestions,
i.e. a set of phrases that GhostWriter-2.0 might show to the author of a new
review. We explain how we extract these from r in the paragraphs below. The
third part of a case, h, is a non-negative integer. Recall that Amazon users can
vote to signal that they found a review to be helpful. h is r’s helpfulness rating.
It can be thought of as the outcome part of the case [4]. It gives an indication of
c’s quality and, indirectly, an indication of the quality of the suggestions in S.
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We have yet to explain how we extract S from r. In GhostWriter-1.0, sug-
gestions were feature-value pairs [8]. There, we were working in the domain of
Web-based exchange systems, such as classified ads systems, and so each case de-
scribed an item that someone wanted to dispose of. We used regular expressions
to extract the value of features such as Price (e.g. “e25 or nearest offer”), Con-
dition (e.g. “in excellent condition”), and so on. This was adequately effective
because classified ads tend to be written in a domain-specific sub-language [3]
that is quite restrictive and uses a lot of recurring ‘stock’ phrases and phrasing.

Product reviews are written in a much less restrictive way than classified
ads. Reviews of novels, for example, rarely mention the price but often give a
synopsis of the plot, make comparisons with other novels by the same author or
similar authors, describe the passions aroused when reading the book, and offer
opinions about the quality of the writing. The author of a new review might
welcome suggestions that span all of these. Information Extraction techniques,
whether based on regular expressions or something more powerful, could extract
simple features such as the price, if present, or the technical attributes of digital
electronics goods (e.g. their battery life). Sentiment Analysis techniques could
extract the polarity of the opinions expressed, with the risk that it would mine
suggestions that would bias new reviews towards the majority opinions of past
reviews in the case base. But, even if we were to use both of these techniques
together, we would extract only a subset of the potentially useful suggestions.

Hence, we decided to take an approach that was less specific than either
Information Extraction or Sentiment Analysis. We took the view that most of
the descriptive content of a review lies in its noun phrases. They can cover:
technical attributes of consumer goods; characters, places and events in books
and films; authors and artists; and some of the opinion.

Noun phrases are easy to extract from text, using just quite shallow natural
language processing techniques. We use OpenNLP’s maximum-entropy-based
‘chunking’.4 We retain only those phrases that it labels as noun phrases. In
fact, we decided to retain only noun phrases that were longer than two words
(because shorter noun phrases tend to lack enough descriptive content to make
useful suggestions) but shorter than six words (because longer noun phrases tend
to make overly specific suggestions). Note that there is an additional scoring
process that will determine which of a case’s suggestions are actually shown to
the user (see Section 4.2).

In summary then, in GhostWriter-2.0 an Amazon review r becomes a case
c and comprises: the set of words in r; the set of r’s noun phrases that contain
three to five words; and r’s helpfulness rating.

4 How Ghostwriter-2.0 Works

The GhostWriter-2.0 server sits between the user’s browser and the Amazon
servers. There are two phases to its processing: populating the case base, and
making suggestions.

4 opennlp.sourceforge.net
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4.1 Populating the case base

As explained in Section 2, a user who wishes to write a review with support from
GhostWriter-2.0 begins by entering data about the product she wishes to review:
she enters its category and some keywords into her browser and submits them
to the GhostWriter-2.0 server. The GhostWriter-2.0 server forwards this data to
the Amazon servers. The operation it requests is an Amazon ItemSearch for
the given category and keywords, which returns up to 4000 products in pages
of up to ten products each. We additionally request that, for each product, the
ItemSearch returns reviews, ordered by decreasing helpfulness. It returns up to
five reviews per product, and it these we use to populate the case base.

We aim to populate the case base with 250 cases. As a way of trying to avoid
duplicated products and reviews, we check customer ids and only take the first
review for each customer. If the ItemSearch fails to provide us with 250 cases,
we take each product in turn and use an Amazon ItemLookup to obtain a further
10 reviews, again checking customer ids before inserting them into the case base.

Note that this means that the case base is populated afresh each time a
user starts a new review. This ensures that its contents are relevant to the
current product being reviewed, and that the case base takes into account the
very latest data (products, reviews and helpfulness ratings) on the Amazon site.
The downside is that there is an appreciable delay (up to 2 minutes) in inserting
reviews into the case base. This is caused by the time it takes to launch OpenNLP
and to use it to extract noun phrases from the 250 reviews. A production version
of Ghostwriter-2.0 would need to be better integrated with Amazon to bring this
time down.

4.2 Making suggestions

After GhostWriter-2.0 has populated its case base, the user starts typing her
review into her browser. As explained in Section 2, after approximately every 60
characters that the user types, the browser uses AJAX to request a set of sug-
gestions from the GhostWriter-2.0 server. The browser supplies the server with
the current contents of the user’s review. The GhostWriter-2.0 server retrieves
k1 = 50 cases from the case base. From the suggestions contained in these cases,
it selects k2 = 10 suggestions, which it returns to the user. We explain both the
retrieval and the selection in more detail below.

Retrieval. Let the current contents of the user’s review be called the new
product review and designated npr.5 This is the set of words that the user has
typed. GhostWriter-2.0 retrieves from the case base the k1 cases that are most
similar to the npr. We measure similarity using the Jaccard similarity coefficient:

sim(npr , c = 〈W,S, h〉) =
|npr ∩W |
|npr ∪W |

5 We avoid the word “query”, which is more common in CBR, since we have found it
leads to confusion.
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Suggestion selection. At this point, GhostWriter-2.0 has retrieved k1 cases C
from the case base, and in each case c = 〈W,S, h〉 there is a set of suggestions S;
each suggestion is a noun phrase. GhostWriter-2.0 must select the k2 suggestions
that it will send back to the browser for display. When considering a unique
candidate suggestion, s ∈ ⋃

〈W,S,h〉∈C

S, several criteria seem relevant, discussed

over the next few paragraphs.
Consider the number of retrieved cases in which a suggestion s appears:

freq(s) = |{〈W,S, h〉 ∈ C : s ∈ S}|

To some extent, the more frequent s is, the more its content is something that
different reviewers want to talk about, and this makes it a better suggestion.
However, frequency favours short suggestions as these are the ones that are
more likely to recur. The downside of this is that short, recurring noun phrases
are more likely to be vague or generic.

Suppose instead we consider the length in words of the suggestions, length(s).
To some extent, the longer s is, the more descriptive it is, and this makes it a
better suggestion. But length alone may favour overly specific suggestions.

We found that the product of frequency and length offered a good balance
between the two criteria:

score(s) = freq(s)× length(s)

The short, three-word phrase “a fantastic album” needs to appear in two separate
cases (2 × 3 = 6) if it is to have a score that betters that of the five-word
phrase “an excellent, lively rock classic”, assuming this appears in only one case
(1× 5 = 5).

Many suggestions share the same score. To break ties, we sum and compare
the helpfulness of the reviews that contain the two suggestions. Formally, if
score(s) = score(s′), then s will be ranked higher than s′ if

∑

hs∈{h:〈W,S,h〉∈C∧s∈S}
hs >

∑

hs′∈{h′:〈W ′,S′,h′〉∈C∧s′∈S′}
hs′

(If s and s′ have the same total helpfulness, then tie-breaking is arbitrary.)
In addition to this scoring, we also want to apply other criteria.
We do not want to make a suggestion s if it is already a noun phrase in the

user’s npr. This is quite simple-minded. In the future, it may be worth consid-
ering ways of measuring the similarity of semantic content: we would discard s
if the npr ’s content was similar enough to cover the content of s.

We also do not want to make a suggestion s if it is one that we have made
several times already. This criterion is not one that we built into an early version
of GhostWriter-2.0. But in a small-scale pilot study that we conducted prior to
the user trial reported in Section 5, we found that users preferred versions of
the system that more often made fresh suggestions over versions that allowed
suggestions to linger. We subsequently decided to limit the number of times a

126



suggestion could be made. Specifically, if s has already been suggested θ = 4
times, then it cannot be suggested again, allowing another suggestion to take its
place. This increases the number of different suggestions that get made, but the
suggestion turnover is not so great as to be distracting to the user.

5 Experimental Evaluation

Here, we report the results of a user trial. For comparison purposes, we devel-
oped a version of GhostWriter-2.0 that made less intelligent use of the cases.
It populates its case base in the same way as GhostWriter-2.0 (Section 4.1). So
we know it has a set of relevant and helpful cases. But instead of retrieving the
k1 = 50 cases that are most similar to the npr, it retrieves k1 = 50 cases at
random from the case base. Like GhostWriter-2.0, it will not make suggestions
that are already contained in the npr, nor will it make a suggestion more than
θ = 4 times. But otherwise, the k2 = 10 suggestions that it makes are drawn
at random from the retrieved cases: it does not use the score function, nor the
helpfulness ratings. In this section we will refer to these two systems as GW-2.0
(for GhostWriter-2.0) and GW-R (for the more random version).

The two systems were evaluated by twenty users. Each user reviewed two
products with which they were familiar, either two music CDs or two books. As
they wrote their reviews, they received suggestions from one of the GhostWriter
systems. Ten users had help from GW-2.0 for their first review, and help from
GW-R for their second review. The other ten users had help from GW-R first,
and then GW-2.0. They were unaware of the difference between the systems.

During the experiment, GW-2.0 and GW-R recorded: the review the user
typed; the time taken to write the review; and the suggestions that were ex-
plicitly incorporated, i.e. when the user double-clicked on a suggestion. We also
administered a questionnaire to each participant.

At one level, reviews written with support from GW-2.0 and with support
from GW-R were similar. Their average length was a little over 150 words in
both cases; users created their reviews at an average of 13–14 words per minute
in both cases; and the average number of descriptive noun phrases in the reviews
(which we took to be noun phrases of more than two words) was also 13–14 in
both cases. But what is interesting is the breakdown of those noun phrases.

Figure 2 shows, for each user (designated A to T), how many suggestions they
directly used (by double-clicking on them). In total, 116 GW-2.0 suggestions were
directly incorporated, an average of 5.8 per user, compared with only 83 GW-R
suggestions, an average of 4.15. Fourteen of the twenty users used more GW-2.0
suggestions than GW-R ones; one used the same number of suggestions from
both; and one used none from either system. We take this as an indication that
GW-2.0’s greater reuse of Web-based experience data (case similarity, frequency
across reviews, and helpfulness) promotes more useful suggestions.

Figure 2 gives no indication of how many other descriptive noun phrases
there are in user reviews. Figure 3 shows this in the case of GW-2.0. It enables
us to see that, while users vary, directly incorporated suggestions account on
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Fig. 2. The number of suggestions that users directly incorporated into reviews

Fig. 3. Noun phrases in reviews written with GW-2.0

average for about 43% of descriptive noun phrases (116 out of the 268 noun
phrases of more than two words). We do not have space to show the graph for
GW-R but on average only about 30% of descriptive noun phrases were ones
GW-R suggested (83 out of 275 noun phrases of more than two words).

Figures 4, 5 and 6 summarize results from the questionnaire. Nineteen of
the twenty people agreed or strongly agreed that GW-2.0 helped them to write
a comprehensive review; for GW-R, sixteen people agreed or strongly agreed
(Figure 4). Eighteen people agreed or strongly agreed that GW-2.0’s suggestions
were helpful, more than half of them strongly agreeing; for GW-R, sixteen people
agreed or strongly agreed, only a minority strongly agreeing (Figure 5). We also
asked participants to estimate for each review that they wrote how many times
they were inspired by a suggestion but did not actually double-click on it and
so did not incorporate it directly. This was obviously very subjective and not
likely to be reliable. But it at least gives an impression of the extent to which the
numbers reported in Figures 2 and 3 understate the helpfulness of the systems.
According to the responses to this (Figure 6) GW-2.0 and GW-R were fairly
evenly-matched in their ability to inspire, and inspired their users one or more
times in all but three reviews.
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Fig. 4. “The system helped me to write a comprehensive review”

Fig. 5. “I found the suggestions helpful”

We also asked participants for their view of the quality of the reviews they
found in on-line stores: nineteen out of twenty thought they were Good or Fair;
no-one thought they were Excellent; no-one thought they were Bad; but one
person thought they were Terrible. Finally, asked whether they would write
more comprehensive reviews if a GhostWriter-style system were available on a
store’s Web site, everyone agreed or strongly agreed.

6 Conclusions and Future Work

We have presented GhostWriter-2.0, which reuses the experience captured in
Amazon product reviews and their meta-review data to make suggestions to
a user who is writing a new product review. Our user trial has very promising
results, showing a high level of use of the suggestions, both directly and indirectly.
In the trial, GhostWriter-2.0 was more helpful to users than a less sophisticated
version with an element of randomness to its selections. The differences, however,
were small. This may be because, irrespective of which system was being used,
users in the trial relied on the suggestions to a degree greater than they would
in reality, where they would be writing reviews for endogenous reasons, rather
than at our behest.

There are many lines of future research. We would like to measure and, if
necessary, explicitly enhance the diversity of the suggestions that GhostWriter-
2.0 makes, for example. We would also like to see GhostWriter-2.0 more closely
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Fig. 6. “The number of times I was inspired by suggestions but I didn’t click on them”

integrated with the on-line store that it supports, as this can both reduce the
time it takes to populate the case base and make the system less cumbersome to
use (e.g. by automatically taking the category and keywords from the page the
user is visiting). Finally, we are keen to extend the GhostWriter family into new
domains where authors can benefit from the kind of support that GhostWriter
systems can offer.
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Abstract. While Case-based reasoning (CBR) has successfully been de-
ployed on the Web, its data models are typically inconsistent with existing
information infrastructure and standards. In this paper, we examine how
CBR can operate on the emerging Web of Data, with mutual benefits. The
expense of knowledge engineering and curating a case base can be reduced
by using Linked Data from the Web of Data. While Linked Data provides
experiential data from many different domains, it also contains inconsis-
tencies, missing data and noise which provide challenges for logic-based
reasoning. CBR is well suited to provide alternative and robust reason-
ing approaches. We introduce (i) a lightweight CBR vocabulary which is
suited for the open ecosystem of the emerging Web of Data, and provide
(ii) a detailed example of a case base using data from multiple sources. We
propose that for the first time the Web of Data provides data and a real
context for open CBR systems.

1 Introduction

Case-Based Reasoning (CBR) has made great inroads on the Web as a means
of automated technical support and product recommendation. However, it still
is open to the criticism made by Kitano and Shimazu that its focus on domain
specific problems has led to closed and inflexible data models, typically isolated
from other information infrastructures and standards [1]. With the subsequent
growth of the Web, there have been several attempts by the CBR community to
standardise the different parts of CBR’s knowledge containers to enable interoper-
ability and wider dissemination of case-based technology [2–6]. Several iterations
of the XML-based Case-Based Markup Language (CBML) [2, 5, 7, 6] were devel-
oped between 1998 and 2004, though practical adoption of the language was low.
Concurrent work on distributed and multi-casebase reasoning, while assuming
case-base interoperability, did not specify how that might be achieved (see [8] for
an overview). Lack of adoption may have been partly due to the cumbersome
manner in which the structure and the semantics of the case data were described
in XML. We suggest that a greater impediment was the lack of real data and real
contexts in which distributed case-based reasoning would have been required.

In approximately the same time period, rule and logic-based reasoning has
gone through a renaissance in close association with the Semantic Web research
initiative. However, the particular strengths of case-based reasoning - its suitabil-
ity for weak theory domains, its relative robustness to noise and its ability to
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incorporate techniques from machine and statistical learning make it an ideal al-
ternative reasoning paradigm for the Semantic Web, an observation that has been
made by Tim Berners-Lee [9]. Furthermore, the constraints for wider adoption of
case-based reasoning standards have significantly been loosened through several
features of the rapidly emerging Web of Data, a highly practical offshoot of
Semantic Web research. Firstly, the awkward requirement to define case seman-
tics has been delegated to the hundreds of integrated Linked Data vocabularies
already deployed. Secondly, there is an enormous amount of data in structured,
semantically annotated format already on the Web. What is missing is a way of
creating flexible case views of this data so that reasoning with cases can emerge
as standard reasoning paradigm on the Web of Data.

In this paper, we describe how we can create case views of Linked Data,
which would enable the authoring of and querying of distributed case data on
the Web. Linked Data refers to a set of principles for publishing and connecting
structured data on the Web, thus forming a Web of Data [10]. While existing
CBR systems have been developed under the assumption of a closed ecosystem,
the Web of Data represents an open ecosystem, where each data source can evolve
and change independently [11]. During the course of this paper, we will explain how
Linked Data can be used to provide structured data for the different knowledge
containers of a CBR system.

The main contributions of this paper are: (i) the introduction of a lightweight
CBR vocabulary which is suited for the open ecosystem of the emerging Web of
Data, and (ii) a detailed example of a case base using data from multiple sources.

The rest of the paper is structured as follows: In section 2 we discuss related
work and explain our approach for providing a CBR view on Linked Data. Section
3 explains the necessary background about the Linked Data principles and the
standards used for the Web of Data, as well as Linked Data sources for experience
mining. Section 4 explains the benefits of using Linked Data as sources for the
different knowledge containers of a CBR system. Then in section 5 we introduce
our lightweight CBR vocabulary, and describe an example case base from the
music domain with data from multiple sources in section 6. Finally, section 8
discusses our contributions and concludes the paper.

2 Related work

Despite the conventional focus on reasoning from a single case base, the idea
that case knowledge can be distributed in several places has been recurrent in
CBR research from its earliest days. Kolodner [12], Barletta and Mark [13] and
Redmond [14] all proposed approaches in which case snippets were linked to form
a full case episode. Redmond [14] argued that a case-based reasoner cannot know
in advance which parts of different cases may be useful during a problem-solving
episode. Therefore, storing cases as a linked network of snippets allowed for more
flexible retrieval possibilities than their storage as monolithic cases.

While the approach we propose focuses on developing case views of the emerg-
ing Web of Data, we draw inspiration from the ideas in this early work. Kitano
and Shimazu’s proposal [1] for a less domain-fixated role for CBR led to several
research initiatives focusing on how the then new XML standards could be used
to develop standard case representation formats [2–4]. Several instantiations of
Case-Based Mark-up Language (CBML) were subsequently developed with the
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aim of facilitating case base interoperability and wider dissemination and inte-
gration of case-based systems on the Web [5, 7, 6]. With the emergence of XML
schemas, Hayes and Cunningham proposed a version of CBML that wrapped ex-
isting XML domain data to produce domain-compliant case views [5]. The work
in this paper shares this perspective. Subsequently, Coyle et al. produced versions
of CBML capable of representing hierarchical and object-oriented case data [7]
as well as similarity knowledge [6]. Unfortunately, despite concurrent research on
distributed/multi-case based reasoning, none of the CBML research gained much
traction. This may have been partly due to the cumbersome manner in which
XML encoded the structure and the semantics of the case data. Another impedi-
ment was the lack of real data and real contexts in which distributed case-based
reasoning would be required.

In this paper we suggest that the emergence of the Web of Data, not only
provides data, but a context and real requirement for reasoning with cases. As
we discuss in the next section, the Web of Data is described using the Resource
Description Format (RDF). There has been some work on an RDF-based Case
Markup Language, CaseML [15]. However, it suffers from the same problems as
the earlier versions of CBML in that it shoehorns existing data into a rigid case
format, thus hampering interoperability with existing vocabularies and schemas.
Furthermore, it subscribes to a view of a closed RDF-based system, which can
integrate data from specific controlled sources, but which does not expect to oper-
ate on open data from the Linked Data cloud. In contrast, we propose a flexible,
lightweight case vocabulary for creating case views on the Web of Data, an open
data environment where new vocabularies are regularly added.

The Web Ontology Language (OWL) has been proposed for representing cases
in an interoperable way. [16] discusses the general applicability of OWL for case
representation in biology and medicine. [17] propose using C-OWL with contexts
to model the perspectives of different viewpoints. These approaches do not address
the cost of engineering the knowledge required for the case base and the OWL
reasoning. Our approach is orthogonal, in that it focuses on authoring and curating
the knowledge required to bootstrap a CBR system from the Web of Data.

3 Background: Linked Data and the Web of Data

The term Linked Data refers to a set of best practices for publishing and connect-
ing structured data on the web [10]. Taken together, all Linked Data constitutes
the Web of Data. While the World Wide Web provides the means for creating
a web of human readable documents, the Web of Data aims to create a web of
structured, machine-readable data. Much of this data can be used for the purpose
of mining experiential data from the Web. By making data available which con-
nects the experiences of users from different domains and communities, Linked
Data has the potential to provide data which never before has been available for
the purpose of experience mining.

The Web of Data utilises technologies from the Semantic Web technology
stack: the Resource Description Framework (RDF) provides a graph based data
model and the basic, domain independent formal semantics for the data model [18];
the SPARQL Query Language allows querying RDF data with graph patterns,
and provides basic means for transforming RDF data between different schemata.
In addition, technologies from the World Wide Web provide the fundamental
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Fig. 1. Overview of Linking Open Data sources as of July 2009 with source types shown

infrastructure: Uniform Resource Identifiers (URIs) are used to provide globally
unique identifiers for the data, and the HyperText Transfer Protocol (HTTP) is
used for accessing and transporting the data.

In order to build a single Web of Data, all data providers have to follow the
same guidelines for publishing their data and connecting it to other data sources.
These guidelines are provided by the “Linked Data principles” [10], which
specify how to use the different standards of the Web of Data together:

1. Use URIs as names for things (and e.g. persons, places).
2. Use HTTP URIs so that people can look up and access those names via HTTP.
3. When someone looks up a URI, provide useful information, using the standards

RDF and SPARQL.
4. Include links to other URIs, so that data about more things can be discovered.

The Linked Data principles have been adopted by an increasing number of data
providers, especially from the Linking Open Data community project1 (see Figure
1), which makes free and public data available as Linked Data. As of November
2009 this includes 13.1 billion RDF triples which are interlinked by 142 million
RDF links.

The nucleus of the Linked Data cloud is formed by DBpedia, which extracts
RDF from wikipedia topic pages, and thus provides authoritative URIs and RDF
data about topics from any domain. Figure 2 shows how DBPedia makes use of
different vocabularies to describe a resource.
1 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/
LinkingOpenData/
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foaf:name

http://beck.com

"Beck"
foaf:homepage

dbpedia:Beck
Friend of a Friend (FOAF) 

vocabulary: 
social relationships and 

information 

dbpedia-owl:birthPlace dbpedia:
Los_Angeles DBPedia ontology

dbpprop:genre dbpedia:
Anti-folk DBPedia properties

skos:subject category:
Anti-folk_musicians

Simple Knowledge Organisation 
System (SKOS): vocabulary 
for knowledge organisation

owl:sameAs fbase:Beck Web Ontology Language (OWL):
links to identical resourcesopencyc:en/

Beck_MusicalPerformer

Fig. 2. Example of a DBPedia resource with descriptions of the different vocabularies
used for the properties

The following types of Linked Data sources provide data which could be used
for mining experiences:

Major search engines such as Google and Yahoo have started to index RDF
meta-data which is embedded in web pages. This can be directly used to expose
structured data about user experiences and reviews to the search engines. Yelp
and Amazon for instance are providing this data, so that e.g. the average rating for
an item can be already displayed as part of the search results. Social Web sites
such as LiveJournal make user generated content from their users available. This
data is modelled after the principle of object centred sociality [19], connecting
users indirectly into communities via objects of a social focus, such as musical
artists.

