
Dipartimento di Informatica
Università del Piemonte Orientale “A. Avogadro”

Viale Teresa Michel 11, 15121 Alessandria
http://www.di.unipmn.it

ARPHA: an FDIR architecture for Autonomous Spacecrafts based on
Dynamic Probabilistic Graphical Models

D. Codetta Raiteri, L. Portinale (daniele.codetta raiteri@mfn.unipmn.it,
luigi.portinale@mfn.unipmn.it)

TECHNICAL REPORT TR-INF-2010-12-04-UNIPMN
(December 2010)

The University of Piemonte Orientale Department of Computer Science Research
Technical Reports are available via WWW at URL http://www.di.unipmn.it/.

Plain-text abstracts organized by year are available in the directory

Recent Titles from the TR-INF-UNIPMN Technical Report Series

2010-03 ICCBR 2010 Workshop Proceedings, C. Marling, June 2010.

2010-02 Verifying Business Process Compliance by Reasoning about Actions, D. D’Aprile,
L. Giordano, V. Gliozzi, A. Martelli, G. Pozzato, D. Theseider Dupré, May 2010.

2010-01 A Case-based Approach to Business Process Monitoring, G. Leonardi, S. Montani,
March 2010.

2009-09 Supporting Human Interaction and Human Resources Coordination in Distributed
Clinical Guidelines, A. Bottrighi, G. Molino, S. Montani, P. Terenziani, M. Torchio,
December 2009.

2009-08 Simulating the communication of commands and signals in a distribution grid, D.
Codetta Raiteri, R. Nai, December 2009.

2009-07 A temporal relational data model for proposals and evaluations of updates, L.
Anselma, A. Bottrighi, S. Montani, P. Terenziani, September 2009.

2009-06 Performance analysis of partially symmetric SWNs: efficiency characterization
through some case studies, S. Baarir, M. Beccuti, C. Dutheillet, G. Franceschinis,
S. Haddad, July 2009.

2009-05 SAN models of communication scenarios inside the Electrical Power System, D.
Codetta Raiteri, R. Nai, July 2009.

2009-04 On-line Product Configuration using Fuzzy Retrieval and J2EE Technology, M. Ga-
landrino, L. Portinale, May 2009.

2009-03 A GSPN Semantics for Continuous Time Bayesian Networks with Immediate Nodes,
D. Codetta Raiteri, L. Portinale, March 2009.

2009-02 The TAAROA Project Specification, C. Anglano, M. Canonico, M. Guazzone, M.
Zola, February 2009.

2009-01 Knowledge-Free Scheduling Algorithms for Multiple Bag-of-Task Applications on
Desktop Grids, C. Anglano, M. Canonico, February 2009.

2008-09 Case-based management of exceptions to business processes: an approach exploit-
ing prototypes, S. Montani, December 2008.

2008-08 The ShareGrid Portal: an easy way to submit jobs on computational Grids, C.
Anglano, M. Canonico, M. Guazzone, October 2008.

2008-07 BuzzChecker: Exploiting the Web to Better Understand Society, M. Furini, S. Mon-
tangero, July 2008.

2008-06 Low-Memory Adaptive Prefix Coding, T. Gagie, Y. Nekrich, July 2008.

Contents

1 Introduction 2

2 Modeling Causal Probabilistic Knowledge 3

3 The EDFT Formalism 5
3.1 Example of EDFT Modeling . 7

4 A DDN Model for On-board FDIR 9

5 Designing ARPHA 10
5.1 Off-board process . 10
5.2 On-board process . 12
5.3 ARPHA architecture . 14

6 Conclusions 16

1

ARPHA: an FDIR architecture for Autonomous
Spacecrafts based on Dynamic Probabilistic

Graphical Models

Daniele Codetta-Raiteri, Luigi Portinale
Dipartimento di Informatica, Università del Piemonte Orientale

Viale T. Michel 11, 15121 Alessandria, Italy

e-mail: {dcr, luigi.portinale}@di.unipmn.it

Abstract

This paper introduces a formal architecture for on-board diagnosis,progno-
sis and recovery called ARPHA. ARPHA is designed as part of the ESA/ESTEC
study called VERIFIM (Verification of Failure Impact by Model checking). The
goal is to allow the design of an innovative on-board FDIR process for autonomous
systems, able to deal with uncertain system/environment interactions, uncertain
dynamic system evolution, partial observability and detection of recoveryactions
taking into account imminent failures. We show how the model needed by ARPHA
can be built through a standard fault analysis phase, finally producing an extended
version of a fault tree called EDFT; we discuss how EDFT can be adoptedas a for-
mal language to represent the needed FDIR knowledge, that can be compiled into
a corresponding Dynamic Decision Network to be used for the analysis. We also
discuss the software architecture we are implementing following this approach,
where on-board FDIR can be implemented by exploiting on-line inferencebased
on the junction tree approach typical of probabilistic graphical models.

