Achieving completeness in bounded model checking of action theories in ASP

L. Giordano, A. Martelli, D. Theseider Dupré
(laura.giordano@mfn.unipmn.it, mrt@di.unito.it, daniele.theseider.dupre@mfn.unipmn.it)

TECHNICAL REPORT TR-INF-2011-12-04-UNIPMN
(December 2011)
Recent Titles from the TR-INF-UNIPMN Technical Report Series

2011-03 SAN models of a benchmark on dynamic reliability, D. Codetta Raiteri, December 2011.

2009-08 Simulating the communication of commands and signals in a distribution grid, D. Codetta Raiteri, R. Nai, December 2009.

2009-03 A GSPN Semantics for Continuous Time Bayesian Networks with Immediate Nodes, D. Codetta Raiteri, L. Portinale, March 2009.

Achieving completeness in bounded model checking of action theories in ASP *

Laura Giordano 1 Alberto Martelli 2 Daniele Theseider Dupré 1

1 Dipartimento di Informatica, Università del Piemonte Orientale, Italy
2 Dipartimento di Informatica, Università di Torino, Italy

Abstract

Temporal logics are well suited for reasoning about actions, as they allow for the specification of domain descriptions including temporal constraints as well as for the verification of temporal properties of the domain. In this paper, we exploit bounded model checking (BMC) techniques in the verification of dynamic linear time temporal logic (DLTL) properties of an action theory, which is formulated in a temporal extension of answer set programming (ASP). To achieve completeness, in this paper, we propose an approach to BMC which exploits the Büchi automaton construction while searching for a counterexample. The paper provides an encoding in ASP of the temporal action domain and of bounded model checking of DLTL formulas.

1 Introduction

Temporal logics are well suited for reasoning about actions, as they allow for the specification of temporal constraints in a domain description as well as for the verification of temporal properties of the domain. Temporal logics have proved to be quite useful in planning, where both CTL [27, 30] and LTL [6, 4] have been used in the specification of temporally extended goals, as well as in the definition of domain dependent search control knowledge [3], while strong fairness constraints are expressed in LTL in [13] to restrict nondeterminism in generalized planning. LTL has been also used in the verification of agent interaction protocols [22] and for enforcing regulations in automated Web service composition [31]. Claßen and Lakemeyer [10] introduced a second order extension of the temporal logic CTL*, \mathcal{ESG}, to reason about non-terminating Golog programs. The ability to capture infinite computations is important as agents and robots usually fulfill non-terminating tasks.

*This work has been partially supported by Regione Piemonte, Project “ICT4Law - ICT Converging on Law: Next Generation Services for Citizens, Enterprises, Public Administration and Policymakers”.

In this paper, we exploit Bounded Model Checking (BMC) techniques in the verification of properties of an action theory formulated in a temporal extension of answer set programming (ASP [17]). BMC, as defined in [7], does not require a tableau or automaton construction. Given a system model (a transition system) and a property to be checked, it searches for a counterexample of the property as a path of length k, generating a propositional formula that is satisfiable iff such a counterexample exists. The bound k on the length of the path is iteratively increased and, if no model exists, the procedure never stops. As a consequence, bounded model checking, as defined in [7], provides a partial decision procedure for checking validity. Techniques for achieving completeness have been described in [7], where upper bounds for k are determined for some classes of properties, namely unnested properties. To address the problem of completeness, [9] proposes a semantic translation scheme, based on Büchi automata.

Helianko and Niemelä [28] developed a compact encoding of bounded model checking of LTL formulas as the problem of finding stable models of logic programs. In [24] this encoding is extended to deal with Dynamic Linear Time Temporal Logic (DLTL) formulas, for reasoning about action theories including complex actions and programs. These papers do not address the problem of achieving completeness.

In this paper we propose an alternative encoding of BMC of DLTL formulas in ASP, with the aim of achieving completeness. Unlike [28, 24], here the search for a counterexample exploits the Büchi automaton construction [20] as well as the transition system. Unlike [9], a “counterexample” path is searched for, without assuming that the Büchi automaton is constructed in advance. Our counterexample is an accepting path of the product Büchi automaton which can be finitely represented as a (k,l)-loop, i.e., a finite path of length k terminating in a loop back to a previous state l, in which the states are all distinct from each other.

The procedure for verifying a given property searches for a (k,l)-loop, providing a counterexample to the property, increasing k until either a counterexample is found, or no (k,l)-loop of length greater or equal to k can be found. The second condition can be verified by checking that there is no path of length k whose states are all distinct from each other.

As in [24], verification is performed on a transition system provided by a domain description in a temporal action theory, and our BMC approach is used for proving properties of domain descriptions. The action theory is given in a temporal extension of ASP, based on the generalization the notion of answer set [17] to temporal answer sets. The temporal properties of a domain description can be proved by combining the construction of temporal extensions of the domain with the verification of their properties, according to a tableaux-based procedure which provides an encoding of BMC in ASP. The correctness and completeness of this encoding is based on the results on Büchi automaton construction for DLTL formulas in [29] and in [21] (where a construction on-the-fly of the automaton is provided). The encoding in ASP uses a number of ground atoms which is linear in the size of the formula and quadratic in k. Thanks to the completeness result, we provide a decision procedure for the verification of satisfiability and validity properties of an action domain.

The outline of the paper is the following. First, we introduce the logic DLTL, we describe the temporal action language and its answer sets, and we introduce verification problems for action theories. We then describe our approach to action theory
verification by BMC. Finally we provide an ASP encoding of BMC and discuss related work.

2 Dynamic Linear Time Temporal Logic

In this paper we refer to a formulation of DLTL (dynamic linear time temporal logic), in [29], where the next state modality is indexed by actions and the until operator \(U \) is indexed by a program \(\pi \) which, as in PDL, can be any regular expression built from atomic actions using sequence (\(; \)), nondeterministic choice (\(+ \)) and finite iteration (\(* \)).