E-commerce sites use the Good Relations vocabulary to describe their prod-
ucts and their features and prices, payment options, as well as store locations
and opening hours. BestBuy has released such data about all of their stores in
the US. Broadcasters and news publishers provide data about media content
and usage. The DBTune project makes data about MySpace users and their con-
nections to musical artists available. Other sources include the BBC’s catalogue
of broadcasts on TV and Radio, as well as play-count data for different artists
played across all of the BBC stations.

4 A case-based view on the Web of Data

While CBR suffers less from the knowledge elicitation problem, it is still not
immune from it. In this section we examine how Linked Data can help bootstrap
the development of decentralised case-based systems. Customisation of each CBR
system for a specific domain is possible via the selection of sources and instances
from these sources and through the assignment of data to the four ‘containers’
which hold the knowledge used in a CBR system (as defined by Richter [20]):

1. Vocabulary knowledge consists of the semantic components that can be
manipulated by a reasoning system.
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2. Case knowledge consists of the ‘problem’ episodes or instances represented
as cases that can be used to solve similar problems in the future.

3. Similarity knowledge represents the similarity measures which are used to
match cases in a particular domain.

4. Adaptation knowledge is knowledge used to adapt the solution of the
matching case for the target problem.

Capturing the knowledge for these containers represents a challenge in every
CBR system because of the knowledge engineering costs required in their creation
and curation. Vocabulary knowledge may need to be extracted and ordered, case
structures may need to be designed and features selected, similarity measures may
need to be designed and tested and adaptation strategies modelled. We propose
that Linked Data can be used as a knowledge source to ease the creation of these
containers in many CBR systems.

Pre-existing vocabulary knowledge is contained in the vocabularies and ontolo-
gies already deployed on the Web of Data. Some vocabularies just include class
definitions and relations between classes, such as the Semantically-Interlinked On-
line Communities (SIOC) vocabulary2. Then there are topical hierarchies, such as
the taxonomy of DBpedia categories. Finally there general knowledge ontologies
expressed in OWL such as OpenCyc3.

Case knowledge is provided by the different data sources which are part of
the Linking Open Data cloud, and which have been discussed in the background
section. We will show detailed examples of using LD for case knowledge in section
6.

Adaptation knowledge still needs to be engineered for the specific domain of the
CBR system. [17] gives an example of how OWL can be used to model adaptation
logic. While similarity knowledge is currently not available as linked data, Coyle
et al. [6] show how this knowledge can be modelled in XML, and this approach
can be adapted for RDF and Linked Data.

5 CBR Vocabulary

In order to use Linked Data for case based reasoning, we are proposing a new,
light-weight CBR vocabulary to provide a CBR view on Linked Data. Figure 3
shows the full vocabulary on the left hand side. While CBML [21] and CaseML
[15] have attempted to define all of the objects and properties which are broadly
associated with CBR, we will just focus on the few main classes and properties
which are unique to CBR: cases, solutions and case bases.

This very simple vocabulary allows us to create cases by linking to different
objects, properties and concepts from different data sources and vocabularies from
the Web of Data. This gives us the ability to reuse case snippets from a massive
and increasing data store which includes many different communities and domains.
This allows us to build CBR systems on top of all this newly available data.

– We define the classes cbr:Case and cbr:Solution in order to allow a dif-
ferentiation between a query and potential results or recommendations. Note
that a resource can be an instance of both classes at the same time.

2 http://rdfs.org/sioc/spec/
3 http://sw.opencyc.org/
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cbr:CaseBase

cbr:Case

cbr:Solution

cbr:has_casebase

cbr:has_solution

ex:UserProfiles

deri:Heitmann

amazon:
RiverOfGods

myspace:
Björk

cbr:has_casebase

foaf:interest

foaf:interest

rdf:type

rdf:type

CBR vocabulary Example  CBR Case Base
Sources:

DBPedia, 
Amazon Reviews via Google RDFa,

MySpace via DBTune

amazon:
GravitysRainbow

myspace:
BobDylan

foaf:interest
foaf:interest

cbr:has_casebase

deri:Hayes

Fig. 3. The CBR vocabulary and a case base with experiential data for user profiling.
Properties from the CBR vocabulary are displayed with solid lines, all other properties
are displayed in dashed lines.

– Cases are connected to solutions via the property cbr:has_solution which
can have cases as subject and solutions as object (cbr:has_solution has
rdfs:domain cbr:Case and rdfs:range cbr:Solution). Note that usage of
the cbr:has_solution property is optional, as not every CBR setting requires
a solution to be designated in advance.

– Cases are grouped together via the cbr:CaseBase class, which can be used to
represent the different types of knowledge available to a CBR system.

– Cases are associated to case bases via the property cbr:has_casebase, which
has rdfs:domain cbr:Case and rdfs:range cbr:CaseBase.

Modelling decisions: As the Web of Data is an open ecosystem, applications
should not make assumptions about the vocabulary used by data sources and they
should take frequent changes of sources into account [11]. This has influenced
several modelling decisions for our CBR vocabulary: (a) intentional simplicity
characterises our vocabulary and lowers the barriers for reusing and integrating
external data. This leads us to model problems as cases, in order to simplify reuse
of external domain data. (b) reuse of existing properties and data types, as we
leave the definition of the properties which represent the actual features of the data
to externally defined vocabularies and ontologies, as appropriate to the domain
of a source. (c) simplified inheritance and inferencing, as the formal RDF
semantics follow the open world assumption, which is only superficially related
to object oriented programming. Resources are instances of multiple classes as
defined by the properties which the use. Consider as an example, that by using
the cbr:has_solution property, its subject automatically becomes a cbr:Case
and its object becomes a cbr:Solution.

6 Example: a case base with experiential data for user
profiling

In this example we show how to create an example case base by using our CBR
view on the Web of Data. This involves three steps: (1) discovering and aggregat-
ing relevant data, (2) conversion of external data to a common format, and (3)
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authoring of the case base. The scenario for the example case base is to aggregate
data for user profiles and to use the profiles for personalised recommendations.

First step: discovering and aggregating relevant data. In order to dis-
cover relevant data, different approaches can be used [22]: SPARQL queries to spe-
cific data sources, Linked Data search engines such as Sindice.com or a custom
built crawler. The experiential data for our example comes from Amazon.com re-
views and MySpace user profiles. We access the Amazon data via the Sindice.com
search service, the MySpace data is accessed via the SPARQL endpoint provided
by the DBTune.org project.

Second step: conversion of external data. After discovering the data, it
needs to be converted to RDF as a common format. Amazon exposes its data about
reviews as RDFa in its HTML pages. This data can automatically be converted to
RDF, see [22] for details. Listing 1.1 shows the data with one review of the book
“River of Gods”, obtained because the user Benjamin Heitmann wrote the review.
Listing 1.2 shows data from MySpace about the musician “Bob Dylan”, obtained
because user Conor Hayes lists him as a favourite artist. DBTune.org provides a
SPARQL endpoint which directly returns RDF data.

Listing 1.1. A book review from Amazon� �
amazon:RiverOfGodsReview1 review:itemreviewed "Book: River of Gods, Author: Ian McDonald" .
amazon:RiverOfGodsReview1 review:summary "AIs construct a black hole to escape the AI police" .
amazon:RiverOfGodsReview1 review:rating "5" .� �

Listing 1.2. Data about a musical artist from MySpace� �
myspace:BobDylan rdf:type http://purl.org/ontology/mo/MusicArtist .
myspace:BobDylan foaf:name "Bob Dylan" .
myspace:BobDylan myspace:genreTag http://purl.org/ontology/myspace#Folk%20Rock .� �
Third step: authoring of the case base. After aggregating and converting

external data, the entities which should be part of the case base can be selected.
This can be either done manually or automatically through the domain logic of
the application.

Figure 3 shows the final graph of the example case base. Only the solid
lines represent properties from the CBR vocabulary. These properties are created
through associating the entities representing the users deri:Hayes and deri:Heitmann
to the case base during the authoring phase. Listing 1.3 contains all the RDF that
is required to define the example case base.

Listing 1.3. RDF triples for the example case base� �
deri:Hayes cbr:has_casebase ex:UserProfiles .
deri:Hayes foaf:interest myspace:BobDylan .
deri:Heitmann cbr:has_casebase ex:UserProfiles .
deri:Heitmann foaf:interest amazon:RiverOfGodsReview1 .� �

7 Discussion

In previous work [23], we have shown how Linked Data can be used to ease the
bottleneck in knowledge acquisition for recommender systems based on collabora-
tive filtering. In a certain sense, we are now proposing to use Linked Data for Case
Based Reasoning out of the same reasons: We are proposing new ways to lower
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the entry barriers to implementing and deploying CBR systems, by using Linked
Data as a short-cut for creating the case base, and for lowering the expense of the
required knowledge engineering.

In our example, we show how a user profile can be developed by selecting
objects and associated properties and relations from structured data sources cur-
rently existing on the Web. On the DBpedia data source alone, rich data exists
for at least 3.4 million things, out of which 1.5 million are classified in a consistent
Ontology, including 312,000 persons, 413,000 places, 94,000 music albums, 49,000
films, 15,000 video games, 140,000 organisations, 146,000 species and 4,600 dis-
eases. The DBpedia data has meta data and abstracts for these 3.4 million entities
in up to 92 different languages; It has 1,460,000 links to images and 5,543,000 links
to external web pages; 4,887,000 external links into other RDF datasets, 565,000
Wikipedia categories, and 75,000 YAGO categories. 4

Such data suggest the possibility of collecting rich experience trails of users
and then using these to find similar profiles or to recommend objects of different
types. While this is probably the easiest example we can envisage, there are rich
possibilities for reasoning on case views of this data and for integrating case-based
reasoning as a standard reasoning paradigm for Semantic Web data.

Limitations: In this paper we focus on case and vocabulary knowledge, as it
is readily available for many different domains on the Web of Data today. How-
ever, we do not address approaches for engineering of adaptation and similarity
knowledge, though we believe that here too knowledge costs can be reduced by
examining the pre-existing domain concepts and relations on the Web of Data.
We also do not discuss the different reasoning approaches which can be used as
part of the CBR process. Instead we focus on acquiring the data which is required
as the basis for the reasoning process in the first place. Finally, while the Web of
Data provides many different sources of experiential data, this also can incur an
implementation overhead as obtained data might be noisy or inconsistent.

8 Conclusion

In this paper we have suggested that there is an open opportunity for reasoning
with cases of experiential data from the emerging Web of Data. Previous attempts
to standardise case representation have failed because of a lack of real data and
context for distributed case-based reasoning. The Web of Data now presents such a
context. We provide an overview of the Linked Data principles and describe how
Linked Data can facilitate the authoring of experiential case data. We present
a realistic example of how case-based user profiles can be authored from data
currently available from multiple sources. Such cases have the advantage of having
rich features, allowing for many different types of matching and retrieval methods.
While our example is simple, it demonstrates the rich possibilities for reasoning on
case views of this data and for integrating case-based reasoning more extensively
within Semantic Web applications.

Acknowledgements: The work presented in this paper has been funded by
Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Líon-2).

4 These statistics are taken from http://en.wikipedia.org/wiki/DBpedia
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Abstract. Web mining enables CBR systems to draw on rich knowledge
sources to supplement their internal knowledge, aiding performance of
challenging tasks such as knowledge-rich case adaptation. However, the
very richness of Web sources presents a potential problem for system
efficiency, because of the amount of information the search process may
need to navigate or filter before finding desired results. The potential
cost of Web search from scratch suggests applying a CBR solution, by
capturing Web mining cases to expedite future searches. However, this in
turn raises questions such as how to control the growth of the search case
base. This paper explores tradeoffs in retaining Web search cases, in the
context of Web mining to support case adaptation, as applied in the We-
bAdapt system. The paper tests tradeoffs for relying entirely on internal
or external knowledge and proposes a selective retention strategy aimed
at retaining only “hard” searches addressing new search constraints.

1 Introduction

In case-based reasoning, Web CBR has become an active area pursuing many
facets of CBR and the Web (see [2, 1, 5] for some examples), and interest in
CBR to guide the search for information dates to the early days of the field [3].
One of the opportunities of the Web is the availability of rich Web knowledge
sources, which has prompted optimism in the artificial intelligence community for
a new generation of knowledge-rich AI systems [6]. In particular, exploiting Web
knowledge may help to alleviate the knowledge acquisition bottleneck for the
knowledge supporting CBR processes such as case adaptation. Some promising
results have already been achieved in this area [4, 8, 9, 11, 7]. However, important
tradeoffs must be addressed for initial research prototypes to scale up to handle
very large data sources. A key concern is the costs associated with searching the
Web from scratch.

A natural approach to controlling the cost of large-scale Web search is to
apply case-based reasoning: to capture relevant search cases for future use, by-
passing the need to repeat searches in similar situations. However, the efficiency
gained by this approach has two potential tradeoffs. The first is timeliness of
results. In rapidly-changing domains, the information in Web sources may be
undergoing updates at various frequencies—from up-to-the-minute updates for
news sites to much longer time scales for general references. Thus the decision
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of whether to store search results for future use depends partially on reasoning
about whether the possible loss of recency counterbalances the benefits for pro-
cessing speed. This decision depends on factors specific to the task domain and
individual knowledge sources.

The second major tradeoff is space: Capturing search cases imports knowl-
edge from an external source to an internal one, bringing with it issues in con-
trolling case-base growth. Case-base growth issues have been extensively studied
in the case-base maintenance literature, which has developed strategies for com-
pacting case bases and guiding retention of cases (see [10] for an overview). In
this paper we investigate a retention policy for Web search, in which the con-
straints guiding a search (categories to which a substitution must belong) are
used as an abstract characterization of the search’s knowledge goals, in order to
retrieve a subset of search cases providing unique coverage of a set of constraints.

The remainder of the paper reviews the WebAdapt system, assesses the ef-
ficiency of Web search from scratch for this system, presents its case retention
policy, and presents experiments testing the strategy’s performance compared
to baseline approaches.

2 WebAdapt’s Adaptation Process

This section presents a summary of the WebAdapt framework, condensed and
adapted from [8]. WebAdapt acquires the knowledge necessary to perform sub-
stitution adaptations by mining external sources such as Wikipedia and Open-
Cyc. Informally, WebAdapt’s task is to choose the best source to mine for a
given problem and generate a plan capable of searching the chosen source for
adaptation-relevant knowledge. To test the generality of the methods, the system
has been applied to three domains: travel itinerary planning, menu planning, and
software selection.

WebAdapt’s adaptation process is shown in Figure 1 and will be described us-
ing an example. Consider the scenario in which a user is viewing a travel itinerary
and requests an alternative for the Louvre, due to reports of long lines. When
the user makes the request for a substitution, WebAdapt generates the goal Find
ranked candidate substitutions for “Louvre,” which describes the knowledge re-
quired to satisfy the user’s request (step 1 in Figure 1). WebAdapt then selects
a Web source to search for candidate substitutions for Louvre (step 2). It does so
by retrieving a set of cases from its dispatch case base indicating which sources
have previously presented candidate substitutions for Louvre. These sources are
then ranked based on their source profiles which contain basic statistics describ-
ing each source. For illustration, we will assume WebAdapt selects the Geonames
GIS database.

WebAdapt then attempts to retrieve a relevant plan from its search plan
case base (step 3). If no plan is found, one is generated from scratch using a
partial-order planner. The retrieved plan will contain low-level knowledge goals
describing the intermediate knowledge necessary for execution such as: (1) find a
Geonames entry for “Louvre,” (2) hypothesize constraints which must be satis-
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Fig. 1. WebAdapt’s adaptation process and knowledge sources, from [8].

fied by a substitution for “Louvre,” (3) find unranked candidate substitutions for
“Louvre.” Operators satisfying each sub-goal are used to search the Geonames
abstraction hierarchy and return a set of candidate substitutions. During the
mining process (step 4), the portion of the Geonames abstraction hierarchy that
is traversed is stored in WebAdapt’s domain model. Candidate substitutions are
then retrieved from Geonames (step 5) and presented to the user for selection.

Knowledge Planning Operators: WebAdapt’s operators describe search
and transformation operations for interacting with Web sources and modify-
ing existing cases. They specify the knowledge necessary for execution as pre-
conditions and the knowledge acquired during execution as post-conditions, de-
fined in a vocabulary of roles filled during the planning process. WebAdapt’s
role-fillers are frames describing structured knowledge retrieved from sources,
such as URL addresses or database records. Examples of its operators can be
found in [8].

WebAdapt’s Internal Knowledge: WebAdapt relies on several sources of
knowledge to guide its adaptation process.

Search Case Base: The search case base contains solutions to problems from
several domains (e.g., travel itineraries and recipes) and provenance knowledge
indicating how solutions were derived.

Source Profiles: WebAdapt stores statistical information characterizing each
source’s performance and content. This information is updated each time a
source is accessed and is used to guide source selection. WebAdapt tracks each
source’s average access times and uptimes, as well as the percentage of queries a
source has satisfied. Each source’s diversity is estimated using a method similar
to that descried in [12].

Cases for Dispatching and Adaptation: WebAdapt also relies on a case-base
describing the results of prior adaptation episodes to influence source selection.
After an adaptation episode has completed, WebAdapt creates a new dispatch
case containing: (1) the adapted item, (2) the knowledge sources searched, (3)
any hypothesized constraints discovered, and (4) a Boolean value indicating
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Table 1. Query method, hierarchy nodes, and leaves for each source

Source Query method Nodes Leaves

Wikipedia Google1 Categories Entries

OpenCyc Cyc Query Engine Collections Individuals

Geonames GIS database SQL Query Feature class Locations

USDA SR20 database SQL Query Food group Foods

Widget downloads Google2 Widget category Widgets

whether any candidate substitutions were generated. Dispatching cases indicate
which sources are capable of satisfying particular problems.

Domain Model: The domain model stores a snapshot of the portions of the
external sources WebAdapt has searched. Nodes and leaves discovered during
the mining process are added to the domain model along with the links between
constraints and candidates that have been traversed. WebAdapt’s domain model
can be used as an alternative to searching external knowledge sources.

WebAdapt’s External Knowledge Sources: The external sources lever-
aged by WebAdapt are defined by explicit abstraction hierarchies, which We-
bAdapt traverses to find viable substitutions. Nodes in the abstraction hierar-
chy are viewed as constraints while leaves are candidate substitutions. Table 1
shows examples of constraints and substitutions from each knowledge source, as
well as the methods used to process each source. WebAdapt exploits a source
by first discovering the item to adapt in a source’s hierarchy then expanding
reachable nodes to discover candidate substitutions. WebAdapt can utilize any
source with a hierarchical knowledge organization, leading to a system capable
of leveraging knowledge from multiple domains. To leverage a source, a small set
of basic operators for traversing the hierarchy must be defined and provided to
the system.

3 Web Search Case Retention

As is illustrated by experiments in Section 6, Web searches can be expensive—in
some cases, taking several minutes—but unrestricted search case retention causes
rapid growth of the search case base. Consequently, WebAdapt applies a selective
search case retention process which is initiated whenever a new adaptation has
been completed (i.e., when the user has selected a candidate substitution). At
that point, the retention process is applied to all searches conducted to find that
substitution.

Triggering retention: Whether to retain a case is based on comparison of the
search characteristics for the current search to data WebAdapt collects summa-
rizing its performance during prior reasoning episodes. These data include: (1)
the average duration and standard deviation of duration for problem solving

1 e.g., site:en.wikipedia.org “Louvre Paris France”
2 e.g., site:www.apple.com/downloads/dashboard “iTunes Widget”
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episodes, and (2) the average number of failures generated per episode and the
standard deviation. After a reasoning episode has completed, WebAdapt consid-
ers the duration, number of failures generated, and the reliability of the sources
used (drawn from WebAdapt’s source profiles).

WebAdapt uses two types of criteria for case retention. The first type con-
siders characteristics of the current search. In general, we expect retention to be
most worthwhile for longer searches, searches which were difficult to conduct,
and searches for which good results were obtained from a generally unreliable
source (in which situation, storing the case is valuable to avoid using a different
source in the future and missing re-generating the result). Specifically, a case is a
candidate for retention when any of the following are satisfied: (1) the duration
of the most recent episode is at least one standard deviation above the average
duration, (2) the number of failures generated is at least one standard deviation
above average, or (3) the source reliability is below some threshold. We note
that each of factors (1), (2), and (3) could be weighted in other ways, based on
the specific task. The second type considers how the case affects coverage of the
case base of search cases, as described in the following section.

Execution: After case retention has been triggered, WebAdapt adds the new
case to its search solution case base. Provenance information is stored relating
the adapted case (the parent) to the solution case (the child). The adapted item
and solution are stored in the provenance trace to indicate how the child relates
to the parent. A variety of other information is also captured in the provenance
trace, including: (1) why a case was captured, (2) the context in which a case
was captured, and (3) how a case was captured, as explained in the following.

Component (1) why a case was captured, summarizes the conditions that
triggered case retention and includes the duration of the problem solving episode,
the number of failures generated, and the reliability of the mined source.

Component (2), the case capture context, describes the set of constraints
describing the selected substitution in the child case. Consider the scenario where
a user replaces chicken in a recipe with the vegan meat substitute seitan. The
provenance trace for this case would be annotated with the constraints Vegan
cuisine and Meat substitutes if the case were derived using Wikipedia.

Component (3), how a case was derived, includes the knowledge goals that
lead to the child case and the set of sources mined. This knowledge can be used
to replay the derivation of the child case as described in Section 5.

4 Controlling Case Base Size by Storing Only Cases with
New Constraints

Case retention could simply store a solution case for each specific Web search.
However, we can further control case base size by only storing a case if it concerns
new constraints. To explain this distinction between cases to discard or retain,
we note that WebAdapt’s search space can be described by two components, the
candidate substitution space and the constraint space. The candidate substitution
space is the set of all substitutions that must be considered, and the constraint
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space is the set of all constraints (including sub-constraints) that are mined
during a search. Some of these search spaces may be large. For example, when
mining Wikipedia, Seine River is defined by sixty-one constraints (including sub-
constraints) and 2,759 candidate substitutions, while tofu is defined by eighty-
seven constraints and 2,766 candidate substitutions.

Adding cases covering the candidate substitution space of an item can lead
to a very large case base. However, a large set of candidate substitutions can
be recreated efficiently by expanding a small set of constraints in WebAdapt’s
domain model. From this observation, WebAdapt can limit the size of its case-
base by adding child cases described by unique constraints. Later, when using
a child case to retrieve candidate substitutions from the case base, candidates
described by a child case’s context are re-ordered to appear near the front of the
list of candidate substitutions, helping to focus search.