Keywords: Fault Trees, Fault Diagnosis, Fault Recovery, Prognosis, Probabilistic
Graphical Models

1 Introduction

Autonomous spacecraft operation relies on the adequate andtimely reaction of the sys-
tem to changes in its operational environment, as well as in the operational status of the
system. The operational status of the system is dependent onthe internal system de-
pendability factors (e.g. sub-system and component reliability models), on the external
environment factors affecting the system reliability and safety (e.g. thermal, radiation,
illumination conditions), and on system-environment interactions (e.g. stress factors,
resource utilization profiles, degradation profiles, etc..). Combinations of these factors
may cause mission execution anomalies, including mission degradations and system

2

failures. To address possible system faults and failures, the current state-of-the-art of
the FDIR (Fault Detection, Isolation and Recovery) processis based on the design-
time analysis of the faults and failure scenarios (e.g. Failure Mode Effect Analysis
or FMEA, Fault Tree Analysis or FTA) and run-time observation of the system op-
erational status (health monitoring). The goal is a timely detection of faults and the
initiation of the corresponding recovery action (that may also be the execution of the
safing actions to put the spacecraft into a known safe configuration and transfers control
to the Ground operations).

The classical FDIR approach however, suffers from multipleshortcomings. In par-
ticular, the system, as well as its environment, is only partially observable by the FDIR
monitoring; this introduces uncertainty in the interpretation of observations in terms
of the actual system status. Moreover, classical FDIR represents a reactive approach,
that cannot provide and utilise prognosis for the imminent failures. Knowledge of the
general operational capabilities of the system (that should potentially be expressed in
terms of causal probabilistic relations) is not usually represented on-board, making im-
possible to estimate the impact of the occurred faults and failures on these capabilities.
Several studies have tried to addressed these problems, some by restricting attention to
manned systems [13] or to systems requiring heavy human intervention [10], some oth-
ers by emphasizing the prognostic phase and relying to heuristics techniques to close
the FDIR cycle [4]. A more formal approach to on-board FDIR seems to be needed,
having the capability to reason about anomalous observations in the presence of uncer-
tainty, dynamic evolution and partial observability. The main issue should be to define
a unifying formal framework providing the system with diagnosis and prognosis on the
operational status to be taken into account for autonomous preventive recovery actions.

In this paper, a formal model integrating standard dependability analysis with know-
ledge-based reasoning based on Probabilistic Graphical Models is proposed, with the
aim of enabling on-board FDIR reasoning. While the final goal of the study will be
to develop a demonstrator performing proof-of-concept case studies for the innova-
tive FDIR element of an autonomous spacecraft, the paper concentrates on the formal
modeling, inference, specification and design of an on-board FDIR architecture called
ARPHA (Anomaly Resolution and Prognostic Health management for Autonomy), de-
signed to address on-board reasoning about the impact of system and environment state
on spacecraft capabilities and mission execution. The paper is organized as follows:
Sec. 2 discusses issues concerning modeling causal probabilistic knowledge, Sec. 3 in-
troduces the EDFT formalism to be used for fault analysis, while in Sec. 4 the model to
be used for the actual FDIR analysis is discussed; the designand the formal software
architecture of ARPHA are then discussed in Sec. 5.

2 Modeling Causal Probabilistic Knowledge

Modeling of probabilistic causal dependencies is one of themain capabilities of Proba-
bilistic Graphical Models (PGM) [7] like Bayesian Networks(BN), Decision Networks
(DN) and their dynamic counterparts as Dynamic Bayesian Networks (DBN) and Dy-
namic Decision Networks (DDN) [5]. From an FDIR perspective, this class of models
naturally captures dependencies and evolutions under partial observability; moreover,

