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Università di Torino, Torino, Italy beccuti, susi@di.unito.it

†Dipartimento di Informatica
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Abstract—In this paper we propose a new approach for
network reliability analysis based on Binary Decision Diagrams
(BDDs): the goal is to compute the s-t minpaths for a given
network and pair of source-target (s-t) nodes, as well as the
corresponding reliability measure. This approach comprises four
steps: (1) a BDD B1 encoding the rules to generate the minpaths
of a specific graph is built, (2) B1 is used to efficiently derive a
BDD B2 encoding the minpaths, (3) B2 is expanded to obtain a
new BDD B3 encoding the connectivity function: for efficiency
reasons the last step takes advantage of an approach based
on saturation. Finally, (4) the classical algorithm to compute
the network reliability from the BDD encoding the connectivity
function and the probability associated with the network graph
edges is applied.

As a result, the memory peak experienced in computing the
connectivity function is significantly reduced, with respect to
previous approaches which directly build the BDD (B3) encoding
such function. A set of experiments is presented, comparing
the memory utilization and computation time of the proposed
approach with respect to previous ones.

I. INTRODUCTION

Many technological, economical and social systems can be
abstracted as a network, an entity characterized by a set of
nodes, the elements of the system, connected through a set
of links, the relations between elements. An important aspect
of these structures is represented by the existence of multiple
redundant paths connecting each pair of nodes, this makes the
systems intrinsically reliable. For this reason, the reliability of
networks has been a major concern since the earliest times of
reliability engineering [2], [16].

We can represent a network by means of a graph whose
vertices and edges are considered as binary objects that can
be in one of the following states: working (up) or failed
(down). If a probability measure is assigned to the up or down
condition of each element, a probability measure associated
with the connectedness of the whole graph can be computed.
The network s-t reliability is defined as the probability that a
source node s can communicate with a target (or sink) node
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t through at least one path of up edges. The computational
techniques proposed in the literature to solve the network
reliability problem assume that the network elements are
statistically independent and can be classified in two main
categories; i) - approaches in which the desired network reli-
ability measure is directly calculated (series-parallel reduction
[4], pivotal decomposition using keystone components [13],
[9]) and ii) - approaches where all the possibilities for which
two specified nodes can communicate (or not communicate)
are first enumerated (path/cut set search [3], [11]) and then
the reliability expression is evaluated, resorting to different
techniques [2], like inclusion-exclusion method or sum of
disjoint products [10], [17], [1].

In the last decades, Binary Decision Diagrams (BDD) [6]
have provided an extraordinarily efficient method to represent
and manipulate Boolean functions [7], and have also been
exploited to model the connectivity of Boolean networks [5],
[18].

This paper discusses a new approach based on BDD to
compute qualitative and quantitative measures of network
reliability. With respect to the previous works (e.g. [5], [18])
based on the algorithm proposed in [15] this new approach
does not require to store the connectivity function in order
to derive the minpaths of the net. This leads to a lower
memory peak during their computation as reported in the
experiments (Sec. VI). From this BDD, encoding only the
minpaths, the network reliability can be computed either using
a direct approach based on the sum of disjoint products
(e.g. [1], [14]) or using a symbolic approach based on the
Shannon’s decomposition (e.g. [6]). Here we focus on the
second choice: the BDD encoding the minpaths is extended to
represent the BDD storing the s-t connectivity function: this is
performed efficiently using an approach based on saturation,
a strategy first proposed in [8] for the computation of the set
of reachable states of a concurrent model. Even if this choice
requires to store the whole connectivity function, thanks to the
saturation strategy it is still possible to achieve a reduction
in terms of memory peak with respect to other approaches



based on BDD. Finally, to compare our approach with the
existing methods we have developed a prototype framework
implementing our approach and the one presented in [18].

The paper is organized as follows: Sec. II describes the main
concepts of network reliability analysis, Sec. III introduces the
BDDs and their operators. The previous algorithms based on
BDD implemented in our framework to compute minpaths
and network reliability are presented in Sec. IV. The new
method is introduced in details in Sec. V; Sec. VI presents
some numerical results comparing our approach with the other
approach presented in Sec. IV. Finally, Sec. VII draws some
conclusions and presents directions for future work.

