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Università del Piemonte Orientale “A. Avogadro”

Viale Teresa Michel 11, 15121 Alessandria
http://www.di.unipmn.it

Spaced Seeds Design Using Perfect Rulers
L. Egidi, G. Manzini (lavinia.egidi@mfn.unipmn.it,

giovanni.manzini@mfn.unipmn.it)

TECHNICAL REPORT TR-INF-2011-06-01-UNIPMN
(June 2011)



The University of Piemonte Orientale Department of Computer Science Research
Technical Reports are available via WWW at URL http://www.di.unipmn.it/.

Plain-text abstracts organized by year are available in the directory

Recent Titles from the TR-INF-UNIPMN Technical Report Series

2010-04 ARPHA: an FDIR architecture for Autonomous Spacecrafts based on Dynamic
Probabilistic Graphical Models, D. Codetta Raiteri, L. Portinale, December 2010.

2010-03 ICCBR 2010 Workshop Proceedings, C. Marling, June 2010.

2010-02 Verifying Business Process Compliance by Reasoning about Actions, D. D’Aprile,
L. Giordano, V. Gliozzi, A. Martelli, G. Pozzato, D. Theseider Dupré, May 2010.

2010-01 A Case-based Approach to Business Process Monitoring, G. Leonardi, S. Montani,
March 2010.

2009-09 Supporting Human Interaction and Human Resources Coordination in Distributed
Clinical Guidelines, A. Bottrighi, G. Molino, S. Montani, P. Terenziani, M. Torchio,
December 2009.

2009-08 Simulating the communication of commands and signals in a distribution grid, D.
Codetta Raiteri, R. Nai, December 2009.

2009-07 A temporal relational data model for proposals and evaluations of updates, L.
Anselma, A. Bottrighi, S. Montani, P. Terenziani, September 2009.

2009-06 Performance analysis of partially symmetric SWNs: efficiency characterization
through some case studies, S. Baarir, M. Beccuti, C. Dutheillet, G. Franceschinis,
S. Haddad, July 2009.

2009-05 SAN models of communication scenarios inside the Electrical Power System, D.
Codetta Raiteri, R. Nai, July 2009.

2009-04 On-line Product Configuration using Fuzzy Retrieval and J2EE Technology, M. Ga-
landrino, L. Portinale, May 2009.

2009-03 A GSPN Semantics for Continuous Time Bayesian Networks with Immediate Nodes,
D. Codetta Raiteri, L. Portinale, March 2009.

2009-02 The TAAROA Project Specification, C. Anglano, M. Canonico, M. Guazzone, M.
Zola, February 2009.

2009-01 Knowledge-Free Scheduling Algorithms for Multiple Bag-of-Task Applications on
Desktop Grids, C. Anglano, M. Canonico, February 2009.

2008-09 Case-based management of exceptions to business processes: an approach exploit-
ing prototypes, S. Montani, December 2008.

2008-08 The ShareGrid Portal: an easy way to submit jobs on computational Grids, C.
Anglano, M. Canonico, M. Guazzone, October 2008.

2008-07 BuzzChecker: Exploiting the Web to Better Understand Society, M. Furini, S. Mon-
tangero, July 2008.



Spaced Seeds Design Using Perfect Rulers?

Lavinia Egidi and Giovanni Manzini

Dipartimento di Informatica, Università del Piemonte Orientale, Italy.
{lavinia.egidi,giovanni.manzini}@mfn.unipmn.it

Abstract. We consider the problem of lossless spaced seed design for
approximate pattern matching. We show that, using mathematical ob-
jects known as perfect rulers, we can derive a family of spaced seeds for
matching with up to two errors. We analyze these seeds with respect to
the trade-off they offer between seed weight and the minimum length
of the pattern to be matched. We prove that for patterns of length up
to a few hundreds our seeds have a larger weight, hence a better filtra-
tion efficiency, than the ones known in the literature. In this context,
we study in depth the specific case of Wichmann rulers and prove some
preliminary results on the generalization of our approach to the larger
class of unrestricted rulers.

1 Introduction

The use of spaced seeds for approximate pattern matching has been introduced
in [1, 11] and since then has received considerable attention. Spaced seeds are
used to quickly filter-out highly dissimilar regions, and they are a fundamen-
tal tool, for example, for mapping to a reference genome the millions of reads
produced by modern sequencing technologies (see [8] and references therein).

We consider the problem of designing spaced seeds to be used for detecting
whether two strings of length m are at Hamming distance at most k; in the
literature this is known as the (m, k)-detection problem. In particular we are
interested in the design of lossless seeds, i.e., seeds that find all matches with
the above properties. Spaced seeds consists of solid positions and don’t care
positions. The number of solid positions is called the seed weight. For a given
pair of values (m, k) we want to find a seed with the largest possible weight
since, under standard assumptions, this maximizes the filtration efficiency.