3

in decision models also the effect of autonomous actions canbe modeled and util-
ity functions can be exploited in order to select most usefulactions. For this reason,
we propose a formal architecture called ARPHA (Anomaly Resolution and Prognostic
Health management for Autonomy) based on the model of DDNs. DDNs are essen-
tially DBNs augmented with decision nodes and utility functions. DBNs are, in turn,
a factored representation of a Markov process, where the global system state is deter-
mined by the Cartesian product of a set of discrete variablesobeying to Markovian state
transitions (see [7, 9] for more details). Solving a DDN means finding a sequence of de-
cisions maximizing the total expected utility over a specified horizon; this means that,
in principle every algorithm for solving a Markov Decision Process (MDP) [11] can
be adopted. However, from an on-board FDIR perspective, globally optimal sequences
can be too hard to be obtained, both in terms of time and computational resources; for
this reason, on-line inference [11] is preferred in the ARPHA architecture. This allow
for the choice of a locally best recovery action, given the current stream of observations
and the future possible states of the modeled system, providing a tight connection be-
tween diagnosis, recovery and prognosis. Furthermore, by taking into account both the
current “belief state” of the system (summarizing the history of the system uncertain
evolution) and the effects of the recovery actions on futuresystem states, the task of
preventive recovery can be addressed.

However, dealing directly with the DDN formalism can be a problem for a relia-
bility engineer, usually more familiar with other formalisms and techniques supporting
classical FDIR task. Among them Fault Tree Analysis (FTA) [12] is definitely one
of the most popular one. However, Fault Trees (FT) are limited to model systems
with independent binary components (i.e. characterized bythe “ok-faulty” dual be-
havioral modes, failing independently from other components in the system). For this
reason, several extensions have been proposed, either to address specific stochastic
dependencies as in Dynamic Fault Tree (DFT) [3] or to allow the modeling of “multi-
state” components [6, 14], or both [1]. As observed in [1], modeling the system to
be analyzed using a set of Boolean variables is often preferable than directly resort-
ing to multi-state variables1. In the ARPHA architecture, in order to avoid the burden
of introducing a totally new and unfamiliar formalism to thetraditional fault analysis
phase, we propose a methodology where an extended version ofthe basic formalism
of DFTs is used as a formal modeling language; in this extension, a generalization of
both Boolean components to multi-state components, as wellas a generalization of the
stochastic dependencies allowed by the DFT formalism are introduced. We call this
formalism Extended Dynamic Fault Tree (EDFT) and we proposeto use it as a formal
notation for reliability engineering during the system modeling phases. The idea is to
provide the modeler with a formal language able to express, in a FT-based style, a set
of complex component interactions, while being at the same time, suitable for a general
FDIR analysis. We aim at exploiting the power of the EDFT language to express all the
knowledge we need for the on-board FDIR engine, while not committing the modeler
to learn a totally new modeling language. The ARPHA approachto the analysis of the
model is then to compile a DDN from the input EDFT model, usingon-line inference

1Reliability engineers are often familiar with the use of Boolean gates for modeling a faulty behavior;
introducing multi-state variables would require to replaceBoolean gates with specific functional gates at the
modeling level, producing a relevant impact on the methodologyusually adopted to build the model.

4

c

...
m1 mk

i=1..k, j=1..k, i<>j : λ ij or i=1..k: pi

...e1 en

mi

λ=f(e1, ... en)

EA CA
α

sensor property

(a)

(b)

(c) (d) (e)

Figure 1: EDFT events and gates.

to perform the FDIR task. In the next sections, we provide thedetails about the EDFT
language and the DDN model that can result from a model built through the formalism.

3 The EDFT Formalism

The EDFT language is an extension to the DFT language as defined in [3] with the
following additional constructs2 (see Fig. 1):

• Component Box (C-Box) (Fig. 1(a)): a set of mutually exclusive basic
eventsm1, . . . mk (called states) each one associated with either a set of ex-
ponentially distributed transition ratesλi,j from mi to mj (i 6= j, 1 ≤ i, j ≤ k)
or a fixed probabilitypi = Pr{mi = true}.

• Stochastic Dependency (SDEP) Gate (Fig. 1(b)): a gate with events
e1, . . . en as inputs, a basic eventmi belonging to a C-Boxc as output3, a prop-
ertyλ = λi,j if λi,j is a transition rate frommi to mj (with mj ∈ c) or p = pi if
pi is the probability of occurrence ofmi, and a functionf(e1, . . . em). The be-
havior of the gate is the following: given the configuratione1, . . . en, parameter
λ (or p) is set tof(e1, . . . em); we assume that Boolean valuetrue is mapped
to 1 and Boolean valuefalse is mapped to0.