II. PROBLEM DEFINITION

A network can be described as a graph G = (V,E), where
V is the set of vertices (or nodes) and E the set of edges
(or arcs). Each edge e is associated with a pair of (distinct)
vertices that e connects; if the graph is oriented, then the pair
of vertices associated with an edge is ordered.

Fig. 1 shows the graphical representation of a graph model-
ing a bridge network. For undirected networks the presence of
at least one edge per node guarantees that all the nodes are con-
nected. Usually real networks are much more connected than
this minimal threshold thus allowing multiple paths among any
pair of vertices. For directed graphs the connectivity property
is more complex to establish since a connecting path must
follow the direction of the arcs.

Let G = (V,E) be a graph, and let s and t be two vertices
called the source and the target vertex: we define a path as
a subset of edges that, when in the up state, are sufficient to
guarantee s and t connectivity. A minpath is a path that does
not contain any other path. For instance the path 〈e1, e2, e4〉
is not a minpath, while 〈e1, e4〉 is a minpath.

If the network elements are binary entities (up or down) the
network connectivity (i.e. the set of all paths) can be expressed
as a boolean function. By assigning a probability measure to
each element of the graph to be up or down, we define point-
to-point (or two-terminal) reliability as the probability that
two nodes communicate through at least one path of working
edges.

In general, networks can be assumed to have both vertices
and edges as failure prone; however, in the sequel we assign
a failure probability only to the edges since it is known that
the case of networks with failing nodes can be reformulated
into an equivalent one where only edges may fail.

III. BINARY DECISION DIAGRAMS

Before presenting in details the algorithms to compute
the minpaths and the network reliability, we introduce the
basic characteristics of Binary Decision Diagrams (BDD) and
associated operators.

BDDs [6] are well-known graph data structures used to ef-
ficiently represent and manipulate complex Boolean functions
over boolean variables. They support efficient solutions for a
large class of problems in different research fields (e.g. dig-
ital system design, combinatorial optimization, mathematical

logic,. . .). For instance, in [18] the authors show that BDD
can be efficiently used for reliability graph analysis directly
encoding the s-t connectivity function on a BDD.

Formally a BDD is a directed acyclic graph that can
represent functions of type f : VN × · · · × V1 → {0, 1},
where Vi is a boolean variable. Nodes without outgoing arcs
are called terminal, the (unique) node without incoming arcs
is called root, all the others are called internal; a node at
level i has two outgoing arcs, one with label 0, and one
with label 1. When using a BDD for representing a boolean
function over N variables, the non terminal nodes are mapped
onto the N variables, the two possible values of the function,
false and true, are represented by two terminal nodes 0 and
1, and the arcs out of a node corresponding to variable Vi

represent the possible assignments to such variable (true/1 or
false/0). Each path in the graph from the root node to node
0 represents an assignment vN , . . . , v1 of boolean values to
the N variables for which f(vN , . . . , v1) = false, and while
each path from the root to node 1 represents an assignment
for which f(vN , . . . , v1) = true. The BDD encoding function
f() can also be interpreted as the representation of the set of
N-tuples {vN , . . . , v1} : f(vN , . . . , v1) = true.

In Fig. 2 a BDD encoding the boolean function e2e5 +
e2e5e3e4 + e2e5e3e1e4 + e2e1e4 is shown, an arc with label
0 starting from a node represents the assignment false for the
corresponding variable while an arc with label 1 represents
the assignment true.