Let \(\Sigma \) be a finite non-empty alphabet. The members of \(\Sigma \) are actions. Let \(\Sigma^* \) and \(\Sigma^\omega \) be the set of finite and infinite words on \(\Sigma \). Let \(\Sigma^\omega = \Sigma^* \cup \Sigma^\omega \). We denote by \(\sigma, \sigma' \) the words over \(\Sigma^\omega \) and by \(\tau, \tau' \) the words over \(\Sigma^* \). Moreover, we denote by \(\leq \) the usual prefix ordering over \(\Sigma^* \), namely, \(\tau \leq \tau' \) if \(\exists \tau'' \) such that \(\tau \tau'' = \tau' \), and \(\tau < \tau' \) iff \(\tau \leq \tau' \) and \(\tau \neq \tau' \). For \(u \in \Sigma^\omega \), we denote by \(prf(u) \) the set of finite prefixes of \(u \).

Let the set of programs (regular expressions) generated by \(\Sigma \) be \(Prg(\Sigma) := a \mid \pi_1 + \pi_2 \mid \pi_1 ; \pi_2 \mid \pi^* \), where \(a \in \Sigma \) and \(\pi_1, \pi_2, \pi \) range over \(Prg(\Sigma) \). A set of finite words can be associated with each program by the mapping \([\cdot] : Prg(\Sigma) \rightarrow 2^{\Sigma^*} \) in the usual way.

Let \(P = \{ p_1, p_2, \ldots \} \) be a countable set of atomic propositions. The set of formulas of \(DLTL(\Sigma) \) is defined as:

\[
DLTL(\Sigma) := p \mid \neg \alpha \mid \alpha \lor \beta \mid a(\alpha) \mid a\Upsilon \beta
\]

where \(p \in P, \pi \in Prg(\Sigma) \) and \(\alpha, \beta \) range over \(DLTL(\Sigma) \).

A model of \(DLTL(\Sigma) \) is a pair \(M = (\sigma, V) \) where \(\sigma \in \Sigma^\omega \) and \(V : prf(\sigma) \rightarrow 2^P \) is a valuation function. Given a model \(M = (\sigma, V) \), a finite word \(\tau \in prf(\sigma) \) and a formula \(\alpha \), the satisfiability of a formula \(\alpha \) at \(\tau \in M \), written \(M, \tau \models \alpha \), is defined as follows:

- \(M, \tau \models p \iff p \in V(\tau) \);
- \(M, \tau \models \neg \alpha \iff M, \tau \not\models \alpha \);
- \(M, \tau \models \alpha \lor \beta \iff M, \tau \models \alpha \) or \(M, \tau \models \beta \);
- \(M, \tau \models a\Upsilon \beta \iff \exists \tau' \in [\pi] \) such that \(\tau \tau' \in prf(\sigma) \) and \(M, \tau \tau' \models \beta \).

Moreover, for every \(\tau'' \) such that \(\varepsilon \leq \tau'' < \tau' \), \(M, \tau \tau'' \models \alpha \).

A formula \(\alpha \) is satisfiable iff there is a model \(M = (\sigma, V) \) and a finite word \(\tau \in prf(\sigma) \) such that \(M, \tau \models \alpha \).

The symbols \(\top \) and \(\bot \) can be defined as: \(\top \equiv p \lor \neg p \) and \(\bot \equiv \neg \top \). The derived modalities \(\langle \pi \rangle \alpha, [a]\alpha, \diamond \) (next), \(\Upsilon, \hat{\diamond} \) and \(\boxdot \) can be defined as follows: \(\langle \pi \rangle \alpha \equiv T\Upsilon^\pi \alpha, [a]\alpha \equiv \neg\langle a \rangle \neg \alpha, \circ \alpha \equiv \bigvee_{a \in \Sigma} [a] \alpha, a\Upsilon \beta \equiv a\Upsilon \beta, \hat{\diamond} \alpha \equiv T\Upsilon \alpha, \boxdot \alpha \equiv \neg \hat{\diamond} \neg \alpha, \Upsilon^{\Sigma} \). \(\Sigma \) is taken to be a shorthand for the program \(a_1 + \ldots + a_n \).
3 Temporal action language

A domain description Π is a set of laws describing the effects of actions and their executability preconditions. Atomic propositions describing the state of the domain are called fluents. Actions may have direct effects, described by action laws, and indirect effects, described by causal laws capturing the causal dependencies among fluents.

Let \mathcal{L} be a first order language which includes a finite number of constants and variables, but no function symbol. Let \mathcal{P} be the set of predicate symbols, \mathcal{Var} the set of variables and \mathcal{C} the set of constant symbols. We call fluents atomic literals of the form $p(t_1, \ldots, t_n)$, where, for each i, $t_i \in \mathcal{Var} \cup \mathcal{C}$. A simple fluent literal (or s-literal) l is an atomic literals $p(t_1, \ldots, t_n)$ or its negation $\neg p(t_1, \ldots, t_n)$. We denote by Lit_S the set of all simple fluent literals.

Lit_T is the set of temporal fluent literals: if $l \in \text{Lit}_S$, then $[a]l, \bigcirc l \in \text{Lit}_T$, where a is an action name (an atomic proposition, possibly containing variables), and $[a]$ and \bigcirc are the temporal operators introduced in the previous section. Let $\text{Lit} = \text{Lit}_S \cup \text{Lit}_T \cup \{\bot\}$, where \bot represents the inconsistency. Given a (simple or temporal) fluent literal l, $\neg l$ represents the default negation of l. A (simple or temporal) fluent literal possibly preceded by a default negation, will be called an extended fluent literal.

The laws are formulated as rules of a temporally extended logic programming language. Rules have the form

$$l_0 \leftarrow l_1, \ldots, l_m, \neg l_{m+1}, \ldots, \neg l_n$$

where the l_i’s are either simple fluent literals or temporal fluent literals, with the following constraints: (i) If l_0 is a simple literal, then the body cannot contain temporal literals; (ii) If $l_0 = [a]l$, then the temporal literals in the body must have the form $[a]l'$; (iii) If $l_0 = \bigcirc l$, then the temporal literals in the body must have the form $\bigcirc l'$. As usual in ASP, the rules with variables will be used as a shorthand for the set of their ground instances.

In the following we use a notion of state: a set of ground fluent literals. A state is said to be consistent if it is not the case that both f and $\neg f$ belong to the state, or that \bot belongs to the state. A state is said to be complete if, for each fluent name $p \in \mathcal{P}$, either p or $\neg p$ belong to the state. The execution of an action in a state may possibly change the values of fluents in the state through its direct and indirect effects, thus giving rise to a new state.

We assume that a law as (1) can be applied in all states, while a law with the Init prefix only applies to the initial state.