For the problem of lossless seed design, an important breakthrough has been
obtained in [3] where, for any given pair (m, k), the authors provide a spaced seed
with an asymptotically optimal weight. Although this result essentially solves
the problem from the theoretical point of view, it remains open the problem of
finding optimal, i.e. weight-maximal, seeds for the pattern lengths m used in
practice (i.e. up to a few hundreds): the seeds in [3] are asymptotically optimal
as m → ∞, but we have no guarantees on their quality for small m. For a given
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pair (m, k) one can find an optimal seed using a combinatorial search algorithm,
but this problem is known to be a hard one [4, 5, 7, 10, 13] so the problem of
designing whole families of (suboptimal) seeds of practical interest is still open.

Our starting point is the observation that we can derive a family of lossless
spaced seeds using mathematical objects known as perfect rulers (sometimes
also called difference bases) [2, 6, 14]. Informally, a perfect d-ruler is a binary
string with a minimal number of 1’s with the property that for any positive
δ ≤ d there exist two 1’s at distance δ (see Section 2 for further details). This
structural property makes them suitable to design spaced seeds able to detect
strings at Hamming distance at most 2. The study of the properties of these
spaced seeds is the main objective of the paper.

As a first step, in Section 3 we analyze the seeds obtained from perfect rulers
with respect to the tradeoff they offer between seed weight and the minimum
m∗ for which the seed is guaranteed to solve the (m, 2)-detection problem for all
m ≥ m∗. In Theorem 1 we establish an upper bound for m∗ for all “interesting”
seeds derived from perfect rules. This upper bound suffices to establish that for
m up to 498 the seeds derived from perfect rulers have a larger weight than the
asymptotically optimal seeds defined in [3] and therefore justifies an in-depth
study of this family of seeds.

In Section 4 we refine our analysis by establishing lower bounds on the min-
imum pattern length m∗. First, we prove that the upper bound of Theorem 1
is tight for the seed of maximal weight derived from a given ruler (Corollary 1).
Then, we introduce the concept of skewness of a ruler and use it to derive general
lower bounds for m∗ (Theorem 3).

In Section 5, we analyze the special case of Wichmann rulers [14] which are
a family of rulers particularly important since they can be easily derived by a
“generating function”, whereas other perfect rulers are usually found by trial
and error. For Wichmann rulers we show that the upper bound of Theorem 1 is
almost tight applying the results of Section 4 (Theorem 4) and with an ad-hoc
analysis (Theorem 5).

Finally, in Section 6 we consider spaced seeds obtained from unrestricted
rulers [6], which are a natural generalization of perfect rulers. We show that
some of the results of the previous sections can be applied to unrestricted rulers
as well. Although we do not provide a complete analysis, our preliminary results
show that, somewhat counterintuitively, spaced seeds derived from unrestricted
rulers are less effective that the ones derived from perfect rulers.

2 Notation

For spaced seeds we follow the notation introduced in [1, 5]. A spaced seed is a
string over the alphabet {#, -}; the symbol ’#’ represents a solid position, the
symbol ’-’ a don’t care position. Informally, a spaced seed defines a set of non-
contiguous positions in which we require two sequences to match. We say that a
spaced seed S solves the (m, k)-problem if for any pair of strings σ1, σ2 of length
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m and Hamming distance k, there exists an index i such that

S[j] = # =⇒ σ1[i+ j] = σ2[i+ j]. (1)

In other words, we require that, starting from position i, the strings σ1, σ2

contain the same symbols in every position corresponding to a ’#’ in S, while
we tolerate mismatches in positions corresponding to ’-’ in S.

In the context of approximate string matching, if a seed solves the (m, k)
problem it can be used as a filter to quickly discard regions which are not at
Hamming distance at most k (see [1, 5] for further details). Note however, that (1)
can hold for a given i even if σ1 and σ2 are not at Hamming distance k. These
events are called false positive matches and it is desirable to reduce their number
as much as possibile. The weight of a seed is defined as the number of #’s in it.
Under standard assumptions, see [3, Sect. 1.1] the number of false positives
decreases exponentially with the seed weight. Thus, it is desirable to solve the
(m, k) problem with a seed with the largest possible weight.

The notion of perfect ruler, has been studied by mathematicians for more
than sixty years [2, 6, 14] (in earlier works rulers were called difference bases).
Here we recall the basic definitions using modern terminology [9]. We base the
definition of rulers on the concept of measure:

Definition 1 (Measure). Let U be a binary string. For any positive integer δ
we say that U measures δ if there exist i, j, 0 ≤ i < j < |U |, such that j − i = δ
and U [i] = U [j] = 1. The pair (i, j) is said to be a measure of δ in U . ut
Definition 2 (Complete ruler). Let R be a binary string of length d+1 such
that R[0] = 1, R[d] = 1, and such that for any integer δ, 0 ≤ δ ≤ d, R measures δ.
The string R is said to be a complete d-ruler, or simply a complete ruler when
the length of R is clear from the context. ut

Intuitively, using the 1’s as marks, with a complete d-ruler we can measure
all distances between 1 and d. For example, the string 110101 is a complete
5-ruler. Note that even the string 16 = 111111 is a complete 5-ruler, but not
an interesting one: the challenge of rule design is to find complete d-rulers with
as few marks as possible. This notion is captured by the following definition.