• External Action Event (EA) (Fig. 1(c)): a special Boolean basic event
representing the occurrence of a specific external action having influence on the
behavior of the modeled system. EA events have no quantification (i.e. point

2We assume the reader familiar with the basic notions concerning FT and DFT.
3Of coursemi can also be the special case of a standard Boolean basic event.

5

probability or rate), since they represent events that are always known to have
occurred or not. EA events are assumed to be mutually exclusive (i.e. only one
can be set true at a given time instant).

• Control Action (CA) (Fig. 1(d)): a special Boolean basic event represent-
ing the occurrence of a specific control action issued by the system. CA events
have no quantification (i.e. point probability or rate), since they represent events
that must be determined to occur or not. CA events are assumedto be mutually
exclusive (i.e. only one can be set true at a given time instant).

• Sensor (Fig. 1(e)): a property attached to each event or C-Box and set to a
valueα ∈ [0, 1];

The C-Box construct is aimed at modeling a system componentc having multiple be-
havioral modes: basic eventmi is true iff componentc is in modemi. Exactly onemi

is true at a given instant, while all the others are false. In casek = 2, a C-Box can be
compactly represented as a standard basic event. In such a case, givenm the name of
the basic event, we can simply denote asλm the transition rate fromm = false to
m = true (i.e. the failure rate) and asµm the viceversa (i.e. the repair rate).

SDEP gates model stochastic dependencies among different events, in particular
among system components and between system components and environment. In par-
ticular, SDEP gates are aimed at modeling conditional changes in the transition rates
(or the probability of occurrence) of a system component mode; in fact, it is trivial
to verify that SDEP generalizes every dynamic gate of a DFT, but the Priority AND
(PAND) gate (see Fig. 2).

EA events are used in order to model actions that may have influence on the behav-
ior of the modeled system, and that are set externally to the control part of the modeled
system. On the other hand, if the system has a control part, some actions can be chosen
by the system controller and set to occur (CA events). The difference is that, while
EA are “observed events”, CA are events that must be determined by the control part
of the system. We make the assumption that only one EA is set tooccur at a given
time instant and that only one CA can be determined at a given time point (see in the
following).

The Sensor property of events is aimed at modeling the possibility of gathering ob-
servations (evidence) on particular events through sensors; theα value is intended to
model the probability of reading the exact state of the C-Boxor event to whichα is con-
nected4; for example, if a C-Boxc has statesm1, . . . mk, thenα = Pr{sensor of c =
mi|c = mi}; sincemi =

∨
j 6=i mj , we assume that for eachj 6= i, Pr{sensor of c =

mj |c = mi} = 1−α
k−1

(i.e. if the sensor is wrong, there is an equal probability ofreading
one of the wrong values). Of course, a sensor property withα = 1, means that the cor-
responding event is directly observable (with no uncertainty), while α = 0 means that
the corresponding event is “hidden” to any observation; in the latter case the property
can be omitted.

4This value can be obtained by considering both theaccuracyof the corresponding sensor (defined as
the “ability of a measurement to match the actual value of the quantity being measured”) and the level of
discretization of the monitored parameter.

6

WSP

Main Spare

dormacy factor=α

λs=λsm+αλs(1-m)

Spare

Main

m

s

λsλm

m s

FDEPTrigger (T)

Dep

d

λd=λd(1-T)+τ(T)

Trigger (T)

d

Dep

where
τ(T)= 0 if T=0;

τ(T)= if T=1

Figure 2: The Warm Spare gate (WSP) and the Functional Dependency gate (FDEP)
[3] in form of SDEP gate.

3.1 Example of EDFT Modeling

In order to show the capabilities of the EDFT language, we consider an example which
is part of a more complex model which has been developed (and which is still under
development) as part of a study called VERIFIM5. The example concerns part of the
power management subsystem of an autonomous Mars rover, andin particular, some
simplified version of the possible faults and behaviors thatmay influence the absence
of power from rover’s battery. The EDFT of Fig. 3 captures thefollowing knowl-
edge about the problem. There is no power coming from the rover’s battery when
either the battery is permanently damaged or when it is completely discharged (flat).
Battery damages may occur in case of exposition to either over-temperature or under-
temperature, or because of a mechanical shock. The latter has some prior probability
of occurrence, that is increased (of a 20% factor) if the rover is executing a “Drilling”
action; over-temperature and under-temperature are caused by the actual external tem-
perature (which is monitored through a sensor with a correctreading95% of the time)
and by failures of the TCS component (Temperature Control System) that may “fail
to keep warm” (FKW) or “fail to keep cold” (FKC). Battery charge is discretized on 3

5VERIFIM is a study conducted by Thales/Alenia and University of Piemonte Orientale, under the fund-
ing of ESA/ESTEC, TEC-SWE/09259/YY.