A BDD in which nodes are organized into levels (one per
variable) is called ordered. Two BDD nodes are duplicate if
their outgoing edges go to the same set of nodes. Moreover, if
the two arcs out of a given node ni lead to the same destination
node nj , then node ni is redundant and can be eliminated: the
arcs originally directed towards ni must be redirected towards
nj (so that after elimination of redundant nodes there may
be arcs connecting nodes in non adjacent levels). An ordered
BDD with no duplicate or redundant nodes is called Reduced
Ordered BDD (ROBDD) and is canonical: if two boolean
functions are equal (have the same value over all possible
inputs), then they have the same same ROBDD representation.
For instance, the BDD in Fig. 2 is a ROBDD where the
variables are ordered as follows e2 ≺ e5 ≺ e3 ≺ e1 ≺ e4:
observe that the variable order can be arbitrarily chosen,
however different variable ordering may lead to different BDD
size. In the rest of this paper we will use the term BDD to
indicate a ROBDD.

A BDD can be also used to express a mapping between the
elements of one set (of boolean N-tuples) and the elements
of a second set (of boolean N-tuples). The BDD encoding a
relation of this kind has with 2N levels (i.e. it corresponds to
a boolean function with 2N variables). We call the variables
belonging to the first N-tuple unprimed while those of the
second N-tuple are called primed. An example is shown in
Fig. 3, where we encode a relation between paths in the bridge
network in Fig. 1: this BDD will be discussed in details in
Sec. V. Any permutation of the 2N variables can be used
when establishing the variables ordering for this kind of BDD,



but here we assume that the unprimed and primed variables
are interleaved, since it is often the case that interleaving is
the most efficient order in terms of nodes required to store
relations.

A very interesting aspect of BDDs is that they allow to
reduce the basic boolean functions like and and or to basic
operations like intersection (for the and) and union (for the
or) over two BDDs: these operations can be easily defined
recursively. A crucial factor in the efficiency of these operators
is the utilization of a hash table, called computed-table, used
to cache the result of each intermediate step of the algorithm
(recursively) implementing the operator, so that it is never the
case that the same operation is executed twice on the same
pair of nodes, if our cache is large enough.

BDD provides also specific operators as the relational
product (or POST IMAGE) which allows to obtain from two
BDDs, one encoding a generic set of N-tuples (BS) and
another one – with 2N levels – encoding a relation between
N-tuples (BR), a new BDD representing the result of the
(simultaneous) application of the relation represented by BR

to the set of N-tuples represented by BS . Considering the
BDD in Fig.3 encoding a relation between the paths in the
bridge network the relational product between it and the
BDD representing the network state where all edges are
disconnected (

∧
iei = false) returns a BDD encoding all the

minpaths of the bridge network.

IV. 2-TERMINAL RELIABILITY ALGORITHM

In this section the algorithm proposed in [18] for encoding
of the connectivity function on BDD is summarized. To the
best of our knowledge, this is one of the best algorithms
in terms of execution time and memory utilization. This
algorithm generates the BDD directly, via a recursive visit
on the graph, without explicitly deriving the corresponding
Boolean expression. It is sketched in Algorithm 1. Observe
that all the Algorithms presented in this section must handle
properly the cycles possibly appearing in G: this has been
omitted in all the reported Algorithm sketches to keep the
pseudo-code simpler, however it and (and actually it must) be
introduced without problems.

s

node 3

e1 e4

e3

e2 e5
node 4node 1

node 2

t

Fig. 1. A directed graph representing a bridge network

Let G = (V,E) be a graph and (Src,Trg)∈ V be the
source and the target vertices in G, There are |E| variables
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Fig. 2. BDD of the bridge network

Algorithm 1 Algorithm for connectivity function
1: procedure BDDGEN(Src, Trg)

Src = source node
Trg = target node
B = BDD encoding the connectivity function
E = list of edges

2: E=Src.getEdges()
3: for e ∈ E do
4: Dst = dest node(e)
5: if Dst == Trg then
6: sp=e.getBdd()
7: else
8: sp=BDDgen(Dst, Trg) * e.getBdd()
9: end if

10: B=B+sp
11: end for
12: end procedure

in the BDD. The algorithm starting from node Src performs
a depth first visit of the graph until reaches node Trg. The
BDD construction starts once the node Trg is reached. The
function getBdd() returns the BDD for the specific edge (i.e.
the BDD representing the possible values of ei encoding the
fact that the corresponding edge can be in state up (branch
true) or in state down (branch false).). The BDDs representing
the edges along a path from Src to Trg are combined in AND
(intersection operation) to form the BDD of a path, while the
alternative paths starting from a given edge e are combined in
OR (union operation). In this way it is possible to create the
BDD representing the connectivity function.