Definition 3 (Perfect ruler). Let R be a complete d-ruler containing ` 1’s.
If there exists no complete d-ruler with less than ` 1’s then R is said to be a
perfect d-ruler. ut

Let `(d) denote the number of 1’s in a perfect d-ruler. Table 1 reports the
values `(d) for d = 10, . . . , 90. In [14] it is proven that limd→∞(`2(d)/d) exists and
that such limit is between 2.434 and 3. Perfect rulers are not easy to find: they
are usually generated by exhaustive search procedures. An important exception
are Wichman rulers which are discussed in Section 5. Tables of all perfect rulers
of size up to 101 are available on the net [9].

Perfect rulers should not be confused with Golomb rulers that measure each
integer at most once (they are not necessarily complete). Golomb rulers have
been used in [12, 13] in relation to seed design, but with the totally different aim
of analyzing the hardness of seed optimization.
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d 10–13 14–17 18–23 24–29 30–36 37–43 44–50 51–58 59–68 69–79 80–90

`(d) 6 7 8 9 10 11 12 13 14 15 16

Table 1. Number of 1’s `(d) in a perfect d-ruler for d = 10, . . . , 90.

3 From rulers to spaced seeds

The structure of complete rulers naturally suggests their use for the design of
spaced seeds. Given a d-ruler R, if we replace each 0 with a ’#’ symbol and
each 1 with a ’-’ symbol we obtain a seed in which there is a pair of don’t care
symbols at distance δ for δ = 1, . . . , d. This seed solves the (m, 2)-problem for
m ≥ 2d + 1. However, this is not the only seed we can derive from R. For any
pair s0, s1 the seed derived from the string 0s0R0s1 also has pairs of don’t care
symbols at distance δ for δ = 1, . . . , d. Hence, it solves the (m, 2)-problem for
a sufficiently large m. Clearly there is a trade-off here: the larger are s0 and s1
the higher is the weight of the corresponding seed (a good thing) and the larger
is the value m for which the seed solves the (m, 2)-problem (a bad thing).

To evaluate to what extent rulers are useful for seed design it is clearly
necessary to investigate this trade-off. In this section we give upper bounds to
the minimum m for which the seed associated to the string 0s0R0s1 solves the
(m, 2)-problem. The results of this section are valid for any complete d-ruler R.
However, since seeds of higher weight are preferable, it is natural to derive seeds
from rulers with the minimum number of 1’s, that is, from perfect rulers.

Since the main object of our study are rulers, for simplicity we will only work
with strings over the alphabet {0,1}, with the implicit associations 0 → ’#’,
1 → ’-’. We introduce Definition 4 and Theorem 1 that essentially restate
known properties of seeds in the language of strings over the alphabet {0,1}.

Definition 4 (Completeness). A binary string P is (m, k)-complete if, for
any length-m binary string V containing exactly k 1’s, there exists at least an
index t, with 0 ≤ t ≤ |V | − |P |, such that for i = 0, . . . , |V | − 1, it is

V [i] = 1 =⇒ (i− t < 0) ∨ (i− t ≥ |P |) ∨ (P [i− t] = 1). (2)

If (2) holds we say that P + t matches in V , or that P shifted by t matches
in V . ut

Note that P + t matches in V if the 1’s in V are either outside P + t or
correspond to a 1 in P + t. Equivalently, there is no 1 in V corresponding to a
0 in P + t.

Lemma 1. The binary string P is (m, k)-complete if and only if the spaced seed
obtained with the map 0 → ’#’, 1 → ’-’ solves the (m, k)-problem. ut

Having stated Lemma 1, in the rest of the paper most of the results will
simply establish that certain binary strings are, or are not, (m, k)-complete,
without even mentioning the immediate consequence that the corresponding
seeds solve, or do not solve, the (m, k)-problem.
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Definition 5 (Minimum length m∗
P ). Given a binary string P we denote by

m∗
P the smallest integer m such that P is (m, 2)-complete.1 ut
The following theorem provides an upper bound for m∗

P for P = 0s0R 0s1

when R is a complete d-ruler with ` 1’s, and max(s0, s1) ≤ d. Since the seed
associated to 0s0R 0s1 has weight s0 + s1 + d+ 1− ` the theorem establishes a
trade-off between seed weight and minimum pattern length m∗

P .

Theorem 1. Let P = 0s0R 0s1 where R is a complete d-ruler. If max(s0, s1) ≤
d, then m∗

P ≤ 2|P | − 1−min(s0, s1).

Proof. To prove the theorem we show that P is (m, 2) complete for m = 2|P | −
1−min(s0, s1). Without loss of generality we assume that s0 ≥ s1 (if this is not
the case consider PR, i.e. the string P reversed).

Let V any length-m binary string containing exactly two ones, in the positions
v1, v2 (0 ≤ v1 < v2 ≤ m− 1). We need to show that for any such pair v1, v2 we
can find a shift t, 0 ≤ t ≤ m−|P |, such that P +t matches in V . By construction
we have |P | = d+1+s0+s1 and m = 2(d+1+s0+s1)−1−s1 = 2d+2s0+s1+1.
Hence the admissible range for t is 0 ≤ t ≤ m− |P | = d+ s0.