7

T
C

S

m1

m2

m3

OK

FKC

FKW
BatteryCharge

λ12

f1

m1 m2 m3

OK Reduced Flat

Battery
Damaged

NoPWRBatt

λ23

f2
λ21

f3
λ32

f4

MOD_S MOD_E

E
xte

rn
a

lT
e

m
p

e
ra

tu
re

m1

m2

m3

OK

low

high
O

verT
em

p
U

nderT
em

p

Drill

Mech
Shock

p=min(1, 1.2 pms)

ms

0.95

0.99

MOD_H

Let a=NoPWRSA, b=MOD_S, c=MOD_E, d=MOD_H

f1(a,b,c,d)=abλr+0.5adλr+0.05(1-a)dλr+0.1(1-a)bλr+0.8acλr+0.08(1-a)cλr

f2(a,b,c,d)=abλr+0.5adλf+0.05(1-a)dλf+0.1(1-a)bλf+0.8acλf+0.08(1-a)cλf

f3(a,b,c,d)=b(1-a)µr+1.1c(1-a)µr+1.2d(1-a)µr

f4(a,b,c,d)=b(1-a)µf+1.1c(1-a)µf+1.2d(1-a)µf

NoPWR_SA

WSP

SA1 SA2

Shadow

0.9

0.99

Figure 3: . EDFT for a Mars rover’s battery power management.

8

levels: OK (modem1), Reduced (modem2) andFlat (modem3). It is sensored
with a correct reading of99%. Battery charging occurs through power supply from
a solar array subsystem composed by a main solar arraySA1 and a warm spare solar
arraySA2. There is no power supply (NoPWR SA event true) when either the solar
array subsystem is in shadow or when both solar arrays are faulty. Both shadow and
power supply are monitored parameters. The charge of the battery is affected by the
operational mode under which the rover is working, namelystandard(MOD S), en-
ergy saving(MOD E) or halt (MOD H) mode. Basic discharge ratesλr (from OK to
Reduced) andλf (from Reduced to Flat) are supposed to be defined in standard
mode, with no power supply fromSAs; in this situation no recharge is possible, so we
haveλ12 = λr;λ23 = λf ;λ21 = λ32 = 0. On the contrary recharge ratesµr from m2

to m1 (Reduced toOK) andµf from m3 to m2 (Flat toReduced) refer to powered
up battery in standard mode.

Discharge rates are reduced by20% and by50% if the operational modes are
MOD E andMOD H respectively; they are reduced further by90% in case of power sup-
ply form SAs. Recharge rates are increased by10% and by20% in MOD E andMOD H
respectively. All these dependencies are represented by the SDEP gates in Fig. 3 having
the modes ofBattery Charge as output. Functionsf1, f2 model the reduction of
discharge rates; for examplef1(a, b, c, d) = 0.5λr if a = NoPWRSA = 1, b = MOD S =
0, c = MOD E = 0, d = MOD H = 1, i.e. the rate fromOK to Reduced is reduced
by 50% when the rover is in “halt mode” with no power supply fromSAs. Functions
f3, f4 model the increment of the repair rates; for examplef3(a, b, c, d) = 1.1µr if
a = 0, b = 0, c = 1, d = 0, i.e. the rate fromReduced to OK is increased by10%
when the rover is in “energy saving” mode and powered bySAs.

4 A DDN Model for On-board FDIR

As introduced in Sec. 2, DDN models are good candidates for addressing the innovative
FDIR issues mentioned in Sec. 1. For this reason, ARPHA assume a particular DDN
model as the operational model on which to implement the whole FDIR algorithm.
ARPHA is intended to provide FDIR capabilities to an autonomous device, interacting
with an autonomy building block setting and executing a given plan. We assume the
following characterization of DDN nodes:

• Observable nodes: a nodePlan whose values are the possible actions the plan-
ner can execute: this node is assumed to be always set; a decision nodeRecovery
whose value are the possible recovery and control actions the autonomous device
can execute; a set ofSensor Nodesrepresenting possible measurements from the
devices sensors which in turn can be:

– Context Nodesrepresenting contextual or environmental conditions,

– Finding Nodesrepresenting monitored device parameters such as measure-
ments of specific system variables.