Example 1 This example describes a mail delivery agent, which checks if there is mail in the mailbox of employees and delivers mail to them. The actions in Σ are: sense (the agent verifies if there is mail in all mailboxes), deliver(E) (the agent delivers the mail to employee E), wait. The fluent names are mail(E) (there is mail in the mailbox of E). The domain description Π contains the following immediate effects and persistency laws:

$$[\text{deliver}(E)]\neg\text{mail}(E)$$
$$[\text{sense}]\text{mail}(E) \leftarrow \neg [\text{sense}]\neg\text{mail}(E)$$
\[\square \text{mail}(E) \leftarrow \text{mail}(E), \text{not } \square \neg \text{mail}(E) \]
\[\bigcirc \neg \text{mail}(E) \leftarrow \neg \text{mail}(E), \text{not } \bigcirc \text{mail}(E) \]

Their meaning is (in the order) that: after delivering the mail to \(E \), there is no mail for \(E \) any more; the action \textit{sense} may (non-monotonically) cause \textit{mail}(E) to become true. The last two rules define the persistency of fluent \textit{mail}.

Observe that the persistency laws interact with the immediate effect laws above. The execution of \textit{sense} in a state in which there is no mail for some \(E (\neg \text{mail}(E)) \), may either lead to a state in which \textit{mail}(E) holds (by the second action law) or to a state in which \(\neg \text{mail}(E) \) holds (by persistency of \(\neg \text{mail}(E) \)). Thus, \textit{sense} is a nondeterministic action.

The following precondition laws:
\[\square [\text{deliver}(E)] \bot \leftarrow \neg \text{mail}(E) \]
\[[\text{wait}] \bot \leftarrow \text{mail}(E) \]
specify that, if there is no mail for \(E \), \textit{deliver}(E) is not executable, while, if there is mail for \(E \), \textit{wait} is not executable.

We assume that there are only two employees, \(a \) and \(b \) and, in the initial state, there is mail for \(a \) and not for \(b \), i.e. \(\Pi \) includes \text{Init} \textit{mail}(a) and \text{Init} \neg \textit{mail}(b).

The language is also well suited to describe causal dependencies among fluents [24] as \textit{static} and \textit{dynamic causal laws} similar to the ones in the action languages \(K \) [15] and \(C^+ \) [25].

3.1 Temporal answer sets

To define the the semantics of a domain description, we extend the notion of answer set [17] to capture the linear structure of temporal models. In the following, we consider the ground instantiation of the domain description \(\Pi \), and we denote by \(\Sigma \) the set of all the ground instances of the action names in \(\Pi \).

Following [24], we define a temporal interpretation as a pair \((\sigma, S)\), where \(\sigma \in \Sigma^\omega \) is a sequence of actions and \(S \) is a consistent set of ground literals of the form \([a_1; \ldots; a_k]l\), where \(a_1 \ldots a_k \) is a prefix of \(\sigma \) and \(l \) is a ground simple fluent literal, meaning that \(l \) holds in the state obtained by executing \(a_1 \ldots a_k \). \(S \) is consistent iff it is not the case that both \([a_1; \ldots; a_k]l \in S \) and \([a_1; \ldots; a_k]\neg l \in S \), for some \(l \), or \([a_1; \ldots; a_k]l \perp \in S \). A temporal interpretation \((\sigma, S)\) is said to be \textit{total} if either \([a_1; \ldots; a_k]p \in S \) or \([a_1; \ldots; a_k]p \notin S \), for each \(a_1 \ldots a_k \) prefix of \(\sigma \) and for each fluent name \(p \).

We define the satisfiability of a simple, temporal or extended literal \(t \) in a partial temporal interpretation \((\sigma, S)\) in the state \(a_1 \ldots a_k \), (written \((\sigma, S), a_1 \ldots a_k \models t \)) as follows:
\[(\sigma, S), a_1 \ldots a_k \models T \]
\[(\sigma, S), a_1 \ldots a_k \not\models \bot \]
\[(\sigma, S), a_1 \ldots a_k \models l \text{ iff } [a_1; \ldots; a_k]l \in S \text{ for } l \text{ s-literal} \]
\[(\sigma, S), a_1 \ldots a_k \models [a]l \text{ iff } [a_1; \ldots; a_k; a]l \in S \text{ or } a_1 \ldots a_k; a \text{ is not a prefix of } \sigma \]
\[(\sigma, S), a_1 \ldots a_k \models \circ l \text{ iff } [a_1; \ldots; a_k; b]l \in S, \]
where \(a_1 \ldots a_k b \) is a prefix of \(\sigma \)

\[(\sigma, S), a_1 \ldots a_k \models \text{not } l \iff (\sigma, S), a_1 \ldots a_k \not\models l \]

The satisfiability of rule bodies in a temporal interpretation is defined as usual. A rule \(H \leftarrow \text{Body} \) is satisfied in a temporal interpretation \((\sigma, S)\) if, for all action sequences \(a_1 \ldots a_k \) (including the empty action sequence \(\varepsilon \)), \((\sigma, S), a_1 \ldots a_k \models \text{Body} \) implies \((\sigma, S), a_1 \ldots a_k \models H \). A rule \(\text{Init} \ H \leftarrow \text{Body} \) is satisfied in a partial temporal interpretation \((\sigma, S)\) if, \((\sigma, S), \varepsilon \models \text{Body} \) implies \((\sigma, S), \varepsilon \models H \).

Let \(\Pi \) be a set of rules over an action alphabet \(\Sigma \), not containing default negation, and let \(\sigma \in \Sigma^{\omega} \).

Definition 1 A temporal interpretation \((\sigma, S)\) is a temporal answer set of \(\Pi \) if \(S \) is minimal (in the sense of set inclusion) among the \(S' \) such that \((\sigma, S')\) is a partial interpretation satisfying the rules in \(\Pi \).

To define answer sets of a program \(\Pi \) containing negation, given a temporal interpretation \((\sigma, S)\) over \(\sigma \in \Sigma^{\omega} \), we define the reduct, \(\Pi^{(\sigma,S)} \), of \(\Pi \) relative to \((\sigma, S)\) extending Gelfond and Lifschitz' transform \([18]\) to compute a different reduct of \(\Pi \) for each prefix \(a_1, \ldots, a_h \) of \(\sigma \).