Next we introduce two algorithms, that given a BDD
encoding the connectivity function, compute the minpaths and
the network reliability.



A. Algorithm for BDD minimization

Algorithm 1 derives directly the BDD of the Boolean
connectivity function, however it is sometimes required to de-
termine the list of the network minpaths. The minpaths provide
a qualitative information about the connections between source
and sink. Any path in a BDD linking the root with the terminal
leaf 1, where only the list of events corresponding to the 1-
labeled branches is included, is a path of the network, but
not necessarily a minpath. To derive the minpaths the list of
paths obtained from the BDD must be minimized. In [15] it is
proposed an approach that transforms the original BDD into a
new one embedding all and only the minpaths. Details of the
transformation algorithm are in [15], while the algorithm is
shown in Algorithm 2. The method NodeDownPtr(x) returns
the sub-BDD (0-subtree or 1-subtree) reached assigning the
value x to the root variable. The procedure without() (shown
in details in Algorithm 3) implements the BDD operator
without [15], that taking in input two BDDs, removes from
the first BDD all the paths shared with the second one.

The method createBDD(x, T, E) returns a new BDD having
the variable x as root and the BDDs T and E as its two
branches (0-subtree and 1-subtree). Observe that a cache is
used to avoid recomputing the same operations several times.
Finally, the variable flag is used to choice between minpaths
computation (flag=1) and the mincuts one (flag=0). Fig.4
shows the result of the minimization algorithm when applied to
the connectivity BDD of the bridge network. It is important
to observe that the BDD in Fig.4 must be interpreted in a
non standard way to obtain the list of the minpaths: they are
obtained selecting the paths from the root to terminal node
1 setting to false all the edge variables that are not present
in the path due to a jump between not adjacent levels. The
normal interpretation of such paths instead would consider
both possible values for the edge variables not explicitly
represented along the path.

B. Reliability algorithm

To compute the network reliability we need to assign to each
variable xi a probability pi of being true (1−pi of being false),
so that we can compute the probability P{F} of function F
(representing a set of paths, in our interpretation) by applying
recursively Equation 1.

P{F} = p1P{Fx1=1}+ (1− p1)P{Fx1=0}
= P{Fx1=0}+ p1(P{Fx1=1} − P{Fx1=0}) (1)

In Algorithm 4 a sketch of this algorithm is shown.
It takes in input the BDD B encoding the connectivity

function and the vector P storing the edge probabilities. It
starts from the B root node and recursively calls itself on the
two branches until the terminal nodes are reached. Indeed,
the probability of the subpaths originating in a given node
x depends on the probability of the 0-subtree multiplied by
the probability of x being false (edge being down) plus the
probability of the 1-subtree multiplied by the probability of x
being true (edge being up).

Algorithm 2 MinBDD algorithm
1: function MINBDD(B,flag)

B = BDD encoding the connectivity function

2: if (B==1) or (B==0) then
3: return B
4: else
5: if Cache[B]!=NULL then
6: return Cache[B]
7: else
8: B1=B.NodeDownPtr(0)
9: B0=B.NodeDownPtr(1)

10: x=B.NodeVar()
11: K=MinBdd(B1,flag)
12: T=without(K,B0,flag)
13: E=MinBdd(B0,flag)
14: if (T==E) then return T
15: R=createBDD(x,T,E)
16: Cache[B]=R;
17: return R
18: end if
19: end if
20: end function

e2

e2’

e5

e5’

e3

e3’

e1

e1’

e4

e4’

01

Fig. 3. BDD B1 expressing the rules to build the minpaths of the directed
bridge network

V. THE PROPOSED ALGORITHM

In this section the new approach is presented in details, first
describing how the rules generating the minpaths of a specific
graph can be derived and encoded in a BDD (B1). Then
showing the algorithm to build the BDD (B2) encoding the
minpaths; this is performed more efficiently than in previous