Note that in our setting the condition in Definition 4 is equivalent to require
that there exists a shift t, 0 ≤ t ≤ d+ s0 such that for i = 1, 2

(vi < t) ∨ (vi ≥ t+ |P |) ∨ (P [vi − t] = 1) (3)

We consider the following four cases, according to the size of ∆v = v2 − v1.

Case ∆v > |P |. In this case t = v1+1 is in the admissible range, since t+ |P | =
v1 + 1 + |P | ≤ v2 < m; moreover, v1 < t and v2 ≥ |P |.
Case ∆v ≤ d. The positions of v1 and v2 in V define here three subcases:

If v1 ≥ |P |, t = 0 satisfies (3), since both v1, v2 ≥ t+ |P |.
Symmetrically, if v1 < s0 + (d−∆v), then t = v2 + 1 satisfies (3).

If s0 + (d − ∆v) ≤ v1 < |P |, then V [v1] and V [v2] can fall within the d-
ruler inside P , but P must be shifted so that both V [vi]’s match 1’s in P . By
hypothesis, P contains a measure (m1,m2) of ∆v ≤ d, with s0 ≤ m1 < m2 <
|P | − s1. Then (3) holds for t = v1 − m1, since v1 − t = m1 and v2 − t = m2.
Notice that m1 ≤ v1 since m2 ≤ s0+d+1 and m2−m1 = ∆v. Finally, t is in the
admissible range since t = v1 −m1 ≤ |P | − 1− s0 = d+ s1 ≤ d+ s0 = m− |P |.
Case d+ s0 < ∆v ≤ |P |.

If v1 ≥ s0, (3) is satisfied by t = v1 − s0.

If v1 < s0, then m− v2 > d ≥ s1 and t = v2 − (s0 + d) satisfies (3).

Case d < ∆v ≤ d+s0. Since the distance between v1 and v2 is at most d+s0, the
only possible alignments include: matching V [v1] with a 1 strictly after the first
one in P or, symmetrically, V [v2] with a 1 strictly before the last one, besides
the trivial cases in which all of P fits before or after both V [vi]’s.

If v1 ≥ |P | then t = 0 satisfies (3); if v2 < m− |P | then t = v2 + 1 does.

If s0 + d ≤ v1 < |P |, then t = v1 − (s0 + d) satisfies (3). See Fig. 1.(a).

1 m∗
P also depends on k, but since in this paper we treat uniquely the case k = 2, k

does not appear in m∗
P to make the notation less cumbersome.
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Fig. 1. Case d < ∆v ≤ d+s0, (a): s0+d ≤ v1 < |P | , (b):m−|P | ≤ v2 < m−(s1+d+1).

If m− |P | ≤ v2 < m− (s1 + d+ 1), t = v2 − s0 satisfies (3) –see Fig. 1.(b).

The remaining case we must consider is v1 < s0+d and v2 ≥ m−(s1+d+1),
still with d < ∆v ≤ d + s0. That is, V [v1] and V [v2] are so well centered, and
enough spaced apart, that there is no room before V [v1] or after V [v2] to allow
aligning either one of them with the first or last 1’s in P .
Since d < ∆v ≤ d+ s0 there exists an r, 0 ≤ r < s0, such that ∆v = d+ s0 − r.
Notice that v1 < s0 + d together with the constraint on ∆v implies v2 < m −
(s1 + 1), and v2 ≥ m − (s1 + d + 1) implies v1 ≥ s0. Thus, v1 = s0 + k and
v2 = m− (s1 + 1 + h) for some 0 ≤ k < d and 0 < h ≤ d, with h+ k = d+ r.
Since R is a complete ruler, r + 1 ≤ d must have a measure (w1, w2) in R.
Then, if s0 + k ≥ s0 + w2, t = v1 − (s0 + w2) is an admissible choice for t
since 0 ≤ v1 − (s0 + w2) < s0 + d ≤ m − |P |. Moreover (3) is satisfied since
v1 − t = s0 +w2 and v2 ≥ t+ |P | (since |P | − (s0 +w2) < d+ s1 − r ≤ ∆v). See
Fig. 2.(a).

Fig. 2. Case d < ∆v ≤ d+ s0, s0 ≤ v1 < s0 + d, m− (s1 + d+ 1) ≤ v2 < m− (s1 + 1),
and (a): w2 ≤ v1 − s0, (b): w2 > v1 − s0.

On the other hand, if k < w2, it turns out that h ≥ d−w1 (since h+ k = d+ r
and w2 −w1 = r+1) and thus t = v2 − (s0 +w1) is in the admissible range and
satisfies (3). See Fig. 2.(b). ut

As an immediate application of the theorem, for different pattern lengths
m we computed the seed 0sRd 0

s of maximal weight among those for which
Theorem 1 guarantees m∗

P ≤ m. The resulting maximal weights for some values
of m are reported in Table 2, together with the weights of the asymptotically
optimal seeds from [3]. We see that for m up to 498, seeds derived from perfect
rulers have a larger weight. Hence, although such seeds are not asymptotically
optimal, they are preferable for values of m which are of practical interest.