For example, when retrieving a child case suggesting the solution seitan for a
parent containing chicken, the constraints describing the context of the child case
are Vegan cuisine and Meat substitutes. When future candidate substitutions are
requested for chicken, such options may be preferred during search. WebAdapt
also does not need to add new cases to the case base with solutions described
by either Vegan cuisine or Meat substitutes because the child case can be used
to re-derive similar items. However, if the user selected the substitution ground
beef, that would not be covered by the stored constraints, and consequently the
retention policy would store a new case.

5 Reusing captured cases

Once search cases have been captured, the question arises of how they should be
reused. There are three general approaches: (1) always rely on external knowl-
edge, (2) always rely on local knowledge (when it is available), and (3) selectively
choose between local and external knowledge.

There are tradeoffs associated with each approach. When a system uses ap-
proach (1) it will always have access to the most up-to-date knowledge. However,
this approach is prone to performance bottlenecks, such as unreliable network
connections or large search spaces that are time consuming to mine. The sec-
ond approach is more efficient, though the system developers may be burdened
with the task of identifying and updating obsolete local knowledge. The third
approach offers a balance between the other two.

WebAdapt adopts a selective approach, as follows. After a user requests a
set of candidate substitutions, the system formulates a set of knowledge goals
and chooses a source to mine. After a source has been chosen WebAdapt checks
its search solution case base for all cases containing items similar to the one
being adapted. WebAdapt searches for similar items by first checking its domain
model to determine the constraints describing the item being adapted. It then
examines each case and uses the domain model to determine the constraints for
each case feature. Case features sharing a certain percentage of constraints (e.g.,
70%) with the item being adapted are retrieved.
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WebAdapt then uses its provenance knowledge to discover child cases that
(1) suggest substitutions for the item to adapt, and (2) were derived using similar
knowledge goals. For example, if the user requests a substitution for the Eiffel
Tower, it retrieves all cases containing items similar to Eiffel Tower, then checks
the provenance traces of this set of cases for children containing substitutions
for Eiffel Tower. If no appropriate child cases are found WebAdapt continues to
use the suggested external knowledge source.

If appropriate child cases are found, then WebAdapt decides whether to use
internal knowledge or external Web mining based on the expected cost and
failure rate for external mining. The system uses knowledge described in each
child case’s provenance trace to determine if the system should rely on local
knowledge. The system takes the average access time and average failure rates
described in each provenance trace. If the average duration or failure rate is
one standard deviation greater than the system’s current average then local
knowledge is used. If the reliability of the sources used in the provenance traces
are less than some threshold then local knowledge can be used as well.

The set of provenance traces typically contain similar knowledge goals. We-
bAdapt can then retrieve a plan satisfying its current knowledge goals from
its plan case base. Because WebAdapt’s domain model contains a snapshot of
the abstraction hierarchies of each knowledge source, the retrieved plan can be
adapted to mine WebAdapt’s domain model rather than the chosen knowledge
source. WebAdapt does not simply use the set of derived cases to suggest sub-
stitutions as this set is often small (i.e., only a few cases). To present a wider
range of recommendations, WebAdapt draws on its domain model to present
similar candidate substitutions. It also draws on the constraints describing the
context of each derived case. These constraints can be used to re-order candi-
date substitutions to more closely match derived solutions (i.e., when suggesting
substitutions for chicken, prefer vegetarian options).

6 Experiments

To evaluate WebAdapt’s case retention policy, we considered two questions:

1. Performance Impact: How do alternative strategies affect WebAdapt’s rea-
soning times?

2. Case Base Growth: How do alternative strategies affect the growth of We-
bAdapt’s case base?

For each question, an experiment was run using a combination of problems from
three domains: travel planning, menu planning, and software recommendation.
For each experiment 49 items were adapted 5 times each, for a total of 245
adaptations. Adaptations were repeated 5 times to average out inconsistencies
in Web access times.

Experimental Design for Question 1: The experiment for Question 1 com-
pared three alternative strategies: (1) always use external knowledge, (2) always
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Table 2. Performance improvements. All times measured in seconds.

Method Median Average Longest Reliance on external sources

External knowledge only 12 59 514 100%

Internal knowledge only 1 6 44 0%

Selective strategy 5 17 73 85%

0 

100 

200 

300 

400 

500 

600 

1  6  11  16  21  26  31  36  41  46 

Tim
e (

sec
on

ds)
 

Adaptation # 

Performance Impact of Maintenance 

Always internal 
knowledge 

Selective use of 
internal 
knowledge 

Always external 
knowledge 

Fig. 2. Average mining time per problem for all configurations

use internal knowledge, and (3) selectively choose when to use internal knowl-
edge. For (2), WebAdapt was provided with a pre-trained memory and adap-
tation case base, analogous to the results built up in (1). For (3), WebAdapt
built an adaptation case base from scratch as it solved problems, and referred
to stored adaptations only when the predicted cost of mining external sources
exceeded a threshold.

Results for Question 1: Table 2 shows, for each strategy, the average search/-
mining times, duration of the longest problem solving episode, and percentage of
problems dispatched to Web-based resources. When only using external knowl-
edge, the average mining time was approximately one minute, while the longest
was nearly eight minutes. The average time decreases significantly when only in-
ternal knowledge is used. The longest problem solving time when using internal
knowledge comes from a problem described by a large number of constraints, for
which each constraint describes a large number of candidate substitutions. The
selective strategy (3) uses external knowledge 85% of the time. However, because
it predicts which external searches are likely to be expensive, only using internal
knowledge the remaining 15% of the time still results in a drastic speedup over
only using external knowledge.

Figure 2 shows the average time per adaptation and maximum time to find
the knowledge needed for an adaptation. When only external knowledge is used
several problems take several minutes to solve. The internal method is faster
for all problems but one. For this problem, the selective method consistently
chose an external source with a single constraint, while the internal method
consistently mined multiple constraints describing a large number of items.
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Experimental Design for Question 2: The second experiment compared the
growth rate of WebAdapt’s case base for two approaches to case retention: (1)
always retain unique cases, and (2) retain a case if it increases the case base’s
coverage.

The first method adds a case if that case has unique features, attempting to
cover the entire candidate substitution space of a problem. The second method
only adds a case if that case added a unique constraint to the original case’s
provenance trace. This method attempts to cover the entire constraint space for
a problem.

Results for Question 2: Figure 3 shows the growth rates of the case base for
each method. When adding cases with unique features, the case base growth
rate is nearly linear. Each knowledge source is capable of presenting dozens or
hundreds of candidate substitutions for each adaptation, potentially leading to
extremely large case bases. The growth of the second method is nearly linear for
the first fifty-five adaptations, after which it starts to level off as constraints are
re-encountered. The case base continues to grow slowly because some knowledge
sources, such as OpenCyc and Wikipedia, are described by constraints which
form a compact vocabulary. The constraint space method generated a total of
397 cases compared to 625 for the candidate substitution method. Both methods
had the same coverage.
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Discussion When only using external knowledge, WebAdapt’s mining times
are generally reasonable, though a number of problems took three or more min-
utes to solve. Using only internal knowledge provides the best speed, but static
internal knowledge risks becoming outdated if external sources change, and may
sacrifice the ability to find specific solutions available in external sources. By
learning to use internal knowledge only when the expected external mining time
is long, WebAdapt can markedly increase its overall speed while still using ex-
ternal knowledge for 85% of its adaptation requests.

Each knowledge source’s candidate substitution space is much larger than its
constraint space. Adding cases based on their coverage of the constraint space
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leads to much smaller case bases. The constraints can then be used to reach
candidate substitutions similar to relevant prior solutions.

7 Conclusions

When mining Web sources to support CBR processes, there is a tradeoff between
the benefits of just-in-time Web mining and applying CBR to capture search
cases and speed up search. This paper has explored those tradeoffs and proposed
a balanced retention/reuse approach which controls growth of the search case
base and increases efficiency while retaining the ability to reason largely from
up-to-date external information.
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Abstract. It has been conceived that children learn new objects through their
affordances, that is, the actions that can be taken on them. We suggestthat web
pages also have affordances defined in terms of the users’ information need they
meet. An assumption of the proposed approach is that different parts of a text may
not be equally important / relevant to a given query. Judgment on the relevance
of a web document requires, therefore, a thorough look into its parts, rather than
treating it as a monolithic content. We propose a method to extract and assign
affordances to texts and then use these affordances to retrieve the corresponding
web pages. The overall approach presented in the paper relies on case-based
representations that bridge the queries to the affordances of web documents. We
tested our method on the tourism domain and the results are promising.

1 Introduction

World Wide Web (WWW) is a massively distributed and decentralized medium for
information and services, and also one of the most egalitarian discoveries of mankind in
modern times. However, the use of the web technology to its maximum possible extent
requires development of flexible and effective searching approaches. To this end, we
propose an approach in which the web can be searched through case representations
that capture plausible connections between users’ queriesand affordances of web
documents.

This work presents an approach to document retrieval in the tourism domain, yet
the underlying research objective is to develop a method forexplication and capture of
theaffordance of documents that are available on the WWW. Gibson[3] introduced the
termaffordance to refer to the opportunities for action provided by a certain object. We
suggest that web documents should similarly have affordances that refer to use-purposes
of documents. The meaning of a content to the query of a user lies in its affordance. The
question transforms then into how the affordance of documents are conveyed in textual
format and can be extracted and represented in a reusable way.

⋆ This work was carried out during the tenure of an ERCIM “Alain Bensoussan” Fellowship
Programme.
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A central idea of the presented method is that a document may contain information
that matches different queries, each of which corresponds to an affordance. For
example, a web document aboutNew Delhi may provide information about the non-
vegetarian restaurants, the bazaars, as well as the transportation within the city while
the main focus may be on shopping. This would mean that most ofthe content revolves
around bazaars, shopping malls, and the shopping norms (i.e., whether/where to bargain
and when/where not). The main strategy of the approach is to divide the Web pages into
text segments, determine affordance of each and use these todetermine the information
needs the documents afford. This may be considered as a special type of tagging
technique, in the classical natural language processing terminology.

The use of Case Based Reasoning (CBR) in web context has attracted researchers
for a while. For example, Limthanet al. [6] applied CBR in order to compose a
complex web service from heterogeneous web services residing in different parts of
the web, and [2] in order to search and select web services. Ha [4] investigated how
the web usage data can be used to discover navigation patterns which, in turn, can be
used to predict the user behavior. In this work, a web document has a corresponding
case representation capturing information that bridges queries to documents through
affordances. Query experiences are used to adjust the affordances of documents. This
provides search-useful and re-usable information for future web searches. The key
rationale of the proposed approach is based on two assumptions: (i) a web document
embraces a number of text blocks each of which can be connected to one or several
affordances,(ii) the web can be searched CBR-wise and relevance of a document can
be judged on the basis of its affordance alignment with the current query case. Figure.1
illustrates the proposed approach in comparison with the web search.
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The paper is organized as follows: Next section presents theidea behind the
web-affordance notion. Section3 explains the proposed case-based approach and the
case population. Section4 presents the experimental results and discussions. Finally,
section5 wraps up with conclusions and future directions.

2 The affordance-guided querying approach

A main rationale behind the proposed approach is the hypothesis that a document
may serve more than one information need, that is, it may havemultiple affordances.
This because different parts (here we consider them asblocks) of a document may
have slightly different focuses. We defined a list of topics in advance (manually at the
moment) each of which fulfills an information need of the user. In tourism domain, a
user may need information related to accommodation at a particular place, easy and
economical transport options, places to roam around, time to travel from one place to
another place, food / types of restaurants, historical / important places to visit, shopping
at famous places, so on and so forth. Currently we have a list of 18 topics for the tourism
domain. Each web page may afford to one or several of such information needs.

Affordance of a text segment/block is represented as a vector of which each element
specifies the extent the text affords a certain information need in the affordance list for
the task domain. The affordance of a whole document is determined on the basis of
the affordance vectors (AV) of its constituent blocks. The size of an affordance vector,
consequently, ism in the example (ie., tourism) domain (herem = 18).

The querying approach proposed in this paper relies on retrieving a number of
documents relevant to the query using information retrieval (IR) techniques, and then
employing an affordance-based ranking on this set. In the rest of the paper, we use the
following notation:

AVtext = {A1, A2, ........, Am} (1)

whereAV is a vector whileAi is a scalar representing the affordance with respect to the
ith element in the list ofm affordances.

3 Case-Based, Affordance-Guided Web

The objective of this work is, given a query, to retrieve the web documents that
meet the user’s information need in the best possible way, using a refined assessment
of the document guided by affordances. The underlying assumption is that the web is
informed about the affordance of each document, in a case base. There is a case for each
document of which the problem description part consists of aterm-set that represents
the document in a concise way, and the identification of the document it represents.
The term-set is, in a sense, a dimension-reduced version of the web page. The solution
part informs about the affordance of the document indirectly, through affordances of its
constituent blocks. Hence a case is represented as follows:

Ci= {ProbDescription, Solution}
where ProbDescription consist of a term-set representation of the web page while
Solution has two components:
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Solution= {AV, I}
AV is the affordance vector of sizem (see Equation1) and represents the affordances
of the web page. AV, together withI ( which is the identification of the corresponding
document), constitutes thesolution part of a case. The next section describes how the
case base is populated.

3.1 Population of the Case Base

Initially, case base contains no cases and cases are constructed incrementally in the
off-line mode. To build the case base, we applylink-to-text ratio which is defined as the
ratio between the size of the text tagged with hyperlinks andthe text without hyperlinks.
Problem description: A web page is first segmented into blocks and a textual
description of each blockbi is extracted (after removing the markups and stop words)
using link-to-text ratio. If link-to-text ratio is more then, all hyperlinked text will be
skipped andlink-to-text ratio is scaled in the normalized interval [0-1]. Then from each
extracted block text, topk discriminative terms are selected (after stop word removal)
and added toProbDescription in the problem description of the case. This process is
described in the ‘problem part’ of Algorithm 1.
Solution: The extracted text, saytexti, of the blockbi is processed to identify its
affordance with the help of the resource terms (topics and # terms considered in each
topic, are presented in the table1). For each topic, the matching terms are identified,
the affordance with respect to this topic is computed and theaffordance vector of the
block is updated (seeComputeBlockAffordance in the Algorithm 2) accordingly. The
AV of the document, in turn, is computed byComputeDocAffordance, as described
in the ‘solution part’ of the Algorithm 1. A case is generatedby coupling the problem
description and the solution parts and is added to the case base.

Algorithm 1 Population of Case Base

Input: List of topic:Lt (from table1) ;
A web document:d;

Procedure:
I: identification ofd;
Problem Part:
1: Initialize probDesc to NULL;
2: for each block text datado
3: remove stop words and punctuation;
4: filter out topk words from the block text and add it to probDesc;
5: end for

Solution Part:
1: AVd = ComputeDocumentAffordance(d)
2: Soln =< AVd, I >

Case Base:
1: Add the new case having<probDesc, Soln> to the case base;

Output: The Case Base;
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3.2 The Querying Process

Two main processes underlying the querying method are described in Algorithm 3.
This part is similar to information retrieval for the given query, but retrieval is performed
on a specific amount of extracted text from each block and the assigned affordances.
During the retrieval, the problem description part of the cases are matched with the
user’s query and top k cases are retrieved. These are then ranked using the solution of
the case, where the AV of the query and the AV of cases are compared. AV of the query
is computed on the basis of the terms (also called as ‘resource terms’) in each topic.
After each such a retrieval episode, the AV of the topk number of cases are revised and
modified in such a way that its currently experienced relevance to the query is properly
reflected in the case representation.

Algorithm 2 Procedures to compute Document and Block Affordance Vectors

Procedure: ComputeDocAffordance(d)

Input: List of topics -Lt; A web document -d;

Procedure:
1: Segmentd into blocksbi InitializeAVd:= NULL;
2: for each blockbi in d do
3: ComputeAVbi := ComputeBlockAffordance(bi)
4: UpdateAVd := AVd +AVbi

5: end for

6: returnAVd

Output: The AV of the given documentbi

——————————————————————————————————————
Procedure: ComputeBlockAffordance(bi)

Input: List of topics -Lt (as in table1); AVbi - affordance vector;

Procedure:
1: for eachtopicj ∈ Lt do
2: Compute the number of matching terms inbi and terms intopicj ∈ Lt

3: Update this score for the corresponding affordance inAVbi .
4: end for
5: returnAVbi

Output: The affordance vectorAVbi of the blockbi

4 Experimental Results

4.1 Web Corpus

The effectiveness of the proposed method is analyzed through experimental results
on a corpus containing the web pages mostly related to the tourist places in India. The
tourism web pages were collected by applying the crawling process according to a set of
policies that filter the supplementary files. We have omittedthe web pages having only
hyperlinks, images, advertisements and graphical layouts(like the index page of the
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Algorithm 3 Similarity Assessment through blocking and affordance assignment

Input: A query havingn terms:q = {qt1 , qt2 , · · · , qtn}
Case base havingm cases:{c1, c2, · · · , cm}
Lt - List of topics;
AV q - the query affordance vector
AV c - the affordance vector of a case.

Procedure:
1: Retrieve topk cases using

sim(q, cj) =
∑

ti∈q;
tj∈cj ;

matching terms

sim(ti, tj)

whereq is the query;cj is the case andtj are the matching terms in the problem part ofcj
2: for each retrieved caseck do
3: compute the query affordance vectorAVq with respect to the topic listLt;
4: getAVc from the solution ofck;
5: computesim(AVq, AVc) using cosine metric; (see equation5)
6: end for
7: return the ranked list of topk cases with respect tosim(AVq, AVc)

Output: The ranked list of cases sorted by their similarity scores

most of the sites). Additionally we skipped the pages containing redirect options, less
significant textual description, only copyright information, etc. The remaining pages
are collected to form a raw web corpus. Then preprocessing tasks were performed to
generate the case base having problem description and solution parts through content
and structure mining with focused information extraction.

4.2 Preprocessing

We have applied focused content filtering which performs thestructural mining
on each collected web page. This structural mining, based ontable OR paragraph
OR div tags, decomposes the given web page into blocks. Then for each block, we
applied thelink-to-text ratio to distinguish content noise and content text description.
We perform duplicate sentences elimination both at the phrase level and at the whole
sentence level in order to avoid repeating sentences in the solution parts of each block
text. The extracted text content, if they are represented inhex code, are converted into
unicode. So multilingual content using hex representationcan also be processed (except
for the pages using certain proprietary fonts / encodings).We have retained the headings
and paragraph markers with selected topk terms for the problem description. But due
to link to text ratio, some of the headings might have been removed. Specific patterns
are hardly seen for eliminating the unlinked noise from suchpages.

Among the total number of 112,522 web documents [1315 seed URLs were crawled
to the depth 3], 14,033 web pages, containing both tourism and non tourism pages but
having sufficient textual data (after filtering the web pageshaving spam contents like
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unwanted, restricted contents, adult contents, etc), wereselected for our experiments.
We have manually crafted the list of 18 affordances related to tourism domain including
the affordancemiscellaneous.

Affordances # TermsAffordances # Terms
Accommodation 59 Retreats 59
Attractions 59 Shopping 59
Beaches 59 Spirituality 59
Deserts 59 Sports 66
HealthCare 60 ThemeParks 59
Heritage 59 TourPackages 59
HillStations 59 Transport 61
Landscapes 59 Wildlife 59
Nature 59 Miscellaneous Rest

Table 1.List of predefined affordances with number of terms in each affordance

4.3 Queries / New Cases

We have considered 25 tourism queries in English language used in Cross Lingual
Information Access (CLIA) Project1 - a large project on cross-lingual information
access systems for Indian languages, that is being funded bythe Government of India,
and being executed by a consortium of several academic institutions and industrial
partners[7]. Each query is presented in three forms:title - the actual query,desc -
the expanded query andnarr - the narration of the query. At present, we have attempted
with title, desc parts. Here we considered each query (title / desc) as a new case.

4.4 Evaluation Methodology

In the experiments, we compared the effectiveness of the retrieval using Lucene2

and the proposed approach. In Lucene, the similarity scoring function[5] is derieved
from its conceptual formula as follows:

sim(q, d) := coord(q, d) · queryNorm(q) (2)

·
∑

t∈q

(tf(t ∈ d) · idf(t)2 · t.getBoost() · norm(t, d))

wheretf(t ∈ d) is the term frequency - the number of timet occurs ind; idf(t) is the
inverse document frequency of the term;coord(q, d) is the score factor based on how
many of the query terms are found in the specified document;queryNorm(q) is the
normalizing factor used to make scores between queries comparable (does not affect
the document ranking);t.getBoost() is the field boost andnorm(t, d) encapsulates
a few (indexing time) boost and length factors. Herenorm values is encoded during
index time and decoded during search time. Thus encoding/decoding comes with the
precision loss - that meansdecode(encode(x)) = x is not guaranteed. Lucene allows

1 http://www.clia.iitb.ac.in/clia-beta-ext/
2 http://lucene.apache.org/java/docs/
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the users to customize its scoring formula by changing the boost factors for calculating
the score of similarity between the queryq and the documentd. Lucene[5] sorts the
retrieved results based on either theirrelevance or index order for the given query. Here
we sort the retrieved results based on their relevance to thegiven query.

In the proposed approach, we weight the AV of the case in the similar way to [1,8]:
Weighted affordance of a case(Wci ):

wci√∑m
i=1 w

2
ci

(3)

wherewci is the weight of the affordancei in the AV of the case.
Weighted affordance of a Query(new case)(Wqi ):

wqi√∑m
i=1 w

2
qi

(4)

wherewqi is the weight of the affordance in the AV of the query.
Similarity between the query (new case) and the case is computed by:

sim(qi, ci) := sim(AVqi , AVci) :=
∑

matching features

Wqi ×Wci (5)

During the estimation of case affordance vectors, the values of the elements in the
vector increase with the number of matching terms between the solution part and the
new case. In such situations, we could apply affordance vector length normalization. To
length normalize the elements of the affordance vectorAVc, for the casec havingm
affordances:{At1 , At2 , · · · , Atm}, to the unit vector, we do the following:AVc :=
AVc/|AVc| where denominator denotes the Euclidean length of the vector of the
affordanceti in c. In the mean time, we will take care of the effect of normalization
factor in decreasing the chances of retrieval of the document.
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We performrank aggregation: Given a new case, retrieve top candidate cases using
the problem description. Then similarity estimates of the affordance vector (solution
part) of each of the candidate cases with the affordance vector of the query are
computed. Finally the rank of all topk cases are aggregated with respect to their actual
similarity scores and the results are compared. The figure2 shows the effects of rank
aggregation for the 25 tourism queries [title / desc parts are considered here]. Lucene
retrieval score is influenced by index time boot factors and applies tf - idf tradeoff
with overall content of the textual description. In the proposed approach, the point of
focus is the affordance assignment with respect to the blocktext based on its maximum
affordance. The queries Q12, Q13 and Q14 are proper names representing the places
and each extracted block text, that speaks about these places specifically, contributes
to the overall affordance. Similarly Q21 and Q22 focus on thespecific event / hotel in
the particular place. This gives combined affordance scorewith with the proper names.
Hence this leads to a better performance for most of the queries (particularly for Q12,
Q13, Q21 and Q21).