• Hidden Nodes: representing internal state conditions of the system which are not
directly measurable. A subset of hidden nodes are identifiedasDiagnostic Nodes

9

Hidden
State(t)

CXT(t)

Recovery(t)

Finding(t)

CXT(t’)

Hidden
State(t’)

Recovery(t’)

Finding(t’)
Utility

Time: t Time: t’=t+ ∆

PLAN(t) PLAN(t’)

Figure 4: The DDN scheme for ARPHA FDIR.

and represent variables target of the diagnostic process (see in the following).

The network high-level scheme of the DDN model used by ARPHA is shown in
Fig. 4; an actual instantiation of this scheme is shown in Fig. 6. The scheme encodes
the following general assumptions: contextual information influences system internal
state within the same time slice; both plan as well as recovery actions have influence
on the future system state (i.e. on system variables at the next time slice); system
state transition model is then determined by actions (plan and recovery) and the current
state6; the utility function to be optimized, in order to choose thebest recovery action,
depends on the chosen action and the system state determinedby the action.

In the next sections we will discuss how a specific instance ofthe DDN scheme of
Fig. 4 can be obtained in the ARPHA architecture.

5 Designing ARPHA

The ARPHA architecture puts emphasis on the on-board software capabilities; how-
ever, an off-board processing phase is necessary, in order to provide it with the inputs
and the operational model that it needs (Fig. 5).

5.1 Off-board process

The off-board process starts with a fault analysis phase aimed at constructing (by stan-
dard and well-known dependability analysis procedures) a first dependability model
that we assume to be a DFT. Starting from this first analysis, the DFT model is enriched

6This is the standard assumption about state transition in MDP.

10

Fault Analysis
(FMEA/FMECA)

Dynamic
Fault Tree

Extended Dynamic
Fault Tree

Dynamic
Decision Network

Dynamic
Bayesian Network

Junction
Tree

knowledge on
environment conditions

knowledge on faults

knowledge on system capabilities

knowledge on failure impacts

knowledge on plan actions

knowledge on recovery actions

utility functions

OFF-BOARD
PROCESS

PLAN

SENSORS

evidence

evidenceDiagnosis, Recovery, Prognosis

Diagnostic
indices

Recovery
actions

Prognosis
measures ON-BOARD

PROCESS

system analysis

Figure 5: ARPHA on-board reasoning process plus off-board process.

with knowledge about more specific system capabilities and failures, with particular at-
tention to the identification of multi-state components andof stochastic dependencies
not captured at the DFT language level. The aim is to generatean EDFT represent-
ing all the needed knowledge about failure impacts. For example, events of the DFT
representing different modes of the same components are identified and “clustered” in
a C-Box, while specific stochastic dependencies among different parts of the modeled
system are represented through SDEP gates. During this phase, both knowledge about
external actions (like plan actions) or control actions (useful to perform recovery) can
be incorporated into the EDFT model.

The EDFT produced can then be compiled into a DDN: the compilation process is
essentially based on the compilation of a DFT into a DBN (whose details can be found
in [8]), with the addition of the compilation of the SDEP gates (that can be mapped into
suitable conditional probability entries of the variablesconcerning inputs and output of
the gate), of external actions (that can be mapped into the plan node, assumed to be
always observed as evidence) and of control actions (that can be mapped into states of
the decision nodes). To complete the DDN, the analyst specifies the utility function by
identifying the set of relevant variables, and by building the corresponding utility table
taking into account such variables and the control actions available. Fig. 6 shows the
DDN obtained from the EDFT of Fig. 3 The RADYBAN tool [8] can be used in this
phase.

In ARPHA, the DDN analysis is actually performed by exploiting Junction Tree
(JT) inference. So, another role of the off-board process isthe generation of the JT
from the DDN. In particular, we decided to adopt Murphy’s 1.5JT algorithm for DBN
[9] as the core inference procedure. We transform the DDN obtained during off-board
analysis, into a corresponding DBN by considering different setting of the control ac-
tions. In this way, since the inference procedures will be performed on board, the JT
will be the operational model undergoing analysis by the on-board process of ARPHA,
with diagnosis, recovery, and prognosis purposes.