Algorithm 3 The Without algorithm, used by MinBDD
1: function WITHOUT(F ,G,flag)

G, F, R = BDDs

2: if (flag==0) AND (F==0) AND (G==0) then
3: return 1
4: end if
5: if (F==0) then
6: return F
7: else
8: if (G==1) then
9: if (flag==1) then return 0

10: else return F
11: else
12: if (G==0) then
13: if (flag==0) then return 1
14: else return F
15: end if
16: end if
17: end if
18: if (computedtable has entry (flag,F,G),R) then
19: return R
20: else/* F=ite(x,F1,F2), G=ite(y,G1,G2)*/
21: x= the top variable of F
22: y= the top variable of G
23: if (x>y) then
24: if (flag==1) then return without(F,G2,flag)
25: else return without(F,G1,flag)
26: else
27: if (x==y) then
28: T=without(F1,G1,flag)
29: E=without(F2,G2,flag)
30: else/* x<y */
31: T=without(F1,G,flag)
32: E=without(F2,G,flag)
33: end if
34: if (T==E) then return T
35: R=find or add unique table(x,T,E)
36: insert computed table(flag,F,G),R)
37: return R
38: end if
39: end if
40: end function

approaches that use Algorithm 1 and Algorithm 2 (recall
that the minpath representation obtained by applying these
algorithms is a non standard one). Finally a third BDD (B3) is
derived, representing the network connectivity, from which the
network reliability measure can be derived applying standard
methods (this step can be omitted if we are only interested in
the minpaths).

Before introducing the algorithm observe that each variable
xi of the boolean function encoded on BDD represents an edge
in the graph, so that xi = 1 models the edge i connected,
while xi = 0 means that is not connected. For instance
the path 〈0, 0, 0, 1, 1〉 in the BDD in Fig. 5 represents the
minpath 〈e1, e4〉 of the bridge network in Fig. 1. Moreover,
the rules generating the minpaths of a graph specified in terms
of which disconnected edges have to be connected to reach the
target node are encoded on a BDD with 2N levels, where
N is the total number of edges in the graph. An example

Algorithm 4 Reliability algorithm
1: function RELBDD(B, P )

B = BDD encoding the connectivity function
P = vector storing the edges probabilities
PF = reliability value

2: if B == BddFalse then
3: return 0;
4: else
5: if B == BddTrue then
6: return 1;
7: else
8: if CACHE[B]!=NULL then
9: return CACHE[B];

10: else
11: PF1=RelBDD(B.NodeDownPtr(1));
12: PF2=RelBDD(B.NodeDownPtr(0));
13: PF=PF2 + P[Root(B)] * (PF1 - PF2);
14: end if
15: end if
16: cache[B]=PF;
17: return PF;
18: end if
19: end function

Algorithm 5 Algorithm for encoding the rules generating the
minpaths on BDD

1: procedure BDDGEN(Src, Trg, R, X, X ′)

Src = source node
Trg = target node
R = BDD with 2L levels encoding the connectivity function
E = list of edges
X ,X′= vectors indicating a set of BDD variables’ assignments

2: E=Src.getEdges()
3: for e ∈ E do
4: Dst = dest node(e)
5: X[e] = 0
6: X ′[e] = 1
7: if Dst == Trg then
8: R.insert(X, X ′)
9: else

10: BDDgen(Dst, Trg, R, X, X ′)
11: end if
12: X[e] = X ′[e] = −2
13: end for
14: end procedure

of this for the bridge network is shown Fig. 3 (recall that
unprimed and primed edge variables are interleaved, evidenced
through additional spacing in the 2N-tuples appearing in the
text hereafter). The path 〈0, 0, 0, 0, 0, 0 , 0, 1, 0, 1〉 means
that e1, e4 should be connected to reach the target node, while
〈0, 1, 0, 1, 0, 0, 0, 0, 0, 0〉 that e2, e5 should be connected.