Definition 2 The reduct, \(\Pi^{(\sigma,S)}_{a_1,\ldots,a_h} \), of \(\Pi \) relative to \((\sigma, S)\) and to the prefix \(a_1, \ldots, a_h \) of \(\sigma \), is the set of all the rules

\[[a_1; \ldots; a_h](H \leftarrow l_1, \ldots, l_m) \]

such that \(H \leftarrow l_1, \ldots, l_m \), not \(l_{m+1}, \ldots, l_n \) is in \(\Pi \) and \((\sigma, S), a_1, \ldots, a_h \not\models l_i \), for all \(i = m + 1, \ldots, n \).

The reduct \(\Pi^{(\sigma,S)} \) of \(\Pi \) relative to \((\sigma, S)\) is the union of all reducts \(\Pi^{(\sigma,S)}_{a_1,\ldots,a_h} \) for all prefixes \(a_1, \ldots, a_h \) of \(\sigma \).

We say that a rule \([a_1; \ldots; a_h](H \leftarrow \text{Body}) \) is satisfied in a temporal interpretation \((\sigma, S)\) if, \((\sigma, S), a_1 \ldots a_k \models \text{Body} \) implies \((\sigma, S), a_1 \ldots a_k \models H \).

Definition 3 A temporal interpretation \((\sigma, S)\) is an answer set of \(\Pi \) if \((\sigma, S)\) is an answer set of the reduct \(\Pi^{(\sigma,S)} \).

Although the answer sets of a domain description \(\Pi \) are partial interpretations, in some cases, e.g., when the initial state is complete and all fluents are inertial, it is possible to guarantee that the temporal answer sets of \(\Pi \) are total.

In case the initial state is not complete, we consider all the possible ways to complete the initial state by introducing in \(\Pi \), for each fluent name \(f \), the rules:

\[
\text{Init } f \leftarrow \text{not } \neg f \\
\text{Init } \neg f \leftarrow \text{not } f
\]

The case of total temporal answer sets is of special interest as a total temporal answer set \((\sigma, S)\) can be regarded as temporal model \((\sigma, V_S)\), where, for each finite prefix \(a_1 \ldots a_k \) of \(\sigma \), \(V_S(a_1, \ldots, a_k) = \{ p : [a_1, \ldots, a_k]p \in S \} \). In the following, we
restrict our consideration to domain descriptions Π, such that all the answer sets of Π are total.

A total temporal interpretation (σ, S) provides, for each prefix $a_1 \ldots a_k$, a complete state corresponding to that prefix. We denote by $w_{a_1 \ldots a_k}^{(\sigma, S)}$, the state obtained by the execution of the actions $a_1 \ldots a_k$ in the sequence, namely $w_{a_1 \ldots a_k}^{(\sigma, S)} = \{ l : [a_1; \ldots ; a_k]l \in S \}$.

Given a domain description Π over Σ with total answer sets, a transition system (W, I, T) can be associated with Π as follows:

- W is the set of all the possible consistent and complete states of the domain description;
- I is the set of all the states in W satisfying the initial state laws in Π;
- $T \subseteq W \times \Sigma \times W$ is the set of all triples (w, a, w') such that: $w, w' \in W$, $a \in \Sigma$ and for some total answer set (σ, S) of Π: $w = w_{[a_1; \ldots ; a_h]}^{(\sigma, S)}$ and $w' = w_{[a_1; \ldots ; a_h; a]}^{(\sigma, S)}$, for some h.

It is possible to show that the next states of a given state w in the transition system (W, I, T) above only depend on the state w. Let Π_w be the domain description obtained form Π by removing all the laws prefixed by Init while adding to Π $\text{Init} l$, for all $l \in w$.

Proposition 1 Let w be a state in W which is reachable form an initial state by the action sequence $a_1 \ldots a_h$. If $(w, a, w') \in T$, then there is an answer set (σ', S') of Π_w, such that (1) $\sigma = a_1 \ldots a_h \sigma'$ and (2) $[a]l \in S'$ iff $l \in w'$. Vice versa, if there is an answer set (σ', S') of Π_w satisfying conditions (1) and (2) above, then $(w, a, w') \in T$.

Proposition 1 guarantees that, given a state w and an action a, a next state function nextTSstate can be defined to compute all the states reachable in the transition system from w by a. Such a function is indeed used in the following to describe the bounded model checking construction.

4 Reasoning with DLTL on domain descriptions

As a total temporal answer set of a domain description can be interpreted as a DLTL model, it is easy to combine domain descriptions with DLTL formulas. This can be done by adding to the domain description Π a set of DLTL formulas C used as constraints on the executions of the domain description. We denote by (Π, C) the enriched domain description, and we define the extensions of (Π, C) to be the temporal answer sets (σ, S) of Π satisfying the constraints C, i.e. those such that all the formulas in C are satisfied in the associated temporal model (σ, V_S). Furthermore, DLTL formulas can be used to encode properties to be verified on the enriched domain description.

Example 2 Assume we want to constrain our domain description in Example 1 so that the agent continuously executes a loop where it senses mail and delivers the mail. These constraints can be formulated as follows:
Furthermore, we may want to check that, if there is mail for \(a \), the agent will eventually deliver it. This property, which can be formalized as \(\Box (\text{mail}(a) \supset \Diamond \neg \text{mail}(a)) \), does not hold as there is a possible scenario in which there is always mail for \(a \) and for \(b \), but the mail is repeatedly delivered to \(b \) and never to \(a \). The mail delivery agent we have described is not correct with respect to this property.

Given an enriched domain description \((\Pi, C)\), some problems, e.g. planning, can be formulated as satisfiability of a formula \(\varphi \), and others, such as the one in the example above, as validity of a formula \(\varphi \). Usually, the validity of a property \(\varphi \) formulated as a DLTL formula is reduced to the unsatisfiability of \(\neg \varphi \). In this case, if a model satisfying \(\neg \varphi \) is found, it represents a counterexample to the validity of \(\varphi \).

5 Model checking

Satisfiability and validity problems can be solved by means of model checking techniques. Given a domain description \(\Pi \) with its associated transition system, satisfiability of a formula \(\varphi \) given a set of constraints \(C \), amounts to find a path in the transition system satisfying the DLTL formula \(\bigwedge C \land \varphi \). On the other hand, to prove the validity of \(\varphi \) we have to show that there is no path satisfying \(\bigwedge C \land \neg \varphi \).