11

3 3

U

Sensors
(Finding or Context)

Plan actions

Figure 6: DDN obtained from the EDFT of Fig. 3.

5.2 On-board process

The on-board process resort to JT as actual operational model, receiving evidence from
both sensors (for contextual as well as finding information)and an autonomy building
block (for plan actions); it is intended to produce recoveryactions (to be translated into
autonomous control action commands), as well as diagnosticand prognosis indices
(see Fig. 5). We refer to the following characterization of the FDIR process:

• Diagnosisat timet: a belief state on the set of diagnostic nodesD at timet, i.e.
the posterior probability at timet of eachd ∈ D given the evidence (fromPlan
andSensor Nodes) up to timet;

• Recoveryat timet: choice of the “best” actionr from Recovery node at time
t, given the evidence up to timet;

• Prognosisat timet′ from time t < t′: the belief state of setD at timet, given
the observations up to timet;

12

Figure 7: The UML Use case diagram of ARPHA.

• Discretization step: the time interval∆ between two consecutive inferences;

• Mission Frame: the time interval concerning the analysis, starting from an initial
time instantt0, ending in a time instanttf and discretized into intervals of width
∆, i.e. MF = [t0, t0 + ∆, . . . , tf − ∆, tf].

It is worth noting that, among the possible recovery actionsthere is also theno recovery
action, meaning that no explicit recovery is needed. Furthermore, if prognosis is re-
quired fort′ > t + ∆, it is assumed thatno recovery action will be selected from
t+∆ to t′ (i.e. the algorithm can predict the future state of the system given the current
best action and given that other explicit recovery actions will not be performed).

The UML use case diagram in Fig. 7 represents the main functionalities of ARPHA.
The actors that interact with ARPHA are the following:

• System Context: it represents memory area that contains data received fromsen-
sors and configuration of system;

• AutonomyBB: it represents an autonomy building block dedicated to planexe-
cution and plan generation.

ARPHA cyclically performs the following sequence of use cases:

• Initialization: it periodically retrieves data necessary for on-board reasoning.
More specifically, ARPHA periodically checks the current mission time: if the
first day of the mission has just begun, then ARPHA loads the initial version of
the on-board model from the System Context; if a new mission frame has just
begun, then ARPHA retrieves the long scale sensor data, still from the System
Context. In particular, long scale sensor data are converted into observations

13

(evidence) for the on-board model; then, observations are propagated into the
on-board model.

• Diagnosis: sensor data and plan data are retrieved from the System Context and
the Autonomy BB respectively. Then, both kinds of data are converted in form of
observations concerning the variables of the on-board model; such observations
are used to update the JT on-board model and inference is executed by 1.5JT
propagation [9]. Inspection of the probabilities of the diagnostic variables can
provide the diagnosis at the current mission time.

• Recovery: after having incorporated the current evidence in the diagnostic phase,
for each available recovery action, the action itself is propagated into the JT on-
board model, and the expected utility of the action is computed. The action
(possibly theno recovery action) with the maximum expected utility is then
determined; such action is converted into a command to be executed by the actu-
ator components managed by the Autonomy BB. So, the command is delivered
to the Autonomy BB for the execution.

• Prognosis: the time horizont′ for prognosis is determined and 1.5JT inference is
performed with a time step of∆ until t′, by consideringno recovery action
and plan information at each time step as evidence.

The operations performed inside each use case are represented by the UML state-
chart diagram in Fig. 8. The results of the execution of each use case are stored in a log
file.

5.3 ARPHA architecture

The architecture of ARPHA is composed by the following components represented by
the UML class diagram in Fig. 9:

• Main: it implements the main program capabilities and manages the other com-
ponents;

• ObservationGenerator: it retrieves sensor data and plan data from the Sys-
tem ContextManager and the AutonomyBB Manager respectively. It converts
both kinds of data into observations to be propagated into the on-board model;

• CommandGenerator: it implements the conversion of recovery actions detected
by the Recovery phase, into commands executable by the Autonomy BB;

• JT Configurator: it implements propagation of observations and actions into the
on-board model;

• JT Analyzer: it computes the expected utility and gives the current or future
belief state;

• Logger: it implements the logger capabilities;

14

Figure 8: The UML State-chart diagram of ARPHA.

15

Figure 9: The UML class diagram of ARPHA.

• SystemContextManager: it implements functions dedicated to manage data
contained in System Context;

• AutonomyBB Manager: it implements functions dedicated to interface the Au-
tonomy BB.