Theorem 1 assumes max(s0, s1) ≤ d. It turns out that if max(s0, s1) > d
then P = 0s0R 0s1 has a much larger minimal pattern length m∗

P . The following
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m 32 64 96 128 160 192 224 300 400 500

[3] 3 12 30 42 64 81 96 150 210 284

Th. 1 14 31 50 68 86 104 122 166 224 283

(d, s) (8,5) (15,11) (19,19) (26,25) (33,31) (40,37) (47,43) (61,59) (81,79) (101,99)

Table 2. Comparison of seed weight as a function of pattern length. The second row
reports the weights of the asymptotically optimal seeds defined in [3, Th. 5]. The third
row reports the maximal weights for the seeds of the form 0sRd0

s (the last row shows
the values of d and s yielding the maximal weights). The weights of the two families
are both equal to 282 for m = 498.

theorem proves that this is true even replacing R with an arbitrary binary string
of length d+ 1.

Theorem 2. Let P = 0s0U0s1 , where U is any binary string of length d + 1.
Then:

max(s0, s1) > d =⇒ m∗
P ≥ 2|P | (4)

min(s0, s1) > d =⇒ m∗
P ≥ 2|P |+min(s0, s1). (5)

Proof. Without loss of generality we can assume s0 ≥ s1. Let p = |P |. To
prove (4) we show that if max(s0, s1) > d then P is not (2p − 1, 2)-complete
according to Definition 4. Let V denote the binary string of length 2p− 1 with
1’s in positions v1 = p−1−(d+1) and v2 = p−1. Since P does not measure d+1,
P+t can match V only if v1−t < 0 which implies t > p−1−(d+1) = v2−(d+1).
Moreover, since t ≤ |V | − |P | must hold, then it must be t ≤ p − 1. Hence, we
must have 0 ≤ v2 − t < (d+1) ≤ s0. This latter inequality implies P [v2 − t] = 0
and (2) cannot hold. To prove (5), we show that if min(s0, s1) > d then P cannot
be (2p − 1 + min(s0, s1), 2)-complete by taking v1 = p − 1 and v2 = p + s1 − 1
and reasoning as above. ut

Theorem 2 implies that the seed 0s0R 0s1 is not interesting when max(s0, s1) >
d. To see this, compare for example P = 0d+1R 0d with P ′ = 0d+1R′ 0d+1 where
R′ is a complete (d+1)-ruler. We have |P | = 3d+2, |P ′| = 3d+4, and P ′ has at
least one 0 more than P . By Theorem 2 it is m∗

P ≥ 6d+4 whereas by Theorem 1
it is m∗

P ′ ≤ 5d+ 6 which is preferable for d > 2.
Summing up, we have that among the seeds that we can derive from perfect

rulers there is a family whose members are of practical interest since they offer a
competitive trade-off between seed weight and minimum pattern length m∗

P . In
the next sections we will further investigate the properties of these seeds. Since
the upper bound established in Theorem 1 will play an important role in our
analysis, we introduce a notation for it.

Definition 6 (Upper bound mP ). For any string P = 0s0U0s1 , we denote
by mP the value mP = 2|P | − 1−min(s0, s1). ut
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4 Lower bounds on the minimum pattern length m∗
P

In this section we investigate whether the upper bound established in Theorem 1
is tight or there exist seeds of the form 0s0R 0s1 which are (m, 2)-complete for
m significantly smaller than the upper bound of Theorem 1.

We begin our analysis with the case of the seed associated to 0dR 0d where
R is a complete d-ruler. This is an important case since in Section 3 we saw that
the only interesting seeds are those with min(s0, s1) ≤ d. Among them, 0dR0d is
the one with the largest weight. For P = 0dR0d Theorem 1 yields m∗

P ≤ 5d+1.
The next result shows that it is indeed m∗

P = 5d+ 1 and that such value is the
best possible even if we replace R with an arbitrary binary string of length d+1.

Lemma 2. Let P = 0dU0d, where U is any binary string of length d+1. Then
m∗

P ≥ 5d+ 1.

Proof. We prove that P is not (5d, 2)-complete reasoning as in the proof of
Theorem 2. Let V denote the binary string of length 5d with 1’s in positions
v1 = d− 1 and v2 = 4d. First notice that admissible values for t are in the range
0 ≤ t ≤ 2d−1. For t = 0, . . . , d−1 it is 0 ≤ v1− t ≤ d−1 and P [v1− t] = 0 since
P [v1− t] is inside the d leading 0’s. For t = d, . . . , 2d−1 it is 2d+1 ≤ v2− t ≤ 3d
and P [v2 − t] = 0 since P [v2 − t] is inside the d trailing 0’s. Therefore no choice
of t satisfies (2). ut

Corollary 1. If P = 0dR0d, where R is a complete d-ruler, then m∗
P = 5d+1.

ut

For the general case P = 0s0R 0s1 we provide lower bounds which depend on
the distributions of the 1’s in R. We make use of the following technical lemma.