Next we considered a few sample queries whose similarities are effectively
computed through blocking and affordance assignment(fig.3). For example, in Q1
(Query: sunderbans national park), the document with ID - 2092, ranked 14 in
Lucene retrieval and the proposed method has brought it to rank 2. Here affordances
related towildlife, heritage andattractions are captured where as the affordances related
to nature is hardly captured. This is due to the fact thatpark under the affordance
nature contributed less to the overall affordance than towildlife. In another example,
for the queryElephant Safari in Kaziranga, the document, with ID: 10417, having
the dominating term of “safari”, has been brought to the top in lucene where as its
affordance value score very less. At the same time, for the queryGoddess Meenakshi
Temple, the proposed approach captured the document, with ID: 5784, whose blocks
describe different topics related to Meenakshi temple in Madurai, Tamil Nadu, India.

Even though the performance of the proposed system is promising, the effect of the
noise and the accuracy of filtering approach along with the list of resource terms play
a vital role in the effective retrieval of cases. The effect of spam pages will reduce the
chances of retrieving the relevant document through boosting their scores by projecting
the related themes. Owing to paucity of resources, we have limited our spam filtering to
filter pages containing adult content along with tourism related textual content. This
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effectively reflects in the retrieved results with the proposed approach. This is our
preliminary attempt with manually crafted term list for each identified (predefined)
affordance related to the tourism domain. Developing an automated process for the
affordance identification irrespective of the domain may beattempted in the future.

5 Conclusion

We presented an approach for achieving an effective case retrieval through the
similarity assessment based on blocking and identifying affordances of web documents.
Affordance provides a visual clue to the case identification. Traditional methods dealing
with textual content try to apply similarity metrics collectively for the heterogeneous
blocks of text together presented in the same web content. This reduces the chances
of the user expected contents (solutions). The proposed approach solves this issue by
applying page segmentation through blocks, identifying valid text from these blocks,
scoring each of the blocks with certain affordance scores and then applying similarity
metrics to achieve the effective case retrieval. The actualperformance of the proposed
approach can be seen with the similarity scores computed using query affordance vector
and case affordance vectors. The preliminary results show that the proposed approach
would be promising for identifying the specific block text asthe relevant solution.
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Abstract. In this paper, we describe a Conversational Interaction framework as
an innovative and natural approach to facilitate easier information access by com-
bining web search and recommendations. This framework includes an intelligent
information agent (Cobot) in the conversation that provides contextually relevant
social and web search recommendations. This setup leverages the information
discovery process by integrating web information retrieval along with proactive
connections to relevant users who can participate in real time conversations. We
describe the conversational framework and report some preliminary experiments
in the system.

1 Introduction

The medium of online conversation allows for sharing ideas, asking questions or dis-
cussing issues and solutions interactively along with others. It is an age-old communi-
cations practice that helps cultivate creativity, exploratory ideas, perspectives and ex-
periences to take better decisions individually or collectively in the process. Several
problems persist with using existing search tools as a means of learning, investigating
or exploring about some complex and open-ended information topic. Collaborative so-
cial search involves different ways for active involvement in search related activities
such as use of social network for search, use of expertise networks, involving social
data mining or crowdsourcing to improve the search process.

Social psychologists have experimentally validated that the act of social discussions
have facilitated cognitive performance[16]. People in social groups can provide solu-
tions (answers to questions), pointers to databases or other people [1][3], validation of
ideas[2], can serve as memory aids[5] and help with problem reformulation.

The goal, we envision, is to move search from being a solitary activity to being
a more participatory activity for the user using natural dialogue conversations mixing
social search with traditional web search techniques. The search agents perform multi-
ple tasks of finding relevant information and connecting the users together; participants
provide feedback to the system during the conversations that allows the agent to pro-
vide better recommendation temporally in the conversation. This framework is different
from classical IR or Question Answering (QA). The focus of classic IR systems is on
retrieving relevant documents from a large document collection in response to a query.
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While QA deals with more complex understanding of natural language queries, it does
not involve a back and forth interaction to continuously monitor, adapt and explore in
continuum about some information or questions. This Conversational approach helps
users search, explore and ask questions in natural language, leaving the task of user in-
tent comprehension on the system, while the conversational search agents bring together
people and different artifacts like documents, facts and opinions together in the conver-
sation to provide a knowledge-rich participatory atmosphere. Cobot uses technology for
operationalizing a user’s intent into computational form, dispatching to multiple, het-
erogeneous services, gathering and integrating results, finding people in the community
who best match the ability to respond to user’s request and presenting them to the user
as a set of solutions to their request. This conversational framework process involves a
series of dialogue interactions, agent recommendations and feedback activities.

2 Framework

Figure 1 gives a high level architecture of the Conversational Interaction framework.
The framework is built around constructs to support memory update and access, cat-
egorization and learning in the system. The framework allows for the ability to start
conversations, get connected to people and get relevant information for the information
need in context.

Realtime Application Server

Text Analysis & 
Processing Engine 

(TAPE)
(Classify, Parse, 

Extract)

Web Search & 
Ranking Engine 

(WebScour)
(Find, Rank) 

Case based 
reasoning Engine 

(Converse)
(Re-find from 

past)

User Modeling & 
Recommendation 
Engine (Uvolve)
(Learn Profiles, 

Match)

Start  
conversa,ons 

Connect to 
People 

Get 
Informa,on 

Fig. 1. System Architecture

While developing the Conversational Interaction framework, we are adhering to
some requirements and guidelines which are as follows:

– Cobot is an Information Agent with Memory, Categorization and Learning modules
to remember, understand and improve recommendations over time for the user.

– Different conversation facets (topic, message, asker, presence, time of asking) should
have different metrics for comparison to provide for search criteria beyond query-
relevance
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– Ability to reformulate relevant queries from conversational sentences and para-
graphs

– Ability to understand the progression of conversation context to determine suitable
interference points.

– Critique based feedback in search results (eg. ability to like different facets) to
support personalization of results

– Support for quick access to past conversations (Ability to re-find information)

Some differences between searching conversations and traditional web search can
be attributed to factors like chronological ordering of conversations, lots of coreferences
and informal nature of the language. Traditional text ranking algorithms like BM25[9]
might not work due to factors like short length of these conversations.

Text Analysis and Processing Engine(TAPE) processes conversations, pushing it
through the various steps of analysis, processing and storage within the system. The
current system is being designed and developed for health domain and engages in it the
use of medical ontologies coupled with natural language processing components. TAPE
(Figure 2) produces and maintains the knowledge representation by processing infor-
mation from agent’s working memory of conversation, user models and knowledge-
bases. The agent’s task is to use the sub-modules for extracting meaningful queries
from conversations, classifying messages into relevant categories, and calling the right
combination of algorithms for retrieving candidate recommendations.

Fig. 2. TAPE Engine

2.1 Memory

Language and interaction (percepts) creates usable memories, useful for making deci-
sions about what actions to take and what information to retain. Cobot framework (we
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interchangeably use the terms Cobot and the Conversational Interaction framework)
leverages these interactions to maintain users’ episodic and long term semantic models,
agent’s per conversation working memory of topics, users and messages (Figure 3). The
agent analyzes these memory structures to bring in external recommendations into the
system by matching with the contextual information need(Categorization). The social
feedback on the recommendations are registered in the indices for the algorithms to
generate their contextual relevance. Paper [13] also describes the architecture of Cobot
System in more detail.

Fig. 3. Memory Structures

The purpose of Episodic Memory is to capture the user’s short-term interactions
and interests. Based on user’s frequency of interactions and diversity in topics, this
memory empirically varies in the range of a few days for different users. The Semantic
Memory captures the user’s long-term profile. These are the topics that interest the user
in general and for a prolonged time. These interests change less frequently and represent
general criteria of recommendation to the user. Many times, users might be interested
in some temporary information need. Such information need not be incorporated in the
long term user memory. The episodic memory captures such short-term interests. The
episodic memory forms a sort of staging area and the concepts from this memory are
selectively and periodically moved to the semantic memory in a crossover process.

The nodes of the semantic memory are concepts extracted from user’s interactions.
The concepts are connected with associations which develop when concepts co-occur
frequently. Over a period of time when the user participates in more interactions, new
concepts are added to the semantic memory. Episodic Memory is represented as a Case
based Reasoning like kNN system. Short term interaction episodes containing frequent
concepts from conversations with interaction feedback are stored. We also call this
episodic store as our Level 1 (L1) memory. This memory is searched first during the
recommendation stage to prune the search space to a smaller size. Semantic Memories
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for this smaller search space (Level 2 or L2 Memory) are searched next to refine the
ordering of recommendations and find the best matches.

2.2 Categorization

The next important step in the development of an information agent is to enable it with
constructs to identify important signals from the conversations, classify them in the right
schemas and group them together to further aid in generating good recommendations.
In order to test some of Cobot’s algorithms, we crawled WebMD forum that consists
of posts and responses on different health topics. The crawler extracted all posts dating
back up to one year or 20 pages of posts for each subforum. The data so extracted
includes forums, subforums, conversations, users and their ratings. We extracted more
that 64000 conversations from WebMD forums.

Here’s an annotated sample post and one of its responses that are typical of the
dataset. Bold face maps medical concepts and extracted relationships (highlighted in
bold italicized). The method for extracting terms and relationships is described in detail
in this paper[12].

Post (AskQuestion category): Has anyone experienced cystic acne appearing once
you started taking Adderall? I have found that when I take my daily dose, by the end
of the day a cystic-like pimple has appeared on my face. If I skip a daily dose or two
of medication, I don’t have any real acne issues. I am 42 years old and have had acne
before taking Adderall. But I have never had these large painful bumps. Can anyone
help me???

Response (SuggestSolution category): I don’t think it’s the medication. I’ve had
cystic acne for a long time - including years before I started taking ADD Meds. It’s
linked to two things. My time of the month and STRESS. AD/HD stimulants can in-
crease stress. Instead of an antidepressant, like some people have, get a beta blocker.
You don’t get sleepy. I also don’t think it’s depression that people get with the meds,
it’s the anxiety which can cause depression like symptoms.

Conversational interactions are classified into one of the following categories in
Cobot to strategize for query reformulation stage and to help make the decision if the
agent should insert some type of recommendation into the conversation:

– ASK QUESTION: Asking a question, e.g. somebody posts a problem. This is usu-
ally, but not always, the first post of a thread.

– DITTO: Repeating a question, e.g. “Yes, I also have the same (or a very similar)
problem”.

– ASK CLARIFICATION: Asking for more details about the problem, e.g. “Can you
please provide more details?”

– FURTHER DETAILS: The person who is facing a problem provides more detailed
information about it, possibly after somebody asks for more details.
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– SUGGEST SOLUTION: Suggesting a solution
– EXPRESSIVE (Thanks for suggestion/solution, complaints about suggestion/solution,

reject/accept solution)
– OTHER (Not fitting the above categories)

Choice of Features
The choice of features to predict the type of message labels is extremely important

to get good results for this problem. In most text classification problems, a simple ‘bag
of words’ approach is taken to populate the vector space of features. These features
are statistically extracted using techniques like ‘term frequency - inverse document fre-
quency’ (TFIDF) or z-score method. These statistical features make the space of possi-
ble feature set extremely large thus requiring huge training data to come up with good
decision boundaries for classification of data into the right categories. In contrast, we
have used a mix of syntactic and semantic features for our data exploiting medical on-
tologies like UMLS (Unified Medical Language System) and WordNet. We extracted
the following features for the Message Classification problem:

– Position of the message thread
– Length of message
– Number of responses of the user for that forum
– Emotive Features (vector of words, testing for binary presence)
– Question words (vector of words, testing for binary presence)
– Previously responded in the forum or not
– Number of previous responses
– response time windows
– words in the thread (high information gain 5950 words vector from the corpus)

In order to develop a message classifier that could categorize the messages into one
of the above categories, we manually tagged 412 different conversation threads with
different message categories. We used this labeled data from different WebMD forums
to evaluate the classifiers using 80% of data for training and the rest for testing the
models.

We used three standard algorithms to compare the accuracies of message classifi-
cation system using rich feature extraction to aid in classification. In the first two ap-
proaches involving Bayes’ Classification and Support Vector Machines, this problem is
a standard multi class text classification problem. Third approach using CRFs formulate
the problem as a Sequence Labeling problem. Conditional Random Fields (CRFs)[6]
are discriminative conditional probability distribution models that allow to take advan-
tage of the sequential nature of conversations better. From the experiments, we see that
CRF was able to pick up the right categories from the messages and was able to do
better (Table 1) that the other standard methods (but was slower than other classifiers).

2.3 Recommendations

Cobot provides three types of recommendations. It recommends and notifies relevant
people who may be interested in joining conversations. It provides topic specific web
recommendations and it also suggests past similar conversations from the system.
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Table 1. Message Classification

Accuracy Time(sec)
Bayes’ Classifier 53.5 0.1

SVM Classification 56.1 1.8
Linear Chain CRF 67.9 9.8

People Recommendation: While designing a recommender system, it is important
to take into account the domain implications and fine-tune the algorithms accordingly.
To provide social recommendations with a high degree of conversion rate, the system
needs to identify people who can provide answers to asked questions, share similar
health experiences and provide topic specific opinions and advice. Our system is built
around health information domain therefore users are generally not concerned with
building their social ties, instead, the goal is to serve the user’s contextual information
need. One important aspect in this domain is reputation of the recommended users,
since there is no prior information and relationship of these users with the person who
starts a conversation. We are building the reputation system by allowing users with
the ability to rate conversations. The system takes into account factors for weighting
the users differently (based on types (asker, responder, viewer), length of conversation,
topics, etc.)

Our system currently tries to find a recently active user first who participated in sim-
ilar conversations. Different conversational facets are matched with episodic memories
and a spreading activation search on the semantic net is performed for recommend-
ing the best 3-4 users for the conversation. The activation is spread to the neighboring
nodes proportional to the weight of each connecting association in the semantic net.
There are several parameters in the system that can be learnt based on activity of users.
Parameters for episodic memory window size, semantic memory learning and unlearn-
ing rates, concept co-occurences and feedback strengths for associations are initially set
heuristically and can be fine-tuned to suit individual users.

Knowledge Recommendation: For web search and conversation recommendations,
we reformulate queries from the conversation snippets based on occurrence of concepts
and relationships and types of messages. For a given target query Qt, past conversations
are ranked so that the results which are most likely related to the learned preferences
of the community are promoted[14][8][7]. This kind of personalization is based on the
reuse of previous search episodes: the promotions for Qt are those results that have been
previously selected by community members for queries that are similar to Qt.

Cases are represented as tuples made up of the query component (a set of query
terms, Qi used during some previous search session) along with web recommendations
and past conversations with their community hit counts. Our formulation is based on
similar work reported in Paper [14]. Each case is a summary of the communitys search
experience relative to a given query.
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Each new target problem (corresponding to a new query Qt) is used to identify a set
of similar cases in the case base by using a term-overlap similarity metric to select the
n most similar search cases for Qt .

These search cases contain a range of different result pages and their selection fre-
quencies. Bearing in mind that some results may recur in multiple cases, the next step
is to rank order these results according to their relevance for Qt. Each result Rj can be
scored by its relevance with respect to its corresponding search case, Ci by computing
the proportion of times that Rj was selected for this cases query Qi.

During the development of retrieval stage of the CBR system for Cobot, it was often
observed that number of results retrieved were very large since the retrieval stage en-
tailed a meta-search which queried many search engines which returned large number
of results. We wanted to show only the top 2 to 3 results /conversations from the re-
trieved case base. Consequently sorting and ranking results according to their relevance
to the ongoing conversation was necessary.

Relevance of a result with respect to the current target query Qt) is calculated by
computing the weighted sum of the individual case relevance scores, weighting each by
the similarity between Qt and each Qi. In this way, results which come from retrieved
cases (C1, ..., Cn) whose query is very similar to the target query are given more weight
than those who come from less similar queries. The relevance of a Result Rj to a target
query Qt and the case library comprising of cases from C1 to Cn cases is expressed as:

WRel(Rj , Qt, C1...Cn) =

∑
i Relevance(Rj , Ci) ∗ Similarity(Qt, Ci)∑

i Exists(Rj , Ci) ∗ Similarity(Qt, Ci)

Similarity between the query and case is computed by finding the similarity between
the query and case queries. We are using Jaccard Similarity as the similarity metric
in our design. In this way, for given user, with query Qt we produce a ranked list of
results Rj that come from the communitys case base and that, as such, reflects the
past selection patterns of this community. If the case base doesnt retrieve cases or the
similarity confidence of the retrieved results is less than a user specified threshold t then,
Qt is used by the meta-search module to retrieve a set of web search results.

The top 3 results from the ranked results obtained either from the case base or the
meta search engines are shown to the user. In this way, results that have been previously
preferred by community members are either promoted or marked as relevant to provide
community members with more immediate access to results that are likely to be relevant
to their particular needs. This framework promotes community preferred results and
conversations to the user.

3 Discussion

From a brief usability study of the system prototype (Figure 4)[11], we learnt that so-
cially powered search feature and the ability to collaboratively search together and dis-
cuss issues with real people instead of solitary search engine is very useful. Websites
like Vark.com[4] are doing social search for generic question answering effectively us-
ing IM based messaging bots and other channels.
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Fig. 4. System Prototype

There are many technical challenges in community based information and recom-
mendation systems. Cobot is being developed around the principle of ‘Suit the user,
make it easy, make it good’. Cobot’s approach and solution to next generation of socially
enabled search is uniquely driven by new trends on the web, requiring new technologies
for an integrated socio-semantic search experience. Instead of relying on search engines
that inundate the user with a multitude of information, Cobot models the information
finding task as an interactive and collaborative recommendation process within a social
community. The user describes his need in natural language to a trusted community
which is modeled via text conversations familiar to most users. Our agent based con-
versational framework for web search and recommendations uses a ‘wisdom of crowds’
approach to compensate for the limitations of traditional search engines and uses the ex-
perience of real users by proactively bringing them to participate in the conversations.
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Workshop Overview

Over the past twenty-five years, Case-Based Reasoning has matured into a
full-fledged discipline within AI, with an international community, strong re-
search momentum, and many commercial successes. However, despite its many
advantages as a technology, CBR is not well known in the entrepreneurial world.
In part, this is due to few startups being created by CBR researchers, who are
the best people to initiate commercialization of their ideas.

This workshop focuses on the merits and challenges of creating a technol-
ogy startup out of cutting-edge research in academia or research labs. We will
discuss technological issues, such as the application areas best suited for CBR
approaches and scalability of CBR technologies. We will also discuss practical
issues, such as the tension between academic goals (e.g., publishing papers) and
commercialization goals (e.g., building applications), and the different types of
expertise required to create a vision (researchers), market a product (marketers),
and build a company (entrepreneurs).

In this workshop, we will hear from CBR researchers who have created CBR
startups, and use their experiences to discuss different ways to commercialize
CBR technologies. Some have chosen a hands-on approach, taking on a man-
agement role (CEO) or a technology role (CTO). Others have partnered with
experienced business people, who have taken their ideas forward. We will also
provide a forum to help participants with their startup ideas. This workshop
will comprise short talks, a panel discussion with open audience questions on
the merits and challenges of doing a startup, alternative ways of commercializ-
ing CBR technologies, and advice to people interested in doing this.

We will conclude with a hands-on session with 3 minute pitches by partici-
pants. Think of it as throwing down the gauntlet - a friendly competition where
you pitch your CBR startup idea. We will identify most innovative use of CBR
technology, best business idea, and idea most likely to succeed. Our intention is
to provide advice and mentoring by community members who have been-there-
done-that, using these ideas as case studies for all of us to learn from.

Ashwin Ram July 2010
Saurav Sahay

173



174



Computer Cooking Contest

Workshop at the
Eighteenth International Conference on

Case-Based Reasoning

Alessandria, Italy
July, 2010
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Preface

The Third Computer Cooking Contest (CCC) was held as part of the Eigh-
teenth International Conference on Case-Based Reasoning (CBR), which took
place in Alessandria, Italy during 19-22 July 2010. The purpose of this annual
event is to provide a challenging, intuitive, and fun application focus for AI re-
search that is open to all indviduals and teams. Our goal is to encourage the
creation of novel development or integrations of AI techniques to solve problems
related to cooking, where no restrictions were placed on the types of techniques
that could be used. To accomplish this, we held an open call for software sys-
tems that can solve one of a set of cooking challenges, a workshop at which the
entrants’ solutions were presented, and a live competition in which a chef and
the program committee members could judge the capabilities of the submitted
systems.

This year’s CCC included four challenges. First, the Main Challenge involved
answering queries that required the selection and possible modification of a recipe
for a single dish. Second, the task of the Adaptation Challenge was to adapt a
known recipe in response to additional constraints (e.g., some of the recipe’s
necessary ingredients were unavailable). Third, the Open Challenge was just
that: an invitation for researchers to use their imagination in the context of the
cooking domain. For example, this could involve representing and reasoning with
numeric quantities, formulating adaptation as a planning task, or discovering
pertinent cooking information automatically from the Web. Finally, the Student
Challenge was designed to permit students to focus on specific tasks of their
interest (e.g., natural language understanding) so that they would not need
to compete head-on with larger teams that have been participating repeatedly
in this contest. Each team is permitted to enter any challenge, although only
student teams can enter the Student Challenge.

Each team was required to submit (1) the URL of the user interface for
their running system and (2) a paper (max 10 pages) describing their corre-
sponding research, development, and evaluation activities. We provided them
with a resource - a recipe database that contains, for each recipe, its title, list
of ingredients, and cooking instructions in text format.

The CCC workshop included technical presentations by the contest entrants,
whose papers can be found in this volume. The purpose of this workshop, which
was open to all conference attendees, was to facilitate discussion on the ap-
proaches used to solve the contests’ challenges so that all of the attendees can
study these solutions for future reference (or to improve their cooking skills!).

This year there were five terrific entrants. They all address the Main Chal-
lenge and the Open Challenge. Three teams are also involved in the Adaptation
Challenge and we have only one student team! Together, these entrants have
extended the state-of-the-art for the application of AI techniques for automated
cooking. For example, contributions have included reasoning with quantitative
ingredient information, representations (e.g., workflows) and reasoning methods
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for adapting cooking instructions, and the use of semantic web technologies,
among others.

The 2010 CCC succeeded in encouraging innovation, and we hope that next
year’s contest will continue this tradition. For example, the 2011 CCC may ben-
efit from a focus on more extensive evaluations of the submitted systems, which
could potentially be accomplished through the on-line collection of feedback from
a pre-selected pool of volunteer judges or through the extensive use of a cooking
simulator for “testing” generated solutions to cooking challenges.

Many thanks to our outstanding program committee, the ICCBR-10 Co-
Chairs (Isabelle Bichindarize and Stefania Montani), the ICCBR-10 Workshop
Chair (Cindy Marling), and our sponsors (Empolis, Germany and LIRIS, France).