The UML sequence diagram in Fig. 10 represents the cyclic performance of the
sequence composed by the Initialization, Diagnosis, Recovery, and Prognosis use case.
The components involved in each use case and their interactions in order to realize the
use case, are shown still in form of UML sequence diagram, in Fig. 11 (Initialization),
Fig. 12 (Diagnosis), Fig. 13 (Recovery) and Fig. 14 (Prognosis). The Main component
participates to each use case and coordinates the other components.

6 Conclusions

We have presented the ARPHA formal architecture for on-board FDIR process for an
autonomous spacecraft. ARPHA aims at keeping as much standard as possible the
fault analysis phase, by allowing reliability engineers tobuild their fault models using
an intuitive extension of the DFT language (the EDFT language), being able to address
issues that are very important in the context of innovative on-board FDIR: multi-state
components with different fault modes, stochastic dependencies among system compo-
nents, partial observability, system-environment uncertain interactions. ARPHA trans-
forms the EDFT model into an equivalent DDN to be used as the operational model

16

Figure 10: The main UML sequence diagram of ARPHA.

for the FDIR analysis task. On-board analysis exploits Junction Tree inference, by
compiling the DDN into the JT structure to be actually used on-board; FDIR is then
implemented by resorting to standard JT propagation as the core procedure for on-line
diagnosis, recovery and prognosis. The formal software architecture of ARPHA has
then been presented through UML diagrams.

References

[1] Buchacker, K.: Modeling with extended fault trees. In: Proc. IEEE Int. Symp. on
High Assurance System Engineering. IEEE Press, Albuquerque,NM (2000)

[2] Codetta-Raiteri, D., Portinale, L.: ARPHA: an FDIR architecture for Au-
tonomous Spacecrafts based on Dynamic Probabilistic Graphical Models. Tech.
Rep. TR-INF-2010-12-04-UNIPMN, Dip. di Informatica, Univ. del Piemonte
Orientale, http://www.di.unipmn.it/?page=pubblicazioni&pubid=131 (December
2010)

[3] Dugan, J.B., Bavuso, S., Boyd, M.: Dynamic fault-tree models for fault-tolerant
computer systems. IEEE Transactions on Reliability 41, 363–377 (1992)

17

[4] Glover, W., Cross, J., Lucas, A., Stecki, C., Stecki, J.:The use of PHM for
autonomous unmanned systems. In: Proc. Conf. of the PHM Society. Portland,
OR (2010)

[5] Jensen, F., Nielsen, T.: Bayesian Networks and DecisionGraphs (2nd ed.).
Springer (2007)

[6] Kai, Y.: Multistate fault tree analysis. Reliability Engineering and System Safety
28(1), 1–7 (1990)

[7] Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

[8] Montani, S., Portinale, L., Bobbio, A., Codetta-Raiteri, D.: RADYBAN : a tool
for reliability analysis of dynamic fault trees through conversion into dynamic
bayesian networks. Reliability Engineering and System Safety 93(7), 922–932
(2008)

[9] Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learn-
ing. PhD Thesis, UC Berkley (2002)

[10] Robinson, P., Shirley, M., Fletcher, D., Alena, R., Duncavage, D., Lee, C.: Ap-
plying model-based reasoning to the FDIR of the command and data handling
subsystem of the ISS. In: Proc. iSAIRAS 2003. Nara, Japan (2003)

[11] Russell, S., Norvig, P.: Artificial Intelligence: a Modern Approach (3rd ed.).
Prentice Hall (2010)

[12] Schneeweiss, W.G.: The Fault Tree Method. LiLoLe Verlag (1999)

[13] Schwabacher, M., Feather, M., Markosian, L.: Verification and validation of ad-
vanced fault detection, isolation and recovery for a NASA space system. In: Proc.
Int. Symp. on Software Reliability Engineering. Seattle, WA (2008)

[14] Zang, X., Sun, H., Wang, D., Trivedi, K.: A BDD-based algorithm for analysis of
mulitstate systems with multistate components. IEEE Transactions on Computers
52(12), 1608–1618 (2003)

18

Figure 11: The UML sequence diagram of the Initialization use case.

19

Figure 12: The UML sequence diagram of the Diagnosis use case.
20

Figure 13: The UML sequence diagram of the Recovery use case.

21

Figure 14: The UML sequence diagram of the Prognosis use case.

22