The standard approach to model checking for LTL is based on Büchi automata. A Büchi automaton is a finite automaton over infinite words, and has the same components as an automaton over finite words, except that final states are replaced by accepting states. A Büchi automaton accepts an infinite sequence \(\sigma \in \Sigma^\omega \) iff there exists a run (accepting run) of the automaton which visits (at least) one of the accepting states infinitely often.

The satisfiability problem for LTL can be solved in deterministic exponential time by constructing for a formula \(\alpha \in \text{LTL}(\Sigma) \) a Büchi automaton \(B_\alpha \) [20] such that the language of \(\omega \)-words accepted by \(B_\alpha \) is non-empty if and only if \(\alpha \) is satisfiable. It can be shown that the language accepted by the automaton is nonempty iff there is a reachable accepting state with a cycle back to itself.

Given a formula \(\alpha \), and a transition system \(TS \), which corresponds to a Büchi automaton \(B_{TS} \) where all the states are accepting, model checking [8] allows to verify that all the executions of the transition system satisfy \(\alpha \), by constructing the product automaton of \(B_{TS} \) and \(B_{\neg \alpha} \), and by checking for emptiness of the accepted language.

In [7] it has been shown that, in some cases, model checking can be more efficient if, instead of building the product automaton and checking for an accepting run on it, we look for a path of the transition system satisfying \(\neg \alpha \). This technique is called bounded model checking (BMC), since it looks for infinite paths which can be represented as a finite path of length \(k \) with a back loop from state \(k \) to a previous state \(l \) in the path (a \((k,l)\)-loop). The BMC procedure proceeds iteratively, increasing the length \(k \) until a model satisfying \(\alpha \) is found — if one exists.

A BMC problem can be efficiently reduced to a propositional satisfiability problem or to an ASP problem [28]. Unfortunately, if no model exists, the iterative procedure
never stops, if the transition system contains a loop; i.e., it is a partial decision procedure for validity. Techniques for achieving completeness are described in [7] for some kinds of LTL formulas.

6 BMC with Büchi automata

In this paper, we propose an approach to model checking which combines the advantages of BMC, in particular the possibility of formulating it easily and efficiently as an ASP problem, with the advantages of reasoning on the product Büchi automaton described above, mainly its completeness.

In the following we show how to adapt the procedure for building a Büchi automaton corresponding to a given DLTL formula [21] to the “on-the-fly” construction of the product Büchi automaton, and we show how this construction can be used to build a (k,l)-loop corresponding to a run of the product Büchi automaton.

In the following construction we assume that, as in [21], until formulas are indexed with finite automata rather than regular expressions. Thus, we have $\alpha U A(q)\beta$ instead of $\alpha U \pi \beta$, where $L(A(q)) = [[\pi]]$. We denote with $A(q)$ a finite automaton A with initial state q. The following equivalences hold for the until operator [29]:

$$
\alpha U A(q)\beta \equiv (\beta \vee (\alpha \wedge \bigvee_{a \in \Sigma} \langle a \rangle \bigvee_{q' \in \delta(q,a)} \alpha U A(q')\beta)) \quad (q \text{ is a final state of } A)
$$

$$
\alpha U A(q)\beta \equiv (\alpha \wedge \bigvee_{a \in \Sigma} \langle a \rangle \bigvee_{q' \in \delta(q,a)} \alpha U A(q')\beta)
$$

$(q \text{ is not a final state of } A)$

The construction of the nodes makes use of tableau rules which handle DLTL signed formulas, i.e. formulas prefixed with the symbol T or F. These rules are applied to a set of formulas¹ as follows:

- $\phi \Rightarrow \psi_1, \psi_2$, if ϕ belongs to the set of formulas, then add ψ_1 and ψ_2 to the set
- $\phi \Rightarrow \psi_1|\psi_2$, if ϕ belongs to the set of formulas, then make two copies of the set and add ψ_1 to one of them and ψ_2 to the other one.

The rules are the following:

| Tor: | $T(\alpha \vee \beta) \Rightarrow T\alpha | T\beta$ |
|---------------|---|
| For: | $F(\alpha \vee \beta) \Rightarrow F\alpha, F\beta$ |
| Tneg: | $T^{-}\alpha \Rightarrow T\alpha$ |
| Fneg: | $F\alpha \Rightarrow T\alpha$ |
| TuntilFS: | $T\alpha U A(q)\beta \Rightarrow T(\beta \vee (\alpha \wedge \bigvee_{a \in \Sigma} \langle a \rangle \bigvee_{q' \in \delta(q,a)} \alpha U A(q')\beta)) \quad (q \text{ is a final state})$ |
| TuntilNFS: | $T\alpha U A(q)\beta \Rightarrow T(\alpha \wedge \bigvee_{a \in \Sigma} \langle a \rangle \bigvee_{q' \in \delta(q,a)} \alpha U A(q')\beta)(q \text{ is not a final state})$ |
| FuntilFS: | $F\alpha U A(q)\beta \Rightarrow F(\beta \vee (\alpha \wedge \bigvee_{a \in \Sigma} \langle a \rangle \bigvee_{q' \in \delta(q,a)} \alpha U A(q')\beta)) \quad (q \text{ is a final state})$ |

¹In this section “formula” means “signed DLTL formula”.

9
function $\text{next}\, \mathcal{F}(\mathcal{F}, a)$
if \mathcal{F} does not contain a formula $T(a)\alpha$ then return \emptyset
else return $\text{tableau}((\{T_0|T(a)\alpha \in \mathcal{F}\}
\cup \{F_0|F(a)\alpha \in \mathcal{F}\})$

Figure 1: Function $\text{next}\, \mathcal{F}$

$\text{Fun}^{A(q)}$
$\text{Fun}^{A(q)}: \mathcal{F} \rightarrow \mathcal{F}$

We use a function tableau which takes as input a set of formulas s, adds to it $T \bigwedge_{a \in \Sigma} (a) \Rightarrow \mathcal{F}(\alpha \land \bigvee_{a \in \Sigma} (a)$

$$\bigvee_{q' \in \delta(q,a)} a^{U(q')} \beta$$
q is not a final state

We describe now how to build a path of the product automaton, which is constructed by the BMC procedure while searching for a counterexample. Each state s of the path is a tuple $s = (\mathcal{F}, w, x, f)$, where \mathcal{F} is an expanded set of formulas, w is a state of the transition system whose literals are represented as signed formulas, $x \in \{0, 1\}$ and $f \in \{\bot, \top\}$ are used to track fulfillment of until formulas, as we will describe below.