A. Encoding the rules generating the minpaths on BDD

The rules generating the minpaths of a graph are encoded
through a depth first visit as shown in Alg. 5. It takes in input
an unexplored node (initially the source node), the target node,
the BDD (initially empty) encoding the minpath rules and two
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Fig. 5. BDD B2 encoding the set of minpaths of the bridge network

integer vectors with size equal to the total number of edges
in the graph. Such two vectors (X, X ′) are used to insert a
path in the BDD corresponding to a possible assignment for
all the variables in the BDD (X for the unprimed variable and
X’ for the primed ones). In the beginning they are initialized
to −2 meaning that the value of an unprimed variable (x) is
the same of its corresponding primed variable (x′). In line 2
all the edges starting from Src are stored in E; then for each
edge e in E its reached node is saved in Dst (line 4) and X[e]
and X ′[e] are updated with 0 and 1 respectively. This means
that starting from a path where the edge e is not connected
the edge must be connected to reach the target node.

If Dst is the target node (line 7 to 9) the generated path

Algorithm 6 Algorithm for minpath generation
1: procedure MINPAHS(Src, Trg, B, X,X ′)

Src = source node
Trg = target node
R = BDD encoding the connectivity function
X ,X′ = vectors indicating a set of BDD variables’ assignments

2: Initialize(X ,X ′,-2)
3: BDDgen(Src, Trg, R, X, X ′)
4: Initialize(X ,0)
5: B.insert(X)
6: B=Apply(POST IMAGE,R, B)
7: end procedure

is a minpath, hence its generation rule, specified by X and
X ′, has to be inserted in the BDD R. Otherwise the function
is recursively called on Dst. In the end, R encodes all the
minpath generation rules of the input graph. Fig. 3 shows R
for the bridge network in Fig. 1.

B. Computing minpaths

Algorithm 6 shows how it is possible to derive a BDD
encoding the minpaths from the 2N level BDD R computed
with Algorithm 5. This is performed applying the operator
POST IMAGE on the BDD B where all the network edges
are disconnected and the BDD R encodes the minpath rules.

For instance, in Fig 5 the BDD encoding the minpaths for
the bridge network in Fig. 1 is reported.

Observe that these two algorithms allow us to derive
the minpaths of a graph more efficiently in terms of memory
(as shown by the experiments in Sec. VI) than the classical
algorithms presented in Sec.IV. Indeed, in this phase we do
not need to store explicitly the connectivity function.

C. Computing the network reliability

Minpaths provide useful information, but if we are inter-
ested in computing the network reliability it is necessary to
introduce a further step. As already explained in the introduc-
tion, in this step we are going to reuse Algorithm 4, hence we
need to generate the BDD encoding the connectivity function.
This can be efficiently produced from the minpaths BDD as
shown in Algorithm 7.

In line 2 a BDD with 2N levels is generated, which
encodes the rules to translate the minpath BDD into the BDD
encoding the connectivity function. In details for each edge
e a rule is inserted specifying that for each path containing
edge e = 0 we want to generate two new paths one where
e = 0 and a second one where e = 1: this is encoded
as follows, for edge e2: X = 〈0,−2,−2,−2,−2〉 and
X ′ = 〈−1,−2,−2,−2,−2〉 where the pair 0,−1 associated
to the unprimed and primed variable e1, e

′
1 is a shorthand

notation for the transformation described above. In line 3
we apply SAT POST IMAGE operator (a recursive version
of the operator POST IMAGE) on M and B to obtain the
BDD encoding the connectivity function. Observe that this



Algorithm 7 Algorithm
1: procedure COMPUTERELIABILITY(B, P )

C = BDD encoding the connectivity function
B = BDD encoding the minpaths
M = BDD encoding the translation rule for minpaths BDD
P = vector storing the edge probabilities

2: TranslationRule(M )
3: C=Apply(SAT POST IMAGE,M, B)
4: RelBDD(C, P )
5: end procedure

step is performed using the saturation strategy, so that first
we update all the paths considering the edge at level i, then
all the paths considering the edge at level i − 1. Each time
that considering level i we create a new path containing a
0-labeled arc at level j > i, then we come back to the level
j. The algorithm halts when all the paths have been updated
with respect to every level. This strategy, as shown in [8], can
lead to significant time and memory savings. Finally in line 4
Algorithm 4 is called on the BDD encoding the connectivity
function and the vector P storing edge probability to be up.