Lemma 3. Assume P = 0s0U0s1 is (m, 2)-complete where U is an arbitrary
binary string. For any δ that is measurable in U , let (x, x + δ) and (y, y + δ)
denote respectively the leftmost and rightmost measures of δ in P . We have

δ ≤ s0 =⇒ x+ δ ≤ m− |P | (6)

δ ≤ s1 =⇒ |P | − 1− y ≤ m− |P | (7)

Proof. We prove the thesis considering a length-m binary string V with 1’s in
appropriate positions v1 and v2 and showing that there exists t such that P + t
matches in V only if (6) and (7) hold.

Let p = |P |. If δ ≤ s0 let v1 = x− 1, v2 = v1 + δ = x+ δ− 1. Since (x, x+ δ)
is the leftmost measure of δ, P + t can match in V only for t ≥ v1+1. But, since
δ ≤ s0, for v1 + 1 ≤ t ≤ v2, P [v2 − t] = 0 since it falls inside 0s0 . Therefore it
must be t > v2. This implies m − p ≥ v2 + 1 = x + δ, and x + δ ≤ m − p as
claimed.

If δ ≤ s1, let v1 = m− p+ y+1 and v2 = v1 + δ. With arguments analogous
to the case δ ≤ s1, we have that P + t can match in V only if v1 − t ≥ p, which
implies p ≤ v1 = m− p+ y + 1 and p− y − 1 ≤ m− p as claimed. ut
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A fundamental notion in our analysis is the one of (λ, σ)-skewness. Informally,
a string is (λ, σ)-skew for small values of λ and σ if there are small integers that
are measured only near the endpoints of the string. The latter implies that the
minimum length m∗

P is close to the upper bound mP (see Theorem 3).

Definition 7 (Skewness). Let U denote a binary string of length u. We say
that U is (λ, σ)-skew if there exist δL and δR, not necessarily distinct, such that
(uL, uL + δL) (resp. (uR, uR + δr)) is the only measure of δL (resp. δR) in U ,
and the conditions

max(uL, u− 1− uR − δR) ≤ λ and max(δL, δR) ≤ σ (8)

hold. ut

Note that (8) implies that the range (uL, uL + δL) is entirely within the first
λ+ σ positions of U and starts within the first λ positions of U . Symmetrically,
the range (uR, uR + δR) is within the last λ+ σ positions of U and ends within
the last λ positions of U .

Example 1. Let U = 1100110000111. The only measure of δL = 3 is (1, 4),
and the only measure of δR = 2 is (10, 12). Since |U | = 13, U is (1, 3)-skew. ut

Let P = 0s0U0s1 where U is (λ, σ)-skew. The next theorem establishes a
lower bound for m∗

P , given in terms of the upper bound mP , under the assump-
tion that min(s0, s1) is larger than the integers that are measured only near the
endpoints of U . The assumption is not restrictive for practical applications, since
more 0’s in P translates to a spaced seed with larger weight.

Theorem 3. For any string U , let P = 0s0U0s1 . If U is (λ, σ)-skew and
min(s0, s1) ≥ σ, then m∗

P ≥ mP − λ.

Proof. We prove the theorem showing that, if P is (m, 2)-complete with m ≤
mP − λ, then necessarily m ≥ mP − λ. Let p = |P |, u = |U |.

Since U is (λ, σ)-skew, for δL and δR as in Definition 7 it is δL, δR ≤ σ ≤
min(s0, s1). Hence, Lemma 3 can be applied to both δL and δR.

Let, as in Definition 7, (s0 + uL, s0 + uL + δL) be the unique measure of δL
in P . By (7) of Lemma 3 and (8) it is

m ≥ 2p− 1− (s0 + uL) ≥ 2p− 1− s0 − λ. (9)

Similarly, let (s0+uR, s0+uR+δR) be the unique measure of δR in P . By (6)
of Lemma 3, it is s0 + uR + δR ≤ m− p. Applying (8) and finally recalling that
p = u+ s0 + s1, we get

m ≥ p+ s0 + uR + δR ≥ p+ s0 + u− 1− λ = 2p− 1− s1 − λ. (10)

From (9) and (10) we get, as claimed, m ≥ 2p−1−min(s0, s1)−λ = mP −λ. ut

The above theorem holds for any (λ, σ)-skew string U . For a complete d-ruler,
combined with Theorem 1, it yields the following result.

Corollary 2. Let P = 0s0R 0s1 where R is a (λ, σ)-skew complete d-ruler. If
max(s0, s1) ≤ d and min(s0, s1) ≥ σ, then mP − λ ≤ m∗

P ≤ mP . ut
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5 Wichmann rulers

As we mentioned in Section 3, perfect rulers are difficult to find. The exception
is the family of Wichmann rulers [14] which have a sort of “generating function”.
The Wichmann ruler Wr,s is the binary string defined by

Wr,s = 1r+1 0r1 (02r1)r (04r+21)s (02r+11)r+1 1r.

Wr,s has length wr,s = 4(r+1)2 + s(4r+3) and contains exactly 4r+ s+3 1’s.
It is a classical result that Wr,s is a complete (wr,s − 1)-ruler [14].