Given a domain description Π with the associated transition system $T S$, and a DLTL formula α describing constraints and properties to be proved, the initial states will have the form $(\mathcal{F}_0, w_0, 0, \top)$, where \mathcal{F}_0 is a set of formulas obtained by applying function tableau to α, and w_0 is an initial state of $T S$, such that $\mathcal{F}_0 \cup w_0$ is consistent.

Transitions of the product automaton are defined by function $\text{next}\, \text{states}(s, a)$, defined in Figure 2, which returns the set of successor states of s after a. This function makes use of the functions $\text{next}\, T S\, \text{states}(w, a)$, which returns the set of states of the transition system $T S$ reached with a transition a from state w, and $\text{next}\, \mathcal{F}(\mathcal{F}, a)$, which returns a set of formulas obtained by propagating the formulas in \mathcal{F} through action a. Function $\text{next}\, \mathcal{F}$ is defined in Figure 1. This function first checks whether it is possible to execute action a from \mathcal{F}, then propagates elementary temporal formulas through a and expands them with tableau.

The fields x and f are used to characterize accepting states of the product automaton, and are used to check that all until formulas are fulfilled in a finite number of steps.

If a state s_i of an accepting run ρ contains the until formula $T(a)\alpha\beta$, then there must be a state s_j, $i \leq j$ in ρ satisfying the conditions given by the semantics of until. We say that s_j fulfills the until formula. If s_i does not fulfill the until formula, then it is possible to show that, according to the axioms of until, s_i contains a formula $T(a_i)\alpha U(q')\beta$, where $q' \in \delta(q, a_i)^2$ and, according to function $\text{next}\, \mathcal{F}(\mathcal{F}, a_i)$, s_{i+1} (\footnote{δ is the transition relation of A.}}
function $next_states((F, w, x, f), a)$
return $\{(F', w', x', f')\}$ such that
$F' \in next\mathcal{F}(F, a)$,
$w' \in next\mathcal{TS}_states(w, a)$,
$F' \cup w'$ is consistent,
if there exist no $T(q)\alpha U_A(q)\beta \in F$
then $x' = 1 - x, f' = \checkmark$
else $x' = x, f' = \checkmark$

Figure 2: Function $next_states$

contains a formula $TαU_A(q')$. We say that this until formula is derived from formula $TαU_A(q)\beta$ in state s_i. If a state contains an until formula which is not derived from a predecessor state, we say that the formula is new. New until formulas are obtained during the expansion of tableau.

In order to check fulfillment of until formulas, we must be able to track them along the states of the run. This is done by using the field x and by extending accordingly signed formulas so that all true until formulas have a label 0 or 1, i.e. they have the form $TαU_A(q)\beta$ where $l \in \{0, 1\}$. For each state (F, w, x, f), the label of an until formula in F is assigned as follows: if it is a derived until formula, then its label is the same as that of the until formula in the predecessor state it derives from, otherwise, if the formula is new, it is given the label $1 - x$.

Function tableau must be suitably modified in order to deal with the labels of until formulas. We assume that it has two parameters: a set of formulas and the value of x.

Let us assume that in a state s_i we have $x = 0$. Then all new until formulas of s_i have label 1, and all until formulas with label 0 must be derived from previous states. If s_i belongs to an accepting run, all until formulas will be fulfilled in a finite number of steps. The value 0 of x is propagated to the next states until a state s_j does not contain any more until formulas with label 0. Then x is switched to 1, and we proceed in the same way. Whenever x changes its value, we set $f = \checkmark$. A state with $f = \checkmark$ is an accepting state of the product automaton, and a run ρ containing infinite accepting states is an accepting run.

It is an obvious consequence of the construction that:

Proposition 2 (i) Any accepting run of the product automaton corresponds an infinite path of the transition system (i.e., a temporal answer set of Π) satisfying the initial DLTL formula α; (ii) every infinite path of the transition system which is a model of α corresponds to an accepting run of the product automaton.

The proof of this proposition, omitted for lack of space, exploits Theorems 4 and 5 in [21].

Our approach to BMC relies on the well known result [8] that the language accepted by a Büchi automaton is nonempty iff there is a reachable accepting state with a cycle back to itself. The construction of the (k,l)-loop is described by the function BMC in Figure 3. The construct **choose in** S returns any of the elements of set S or **null** if $S = \emptyset$. With $s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} \ldots s_i$ we represent a finite path of the product automaton, where s_0 is an initial state and $s_i \in next_states(s_{i-1}, a_{i-1})$. Given an integer k, we
function $BMC(max,k)$

$k := 0$

do

path := choose in \(\{s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} \ldots s_{k+1}\} \) such that

\(s_j \neq s_m \) for \(0 \leq j < m \leq k \),

\(s_l = s_{k+1} \) for some \(l \leq k \),

\(s_{\text{acc}} \) is an accepting state for some \(l \leq \text{acc} \leq k \)

\(k := k + 1 \)

while path \(= \) null \(\land k \leq \text{max_}k \)

return path

Figure 3: Function BMC

function $max()$

\(i := 0 \)

do

\(i := i + 1 \)

path := choose in \(\{s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} \ldots s_i\} \) such that

\(s_j \neq s_m \) for \(0 \leq j < m \leq i \)

while path \(\neq \) null

return \(i - 1 \)

Figure 4: Function max

look for a path of length \(k + 1 \), such that \(s_{k+1} = s_l \) for some previous state \(s_l \) in the path. Furthermore the loop must contain an accepting state. If such a loop is found, it finitely represents an accepting run. Otherwise, \(k \) is increased until \(\text{max_}k \) is reached.

Observe that the standard approach for bounded model checking in [7] does not guarantee termination, because the path of length \(k \) is a path of the transition system, and thus it is not possible to restrict the search to simple paths without missing solutions. On the other hand, we can consider only simple paths, that is paths without repeated states. This property allows to define a terminating algorithm, thus achieving completeness, by passing the length of the longest simple path as parameter to BMC.

The length of the longest simple path can be found iteratively, searching for a simple path of length \(i \) (without loop), and incrementing \(i \) at each step (See Figure 4). Since the number of different states is finite, this procedure terminates.