We look forward to next year’s contest!

David W. Aha July 2010
Amélie Cordier
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Abstract. JaDaWeb has been developed to participate in the 3rd Com-
puter Cooking Contest 2010. The system has been developed over the
system JaDaCook 2.0 that participated in CCC-09. As the main nov-
elties JaDaWeb includes a Web based natural language interface with
parsing of the input data, a fuzzy similarity function and Wordnet rea-
soning to identify and include new ingredients in the ontology. In this
paper we present a brief review of the technical characteristics of the sys-
tem, and some experimental results comparing JADAWeb with Cookiis,
the winner system of the CCC-09. The online system is accesible via
http://supergaia.fdi.ucm.es:8810/CCCWeb

1 Introduction

In this paper we describe JADAWeb, a CBR system based on JADACook[1,
2] that suggests recipes using as input a set of ingredients to include and to
avoid, and some optional dietary and cooking restrictions. JADAWeb retrieves
a recipe from the system case base and includes the capability of adapting it
by substituting its ingredients by other similar ingredients that appear in the
user query. The system uses a fuzzy similarity function to determine if two
ingredients can be swapped in the recipe. JADAWeb has been implemented
using the jCOLIBRI framework [3] and its facilities to design CBR systems.

JADAWeb has a Web interface built using JSP [4] technology where the
input of data is a single character string on natural language in English. We have
included an algorithm to detect the negation in a sentence, so the system is able
to infer which ingredients the user wants to include and to avoid. The algorithm is
based on multilingual dependency parsing[5]. JADAWeb also includes a number
of substantial improvements in the decision of which nouns identified in the
query are ingredients and which are not. JADACook only checks if the noun
appears in the ingredient ontology. However, JADAWeb also searches the noun
in Wordnet[6] to determine if the noun is an ingredient or not. If an ingredient is
identified in the query and it was not defined in the system ontology, JADAWeb
suggests the area of the ontology is better to classify the new ingredient.

After retrieval, JADAWeb suggestions are ordered by similarity and also
according with the characteristics of the season. Hotter meals, like a soup, will
be presented before in winter, and fresh meals, like salad, will be presented before
if the query is in summer. The information that JADAWeb uses to make this
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decision is the presence, or not, of some important words that are present in
each recipe, like ‘hot’, ‘oven’, or ‘fresh’.

This paper is organized as follows: Section 2 describes the web-based graph-
ical user interface and the parsing of the input data. In Section 3 we define how
the acquisition of knowledge works. Section 4 describes the case-based reasoning
process, focusing on the similarity function. Section 5 describes a set of examples
tested in the system. We have compared JADAWEb results with the CookIIS
system[7] results. Finally, Section 6 shows the conclusions and suggests some
lines of future work.

2 Web-Based Graphical User Interface

The web interface allows the user writing a natural language sentence with the
recipe requirements (see Figure 1). The following is an example of a query where
the user explains what (s)he wants: ”I want to eat some fruits, like apple, but I
don’t like kiwi”. The system connects to the dependency text parser to obtain
the information contained in this query. It extracts the list of ingredients to
include and to avoid in the recipe.

Fig. 1. JADAWeb Web-Based Graphical User Interface

The system infers the lists of ingredients from the query text and shows the
result of the parser. The user also can express if he/she wants to choose some
dietary practices, or type of cuisine using a form type of interface.

2.1 Textual Parsing of the Input

In this version of JADAWeb the textual input query must be a complete and
correct sentence in English. The user query might include the ingredients to in-
clude and to avoid in the recipe. We have implemented an algorithm to detect
the negation on sentences by using dependency parsing[5]. Dependency parsing
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is an important area of research related with artificial intelligence, computational
linguistics and machine learning. We have used a dependency parser called Mini-
par[8] that is limited to English, but it would be possible to use another parsers
like Maltparser [9] which allows multilingual dependency parsing. Minipar has
an API implemented in C language. Given a plain text sentence, Minipar returns
a dependency tree (see Figure 4). Using a wrapper1 for JAVA we have studied
the information given by the parser. Given the tree with the dependency analy-
sis we have implemented an algorithm that detects the attachment of each noun
and those who share the same branch of a negation are marked as candidates
for unwanted ingredients. All other nouns are marked as wanted ingredients.

The evaluation results show that MINIPAR is able to cover about 79 %
of the dependency relationships in the SUSANNE corpus[10] with about 89 %
precision[8] for English parsing, so we have a small quantity of errors, but it does
not mean that our algorithm committed 10% of errors because is possible that
the errors make by Minipar are not important for our purposes.

Fig. 2. Dependency tree

Figure 2 shows the information that the Minipar parser returns for the fol-
lowing sentence: ‘I want rice but I don’t want onions’. Using this information
our algorithm builds a structured query that is compared to the recipes in the
case base. Although we have found a few labeling errors from the dependency
parser, the results obtained by the algorithm are quite reliable in general.

3 Knowledge acquisition

JADAWeb reasons using two main knowledge sources: the recipe base provided
by the contest organization, and the ontology that has been built incremen-
tally and collaboratively from the first versions of JADACook. The ontology is
conceptualized and formalized in the OWL language2.

1 http://nlp.shef.ac.uk/result/software.html
2 http://www.w3.org/2004/OWL

181



As a novelty, JADAWeb uses Wordnet[6] to let the user include ingredients
that are not previously integrated in the ontology. The textual parsing of the
input query searches in Wordnet to decide if a not identified noun in the query
is an ingredient or not.

3.1 Ontology

JADAWeb reasons with an ontology that formalizes the cooking domain knowl-
edge. The ontology organizes ingredients in categories. In the first level there are
ingredients of animal origin grouped in some subsets: meat, fish, milk, cheese and
eggs. There are also, ingredients of plant origin grouped in subsets like cereals,
fruits, and vegetables. And finally, there are other specific families of ingredients
like sweets, drinks, or basis ingredients like oil or salt.

The ontology in its current state is very extensive and complete, it has 255
classes, 202 of them are ingredients. Although we made little changes to make
easier the search and the equality between concept names because Wordnet has
different terms than our previous ontology. For example, we changed ‘AnimalO-
rigin’ and ‘PlantOrigin’ for ‘animal’ and ‘plant’.

3.2 Ingredient treatment using Wordnet

Despite the richness of the ontology and the wide range of definitions in the
cooking domain, we have implemented a system to detect new ingredients in
the input by searching the nouns in the lexical database Wordnet. Wordnet
is a lexical database in English, developed at Princeton University under the
direction of George A. Miller. This lexical database allows searching a concept
to get the definition, synonyms and antonyms, among other things.

For every noun in the query that is also in Wordnet, is a candidate to be
an ingredient, the system checks if it is already included the ontology. If the
ingredient is not in the ontology, we try to automatically include and classify it
in the ontology. Using WordNet the application checks whether the definition of
that noun is feasible to belong to any of the categories present in the ontology,
if it is, JADAWeb adds it to the system memory, if the system cannot select a
unique branch, it asks the user to select the concept to allocate the ingredient.

3.3 Algorithm definition

JADAWeb includes the capability of classifying a new ingredient in the ontology
using the information from Wordnet.

Our algorithm first searches an ingredient in the ontology using its name and
also using all the synonyms that Wordnet gives for this concept in the same
synset. If any of the synonyms belongs to the ontology, the search is done. If
not, the system looks for the best node to attach the ingredient.

The parser returns two lists of ingredients. A first list with the ingredients
that the user wants to use. And a second list with the ingredients that the user
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wants to avoid. The ontology update algorithm proceeds as follows: it takes each
element of those lists and checks if the item is already included in the ontology.
If the item or any of those synonyms are registered then the algorithm is done;
if the ingredient does not appear then the system searches the best node to put
the new ingrediente, but if the best node is not found, the user guides the system
to include the ingredient in the ontology. A branch is defined as the part of the
tree whose items have a predecessor or successor relationship to each other. A
child is the successor of his parent, grandparents ... and the parent predecessor
of children, grandchildren (see Figure 3). To decide the best branch to introduce
an ingredient in the ontology, the system uses the word definition in Wordnet.
As only nouns are feasible to be ingredients, the system discards the other parts
of speech.

Fig. 3. Fragment of the ontology using by JadaWeb, using two examples of branches
within the tree.

All the nouns in the text of the candidate ingredient definition are searched
in the ontology.

If every noun in the definition appears in the same branch, then a candidate
predecessor to allocate the new ingredient would be the lowest item of the branch
that is not a leaf. If it is a leaf, the new ingredient will be attached to the
predecessor of the leaf.

If the definition includes words that are in different branches, each branch is
checked. The system will select the branch which has more nouns of the defini-
tions of the new ingredient. If two or more branches have the same number of
ingredients, the item would have a number of potential predecessor (remember
that the system is searching for the best predecessor to hang the new ingredi-
ent). This is the only case in which both predecessors are returned to the user.
The remaining cases, we obtain a unique solution of the problem, although not
necessarily the best.

In this way, the system puts the ingredient as a child of a node according
its definition and synonyms. Example: We have tested the algorithm with Shark
(the parent the system recomends is fish), saffron (the parents the system re-
comends ar flower and citrus), yeast (cruciferous) and others, and we obtain a
very satisfactory result in an 85 % of the new ingredients included.
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3.4 Cases

In this new version of the system we have used the case base that is provided
by the organizers of the CCC-10, which is the same than for the CCC-09. The
recipe cases are organized in an XML file that is processed using SAX and DOM
to extract the information to load it in the system memory.

3.5 Non wanted ingredients treatment

Previous versions of JADACook only remove the ingredients that the user does
not want. JADAWeb includes a new algorithm for removing the ingredients that
shares the same branch in the tree with the non wanted ingredients. This option
is good when the user is not very specific. However, if the user is very specific,
or (s)he does not want a special ingredient, our algorithm could remove other
ingredients that the user might want. For example, if the user specifies (s)he
does not want sardine, our system will remove the term sardine and other kind
of similar fishes like anchovies or herring.

4 Case-Based reasoning process

4.1 JadaCook2

JADAWeb inherits the similarity function of JADACook2[2], and adds some
functionality to it. The original similarity function of JADACook2 works as fol-
lows: first, the system takes the ingredients for the wish list of the user, and it
searches for recipes that contain these ingredients. If a recipe contains an ingre-
dient it increases by 1.0 the similarity value. The similarity value is normalized
by the number of ingredients in the query.

During adaptation JadaCook2 does not reject an ingredient when it is not
in the recipe. When it happens, the system searches for ingredients that share
the same branch of the original ingredient in the ontology, if it is feasible the
algorithm increase by 0.8 the similarity value of this recipe. JadaCook2 searches
in all recipes contained by the case base. Finally, the system gets a list of recipes
with the information of how similar is each one in according to the ingredients
introduced by the user.

The user can also specify in the query the type of meal (s)he wants, the type
of diet, the type of cuisine and if (s)he wants some dietary practices. The system
adds some ingredients if the user wants a specific type of meal, i.e. if the user
selects a chinese meal the system will add some ingredients like rice, bamboo,
carrot ,ginger, chicken, duck, pig, pork or soy sauce.

4.2 JADAWeb

JADAWeb includes new features. The first one is the ability to look for ingredi-
ents to adapt not only among the siblings, but also going up in the hierarchy.
The similarity function has the same criteria as the degree of consanguinity of
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two people. Two siblings have a similarity value of 0.6, because both are descen-
dent of the same parents. Therefore, a rise of level, subtract 0.4 of similarity.
For two cousins, subtract 0.8: 0.4 because of the rise to the parent and other 0.4
because of the climb to the grandparent. Going down in the level, not penalize.
Thus, another example: the children of a sibling of an ingredient have the same
similarity as the sibling (0.6), the similarity of a cousin’s children are the same
as the cousin and also the same as any of the grandfather’s descendants (which
do not fall for the same branch of the one that is being compared) which is 0.2 in
this case. In this way, you can use other similar ingredients. The number of levels
can be parameterized and the default value is 2, i.e, the system only searches
among siblings and their descendants.

Table 1. Some examples of the fuzzy table.

Ingredient Origin Ingredient targez Value

Rice Macaroon 0.4

Stock Water 0.9

Stock Bouillon cubes 0.9

Milk Cream 0.6

Milk Water 0.6

Another novelty in JadaWeb is a table of similarity between fuzzy ingredients.
It is a table with specific values (fuzzy) that gives meaning to say that rice is
replaceable by macaroni with a value of 0.4 to add to the similarity function.
All these pairs of ingredients are defined in an XML file which indicates what
ingredients are similar and the associated fuzzy value. The fuzzy table is not only
used to replace pairs of ingredients. The system also can decide replacing one
ingredient by a group of similar ingredients: stock instead of water and bouillon
cubes with a similarity of 0.9, milk instead of water and cream in a similarity
value of 0.6.

4.3 Measure evaluation of the similarity function.

We have proposed the following experiment as a measure for evaluating the
similarity function of the system.

We made a survey with a set of people(12), each member tested the system
with 5 JADAWeb queries. Each user has introduced his/her a query in natural
language in English and we gave them the choice of which level they want. The
tests were carried out with the three levels of adaptation of ingredients as shown
in Section 4.2. After the CBR process the user evaluates the system results telling
us if the output of the system is satisfactory for him/her, both the recipes and
the order. Table 2 shows the results of the survey.
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Table 2. Results obtained from the measure of evaluation

Similarity level Satisfied user Substitutions

1 90.0% 5.0%

2 70.0% 10.0%

3 40.0% 30.0%

If the similarity level increases then the number of substitutions also in-
creases. With a similarity level that allows only adaptation between ingredients
that share the same branch (similarity level = 1), the satisfaction with the given
recipe is very high. However, the result is worse when we use higher levels. This
is because people do not expect those adapted elements. In various dishes (e.g.,
replacing the lemon with bread), the result is quite concerned, but we could see
that a higher-level change (similarity level ≥ 2) makes the user obtain another
recipe recommended that he or she could not expect it. With a deeperd ontology,
higher level adjustments would score much more satisfactory results. The result
of 70 % for level 2 is good, but the 40 % of level 3 is very low.

5 Results and examples

In this section we show a list of examples of the JADAWeb system. For each
query we describe the recipe proposed by the system in the first place. However,
for each query the system returns five suggestions ordered by the similarity value.

First Experiment In this experiment we have introduced the list of ingredi-
ents for a typical Spanish recipe: paella. We have not specified any type of diet,
cuisine or dish and there are no dietary practices.

Q1: “I want to eat rice, saffron, shrimps, chicken, crab, squid but I don’t like
sugar”.
Answer: the first answer is Paella (Paella in a Pot) that contains many of the
ingredients contained in the query.

Second Experiment In this experiment, we write a query to obtain any type
of pizza with ham, tomato and cheese, and the pizza must not contain onion.
We do not specify any type of diet or type of cuisine, but we introduce a type of
dish (pizza). Although the term “pizza” is written in the main query in natural
language, the system will recognize it as a type of dish.

Q2: “I like pizza with ham, cheese and tomato but I don’t want onions”.

Answer: The system returns some types of pizza (“Pizza Quiche”, “Idiot
Bread Pizza”, “Breakfast Pizza”, “Fruit Pizza” and “Pineapple Cream Cheese
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Pizza”) which contains ham and cheese or cheese and tomato. We also obtain
some pizzas with ingredients adapted changing tomato with pepper and cheese
with egg, penalizing in 0.4 each one.

Third Experiment In this experiment, we tested the system with a fruit salad.
We do not specify any type of diet or type of cuisine but we specify that the
type of dish is a salad.

Q2: “I like to eat some fruit, like orange, lemon and apple but I don’t want
kiwi”.
Answer: The system returns five salads: first a salad that contains a variety of
fruits: “Portable Salad Dressing” in addition to other salads as “Creamy Waldorf
Salad”.

Comparing JADAWeb with Cookiis As a measure of the behaviour of our
system, we have compared JADAWeb results with last year winner: CookIIS[7].
We show the similarities and differences between the two systems by comparing
the retrieved sets of recipes of both systems.

Fig. 4. Comparation with test 2.

In the first query there is no coincidence between the retrieved recipes.
JADAWeb retrieves Paella in the first place that is a highlight answer because
we used the paella ingredients to make this query. Cookiis obtains Pad Thai
in the first place. In the other queries we have some coincident results between
the first 5 suggested recipes. In query 2 the two systems retrieve two common
recipes, although in a different order. Idiot Bread Pizza is the first option in
both. Pizza Quiche is the second in JADAWeb, but the fourth in Cookiis. In
query 3 we only have one coincident result: Creamy Waldorf Salad.
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6 Conclusions

JADAWeb system improves and extends the JADACook2 [2] system. Its web-
based interface gives a broader access to the system and Web accessibility. Ac-
complishing the requirements of AA or AAA W3C makes the system useful for
any person although the person has an inability, i.e blindness.

By using a textual input, we enable a more natural treatment improvement
in the interaction with the final user. We can suggest some future work by
using a system that allows voice recognition that could be connected with our
dependency parser.

JADAWeb extends the possibilities by incorporating a fuzzy table which
allows similarity between two distant elements or types in the ontology, and the
inclusion of various levels in the adaptation algorithm.

It should be noted the great contribution obtained by using WordNet, it
contributes allowing more synonyms for some terms and it extends largely the
knowledge that it has, avoiding the limitation of the use of a finite ontology of
ingredients.
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Abstract. TAAABLE 3 is a textual case-based cooking system which is a contes-
tant in the third computer cooking contest, inheriting most features of its previous
versions (TAAABLE and WIKITAAABLE) and adding new features. The reused
features are information retrieval and text mining for building a domain ontology
and for annotating the ingredient part of the recipes, a semantic wiki in which
the whole knowledge base (recipes, domain knowledge, retrieval knowledge, and
adaptation knowledge) is encoded, and an inference engine based on minimal
generalisations of the query and adaptation by ingredient substitutions. The two
new features are related to adaptation. First, ingredient quantities adaptation is
handled using conservative adaptation techniques on numerical constraints, per-
mitting to maximally preserve, for instance, the quantity of sugar in the recipe.
Second, adaptation is learned from a set of recipes using text mining techniques.
Each recipe is analysed and represented as a tree which identifies ingredients,
food components and actions that are performed. Formal concept analysis is used
on these data in order to find an appropriate way to insert a new ingredient in the
final recipe.

Keywords: textual case-based reasoning, case-based cooking, semantic wiki, conser-
vative adaptation, adaptation of ingredient quantities, natural language processing,
formal concept analysis, adaptation of recipe preparations

URL of the system: At http://taaable.fr, the reader can find a link to the home-
page of the TAAABLE 3 system.

1 Introduction

TAAABLE and WIKITAAABLE have participated in the first and second computer cook-
ing contests [1, 2]. TAAABLE 3 is the 2010’s version of TAAABLE. It inherits from fea-
tures of the two previous versions of the system, as described in Section 2. In particular,
it reuses the semantic wiki of WIKITAAABLE and improves it (Section 3). It also has
two original features. The first one is related to ingredient quantity adaptation using
revision-based adaptation in metric spaces. It is presented in Section 4 and is based on
previous work [3]. The second one is related to the textual adaptation of recipe prepara-
tions. This feature is based on natural language processing and formal concept analysis.
It is presented in Section 5 and detailed in [4].
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2 Previous work on the TAAABLE project

The knowledge-based system TAAABLE is composed of a CBR inference engine, a
knowledge base stored in a semantic wiki, and some tools for acquiring or editing
knowledge. These tools have a great importance for the different versions of the sys-
tem, but no major improvements have been made on these tools this year, so they are
not detailed here.

The knowledge base stored and edited in a semantic wiki is composed of a cooking
domain ontology O, the recipe base indexed by concepts of O (thanks to an annotation
process), and some knowledge useful for retrieval and for adaptation. The ontology O
contains about 5000 concepts organised in several hierarchies, including an ingredient
hierarchy and a dish type hierarchy. For example, the concept mango is under the con-
cept tropical_fruit: every mango is a tropical fruit. Some improvements on the wiki
concerning ingredient properties and recipe formalisation are detailed in Section 3.

A query Q to the CBR engine is expressed as a conjunction of literals, where a
literal is either a concept of O or the negation of such a concept. For example, let us
consider the following request, expressed in natural language: “I want an alcohol-free
dessert with rice and figs, but without vanilla.” This request is expressed by

Q = ¬alcohol ∧ dessert_dish ∧ rice ∧ fig ∧ ¬vanilla (1)

or in the interface

Since the recipes are indexed by concepts from O, finding the recipes that exactly
match Q consists in finding the recipes R such that (1) for each positive literal C of Q,
there exists a concept D, under C in O, such that R is indexed by D; (2) for each negative
literal ¬C of Q, there exists no concept D under C in O, such that R is indexed by D.
When such an exact match occurs, the matching recipes are returned by the retrieval
process and no adaptation is required. Otherwise, the retrieval process aims at finding
a minimal generalisation function Γ such that there exists at least one recipe R exactly
matching the generalised query Γ (Q). Γ is a composition of substitutions A → B where
A is a direct subconcept of B in O. The minimality of the generalisation Γ is computed
thanks to a cost function, described in [2]. For example, the recipe R named “Glutinous
rice with mangoes” is indexed by the conjunction dessert_dish∧coconut_cream∧
mango ∧ salt ∧ sugar ∧ rice ∧ sesame_seed.The retrieval process retrieves this
recipe for the query (1) with generalisation Γ = fig → tropical_fruit.

Thus, the result of retrieval is a set of recipes R matching a generalisation Γ (Q)
of the initial query (when there is an exact match, Γ is the identity function). Given
R, Γ , and Q, the adaptation of R to Q consists simply in substituting some concepts
indexing R , by (a) following the match from R to Γ (Q), and (b) applying the special-
isation function Γ−1. For example, the adaptation of the recipe “Glutinous rice with
mangoes” will consist in (a) substituting mango with tropical_fruit and (b) substi-
tuting tropical_fruit with fig, which is equivalent to the substitution of mangoes
with figs (Figure 1). An adaptation may be composed of several substitutions but, in the
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current version of TAAABLE, each substitution of a single ingredient replaces it with a
single ingredient. This is linked with the search space of the function Γ : generalisations
of conjuncts (e.g., Γ = a∧ b → c) do not belong to this search space. However, the use
of adaptation rules for TAAABLE would lead to substitutions of several ingredients by
several ingredients (see [2]), though TAAABLE 3 does not use such rules.

Fig. 1. Retrieved recipe with the proposed substitution for the query example.

3 New content of the TAAABLE’s Semantic Wiki

3.1 Ingredients

In the previous versions of TAAABLE, ingredients were represented by wiki categories.
Each ingredient is encoded as a wiki category in which the ingredient is only described
according to its relation with more generic categories. For example, the category Mango
is described as a sub-category of the category tropical_fruit.