A possible extension of our approach to compute an
approximate network reliability based on minpaths is now
proposed. This can be useful in case of huge networks where
it is impossible to apply the exact approach. Our idea is to
compute a lower bound for the network reliability taking into
account only the minpaths that are at most as long as a given
threshold. This requires to update only Algorithm 5 so that it
only encodes the rules for generating the minpaths that are
at most as long as a given threshold. In next section some
results computed with this approach are reported.

VI. RESULTS

In this section some experimental results are presented,
which were computed thanks to a prototype implementation of
our approach and of the previous ones presented in literature
and described in Sec.IV; the implementation of BDD has been
provided by an existing open–source library: Meddly [12].
The choice to use this new open–source library was motivated
mainly by the fact that it automatically handles the complex as-
pects of using BDDs (such as caching and garbage collection)
and provides a simple interface for common BDD operations.

Two scalable benchmarks have been carried out to evaluate
and to compare the efficiency of the two approaches. First,
we take into account a regular n × n network topology of
increasing complexity where each node is connected with two
neighbors (the right one and the bottom one) in case of directed
network, or with all the four neighbors (right, left, bottom and
top ones) if the network is undirected. Fig.6 shows an example
of directed network of this kind.
We shall also consider random undirected networks where the
pair of vertices connected to each edge is chosen randomly
among all nodes in the network (avoiding duplicates).

Fig. 6. Benchmark network

All the experiments have been executed on an 2.4 Ghz AMD
Athlon 64-bit processor with 4 Gbytes memory, assuming a
failure probability equal to p = 0.9 for all the edges.

A. Benchmark network reliability computation

Table I shows the results for only the minpath computation
obtained on these benchmark networks increasing the value of
n. For the regular network the upper left node and the lower
right node are selected as Src and Trg, while for the random
network they are randomly chosen. The “Algo. 1 + Algo 2”
columns refer to the implementation of the first two algorithms
in Sec. IV, and show its reached memory peak in bytes and its
computation time in seconds. The other columns are related
to our new approach for minpaths computation and report the
reached memory peak, the computation time and the memory
peak reduction factor with respect to the previous algorithm.

Considering the set of experiments on directed networks
we observe that the computation time of the two approaches is
comparable (same order of magnitude), but a high reduction in
terms of memory peak occupation is obtained by our approach
(e.g. for case 13 × 13 the total reduction factor is ∼4,523
for the regular directed network and ∼1935 for the regular
undirected one). Unfortunately, for the random network the
reduction level is lower, but this is justified by the fact that
most of paths in the network are minpaths.

Table II shows the computation of the network reliability,
so that we compare our approach (Algo. 5 + Algo. 6 +
Algo.7) with the approach presented in Sec. IV (Algo. 1 +
Algo. 2). A memory reduction is still obtained even if it is
less relevant than the one of the minpath generation. These
results suggest that it could be worthwhile to investigate the
possibility to develop a new algorithm able to compute the
network reliability without generating the BDD encoding the
connectivity function.

B. Estimation of Reliability.

Finally, let us discuss a set of experiments performed using
the extension of our approach to compute an approximate
value (a lower bound) for network reliability based on min-
paths.

Table III shows the results for a random network with
30 vertices and 31 edges (denoted 30n41e in the exact
computation data Tables). The network has 575 minpaths and
the exact reliability is 0.886926623780. In details Table III



Algo 1 + Algo 2 Algo 5 + Algo 6
Size Mem. T. Mem. T. Red.