The set of tableau rules can be easily extended to deal with other boolean connectives and derived modal operators. In the following, we use tableau rules for \square and \diamond, using the equivalences $\square \beta \equiv (\beta \land \square \diamond \beta)$ and $\diamond \beta \equiv (\beta \lor \diamond \square \beta)$. Observe that, as false box formulae correspond to negated until formulas, we need to label them with \(x \).

Example 3 Let us consider the domain description given in Example 1, with the constraints and the property given in Example 2. We describe some steps of the (non deterministic) construction of a \((k,l)\)-loop for \(k = 7 \).

For the initial state \(s_0 \) we have \(w_0 = \{T_{\text{mail}}(a), F_{\text{mail}}(b)\} \), \(x_0 = 0 \), \(f_0 = \checkmark \).

\(F_0 \) contains the following formulas:

\(F_0.1 : T(\text{begin}) \top \)
The first two formulas are the two constraints, where the automaton $A(q_0)$ is equivalent to the regular program sense-mail; (deliver(a) + deliver(b) + wait); begin A has states \{q_0, q_1, q_2, q_3\}, initial state q_0, final state q_3 and transition function $q_1 = \delta(q_0, \text{sense})$, $q_2 = \delta(q_0, \text{del}(a)) = \delta(q_0, \text{del}(b)) = \delta(q_0, \text{wait})$, $q_3 = \delta(q_2, \text{begin})$.

The third formula is the negation of the property. Note that the δ operator has label 1 since $x_0 = 0$. All other formulas are obtained by applying the tableau rules.

Since F_0 contains the formula $T(\text{begin}) \top$, we can only execute action begin in s_0.

In s_1 we have $w_1 = \{T\text{mail}(a), T\text{mail}(b)\}$, from the domain description, and $x_1 = 1$, $f_0 = \top$. x_1 changes its value from the previous state, because there are no formulas in s_0 with label 0.

F_1 is obtained by propagating the “next” formulas in F_0 and by applying tableau to them:

$F_{1.1}$: $T(A(q_0))_0 \top$ from $F_{0.4}$

$F_{1.2}$: $T(\text{begin})(A(q_0)) \top$ from $F_{0.5}$

$F_{1.3}$: $F_1(mail(a) \lor \neg mail(a))$ from $F_{0.6}$

$F_{1.4}$: $T(\text{sense})(A(q_0))_0 \top$ from $F_{1.1}$

$F_{1.5}$: $T(\text{begin})(A(q_0)) \top$ from $F_{1.2}$

$F_{1.6}$: $T \Diamond (\text{begin})(A(q_0)) \top$ from $F_{1.2}$

$F_{1.7}$: $F(mail(a) \lor \neg mail(a))$ from $F_{1.3}$

$F_{1.8}$: $F(\neg mail(a))$ from $F_{1.7}$

$F_{1.9}$: $F \Diamond (\neg mail(a))$ from $F_{1.3}$

$F_{1.10}$: $F \Diamond (\neg mail(a))$ from $F_{1.9}$

Because of $F_{1.4}$ the next action will be sense. This action is non deterministic, and we choose $w_2 = \{T\text{mail}(a), T\text{mail}(b)\}$.

By continuing with the construction, we can get the following path (we omit the value of the F_i’s in the states, and we write a form mail(a) and b for mail(b)).

$(F_0, \{Ta, Fb\}, 0, \top) \begin{array}{l} \text{begin} \\ \text{sense} \end{array} \rightarrow (F_1, \{Ta, Fb\}, 1, \top) \begin{array}{l} \text{begin} \\ \text{del} \end{array} \rightarrow (F_2, \{Ta, Tb\}, 0, \top) \begin{array}{l} \text{begin} \\ \text{sense} \end{array} \rightarrow (F_3, \{Ta, Fb\}, 0, \top) \begin{array}{l} \text{begin} \\ \text{del} \end{array} \rightarrow (F_4, \{Ta, Fb\}, 0, \top) \begin{array}{l} \text{begin} \\ \text{sense} \end{array} \rightarrow (F_5, \{Ta, Tb\}, 1, \top) \begin{array}{l} \text{del} \end{array} \rightarrow (F_6, \{Ta, Fb\}, 1, \top) \begin{array}{l} \text{begin} \\ \text{sense} \end{array} \rightarrow (F_7, \{Ta, Fb\}, 1, \top) \begin{array}{l} \text{del} \end{array} \rightarrow (F_8, \{Ta, Tb\}, 0, \top)$

Since $F_8 = F_2$, the two states s_8 and s_2 are equal. Thus we have an arc back from s_7 to s_2, and the path from s_2 to s_7 contains an accepting state. The path represents a counterexample to the property we wanted to prove.

Let us modify the domain description by adding a fluent $pr(E)$ which associates a priority to the mailboxes. We can add the following immediate effect and precondition rules:

$[\text{deliver}(E)] \neg pr(E)$

$[\text{deliver}(E)] pr(E') \leftarrow E \neq E', \text{mail}(E')$

3For lack of space we consider only the most significant formulas.
By applying function max, we obtain that the longest path has length 17. By executing function $\text{BMC}(17)$ we get no solution. Therefore the property $\Box (\text{mail}(a) \supset \Diamond \neg \text{mail}(a))$ holds in the modified domain description.

7 Encoding bounded model checking in ASP

We now provide a translation into standard ASP of the above procedure for building a path of the product Büchi automaton. We use predicates like fluent, action, state to express the type of atoms. As we are interested in infinite runs represented as (k,l)-loops, we assume a bound K to the number of states. States are represented in ASP as integers from 0 to K, where K is given by the predicate $\text{laststate}(\text{State})$. The predicate $\text{occurs}(\text{Action, State})$ describes transitions. Occurrence of exactly one action per state can be encoded as:

\[
\neg \text{occurs}(A,S) :- \text{occurs}(A1,S), \text{action}(A), \\
\text{action}(A1), A \neq A1, \text{state}(S).
\]

\[
\text{occurs}(A,S) :- \neg \text{occurs}(A,S), \text{action}(A), \\
\text{state}(S).
\]

As we have seen, states are associated with a set of fluent literals, a set of signed formulas, and the values of x and f. Fluent literals are represented with the predicate $\text{holds} (\text{Fluent, State})$. T or F formulas with $\text{tt} (\text{Formula, State})$ or $\text{ff} (\text{Formula, State})$, x with the predicate $\text{x}(\text{Val, State})$ and f with the predicate $\text{acc}(\text{State})$, which is true if State is an accepting state.