In the version of the TAAABLE 3 wiki, ingredient categories have been enriched by
additional knowledge extracted from the USDA Nutrient database (http://www.nal.
usda.gov/). An ingredient is now described by its nutritional values (sugar, fat, pro-
tein, vitamins, etc.) and some weight conversion equivalences, two types of knowledge
required for the adaptation of ingredient quantities (cf. Section 4). Ingredient nutritional
values are represented using semantic wiki properties and weight conversions thanks
to semantic wiki multi-value properties. Multi-value properties are needed because a
weight conversion is based five element: an amount, a unit, a property, an ingredient,
and the equivalent weight in grams, (e.g. one cup of sliced mango is 165g). For link-
ing nutritional values and weight conversions to their corresponding wiki categories, a
semi-automatic alignment has been processed. This alignment makes the link between
the ingredient label in the USDA Nutrient database and its label in the wiki as a cate-
gory. As the mapping is incomplete, some of the ingredients in the wiki do not possess
such information.

Figure 2 shows the content of the category Mango. One can see the knowledge about
weight conversion and nutritional values organised into tables. Users might also add a
picture of the ingredient.

3.2 Recipes

The description of recipes has also been improved. A natural language analysis process,
described in Section 5, is used to add a formal description of the preparation of a recipe.
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Fig. 2. Mango category.

All the steps of the preparation are inserted in the wiki as a list of items. A graphical
representation of the preparation is also included.

Figure 3 shows the final part of the formal preparation of “Glutinous rice with man-
goes” as a graph. This graph is included in the wiki page of the corresponding recipe.

4 Adaptation of ingredient quantities with belief revision

4.1 Integration into TAAABLE

The use of TAAABLE remains as presented in Section 2, in particular the queries must
be given in the same format. The retrieval and a first adaptation step that computes
the set of substitutions ignore ingredient quantities. With the example query given in
Section 2 the retrieved recipe is “Glutinous rice with mangoes”, and the first adaptation
step recommends to substitute mangoes with figs.

The adaptation on ingredient quantities is triggered when calling the adaptation
result page, it takes as inputs:

– The source recipe with its list of ingredients with their amounts and units.
– A set of ingredient substitutions of the form from_ingi → with_ingi.
– Numerical data about the ingredients: unit conversions (e.g. the weight of a cup of

mango) and nutritional data (e.g. how much energy in calories a gram of mango
contains).

The result is shown in Figure 4.
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Fig. 3. Excerpt of the formal description of the preparation for “Glutinous rice with mangoes”.

Fig. 4. Ingredient quantity adaptation for the example. The evolution of ingredient quantities are
under the influence of several criteria, in particular the preservation of nutritional components,
see Section 4.2. This explains, for instance, the reduction of the sugar quantity: figs are slightly
sweeter than mangoes. The reduction of the sesame seed quantity can also be explained by the
preservation of nutritional components (fibres, calcium, magnesium, . . . ), though this justification
can be discussed (see the distance definition in Section 4.2).

4.2 How does it work

This adaptation step follows the u-adaptation approach [3] applied to an attribute-value
formalism. The cases are formalised as constraint satisfaction problems over the at-
tributes; solving a case amounts to specifying the value of all its attributes.

Representation space. Only numerical attributes are considered:

– The ingredient quantities in grams and in another unit if they were given in this
other unit. The ingredient values will be stored in variables [ingredient][unit],
for instance as mangoes are given in cups, two variables will be used for man-
goes: mangocups and mangograms. In addition to the ingredients expressly given in the
recipe source and in the substitutions, their generalisations are considered as well.
For instance, as fig is classified as a tropical_fruit and tropical_fruit is
a subclass of fruit there will be a dimension for each in the representation space.
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– All the nutritional components that appear in the wiki (see fig. 2) represented by
the variables lipidgrams, energyKcal, etc.

Domain Knowledge. The domain knowledge is expressed by a set of linear constraints:

– Unit conversion, for instance: mangograms = 165 mangocups (a cup of mango con-
tains 165 grams of mango).

– Ingredient hierarchy, for instance: tropical_fruitgrams = figgrams + mangograms
(as in this adaptation session no other tropical fruit are considered).

– Nutritional data calculus, for instance: energyKcal = 0.65 mangograms
+ 0.74 figgram + 0.97 glutinous_ricegrams + . . .

Source case. The solution of a case (i.e. its ingredients quantities) is expressed as well
as a set of linear constraints. For instance, in the source recipe “Glutinous rice with
mangoes”: ricecups = 3.

Target Case. For each substitution from_ing → with_ing, a constraint from_ing =
0 is added to the target case. This transcription of the substitutions is based on the
fact that the substitution has been obtained by a generalisation-specialisation adaptation

path (see Section 2): from_ing
generalisation−→ parent

specialisation−→ with_ing. The domain
knowledge contains then a constraint: parentgrams = from_inggrams +with_inggrams.
Stating that from_inggrams = 0 in the target case while preserving parentgrams will
entail the substitution from from_ing with with_ing.

As the target case is also expressed as a set of linear constraints over ingredient
quantities, the request could contain constraints of the form figgram ≤ 500 to state
that only 500 grams of figs are available. However this is not yet implemented in the
interface.

Distance. The adaptation cost is evaluated according to a distance dist between the
source case and the proposed solution for target. This distance is taken as a weighted
sum of each value change (i.e. dist(x, y) =

∑
i wi|yi − xi| where i stands for one of

the dimensions).
Not only ingredient quantities are taken into account in dist (see the representa-

tion space definition), in particular, terms corresponding to nutritional components are
included as well. This entails some quantities adjustments that are not explicitly related
to the substitution, see the sugar and sesame seeds quantity evolution in Figure 4.

The weights are wi are set to 1 by default, this choice leads to questionable value
changes; (see sesame seeds quantity in Figure 4); a more relevant valuation should be
considered in future work.

Computation. u-adaptation relates the CBR principle of minimal change for adapta-
tion to the theory of belief revision [5]. A revision operator u encodes some meaning
to the expression “minimal change” in the context of making two formulas consistent.
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Here, the ingredient quantities given by the source recipe are revised by the target
case constraints. u is defined from dist: the adaptation process returns the quanti-
ties that are closest to the source recipe quantities according to the dist while re-
maining consistent with target constraints. The computation follows the reduction of
u-adaptation computation to linear programming proposed in [3].

5 Adaptation of the preparation: natural language processing and
formal concept analysis

At this stage we have a satisfactory glutinous fig rice recipe as far as picking the right
ingredients is concerned. But if one simply substitutes “fig” for “mango” wherever it
appears in the preparation text, as a user of the system might be led to believe we
suggest, the apprentice cook will be facing an insurmountable problem. The recipe
text demands that the mangoes be peeled, sliced lengthwise and pitted, all operations
ranging somewhere between awkward and utterly impossible to accomplish when it
comes to figs.

We introduce a method using natural language processing techniques and formal
concept analysis to benefit from information hidden in the preparation text and improve
the adaptation stage. The guiding idea behind this work is that, for each ingredient, there
exist preparation “prototypes” describing the different ways in which the ingredient can
be used. What we then need to adapt our mango rice recipe into a fig rice recipe is
a mango prototype, a variety of fig prototypes, and some similarity metric to pick the
fig prototype that is closest to our mango prototype. The algorithms that perform those
tasks are defined in more details in [4].

5.1 From Natural Language to Formal Representation

Acquiring meaningful case representations from textual sources remain one of the fore-
most challenges of textual case-based reasoning[6]. Because a recipe basically consists
of taking a set of ingredients and combining them in specific ways until we obtain some-
thing edible, it seems natural to represent them as trees as shown in Fig. 3. Each node
represents the state of a food component at a given time, and each edge 〈α, β〉 repre-
sents an action applied on food component α that yields a new food component β. A
set of edges sharing the same head (β) represents a “combining action”, i.e., an action
applied to many food components at once that yield out one new food component.

This representation is used even as it is being built to resolve some of the difficult
situations that occur frequently in recipe texts. In a sentence such as “Peel the mangoes,
slice [the mangoes] lengthwise and remove the pits [from the mangoes]”, it is easy as
humans to understand that mangoes are being sliced and pitted, but some heuristic is
needed is order for a computer to realise that. We have attributed an arity to each action
in order to be able to tell when an argument is missing. Whenever this happens, it is
taken that the missing argument is in fact the last node that was added to the tree. In
that way, we are able to deal with anaphora, the phenomenon wherein a different word,
or no word at all as it might be, is used to represent an object.
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Other types of anaphora appear in our mango rice recipe. The expression “season-
ings ingredients” clearly refer to some set of food components, so we use the ingredient
hierarchy to find all the nodes of the tree that fit under the “seasonings” category. A
phrase such as “cover with sauce” is a lot trickier because there is no obvious clue ei-
ther in the text or in the ontology which food component this “sauce” may be. We built,
from the analysis of thousands of recipes, “target sets” of ingredients that usually ap-
pear in the food components being referred to by word such as “sauce” or, say, “batter”.
Because a quantity of recipes include coconut cream-based sauces (and few contain,
say, rice-based sauces) we are able to guess rightly that the food component containing
coconut cream really is the one the recipe author had in mind when he wrote “sauce”.

Once the tree representation is built, it is trivial to identify the sequence of actions
being applied to any ingredient of a given recipe. We define the prototype of an ingre-
dient by the actions applied to this ingredient, up to and including the first combining
action. In practice this means we only use the leftmost part of the tree. This has the
limitation that we may be missing relevant actions, but we are also getting rid of actions
that, while being applicable to certain mixtures containing an ingredient, may not make
sense when applied directly to this ingredient. In the mango rice, we are keeping the
chill, peel, slice lengthwise, remove pits, and place on top actions, and getting rid of
cover with, sprinkle with, and serve which are indeed too generic to be interesting. As
an added benefit, the leftmost part of the tree is the one we are able to build with the
higher reliability at this time.

5.2 Recipe Adaptation Using Formal Concept Analysis

The mango prototype used in the mango rice is, then, characterised by the set of actions
{ chill, peel, slice, remove-pit, place }. In the recipe base, there are two recipes
with figs. Recipe nr. 1163 sports a { halve, sprinkle-over, dot-with, cook, brown,
place } fig prototype, and nr. 53 a more modest { cut, combine }. In order to simplify
the processing and avoid discriminating near-synonyms, we can group classes of actions
using the action hiearchy. This has the effect of grouping peel with remove-pit, cut
with slice, and cook with brown.

To select the more appropriate fig prototype, a concept lattice from the fig proto-
types is built with the mango prototype merged in. This is similar to techniques used in
document retrieval by [7] wherein a lattice is built according to keywords found in doc-
uments and a query is merged in. The formal context contains the set of fig prototypes
as its set of objects and its set of attributes is the set of action classes applicable to figs.
It is concatenated (see [8]) with a “query” context consisting of the mango prototype
from the retrieved recipe as its only object and the set of action classes applied to this
mango as its attributes, yielding the formal context shown in Table 1.

Using formal concept analysis [9], the concept lattice shown in Figure 5 is built from
Table 1. All prototypes having actions in common will appear together in the extension
of at least one concept. The “lower” this concept is in the lattice, the more attributes the
prototypes have in common. A set of candidate fig prototypes is taken from the exten-
sion of all concepts “immediately above” the lowest concept with mango in its exten-
sion. Whenever there is more than one candidate, the one that minimises the distance
between its attributes and the mango’s attributes is selected. In the example, fig_53
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fig_1163 × × × × ×
fig_53 × ×
mango × × × ×

Table 1. Formal context of figs and a mango.

is selected since, while both fig_53 and fig_1163 appear directly above mango, re-
placing mango with fig_1163 would require removing three actions and adding four,
whereas replacing it with fig_53 would require only removing three actions.

<4>

¥ ¥ I={remove, chill, cut, place}
¥ ¥ E={mango}

<2>

¥ ¥ I={cut}
¥ ¥ E={mango, fig_53

<5>

¥ ¥ I={dot, halve, pour, chill, place}
¥ ¥ E={fig_1163

<3>

¥ ¥ I={place}
¥ ¥ E={mango, fig_1163

<1>

<6>

Fig. 5. Concept lattice corresponding to the context of Table 1. Each node (formal concept) is a
set of objects O (extension, noted “E”) and a set of attributes A (intension, noted “I”) such that
all objects in O have all attributes in A in common in exclusion to any other. They are ordered
according to the inclusion of their extension.

The process is then finalised by replacing the textual parts of the retrieved recipe
dealing with mangoes with the parts of recipe nr. 53 dealing with figs:

[. . . ] Blend the sauce ingredients in a pot and heat until it just reaches the
boiling point. Let cool. Peel the mangoes, slice lengthwise and remove the
pits. Cut figs into wedges. Divide the rice mixture among 6 plates. [. . . ]

6 Conclusion

TAAABLE 3 is a textual case-based cooking system which is a contestant in the third
computer cooking contest, inheriting most features of its previous versions (TAAABLE
and WIKITAAABLE) and adding new features. The reused features are information re-
trieval and text mining for building a domain ontology and for annotating the ingredient
part of the recipes, a semantic wiki in which the whole knowledge base (recipes, do-
main knowledge, retrieval knowledge, and adaptation knowledge) is encoded, and an
inference engine based on minimal generalisations of the query and adaptation by in-
gredient substitutions. The two new features are related to adaptation. First, ingredient
quantities adaptation is handled using conservative adaptation techniques on numerical
constraints, permitting to maximally preserve, for instance, the quantity of sugar in the
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recipe. Second, adaptation is learned from a set of recipes using text mining techniques.
Each recipe is analysed and represented as a tree which identifies ingredients, food
components and actions that are performed. Formal concept analysis is used on these
data in order to find an appropriate way to insert a new ingredient in the final recipe.

The evaluations of the whole system and of its components constitute an important
ongoing work. Since there is no known computing test asserting whether a recipe is
cookable (i.e., giving a satisfactory dish, from a human average taste viewpoint), these
evaluations are subject studies.

Acknowledgements. The participants of the TAAABLE project wish to thank the organ-
isers of the CCC for providing this benchmark, that entails many interesting problems,
and the need to collaborate with researchers in various domains on knowledge engi-
neering. They also wish to thank the reviewers for their work which has impacted the
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Abstract. Former CCC systems have considered mainly the ingredients of 
cooking recipes. This paper contributes to the open challenge with a novel 
approach that targets the preparation instructions. Our demo system 
CookingCakeWf employs the workflow paradigm to represent and adapt 
cooking instructions in the form of cooking workflows. Adaptation cases on 
former modification episodes of cooking workflows are reused for current 
change requests. A small experimental evaluation with cooking workflows 
created from pasta recipes of the CCC 2010 recipe base provides first insights 
into case-based adaptation of cooking workflows.  

1 Introduction 

The International Computer Cooking Contest (CCC) is going into its third year. 
Cooking recipes are given in a case base to be retrieved and reused with the assistance 
of a computer system. The participating teams compete by providing their systems 
with recipes in order to answer cooking requests. The main task has been nearly the 
same over the years while additional challenges are changing to address recent 
developments in Case-based Reasoning. This year, the contest includes an open 
challenge for the first time. This paper addressed the open challenge by focusing on 
the cooking instructions and on how to adapt them to cooking requests. For this, the 
textual cooking instructions are formally represented. We employ the workflow 
paradigm to represent cooking instructions as cooking workflows. A case-based 
adaptation method [1] developed for agile workflow technology is extended to adapt 
cooking workflows. Both the control flow (of cooking steps) and the data flow (of 
ingredients and their products) are considered. The latter has not yet been addresses 
by previous work on automated workflow adaptation [1]. The output of our CCC 
open challenge system CookingCakeWf is an adapted workflow but not yet 
conventional cooking instruction that consists of natural language sentences. The 
automated generation of text from the workflow representation is a topic of future 
work as well as the automated transformation of the original textual description of a 
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cooking description into a formal workflow. Additionally, we will participate in the 
CCC main challenge with our 2009 system CookingCake1 which is described in [2]. 

The paper is organized as follows: Section 2 introduces a formal 
representation of the cooking workflows. Section 3 presents a novel case format for 
adaptation knowledge. Section 4 describes the methods for applying the adaptation 
knowledge to the workflows. Section 5 demonstrates the feasibility of the approach 
by means of a first experimental evaluation.  
 
<RECIPE> 

   <TI>Baked Spaghetti</TI>  
   <IN>1 c Chopped onion</IN>  

<IN>1 c Chopped green pepper</IN>  
<IN>1 tb Butter/margarine</IN>  
<IN>1 cn (28 oz.) Tomatoes with liquid; cut up</IN>  
<IN>1 cn (4 oz.) Mushroom stems and 1 piece - drained</IN>  
<IN>1 cn (2-1/4 oz.) Ripe olives, sliced and drained</IN>  

   <IN>2 ts Dried oregano</IN>  
  <IN>1 lb Ground beef, browned and drained (optional)</IN>  

<IN>12 oz Spaghetti, cooked & drained</IN>  
<IN>2 c (8 oz.) shredded cheddar cheese</IN>  

   <IN>1 cn (10-3/4 oz) Condensed cream</IN>  
<IN>Mushroom soup; undiluted</IN>  

   <IN>1/4 c Water</IN>  
   <IN>1/4 c Parmesan cheese, grated</IN>  

  <PR>In a large skillet, saute onion and green pepper in butter until 
tender. Add tomatoes, mushrooms, olives and oregano. Add ground 
beef if desired. Simmer, uncovered, for 10 minutes. Place half of the 
spaghetti in a greased 13-inch x 9-inch x 2-inch baking dish. Top 
with half of the vegetable mixture. Sprinkle with 1 cup of cheddar 
cheese. Repeat layers. Mix the soup and water until smooth; pour 
over casserole. Sprinkle with Parmesan cheese. Bake, uncovered, at 
350 degrees for 30-35 minutes, or until heated throughout. </PR>  

  </RECIPE> 

Fig. 1: Sample cooking recipe for Baked Spaghetti from the CCC recipe base. 

2 Cooking workflows 

Cooking recipes are usually described by a list of ingredients and a cooking 
instruction. Fig. 1 shows a sample recipe description of a pasta recipe from the CCC 
recipe base in XML. The title of the recipe (<TI>…</TI>) is followed by a list of 
ingredients (<IN>…</IN>) and a textual cooking instruction (<PR>…</PR>). Many 
internet platforms on cooking use a comparable XML representation of the cooking 
data.  

This semi-structured representation has been transformed into a more formal 
workflow representation for our CCC system by a human expert. Workflows describe 
processes by means of tasks (activities) that are organized within a control flow. The 

                                                           
1 See also http://proj2.wi2.uni-trier.de/ 
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CAKE workflow modeling language (see [3]) consists of several types of workflow 
elements whose instances form block-oriented control flow structures. A workflow 
element can be a task, a start symbol, an end symbol, or a control flow element like an 
AND, XOR, loop etc. Control flow elements always define related blocks (AND-
block, XOR-block etc.). Blocks cannot be interleaved but they can be nested. In 
addition to the control flow, a workflow can have a data flow, which is the flow of 
data objects from one workflow element to a successor workflow element. The data 
flow is specified by means of data links that connect the data objects with workflow 
elements. In a cooking workflow, every ingredient is considered a data object while 
the preparation steps form the workflow tasks within a control flow. Preparation steps 
and control flow are extracted from the textual cooking instruction as well as the data 
links that connect the data objects (ingredients) with the tasks (preparation steps). Fig. 
2 a) illustrates this by showing the workflow representation for the sample recipe 
from Fig. 1.  

Some challenges concerning the control flow (1), the data objects (2), and the 
data links (3) had to be solved during the transformation:  

(1) Control flow: The cooking instructions suffer from both a granularity and a 
paraphrase problem. Granularity means that some authors describe 
instruction steps in great detail (e.g. peel and chop onions, melt butter in a 
large skillet, add onions and beef, wait until brown) while others aggregate 
minor steps into higher-level activities (e.g. brown beef and onions). 
Although granularity models have been discussed in the workflow literature 
[4], we have decided to avoid the granularity problem here by leveling the 
granularity of workflow tasks by hand. However, the granularity problem 
has to be solved in future work on the automated transformation of recipes 
into the workflow representation. The second challenge when defining the 
control flow of cooking tasks is the vocabulary. The paraphrase problem 
occurs here, which concerns the non-uniform wording used in texts from 
different authors (e.g. sauté vs. brown). Using a task ontology would solve 
this problem to a large extent (compare the discussion at the end of Section 
4).  

(2) Data objects: The representation of data objects (ingredients) raises some 
issues concerning the preparation states, amounts, and double (or multiple) 
occurrences of ingredients. Although these issues have been addressed by 
former CCC systems, they deserve special attention in the context of 
workflow adaptation. The preparation states of the ingredients (one piece, 
chopped, sautéed, cooked etc.) could be represented by multiple data objects 
(whole onions, sliced onions, chopped onions, etc.) or by the same data 
object with the preparation state represented as a variable property. The 
amounts of the ingredients can be represented as a data object property as 
well. Double (or multiple) occurrences of ingredients in different roles (e.g. 
butter to brown onions and flakes of butter for a topping) can be represented 
either as different objects (e.g. butter and flakes of butter, or butter one and 
butter two) or as a single object. For simplicity reasons, we have chosen the 
latter and to abstain from representing any properties (amounts, state of  
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a) Original workflow: 

 
b) Change request: 

Replace ground beef by spelt-grain 
PROBLEM PART 

 
 

SOLUTION PART 
c) Adaptation steps: 

d) Adapted workflow: 

Fig. 2: Adaptation case on the sample cooking recipe from Fig. 1.  
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preparation) at the moment. In the future, this approach can be improved by 
an extended representation.   

(3) Data links: Preparation tasks consume ingredients and produce transformed 
ingredients or aggregates of ingredients. Data links connect data objects with 
tasks. In general workflows, the data objects can play the role of input or 
output data for the tasks. A complete model would include an input 
connection between a data object and every task using it as an input and an 
output connection for every product resulting from a task. Data objects for 
aggregated objects (e.g. a document collection made from two different 
forms and a copy of a certificate, or a sauce made from onions and tomatoes) 
would be created by the task that aggregates the objects. However, textual 
cooking instructions tend to be underspecified due to the human principle of 
economy in language. Our analysis of the CCC recipe base has shown that 
the data links for the input of ingredients are more frequently described than 
for the outputs. Transformed ingredients and aggregates occur very seldom 
in the instructing texts. Hence, we consider inputs only at their first 
occurrence, except for those ingredients that occur in multiple roles as 
described above.  

3 Adaptation cases for cooking workflows 

An adaptation case represents the knowledge from a previous adaptation episode of a 
workflow. We refer to our previous work [1] for a discussion of related work. Our 
case representation consists of a problem and a solution part as follows: The problem 
part contains a semantic description of the change request (specifies a desire to 
modify the recipe, e.g. to replace ground beef by spelt-grain (an ancient grain 
becoming very popular again) to reduce the fat content) and the original workflow 
prior to the adaptation. The solution part contains the adapted workflow and the 
description of the adaptation steps that have been executed to transform the original 
workflow into the adapted workflow (added and deleted workflow elements, e.g. 
delete the ground beef with its data links and add new data objects for spelt-grain and 
stock plus the preparation steps for preparing them and the required data links). Fig. 2 
shows a sample adaptation case by which baked spaghetti have been made according 
to the original recipe given in Fig. 2 a) but with spelt-grain instead of ground beef. 
Fig. 2 d) shows the adapted workflow: The spelt-grain has to be cooked in stock 
before it can be added. Aggregates and preparation states are omitted in the current 
representation. A complete model would include an aggregated object for “cooked 
spelt-grain” with an output data link from the task “cook” and an input data link to the 
task “add”.  