In this section we consider the seeds of the form P = 0s0Wr,s0
s1 and we

analyze how tight is Theorem 1 for these seeds. Our first result proves that, if
the number of leading and trailing 0’s in P is large enough, then the upper bound
mP of Theorem 1 is very accurate. Recall that large s0 and s1 are required to
obtain seeds with large weight.

Theorem 4. Let P = 0s0Wr,s0
s1 with r > 1. We have

min(s0, s1) ≥ 3r + 1 =⇒ m∗
P ≥ mP − 1 (11)

min(s0, s1) ≥ 2r + 3 =⇒ m∗
P ≥ mP − r + 1 (12)

Proof. We prove (11) showing that, for r > 1, Wr,s is (1, 3r+1)-skew according
to Definition 7. To see this consider δL = 2r and δR = 3r+1. It is straightforward
to verify that the only measure for 2r in Wr,s is (1, 1+2r), and the only measure
for 3r+1 is (wr,s−3r−3, wr,s−2). Having established thatWr,s is (1, 3r+1)-skew,
the thesis follows by Theorem 3.

To prove (12) we show that for r > 1, Wr,s is (r−1, 2r+3)-skew considering
δL = r + 2 and δR = 2r + 3. The only measure for r + 1 in Wr,s is (r, 2r + 1),
and the only measure for 2r + 3 is (wr,s − 3r − 3, wr,s − r). The thesis follows
again by Theorem 3. ut

We now establish lower bounds for P = 0s0Wr,s0
s1 with no constraints on

s0 and s1. These results are not based on the concept of skewness, but on the
specific structure of Wichmann rulers.

Lemma 4. Let P = 0s0Wr,s0
s1 with r > 1. If max(s0, s1) ≥ 2r + 3 then m∗

P ≥
mP − (2r + 2).

Proof. We prove the lemma assuming m∗
P ≤ mP − (2r + 3) and obtaining a

contradiction. Let p = |P |. Notice that, since Wr,s is a complete (wr,s−1)-ruler,
it measures all integers 1 ≤ δ ≤ wr,s − 1.

Assume first that s1 = min(s0, s1). Then s0 = max(s0, s1) ≥ 2r + 3, and we
can apply Lemma 3 to δ = 2r + 3 ≤ s0. Since the only measure of 2r + 3 in P
is (p− s1 − 3r− 3, p− s1 − r), by (6) we get p− s1 − r ≤ m∗

P − p which implies

m∗
P ≥ 2p− s1 − r = 2p−min(s0, s1)− r = mP + 1− r

which is a contradiction.
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Assume now s0 = min(s0, s1). Then s1 = max(s0, s1) ≥ 2r + 3, and we can
apply Lemma 3 to δ = r + 2 ≤ s1. Since the only measure of r + 2 in P is
(s0+ r−1, s0+2r+1), by (7) we get p−1− (s0+r−1) ≤ m∗

P −p which implies

m∗
P ≥ 2p− s0 − r = 2p−min(s0, s1)− r = mP + 1− r

which is again a contradiction. ut

Lemma 5. Let P = 0s0Wr,s0
s1 with r > 0. If max(s0, s1) ≤ 2r + 2 then m∗

P ≥
mP − (4r + 2).

Proof. Let p = |P |, and consider the binary string V of length m∗
P with 1’s

in positions v1 = p − s1 − r − 2 and v2 = v1 + 1. Note that (v1, v2) are the
positions immediately before the first pair of consecutive 1’s after the central
block (04r+21)s. The closest pair of consecutive 1’s in P to the left of (v1, v2)
are those in positions (s0 + r − 1, s0 + r). Hence P + t matches in V only for
t ≥ v1 − (s0 + r− 1). Since the largest admissible shift t is m∗

P − p we must have
m∗

P − p ≥ v1 − (s0 + r − 1), which implies

m∗
P ≥ p+ (p− s1 − r − 2)− (s0 + r − 1)

= 2p− s1 − s0 − 1− 2r

= mP −max(s0, s1)− 2r

≥ mP − 4r − 2

as claimed. ut

Combining Lemmas 4 and 5 we get the following theorem that provides a
lower bound for any seed P based on a Wichmann ruler with r > 1.

Theorem 5. Let P = 0s0Wr,s0
s1 with r > 1. It is m∗

P ≥ mP − (4r + 2). ut

Note that r = O(
√
wr,s), so Theorem 5 once more proves the estimate of

Theorem 1 accurate. In the following example we present a specific case, in
order to give a feeling of the values involved.

Example 2. The string W2,1 is a complete 46-ruler. Consider the seed P =
0iW2,10

i. For i =, 0, . . . , 46 it is mP = 94 + 3i− 1. By Corollary 1, for i = 46 it
is m∗

P = mP = 231. By Theorem 4, for 7 ≤ i ≤ 45 it is mP − 1 ≤ m∗
P ≤ mP .