Regular Directed network
8× 8 2,951,776 0 29,836 0 71.81
9× 9 8,806,500 0 41,048 0 214.54

10× 10 25,935,088 5 54,704 3 471.1
11× 11 71,895,036 12 71,044 12 1,011.98
12× 12 194,233,280 47 90,308 50 2,150.79
13× 13 509,980,836 171 112,736 213 4,523.67

Regular Undirected network
5× 5 1,989,288 0 185,132 4 10.75
6× 6 112,374,344 41 267,772 129 419.66
7× 7 1,994,572,944 19,490 1,030,632 20,150 1935.29

Random Undirected network
20n28e 106,948 0 27,124 0 3.94
30n36e 125,064 1 27,200 0 4.6
30n41e 2,099,196 1 160,400 0 13.09

TABLE I
TIME (SECONDS) AND MEMORY (BYTES) REQUIRED FOR COMPUTING THE LIST OF MINPATHS OF THE NETWORK

Algo 1 + Algo 3 Algo 5 + Algo 6 + Algo 7
Size Mem. T. Mem. T. Red.

Regular Directed network
8× 8 2,951,776 0 245,904 0 12
9× 9 8,806,500 0 568,416 0 15.49

10× 10 25,935,088 5 1,431,576 3 18.12
11× 11 71,895,036 12 3,480,724 12 20.66
12× 12 194,233,280 47 8,345,396 50 23.27
13× 13 509,980,836 171 19,799,984 213 25.76

Regular Undirected network
5× 5 1,989,288 0 279,380 4 7.12
6× 6 112,374,344 41 1,018,360 129 110.35
7× 7 1,994,572,944 19,490 15,249,940 77,150 130.79

Random Undirected network
20n28e 106,948 0 61,704 0 1.73
30n36e 125,064 1 52,528 0 2.38
30n41e 2,099,196 1 568,316 0 3.69

TABLE II
TIME (SECONDS) AND MEMORY (BYTES) REQUIRED FOR COMPUTING THE NETWORK RELIABILITY AND THE LIST OF MINPATHS

shows for each threshold value T (first column), the number
of considered minpaths, the reliability approximation and the
error computed as difference between the exact reliability
value and the approximation.

In Fig.7 the different values of reliability increasing the
value of threshold are depicted. Figure 8 shows the error.

VII. CONCLUSION AND FUTURE WORK

In this paper we have presented a new symbolic approach
based on BDDs to compute the minpaths and network reliabil-
ity. This approach has been compared with the others presented
in literature; a framework including those algorithms has
been implemented and used to perform several experiments.
Such experiments have highlighted that minpaths generation
achieves a high level of reduction in the memory utilization
while the execution time only slightly increases. Moreover, our
approach is also able to achieve a good reduction during the
computation of the network reliability thanks to an efficient
generation of the BDD encoding the connectivity function
based on a saturation strategy.

Threshold (T ) Number of minpaths Reliability Error
1 0 0.000000000000 8.87E-001
2 0 0.000000000000 8.87E-001
3 0 0.000000000000 8.87E-001
4 1 0.656099930477 2.31E-001
5 1 0.656099930477 2.31E-001
6 5 0.839021942105 4.79E-002
7 7 0.859198261471 2.77E-002
8 22 0.884721786799 2.20E-003
9 41 0.886159710528 7.67E-004

10 81 0.886810475654 1.16E-004
11 131 0.886891663661 3.50E-005
12 189 0.886919860948 6.76E-006
13 261 0.886925749869 8.74E-007
14 324 0.886926443339 1.80E-007
15 397 0.886926571506 5.23E-008
16 452 0.886926613613 1.02E-008
17 510 0.886926622457 1.32E-009
18 555 0.886926623602 1.78E-010
19 569 0.886926623775 5.00E-012
20 575 0.886926623780 0.00E+000

TABLE III
APPROXIMATION OF THE RELIABILITY VALUE
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Fig. 7. Approximation of the reliability value varying the threshold
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Finally, we have proposed an extension of our approach to
compute an approximation of the network reliability that may
be useful in case of huge networks. Some experiments based
on the implementation of such extension have been reported.

The future works concern two main aspects. First we are
going to investigate the possibility to derive the network
reliability without generating the whole connectivity function.
The second future work consists to extend our approach in
order to compute also the mincuts, and use them and together
with the minpaths to obtain both upper and lower bounds on
the network reliability.
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