As in our previous work [1], the adaptation steps are organized within an add 
and a delete list. In extension of the previous work, an add or delete step may refer to 
a workflow element, a data object or a data link. The add and delete lists organize the 
add and delete steps in the form of chains. A chain encapsulates a set of adaptation 
steps on connected workflow elements, data objects, and data links. A chain is 
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intended to be either fully applied or not applied at all while reusing the adaptation 
case. Furthermore, each chain records a pair of anchors. A pre anchor is the 
workflow element or data object (in the original workflow) after which the add or 
delete steps from the chain have been applied. A special ‘null’ element is used as 
anchor in case an appropriate data or workflow element is not available, for instance 
if a data object is newly created or deleted. A post anchor is the workflow element 
from the original workflow following the last element of the chain. We assume that 
data objects do not play the role of a post anchor at the moment. This might change in 
the future in case output data links will be included. Hence, the pre anchor describes 
the position after which the adaptation starts and the post anchor describes the first 
position in the original workflow that is not affected by the adaptation described in 
the chain. Fig. 2 c) illustrates this by sample add and delete lists. We have decided to 
model very fine granular chains in order to apply as much of the adaptation steps as 
possible. Another modeling strategy would be to maximize the chains, for instance to 
combine the add chains 1, 2, 3, 4, and 6 to one chain with one anchor pair. This would 
reduce the effort for the anchor matching at the cost of a higher modeling effort to 
revise the workflow. 

4 Applying adaptation cases to new situations 

We now focus on the retrieve and reuse phase of the CBR cycle [5]. The revise and 
retain phases are not yet considered to be automated. The retrieval method for 
workflow adaptation cases that may be reused for the adaptation of new cooking 
workflows is also not within the scope of this paper. We refer to [1] for a discussion 
of similarity measures that come into consideration for the retrieve phase. Fig. 3 
depicts a sample query for which the adaptation case shown in Fig. 2 would be 
applicable. 

The reuse phase has to solve two main tasks: First to determine the locations 
where the adaptation steps from the retrieved adaptation case should be applied to the 
target workflow and, second, to execute these adaptation steps. The change locations 
in the target workflow are determined by mapping the anchors from the retrieved 
case. The composite anchor mapping method described in our previous work [1] is 
extended in order to consider the data flow in addition. The mapping method consists 
of two steps, which we briefly sketch below:  

(1) Valid candidate positions for anchors are chosen within the set of workflow 
elements and data objects of the target workflow. A data object anchor can 
be mapped to the position of a data object in the target workflow only if the 
data objects are sufficiently similar (above a validity threshold for data 
objects). Workflow element anchors can be mapped only to similar 
workflow element positions analogously (above a validity threshold for 
workflow elements). Similarity functions for data objects and workflow 
elements will be discussed below. The valid candidate positions are  
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a) Original workflow: 

b) Change request: 

Replace ground beef by spelt-grain 

Fig. 3: Sample query to adapt a recipe for a beef noodle casserole. 

Fig. 4: Adaptation result (optimal solution, constructed by hand). 

Fig. 5: Adaptation result (actually generated solution, some locations for changes 
could not be determined). 
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described by a set of triples [wfl_elretrieved, wfl_eltarget_wfl, simwfl_el(wfl_elretrieved, 
wfl_eltarget_wfl)] and [data_objretrieved, data_objtarget_wfl,  
simdata_obj(data_objretrieved, data_objtarget_wfl)] whose similarity values are 
higher than the specified validity thresholds. 

(2) The best matching positions from the set of valid candidate positions are 
selected to construct the anchor mapping. Pairs of workflow element anchors 
(pre and post anchor) have to preserve their order in the target workflow 
according to a precedence relation of workflow elements that is induced by 
the control flow. Additionally, the mapped positions of pairs of workflow 
element anchors must be at direct neighbors according to the same 
precedence relation in case they belong to a chain from the add list while 
they must not be direct neighbors in case they belong to a chain from the 
delete list. The mapping algorithm employs a hill climbing search to find 
mapping positions with an optimal overall anchor similarity. 

The application of the adaptation chains is different for add and delete operations. 
The add operations are executed immediately for all chains of which at least one 
anchor has been mapped successfully. Chains from the delete list are applied only if a 
complete mapping of their particular delete steps to workflow and data flow elements 
can be constructed. The mapping algorithm for delete steps considers pairs of 
elements (workflow elements, data objects and data links) from the retrieved and the 
target workflow whose similarity value is above a delete threshold. Additionally, the 
elements to be deleted must be organized in exactly the same structural order (control 
flow or data flow) as those in the chain. Thus, in order to be applied, the delete 
operations have to fulfill stronger constraints than the add operations. 

The similarity measures for workflow elements (simwfl_el), data objects (simdata_obj) 
and data links (simdata_links) that are required during the reuse phase are specified as 
follows:  

simwfl_el distinguishes tasks from control flow elements. In case of tasks it 
aggregates the similarity measure for the sets of input parameters (siminputs), the 
similarity measure for the task name (simtask_name), and the similarity of the task 
description (simtask_descr) by a weighted sum in simtask. The three constituent measures 
of simtask are specified based on the Levenshtein distance. The Levenshtein distance is 
purely syntactic and measures the minimum number of edit operations on the 
character level that is required to transform one string into another. simtask_name and 
simtask_descr employ the Levenshtein distance directly on the task name and on the 
textual task description. siminputs matches the input parameters (data links) based on 
the Levenshtein distance of the names of their corresponding data objects by means of 
a hill climbing search. simcontrol_flow_el measures the similarity of the set of tasks 
included in the block in case of a block-building control flow element like AND-split 
or AND-join (again, a hill climbing search is applied to map the two sets of tasks to 
each other). simdata_obj employs the Levensthein distance on the names of the data 
objects as the data objects do not yet store any properties like amounts or preparation 
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states. If the special data object ‘null’ is one of the arguments of simdata_obj, the value 
is set to 0 and to 1 if both arguments are ‘null’. simdata_links aggregates the local 
similarity measures simdata_obj and simwfl_el. 

Figures 4 and 5 illustrate that the chosen similarity measures require further 
improvement because the automatically generated solution in Fig. 5 could not transfer 
all adaptation steps from the case described in Fig. 2 c). For instance, the data links 
from spelt-grain to mix is missing because the syntactic similarity measure was not 
able to map the anchor at “add” in the retrieved workflow on “mix” in the target 
workflow. Also, the task names within the AND block of the retrieved workflow 
{“saute”, “add”, “simmer”, “place in baking dish”, “mix”} have not been similar 
enough to the task names within the AND block of the target workflow {“brown”, 
“mix”, “place in casserole”, “combine”} so that the post anchor for adding the task 
“cook” could not be positioned in the target workflow. Semantic similarity measures, 
for instance based on a task ontology, would probably provide better results. 

5 Experimental evaluation and discussion 

The system is implemented in a demo version. As a starting point for a first 
evaluation we use a reduced recipe base containing 39 pasta recipes from in the CCC 
recipe base. Based on seven recipes taken from this pasta excerpt 30 different change 
requests were constructed by using our own experiences in cooking. Typical change 
requests replace one ingredient by another or avoid a certain ingredient. Thereby, an 
experimental case base of 30 adaptation cases (see Chapter 4 for the case structure) 
was created by hand. Most of the included adaptation steps concern the data objects 
and the data links, where some adaptations involve adding or deleting workflow 
elements (preparation steps). We conducted two experiments described below. 

The aim of the first experiment was to evaluate whether the proposed adaptation 
method is able to correctly reconstruct the adapted workflows from the adaptation 
steps described in the 30 adaptation cases. This requires finding the proper anchor 
positions, which should not be affected by the similarity measures chosen for retrieval 
purposes as only identical matches are required for this self-reconstruction. In line 
with our hypothesis, all adapted workflows could be reconstructed correctly.  

In the second experiment the adaptation cases were applied to new recipes. For this 
purpose, 14 test queries have been created by arbitrarily selecting 14 different change 
requests from the adaptation case base of the first experiment and combining them 
with other cooking workflows. We selected recipes from the pasta recipe base for that 
the change requests still leads to tasteful new recipes. For instance, a change request 
on replacing ground beef by spelt-grain applies only to a recipe that contains ground 
beef as an ingredient and that would still be tasty after this replacement. 
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Fig. 6: Results of applying adaptation cases to new recipes in Experiment 2. 

As the retrieval is not part of this evaluation the best-fitting adaptation case is 
chosen for each query by hand. The resulting adapted workflow is compared to a 
solution obtained by manually transferring the respective adaptation steps to the 
workflow (see Fig. 6). Altogether, half of the test cases were adapted totally correctly. 
In the remaining cases, at least the data objects could be added correctly, while the 
correctness of added data links is only approximately 50%. Also only about 60% of 
the possible delete operations of data links are applied. This is a clear indication that 
the currently used syntactic similarity measure is insufficient for our purposes. 
Further experiments with improved similarity measures using the CookingCake’s 
ingredient ontology [2] as well as a task ontology (for preparation steps) will be 
necessary. Furthermore, the data flow could be extended by further data objects than 
ingredients like aggregated ingredients or utensils. However, the first results are quite 
promising and confirm that our idea of using the workflow paradigm to automatically 
adapt cooking instructions is feasible in principle. 
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Abstract. The third version of CookIIS, our candidate for the third
Computer Cooking Contest (CCC) is focusing on pre-processing and en-
riching the source data for a better performance of the 4R processes.
Our goal for this year is to improve the retrieval process by considering
the ingredients’ weights, strengthen the reuse phase by enhancing the
knowledge model and further developing the adaptation methods, intro-
ducing light revision approaches of retrieval results. This paper presents
the improvement of CookIIS in preparation for the CCC-2010.

1 Introduction

CookIIS is a Case-Based Reasoning system realized in the cooking domain for
providing recipes according to given user preferences. It is a research prototype
that deals with a given standardized case base of 1,484 recipes. Each recipe
consists of a title, a list of ingredients and the preparation advices. We represent
each recipe as one case. In terms of CBR, the list of ingredients serve as problem
description and the recipe’s title as well as the preparation is the according
solution. Nevertheless, usually only a subset of ingredients is given by a user and
it is CookIIS’s task to find the most appropriate recipe to the given desires.

The CCC takes place the third time and the challenges evolved in the com-
parison to the two competitions. There are four challenges this year1:

The Main Challenge focuses on retrieving recipes according to given con-
strains, like the ingredients, the type of ingredients, the type of dish, the prove-
nance of a dish as well as some dietary practices. A possible question to be
answered in this challenge might be ”I would like to cook a Mediterranean fish
dish as starter, but please avoid lemon and other citrus fruits”. Since all com-
petitors work with the same case base, the requests do not have a perfect match
in the case base and it is the system’s task to modify the recipes in order to
match best.

The Adaptation Challenge this year focuses on a specific adaptation task
that everybody might know from personal experiences. Once you have found a
great sounding recipe and start cooking you figure out that you do not have all

1 http://vm.liris.cnrs.fr/ccc2010/doku.php?id=rules
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the required ingredients available. This year, the participating systems should
be able to consider this information and help the amateur chef to improvise and
resolve problems like ”I have retrieved the Banana Butterfinger Cake recipe, but
I have no sour cream or vanilla. What should I do?”.

A novelty of this years CCC is the Open Challenge where each team can
show their creativity and moreover present what technology today can do. We
decided to take numeric quantities for the retrieval process into account as well
as we further developed the creation of menus since this has been a challenge in
the last two years and we still have some ideas on this topic.

Another new aspect of this year’s CCC is the Student Challenge that fea-
tures student teams to enter the contest and compete with other student teams.
This year, our team mainly consists of PhD students and research assistants, so
CookIIS will not compete in this challenge. Like the other years, CookIIS is a
web-based application and is available and can be tested by visiting the CookIIS
web page at the University of Hildesheim’s IIS lab2.

The remaining paper is structured as follows: Section 2 introduces the archi-
tecture of CookIIS featuring the underlying knowledge model, retrieval processes,
similarity measures and workflows of the system. The following three sections
focus on the novelty of this year’s system. Section 3 describes the pre-processing
that enables the consideration of the ingredients’ amounts; section 4 introduces
the adaptation processes including the already existing ones and its improve-
ments. Section 5 shows how user feedback can influence to retrieved recipes.
The experimental results including the system’s responses for a set of training
queries is presented in section 6, before the final section sums up the paper and
gives an outlook on future work.

2 Architecture of CookIIS

Before we explain the CBR processes implemented in CookIIS, we will first
present in this section how the system is built. CookIIS is built using an industrial
strength tool called empolis Information Access Suite (e:IAS). The architecture
of our system therefore leans on the architecture of e:IAS, which can be seen in
Figure 1.

The bottom of the architecture shows the data sources. In CookIIS these are
the recipes given by the CCC organizers that we have split up so each recipe is
in one XML file and further preprocessed as described in Section 3. e:IAS then
uses our defined knowledge model and similarity measures in order to process
the user’s queries. The retrieval process is defined in the search engine and it
can be supported/assisted by rules and a text miner. We will now give a short
explanation of some parts of the architecture.

2 http://cookiis2010.iis.uni-hildesheim.de/ccc
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Fig. 1. The architecture of e:IAS used for CookIIS

2.1 Knowledge Model

Our knowledge model contains different elements. The main elements are ingre-
dients (about 1000 in our model) which are organized in the following eleven
classes:

Basic Ingredients Fish Meat Vegetable
Supplement Fruit Drinks Milk
Intermediate Ingredients Oil and Fat Spice and Herb

Each ingredient is modeled as a concept with possible synonyms in English
and German. The concepts are mostly organized as taxonomies and each class
can contain several taxonomies. One can for example organize meat by part
(fillet, haunch) or by kind (pork, beef).

Furthermore, our model contains several rules which are used for the com-
putation of meta information like:

– the type of meal,
– the type of cuisine,
– the consideration of some diets (for example low cholesterol).

Further details on the knowledge model as well as the computation of meta
information can be found in [1, 2].

2.2 Similarity Measures

Within CookIIS, similarities between recipes (or between a query and a recipe)
are computed in two steps. First, a local similarity measure is defined for each
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class of the knowledge model in order to compare the different types of ingre-
dients. The underlying taxonomies give a strong basis for the computation of
the similarities between ingredients within a class. Here, adequate values are
given for the generalization and the specialization step so that the similarities
can be automatically computed. These values indicate the similarity between a
concept and a child or a parent. In addition to the taxonomy based similarity
measures, we also used table based similarity measures for some classes, because
the values computed with taxonomies do not always reflect the reality in our
opinion. The similarity between some pairs of elements is (manually) entered
in the corresponding matrix. When several local similarity measures are defined
within a class, the highest similarity value is always used.

In the second step, we use a global similarity measure to compute the similar-
ity between cases (i.e. the recipes). It is a weighted sum of the local similarities
of the attributes in the cases, following the local-global principle for similarity
modeling [3]. The global similarity measure do not only consider the ingredients
of the recipes, but also other attributes like the computed meta information
mentioned in the previous Section.

2.3 Indexing and Searching

Indexing and Searching recipes in CookIIS is done using workflow-like constructs,
called pipelines in e:IAS. The pipelines consist of the so-called pipelets which
represent the different steps (actions) for each operation.

Fig. 2. The index and search pipeline for CookIIS

The Index Pipeline The aim of the index pipeline is to create an index rep-
resenting the case base (i.e., insert the recipes in the case base). This is done by
performing the following actions (as depicted on the left hand side of Figure 2):
First a connection to the data sources has to be established before an analysis
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of the data and the extraction of the concepts by the text miner is carried out.
The third pipelet computes of meta information based completion rules and the
final pipelet inserts the cases in the retrieval structure.

The Search Pipeline The aim of the search pipeline is to retrieve and adapt
the recipes from the case base according to a query. The actions performed
are the following (right hand side on Figure 2): First, the query is analyzed and
concepts are extracted using the text miner. The following pipelet computes meta
information based on the input given by the query. The third pipelet executes
the retrieval of the most similar cases from the case base with the aforementioned
similarity measure. The final piplet carries out the adaptation of the retrieved
cases (this is done in many steps as explained in Section 4).

3 Recipe Pre-Processing

The information given in recipes still has potential to improve the CookIIS sys-
tem. There are different ways of using the case base obtaining knowledge that
can be provided in within the knowledge containers. This point has also been
discussed by the Taable team [4] as well as the JaDaCook team [5]. For example,
we have applied association rules aiming at adaptation knowledge, but caused
by the high variation we only received rules containing very obvious associations,
like eggs and sugar usually come with flour. We think that a higher amount of
recipes is required for acquiring more special association rules.

The global similarity measure of the last versions of CookIIS only takes
the ingredient without the according amount into account. Hence, recipes that
contain many ingredients are retrieved more often because the probability that
one of the containing ingredients was requested is higher. However, users that are
looking for recipes usually name those ingredients that should be characteristic
for the whole dish: when looking for a recipe with carrots you might not be
satisfied with a casserole that includes half of a carrot. Therefore, we are taking
the amounts of the ingredients into account.

3.1 Pre-processing Process

We decided to enrich the information given in the case base including an at-
tribute that marks the major ingredients of a recipe. Since the amounts are
given in various measures, we built up a dictionary that normalizes each amount
to milligram. Further, we used the normalized amount information for improving
the retrieval aiming at retrieving recipes that contain the requested ingredient
as a major ingredient. Algorithm 1 shows how the major ingredients of a recipe
are determined.

Given the normalized amount of each ingredient, we first determine the me-
dian of the amounts occurring in the recipe. The median splits the ingredients
into major and minor ingredients of a recipe. In the third step we mark all major
ingredients by adding the attribute ”major” to the ingredients tag. In the last

213



Algorithm 1 Marking Major Ingredients

1: Order ingredients descending according to its amounts of one recipe
2: Calculate the median over all amounts of one recipe
3: Mark all ingredients with amount > median as major
4: Mark the position of major ingredients according to their amounts

step we determine the order (based on the ingredients’ amounts) of the major in-
gredients and assign it to the ingredients. This results in an enhanced ingredient
tag in the xml source file, like the following:

<IN amnt=’425243’ major=’5’>1 cn (15 oz ) tomato sauce</IN>

Obviously this information can be used in various ways. However, currently
we only use it within the retrieval process. For that purpose, we doubled the
weight of major ingredients within the global similarity calculation. In the sim-
ilarity assignment, we have an attribute that represents a set of major ingredi-
ents, so each major ingredient that has been requested gets the double weight.
As a result, the retrieved recipes containing the desired ingredients are more
emphasized. We are aware that for instance spices and herbs, which have a huge
influence on a recipe, but only occur in small amounts, are not considered in
this approach. However, in the CookIIS knowledge model and within the global
similarity calculation spices and herbs are treated separately.

4 Adaptation

The given recipe base contains 1484 recipes, which are not enough recipes for
the whole variety of desired as well as unwanted ingredients. Therefore, an adap-
tation of the queried recipes to the users needs is necessary.

This section describes three different kind of adaptations we use in CookIIS.
Two approaches are known from former versions of CookIIS: the model-based
and the community-based adaptation. Furthermore, we implemented an in-place
adaptation and an adaptation approach regarding user feedback.

All of our adaptation approaches share some assumptions and have a certain
generality in the used methods with the aim to be able to transfer these methods
to other domains. First, we denote ingredients that are excluded by a diet or
explicitly by the user as forbidden ingredients. If a forbidden ingredient occurs
in a retrieved recipe we consider it as critical (for this recipe) because it has to
be omitted or replaced. Second, we restrict the replacements to the same class
as the replaced ingredient to assure certain a level of applicability.

4.1 Integration of the three Approaches

All three adaptation approaches are performed sequentially and each of them
uses the results of the preceding one. First, the community-based adaptation is
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Fig. 3. Replacement of forbidden concepts (crossed out) with new replacements (ital-
icised) in the ingredient list and preparation: sunflower oil replaces olive oil in the
ingredient list and only oil in the preparation because olive oil does not exist there.

executed. For those forbidden ingredients where no community-based replace-
ments can be offered, the standard model-based adaptation is carried out after-
wards. Both approaches only add adaptation advice in an extra text attribute
of the retrieved recipes but leave all attributes for ingredients and preparation
unchanged. In contrast, the third approach changes the ingredient list and prepa-
ration text visible according to the advice of both preceding approaches.

The integration of the all approaches is realised with three subsequent pipelets
within the the Search Pipeline used for retrieval and reuse. A user-defined pipelet
for the community adaptation is inserted into this pipeline which is followed by
the a standard AdaptationRulesPipelet implementing the model-based adap-
tation. The in-place adaptation as third approach is realised as another user-
defined pipelet and integrated after the AdaptationRulesPipelet in the same
pipeline. All approaches are described in the next sections.
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4.2 Model-based and Community-Based Adaptation

For the community-based adaptation we collect lots of adaptation advices from
comments of recipes within a large cooking community using the knowledge
model of CookIIS. With the aim of this model we classify each ingredient of the
comment as OLD (if it exits in the recipe already) or NEW (if it exists only in
the comment). Afterwards we interpret the co-occurrence of a OLD and a NEW
ingredient belonging to the same ingredient class as an adaptation advice and
sum them up over all 70.000 recipes. This results in 2967 adaptation suggestions
for 410 different ingredients. If there exist a suggestion for a forbidden ingredient,
the two most frequent adaptations are presented. A more detailed description
and evaluation of this approach is given in [6].

In contrast to the community-based adaptation, which delivers adaptation
suggestions for 40% of the ingredients, the model-based adaptation works for all
concepts, based on the similarity between ingredients. In general, it determines
similar ingredients to the forbidden ingredients and suggest them as replacement.
The similarity between two ingredients is based on the knowledge model that
are applied along with thresholds to determine nephew and sibling concepts as
replacements [2].

4.3 In-place Adaptation

Both aforementioned approaches only add adaptation advices in an extra text
attribute, but did not change the original attributes for ingredients and prepa-
ration which makes it harder to take the ingredient list as shopping list or work
through the preparation step by step. Therefore we add an additional adapta-
tion component which executes these adaptation advices directly on the original
recipe. By investigating the preparation instructions we detect the following dif-
ficulties that prevent using a simple string matching: ingredients are mentioned
in their (irregular) plural form, referred in an abbreviated form or more general
term or described by their synonyms. Additionally, the user should recognise in
the modified recipe what the changes are, especially if an adaptation suggestion
is not good as expected by the user. Therefore, the in-place adaptation has to
tackle two problems: Simple string matching for the replacement often does not
succeed and the original ingredient should be visible if one of the replacement
suggestions is not accepted by the user.