For example for i = 7 it is 113 ≤ m∗
P ≤ 114. By Theorem 5, for 0 ≤ i ≤ 6, it is

mP − 10 ≤ m∗
P ≤ mP . For example, for i = 0 it is 83 ≤ m∗

P ≤ 93. ut

6 Restricted vs Unrestricted Rulers

The complete rulers defined in Section 2 are sometimes called restricted rulers
since we require that the string R measuring all integers between 1 and d has
length exactly d+1. In the literature [2, 6] there is also the notion of unrestricted
d-ruler which is a binary string of arbitrary length that measures all integers
between 1 and d. The next Lemma shows that every spaced seed must have an
unrestricted ruler at its heart.
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Lemma 6. If P is (m, 2)-complete, then it must measure any integer δ, 1 ≤
δ ≤ 2|P | −m− 1.

Proof. Let p = |P |. We prove the lemma showing that if P does not measure δ
then δ ≥ 2p − m. Consider the length-m binary string V with 1’s in positions
v1 = p − 1 − δ, and v2 = p − 1. Since P is (m, 2)-complete there must exist
t ≤ m − p such that P + t matches in V according to Definition 4. However, if
P does not measure δ, P + t does not match in V whenever t ≤ v1. Hence, we
must have t ≥ v1 + 1 = p − δ, which is possible only if p − δ ≤ m − p which
implies δ ≥ 2p−m as claimed. ut

The above result suggests that it could be worthwhile to analyze also spaced
seeds of the form P = 0s0Ud0

s1 , where Ud is an unrestricted d-ruler. This interest
is motivated theoretically by the fact that an unrestricted d-ruler can contain
less 1’s than a perfect d-ruler.

Example 3. The minimum number of 1’s in a restricted 18-ruler is eight [9].
The string U18 = 1000001001100000010000101 has length 25, seven 1’s, and
is an unrestricted 18-ruler since it measures all integers from 1 to 18. ut

In the following we give some evidence that for seed design unrestricted rulers
appear to be less effective than restricted rulers.

Let U18 denote the string defined in Example 3 and let m∗
Q denote the mini-

mum m such that Q = 0sU180
s is (m, 2)-complete. The ruler U18 is (0, 6)-skew,

since 6 has the unique measure (0, 6), and 2 has the unique measure (22, 24).
Theorem 3 implies that m∗

Q ≥ mQ = 2|Q|−1−s. Note however, that Theorem 1
has been proven only for restricted rulers. Indeed, a direct verification shows that
it does not hold for unrestricted ones, since for s ≥ 13 it is m∗

Q > mQ.
Based on the above observations, we compare the completeness properties of

a seed obtained from U18 to one obtained from a restricted d-ruler Rd.

– Let P = 0s0R180
s1 , where R18 is a restricted 18-ruler with eight 1’s (see [9]).

Let s0 = s + 4 and s1 = s + 3. Then |P | = |Q| + 1 and P and Q have
the same weight. Since mP = 2(|Q| + 1) − 1 − (s + 3) = mQ − 1, then
m∗

Q ≥ mQ = mP + 1 > m∗
P , which implies m∗

Q > m∗
P .

– If we take P = 0s+4R180
s+4 with the same R18, so that P is longer and has

a larger weight than Q, we obtain mQ = mP and therefore m∗
Q ≥ m∗

P .
– Finally, let P = 0s0R170

s1 where R17 is a restricted 17-ruler with seven 1’s
as U18 (see [9]). Let s0 = s+4 and s1 = s+3. Then, Q and P have the same
length and weight, and mQ = mP + 3, therefore m∗

Q ≥ m∗
P + 3.

We consider now Wichmann rulers. We observe that in general a restricted
d′-ruler with d′ > d is an unrestricted d-ruler. Hence, for b > 0, Wr+b,s can be
seen as an unrestricted (wr,s − 1)-ruler. We show that a seed built out of the
restricted ruler Wr,s is better than one of the same length based on Wr+b,s.

Let P = 0s0Wr,s0
s1 . To preserve length, in replacing Wr,s with Wr+b,s we

reduce the number of leading and trailing zeroes. Since |Wr+b,s| − |Wr,s| =

4b(b + 2r + s+ 2), we let σb = 2b(b + 2r + s+ 2) and define Q = 0s′0Wr+b,s0
s′1
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with s′i = si −σb (i = 0, 1), so that |Q| = |P |. Notice that the following theorem
holds, somewhat counterintuitively, even though P has a larger weight than Q.

Theorem 6. Let P = 0s0Wr,s0
s1 and Q = 0s′0Wr+b,s0

s′1 as above, with r > 1.
It is m∗

Q ≥ m∗
P for b ≥ 1, and m∗

Q > m∗
P for b > 1 or s > 0.

Proof. Since |Q| = |P |, it ismQ = 2|Q|−1−min(s0−σb, s1−σb) = mP+σb. From
Theorem 5 applied toQ and the latter equality we getm∗

Q ≥ mP+σb−4(r+b)−2;
the inequality is strict for b > 1 or s > 0 as claimed. ut

7 Conclusions

In this paper we have shown how to derive a new family of lossless seeds from the
mathematical objects known as perfect rulers. We have proven upper and lower
bounds on the effectiveness of these seeds and shown that they are of practical
interest. A natural extension of this work is to study their use in the context of
multiseed filtration for the detection of more than 2 mismatches.
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