The replaced and the new text are marked up with HTML tags in order to
make changes on the original text of the case visible. Hence, the user can notice
the original ingredient. To identify concepts that should be replaced in the given
text four consecutive possibilities are tested until one is successful:

1. find the concept name in the text

(a) search and replace plural form (considering -es, -ies, -ves and -oes) and
(b) search and replace singular form,

2. consider common synonyms belonging to certain concepts,
3. if it is a 2-word-concept, replace only the last word, otherwise
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4. look for the class name of this concept and replace if exists.

Figure 3 shows an example where ”black beans” (1.b) are replaced by ”beans”
(1.a). In the preparation only ”oil” instead of forbidden ”peanut oil” (3.) occurred
and is replaced by ”colza oil” (from Community). Furthermore, ”broth” in the
preparation stands for ”chicken stock” (2.) and is replaced by ”meat extract”.

5 Revise through User Interaction

During a small evaluation we investigated that users often discover that they
either dislike or do not have certain ingredients available that are required for
preparing the desired recipe. To make this more faster and comfortable the user
can now click on an icon before each ingredient to exclude this ingredient instead
of adding the text by hand into the exclude text box in the GUI. At start, each
ingredient has a green check mark, which is changed into a red cross if the
user clicks on it to exclude this ingredient. In a subsequent search request these
ingredients where excluded as well. According to the fact that in our current
implementation the amount of forbidden ingredients in an recipe did not affect
the similarity of a recipe to a query, the same recipes would be retrieved again,
but with additional adaptation suggestions. Of course, the exclusion can be
undone by clicking again on the icons. The complete functionality is realised
with Javascript called by the JSP code of website. Figure 4 shows a scenario
where the user has excluded the ingredients minced ginger an Sesame seeds
after the first retrieval.

Fig. 4. Feedback: The user can easily exclude additional ingredients by clicking on the
green icon in front of each ingredient

6 Experimental Results

As stated earlier, many features of CookIIS have been improved (from the pre-
vious versions), like for example, the computation of meta information (type
of meal, type of cuisine), the adaptation of recipes (model based, community
based and in-place). We will concentrate in this Section on two new features
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of CookIIS, namely the impact of the preprocessing of the data source and the
revise step in CookIIS.

We will consider for this purpose the query ”I want a dessert with straw-
berries”. CookIIS returns many recipes which are 100% similar to the query
because they contain strawberries and were tagged as desserts. These recipes
are automatically ranked according to the amount of strawberries contained (in
comparison to the remaining ingredients). CookIIS thus ranks the recipe ”My
Strawberry Pie” (which contains few ingredients) higher than the ”Summer-
time Strawberry Gelatin Salad” which contains much more ingredients (because
strawberry is this case less important). Furthermore, if an ingredient is not avail-
able, the user can explicitely select the failing or unwanted ingredients as can be
seen in Figure 4. Gelatin for example in the ”Summertime Strawberry Gelatin
Salad” is then replaced through agar-agar.

7 Conclusion

The paper presents new developments of the CookIIS system - mainly the pre-
processing for taking ingredients’ amounts into account, applying adaptation
knowledge to recipes and replacing the modified ingredients within the recipe as
well as enabling user interaction for interactive search refining.

However, we have addressed the first three of the four CBR processes and
since the case base is standardized and static, the only way for retention is acquir-
ing and updating modification knowledge, similarity and vocabulary knowledge.

Future work will be focused on including the amount information, now avail-
able for each recipe, in the adaptation process as well. This also affects the
substitution of ingredients or a modification that leaves out certain ingredients
instead of looking for a substitute.
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Abstract. Without accurately representing the knowledge of cooking, a 

computer would never react as if it were a professional chef. Accumulating the 

knowledge into a computer presentation, maintaining the accuracy of the 
presentation, and offering practically valuable advice face many challenges in 

the current technologies. Froglingo is a computer system that uniformly 

represents both business data and business logic as high-order functions. It has 

a set of built-in operators stemming from the relationships among the high-

order functions. As a case study in this paper, we use Frolingo to approximate 

the knowledge of cooking and to approximate the reasoning on the knowledge.  

Keywords: High-order Function, Ordering Relation, Query, Similarity, 

Adaptation, Approximation. 

1 Introduction 

To be a valuable recipe advisor, a system shall have a data presentation semantically 

approximating the knowledge of cooking including adaptation processes. In other 

words, the system allows users to accumulate data that approaches closely to the 

knowledge of cooking, and thereafter to accurately offer advice reflecting the 

managed data. 

To implement such a system, the authors suggest a data model that generally and 

therefore uniformly represents knowledge. Only with the generality, we have a chance 

to unlimitedly accumulate data that approaches the knowledge more closely; and the 

mission would not be hindered by any pre-mature assumptions of data presentation. 

Modeling knowledge in high-order functions offers an opportunity.  A collection 

of high-order functions embed rich relationships among them [6]. In addition, a class 

of total recursive functions, in which high-order functions are the sole members, is the 

upper bound of what a computer can do practically. (We attempt to exclude those 

partial recursive functions which don’t terminate on some inputs and therefore are not 

desired in software practice [8 and 11]). 

In this paper, we use Frolingo to approximate the knowledge of cooking. 

Froglingo has a data model, called the EP (Enterprise-Participant) data model. The EP 

data model is equivalent to a class of total recursive functions [9]. Therefore it 

mathematically defines the entire semantic space for software applications. The 

variables and the sequential terms in Froglingo, beyond the EP data model, allow one 

to construct business logic, i.e., infinite data [10]. The addition of the new concepts 
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doesn’t alter the semantic space defined by the EP data model. Instead, it allows one 

to stuff the infinite semantic space in finite expressions. As a result, the relationships 

among high-order functions are preserved and thereafter the built-in operators 

introduced by the EP data model can be equally applicable to the data expressed in 

variables [6]. The unified semantic space for both business data and business logic 

makes the architecture of Froglingo a monolith [7]. Froglingo reaches the greatest 

possible generality in uniformly representing both business data and business logic 

including knowledge.  

The system, “Chef Froglingo”, implemented for the 2010 Computer Cooking 

Contest (CCC), has the following objectives: 1) A consistent method of representing 

the knowledge of cooking including adaptation; 2) The ability of accepting a format 

of the inputs producible by the customers who don’t know the knowledge 

representation of system; 3) A reasonable precision of answering customer queries as 

if it were a professional chef. 

In Section 2, we briefly outline the main concepts of Froglingo. For a detailed 

introduction of Froglingo syntax, readers may reference the user’s guide [10]. In 

Sections 3, we give a Froglingo presentation of the primary cooking concepts such as 

ingredient, dish origin, recipe, and menu. At the same time, we discuss our strategy of 

parsing the XML document file, the Recipe Book from CCC, containing a set of 

recipes. (A sample XML block for a recipe is attached in Appendix A for reference.) 

In Section 4, we describe how customer queries are expressed and answered by a 

Froglingo built-in operator. In Section 5, we describe the implementation of an 

adaptation task, and therefore demonstrate that the system can approach the accuracy 

of a professional chef in responses to future events as close as the volume of the data 

approximating the knowledge of cooking is allowed. In Section 6, we make a few 

remarks about system architecture, related work and future work.  

2   Froglingo 

In traditional data models, an entity is either dependent on one and only one other 

entity, or independent from the rest of the world. The functional dependency in 

relational data model and the child-parent relationships in hierarchical data model are 

the typical examples. This restriction, however, doesn’t reflect the complexities of the 

real world that are manageable by using a computer. The EP (Enterprise-Participant) 

data model suggests that if an entity is dependent on others, it precisely depends on 

two other entities. Drawing the terminologies from the structure of an organization or 

a party, one depended entity was called enterprise (such as organization and party), 

the other called participant (such as employee and party participant), and the 

dependent entity called participation. An enterprise consists of multiple participations. 

Determined by its enterprise and its participant, a participation yields a value, and this 

value in turn is another enterprise. 

Specifically, a Froglingo database is a set of assignments, an assignment has an 

assignee and possibly an assigner, and both assignee and assigner are terms. The 

concept of term is essential. A term is a constant, an identifier, a variable, or a pair of 

parenthesized terms. A few sample terms are 3.14, $x, “A String”, mike, (mike 
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salary), and ((a b) (c d)). A sample database is: {mike salary = 3.14; 
fac 0 = 1; fac $n = ($n * (fac ($n – 1))); ((a b) (c d)) = 

something; x y z;}. 

A term is called a sub-term of itself. When a term consists of a pair of two other 

terms, it is called an application, where the first element is the function, and the 

second the argument. Given a sub-term of a term, recursively, an inner sub-term of 

the sub-term is also a sub-term of the given term. For example, a, c, (c d), 

and ((a b) (c d)) are sub-terms of the term ((a b) (c d)). If the right 

sub-term of an application is not another application, the parentheses surrounding the 

application don't have to be written. For example, ((a b) (c d)) is equivalent to 

a b (c d). In this article, we alternatively use the phrase “plus-term” in the place 

of the function of an application to avoid any confusion with the word “function” in 

generic term. 

In terms of ordering relations, we call an application neutrally depends on a sub-

terms, i.e., either its function, its argument, or any inner sub-term, in contrast to the 

fact that the function and the argument play slightly different roles in determining the 

application. For example, a b (c d) neutrally depends on c. Because of 

assignment, two or more terms can be derived to be equal in a given database. Given 

an application and its equal peers in a database, we say that the application or any one 

of its peers is functionally derivable from the function of the application, 

argumentatively derivable from the argument, and neutrally derivable from a sub-

term of the application. Given the sample database discussed earlier, for example, 

both  a b (c d) and something are neutrally derivable from c. 

3   Knowledge of Cooking 

During the design of the knowledge representation, we first consider of arranging the 

knowledge of cooking in certain orders that are available among high-order functions. 

The aim is to leverage Froglingo built-in operators stemming from the orders in 

support of the queries expressible from customers. Secondly, we consider the 

challenges in retrieving data from the given Recipe Book, a loosely structured text 

file. In this section, we introduce a Froglingo presentation of preliminary concepts in 

the knowledge of cooking. The query and adaptation processes are discussed 

separately in Sections 4 and 5.  

3.1   Ingredient 

An ingredient may have an ingredient type, and an ingredient type may have its parent 

type. Sometimes, an ingredient may belong to multiple types. For example, chicken 

wing has the type chicken, and chicken has the type meat (or poultry precisely). 

Chicken also belongs to the type broth for the ingredient chicken broth. Here are a 

few examples in Froglingo terms: 

221



meat beef corned; 

meat beef (short loin); 

meat chicken; 

vegetable artichoke; 

vegetable (Chinese artichoke); 

soda (baking powder); 

broth (meat chicken); 

broth vegetable; 

 To collect all the ingredients, we first inventory a list of preliminary ingredients such 

as meat, vegetable, nut, alcohol, grain, sauce, herb, and spice. To obtain granular 

ingredients appeared in Recipe Book, e.g., cilantro and all-purpose flour, we collect 

all the possible names from an ingredient dictionary [3], and classify each of them as 

one of the preliminary ingredients by parsing the body of the ingredient dictionary.  

3.2   Preparation Method and Step 

Preparation method is an important piece of information in a recipe. It may determine 

the type of dish. Taking it into consideration in our data presentation helps the case 

study more closely modeling the interactions between customers and wait staffs. Like 

ingredients, it participates in preparation steps. For example: bake, grill, 

steam, and stir fry are preparation methods. 

A recipe normally involves multiple preparation methods and therefore a 

sequence of preparation steps, and each step may have its sub steps. To avoid the 

difficulty of parsing the multiple steps in the Recipe Book, we identify one 

preparation method for a recipe. If there are multiple methods appeared between a 

preparation block (i.e., a pair of <PR> and </PR>), we choose only one by pre-

defining weights for all the methods. For example, if both grill and marinate 

appear in a recipe preparation block, we will choose grill because grill is 

assigned with a heavier weight. 

The cooking temperatures and the cooking time periods of preparation methods 

are the factors considered when the weights are assigned. 

3.3   Origin 

Many ingredients and dishes originate from certain cultures. For example, curry is 

generally regarded as an Indian ingredient, wok as an Asian equipment, and a Fajita 

beef as a Mexican dish. Therefore, a recipe may have multiple origins. To support this 

feature, we inventory a list of food origins. Here are a few sample terms inventoried 

in Froglingo terms: 
Asian Chinese Szechuan; 

French Dijon; 

Irish Kilkenny; 

The complete list of origins is to be identified through a world atlas.  

When the ingredient dictionary is parsed (as discussed in Section 3.1), and when 

an XML block between <RECIPE> and </RECIPE> is parsed, we search the key 
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words from the origin list, and tag ingredients and preparation steps if a key word is 

found.  

3.4   Dish Type 

The food described by a recipe can be served as an appetizer, a main course, or a 

dessert. It also can be simultaneously served for two or more dish moments. Instead 

of explicitly labeling them for the purpose of determining dish moments, we derive 

dish moments according to the ingredients and cooking methods of recipes. For 

example, cafe, tea, sugar, chocolate, and refrigerator most likely imply dessert; and 

soup, salad, fry, and the rest of non-sweet foods can imply appetizer. 

Appetizers and desserts are normally further classified to different types, such as 

cake, cookie, ice cream, and pizza. We observe that recipe titles sometimes embed 

this information. The Chef Froglingo uses the embedded information to identify dish 

types. 

We also allow customers to express key words appeared in the title of recipes, 

e.g., Mom, and Carne Asada. It facilitates customers to make requests easier. 

3.5   Synonym 

Ingredients may have multiple names. We identify them when the ingredient 

dictionary is processed (discussed in Section 3.1). Here are a few sample pairs of 

equivalent names in Froglingo assignments: 
lichee = lichi;  

chile = hot pepper;  

3.6   Recipe 

We discussed many concepts in the earlier sub-sections from which our simplified 

version of the concept recipe is assembled. To Froglingo, however, all of them are 

indiscriminately stored as data, i.e., high-order functions. Here we give the database 

for a few sample recipes.  
(flour (all purpose)) sugar yeast salt milk egg bake  

 = world class waffle; 

(flour (all purpose)) sugar yeast salt shortening bake  

 = batter white bread; 

(meat chicken) cheese seasoning (sauce salsa) bake  

 = spicy parmesan chicken; 

mexican ingred34 = sauce salsa; 

Italian dish44 = spicy parmesan chicken; 

To better understand the knowledge representation that is arranged in orders among 

high-order functions, we provide a graphical view of the database. 

To support the queries from customers, we keep the text message from “Recipe 

Book” for each recipe. Here is an example: 
spicy parmesan chicken title = “Spicy Parmesan Chicken”; 

spicy parmesan chicken body  = “...”; (The texts in the XML block <PR>) 
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Here the terms title and body are the key words indicating that the text strings of 

the recipe title and body follow as assigners.  

bake

poultry

chicken

seasoning
sugar

cheese

flour
all

purpose

yeast

salt

shortening

milk

egg

sauce

salsa

mexican

ingred34

world

class

waffle

spicy

parmesan

chicken

batter

white

bread

italian

dish44

Legends:

application points up to function

application points to argument

assignee points to assinger

an application

 

3.7   Menu 

A term in Froglingo can be used to express a menu too. Here is a sample expression 

for a dinner:  
dinner (Potato Salad 2) (Spicy Parmesan Chicken) (Sorry Cake); 

However, enumerating all the possible dinner choices is not preferred. We choose to 

have variables for the set of dinners producible from dishes. The following sample 

expression is equivalent to a set of dinners including the one described earlier: 
dinner $s:[$s {=+ salad or $s {=+ soup] 

 $m: [$m {=+ chicken or $m {=+ marinate]   

 $d: [$m {=+ cake]; 

4   Query  

As readers might have realized, the Froglingo expressions for recipes, as the examples 

demonstrated in Section 3, embed all the relevant information including ingredients, 

preparation methods, and cultures. In addition, this information is arranged in certain 
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ordering relations, i.e., the dependent relations and pre-ordering relations. Given an 

entity, e.g., all-purpose flour, salt, bake, and Chinese, one can find all the dishes that 

include the entity by navigating the ordering relations. When a customer gives a list of 

entities, the same process is repeated for one entity. At the end, the remaining recipes 

are those satisfying the initial request. This process is done by the built-in operator 

(=, a pre-ordering relation in Froglingo (called neutrally derivable in this article). 

Here is a sample query expression retrieving the recipes that have all-purpose flour as 

an ingredient and that use the preparation method bake: 
select $dish title, $dish body where  

 $dish (= flour (all purpose) and  

 $dish (= bake and 

 $dish title != null; 

In the expression, we use the clause $dish title != null to only retrieve those 

terms representing recipes because not all the terms in the database have 

correspondences of recipes. 

It is clear that the recipes “World Class Waffles” and “Batter White Bread” will 

be retrieved for this query expression. 

To support negation, we simply use the negation operator available in Froglingo 

not. When the boolean expression not $dish (= egg is added into the select 

operation above, the query will only return the recipe “Batter White Bread”. 

The dietary practices of vegetarian, nut-free, and no alcohol are translated into the 

following expressions: 
not $dish (= meat; 

not $dish (= nut; 

not $dish (= alcohol; 

where all the meats have the ingredient type meat, all the nuts have the type nut, 

and all the alcohol beverages have the type alcohol.  

 
What we have done so far is eventually to support a user interface such that the 

customers who don’t know the system representation of recipes can easily express 

their requests, and the system can precisely process the requests. The resulting system 

allows users to enter a list of phrases or words delimited by a comma, and each phrase 
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or word can be preceded with the word “no” for negation. See a sample screenshot of 

the interface above. 

In the sample query string in the screenshot, the system doesn’t break the phrase 

“all-purpose flour” into individual words, but translate it to the Froglingo term 

flour (all purpose).  In other words, customers are required to be precise on 

the phrases representing ingredients, preparation methods (such as stir fry), and recipe 

titles if they want to be specific. If a customer is not sure about the exact spelling of a 

phrase, he or she should enter individual words divided by commas. Individual words 

lead to more recipes in return than phrases do.  

The same interface is equally applicable to dinners that have variables in their 

expressions. When customers enter a string: “dinner, no soup, chicken”, for example, 

the system will retrieve all the dinner choices, each of which will include a salad as 

the starter, a main dish with chicken, and an ice cream as the dessert.  

5   Adaptation 

If we view the knowledge of cooking discussed above as experience, or precisely 

historical events, the concept of adaptation in the field of Case-Based Reasoning 

refers to a systematic ability of proactively planning future events that may not repeat 

the past experience [5]. Adaptation may mean various systematic abilities. The one 

required in the 2010 CCC requests a system to response reasonably when a customer 

wants a specific recipe and certain ingredients for the recipe are not available. The 

reasonability may mean different things from time to time and from person to person. 

When there is not a grill available, for example, a recipe which requires fresh salmon 

and a grill may be desired to be adapted to a recipe with a broiler some times, and to a 

recipe of a Sushi at another occasion. 

For the 2010 CCC, what we choose as a reasonable response is to adapt some 

existing and similar recipes to replace those wanted but not available. Further, we rule 

that two applications in a Froglingo database are similar if they share the same 

function, i.e., the plus-term. This rule applies to all the cooking related entities 

including ingredients, preparation methods, preparation steps, and origins. Given the 

sample ingredients in Section 3.1, for example, meat beef corned and meat 

beef (short loin) are similar because they share the same plus-term meat 

beef. Similarly, the sample preparation steps (flour (all purpose)) sugar 

yeast salt milk in Section 6 is similar to (flour (all purpose)) sugar 

yeast salt shortening. 

Given a recipe and a set of excluded cooking entities, i.e., a set of entities that are 

required by the recipe but not available, we attempt to identify alternative recipe(s), as 

a solution for the adaptation task of the 2010 CCC, by taking the following steps: 

1). Identify the set of non-excluded entities required by the recipe, and retrieve those 

recipes that are neutrally derivable from the non-excluded entities. 

2). If there is no recipe returning from Step 1, we relax the constraints by taking  a 

non-excluded entity as an excluded entity, and rerun Step 1.  

3). Taking the returning recipes from Step 1 as the initial input, we select those 

neutrally derivable from the plus-terms of the excluded entities, but filter out those 
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recipes that are neutrally derivable from the excluded entities. The outcome would be 

those similar recipes, but not the recipes requiring the excluded entities.  

The interface introduced in Section 4 is also used for the adaptation task. For 

example, the request strings “World Class Waffle, no egg” is for the query: “I want 

World Class Waffles, but I don’t have egg. Please show me the similar recipes”. This 

query would return a set of recipes including Batter White Bread, but not World Class 

Waffle. 

When taking a member out of the set of non-excluded entities in Step 2, we choose 

the one that is less important to the recipe. We rule again that the preparation method 

of a recipe is the least important, and an ingredient toward the end of the ingredient 

list in a recipe is less important than a one closer to the beginning. 

The relaxation of query constraints in Step 2 is the initial step of the approximation 

in searching for similar recipes, and the additional constraints based on similar entities 

in Step 3 is the second step approaching closer to the most similar recipes. 

6   Remarks 

Reasoning on the knowledge of cooking has been identified as a typical domain in the 

field of case-based reasoning in [2]. Under the benchmark of CCC, many systems 

were implemented for this domain. The tools used for the reasoning in the 

implementation were based on traditional technologies such as the propositional logic 

for WikiTAAABLE [1], and Java for CookIIS [4].  

Aimed to be a true recipe advisor, Chef Froglingo represents knowledge of 

cooking in high-order functions, and uses a neutral derivative relation, i.e., (=, to 

approximate the adaptation processes of substituting a desired but not available dish 

with the most similar ones. The real cooking knowledge is much more complicated 

than what we have discussed in this article. But this approach can reach our 

expectation if we accumulate as much knowledge of cooking, and develop as many 

adaptation tasks as our business needs. The knowledge accumulation process is at 

multiple dimensions, such as the dimension of nutrition categories, e.g., protein and 

fat levels, the dimension of additional ingredient attributes, e.g., volume and texture, 

and the dimension of more complicated preparation steps, e.g., sub steps and cooking 

equipment.  

Chef Froglingo, available at http://www.froglingo.com/ccc/index.html, is 

implemented in Froglingo, a single tool for business data, business logic, and web 

server. Therefore, we also easily offer a web page allowing users to update recipes. 
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Appendix A: A Sample XML Block from Recipe Book 

<RECIPE> 

<TI>Spicy Parmesan Chicken</TI> 

<IN>2  Whole chicken breasts, split and fat removed -or-</IN> 

<IN>1  Broiler chicken, cut up and skin removed</IN> 

<IN>1/4 c Grated Parmesan cheese</IN> 

<IN>1 ts Italian seasoning</IN> 

<IN>1/2 c Mozzarella cheese, (2 ounces)</IN> 

<IN>3/4 c Salsa</IN> 

<PR>Preheat oven to 375 degrees. Place chicken, bone-side down, in a 9x13-inch 

baking pan. Combine Parmesan cheese and Italian seasoning and sprinkle over 

chicken. Bake for 15 minutes if using two breasts, 45 minutes for a broiler chicken. 

Sprinkle with mozzarella cheese and bake 1 more minute. Serve with salsa. 

</PR> 

</RECIPE> 
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