States on the path must be all different, and thus we need to define a predicate $\text{eq}(S1, S2)$ to check whether the two states $S1$ and $S2$ are equal:

\[
\text{eq}(S1, S2) :- \text{state}(S1), \text{state}(S2), \\
\neg \text{diff}(S1, S2).
\]

\[
\text{diff}(S1, S2) :- \text{state}(S1), \text{state}(S2), \\
\text{tt}(F, S1), \neg \text{tt}(F, S2).
\]

\[
\text{diff}(S1, S2) :- \text{state}(S1), \text{state}(S2), \\
\text{holds}(F, S1), \neg \text{holds}(F, S2).
\]

and similarly for other components of a state.

The following constraint requires all states up to K to be different:

\[
:- \text{state}(S1), \text{state}(S2), S1 \neq S2, \text{eq}(S1, S2), \\
\text{laststate}(K), S1 \leq K, S2 \leq K.
\]

Furthermore we need constraints stating that there is a transition from state K to a previous state L\(^{4}\), and that there is a state S, $L \leq S \leq K$, such that $\text{acc}(S)$ holds, i.e. S is an accepting state. To do this we compute the successor of state K, and check that it is equal to S.

\[
\text{loop}(L) :- \text{state}(L), \text{laststate}(K), L \leq K, \\
\text{SucK}=K+1, \text{eq}(L, \text{SucK}).
\]

\[
\text{accept} :- \text{loop}(L), \text{state}(S), \text{laststate}(K), \\
L \leq S, S \leq K, \text{acc}(S).
\]

\(^{4}\)Since states are all different, there will be at most one state equal to the successor of K.

14
Given a domain description Π and a set of DLTL formulas $\varphi_1, \ldots, \varphi_n$, representing constraints or negated properties, we want to compute the temporal answer sets of the domain description Π satisfying the temporal formulas, if any. The rules in Π can be easily translated to ASP, similarly to [17]. In the following we provide the translation of our running example, see [24] for details.

```
action(sense).
action(deliver(a)).
action(deliver(b)).
action(wait).
fluent(mail(a)).
fluent(mail(b)).

  action effects:
  holds(mail(E),NS):= occurs(sense,S),
  fluent(mail(E)), NS=S+1,
  not -holds(mail(E),NS).
-holds(mail(E),NS):= occurs(deliver(E),S),
  fluent(mail(E)), NS=S+1.

  persistence:
  holds(F,NS):= holds(F,S), fluent(F), NS=S+1,
  not -holds(F,NS).
-holds(F,NS):= -holds(F,S), fluent(F), NS=S+1.

  preconditions:
  :- occurs(deliver(E),S),-holds(mail(E),S).
  :- occurs(wait,S), holds(mail(E),S).

  initial state:
  := occurs(deliver(E),S),-holds(mail(E),S).
  := occurs(wait,S), holds(mail(E),S).
  := not holds(mail(a),0).  -holds(mail(b),0).
```

DLTL formulas are represented as ASP terms. In the encoding, each formula $\alpha U^{A(q)} \beta$ is represented as `until(A,q,alpha,beta)`, where the automaton A is described by the predicates `trans(A,Q1,Act,Q2)` defining transitions, and `final(A,Q)` defining final states. Predicate `x(L,S)` gives the value $L = 0, 1$ of x in state S. We introduce the terms `until(A,q,alpha,beta,Lab)` and `diamond(Act,alpha)` for encoding labeled until formulas and $\langle q \rangle \alpha$ formulas. The expansion of signed formulas can be formulated by means of ASP rules corresponding to the tableau rules given in the previous section.

Disjunction:

```
tt(F1,S) v tt(F2,S):= tt(or(F1,F2),S).
ff(F1,S):= ff(or(F1,F2),S).
ff(F2,S):= ff(or(F1,F2),S).
```

Negation:

```
ff(F,S):= tt(neg(F),S).
tt(F,S):= ff(neg(F),S).
```

Until:

```
tt(until(Aut,Q,F1,F2,1-N),S):= state(S),
```
\(tt(\text{until}(\text{Aut}, Q, F1, F2), S), x(N, S), \text{label}(N) \).

\(tt(\text{or}(F2, \text{and}(F1, \text{diamond}(\text{Act}, \text{until}(\text{Aut}, Q1, F1, F2, \text{Lab})))), S) :-
\)
\(tt(\text{until}(\text{Aut}, Q, F1, F2, \text{Lab}), S), \text{state}(S),
\text{label}(\text{Lab}), \text{final}(\text{Aut}, Q), \text{occurs}(\text{Act}, S),
\text{choose}(\text{until}(\text{Aut}, Q, F1, F2, \text{Lab}), S, \text{Act}, Q1). \)

\(tt(\text{and}(F1, \text{diamond}(\text{Act}, \text{until}(\text{Aut}, Q1, F1, F2, \text{Lab}))), S) :-
\)
\(tt(\text{until}(\text{Aut}, Q, F1, F2, \text{Lab}), S), \text{state}(S),
\text{label}(\text{Lab}), \text{not \ final}(\text{Aut}, Q), \text{occurs}(\text{Act}, S),
\text{choose}(\text{until}(\text{Aut}, Q, F1, F2, \text{Lab}), S, \text{Act}, Q1). \)

\(ff(F2, S) :- \text{state}(S),
\text{ff}(\text{until}(\text{Aut}, Q, F1, F2), S), \text{final}(\text{Aut}, Q). \)

\(ff(\text{diamond}(\text{Act}, \text{until}(\text{Aut}, Q1, F1, F2)), S) :-
\)
\(ff(\text{until}(\text{Aut}, Q, F1, F2), S), \text{occurs}(\text{Act}, S),
\text{state}(S), \text{trans}(\text{Aut}, Q, \text{Act}, Q1). \)

Diamond

\(\text{tt}(F, NS) :- \text{tt}(\text{diamond}(\text{Act}, F), S), \text{NS}=S+1. \)

\(\text{ff}(F, NS) :- \text{ff}(\text{diamond}(\text{Act}, F), S), \text{occurs}(\text{Act}, S), \text{NS}=S+1. \)

Note that, to express splitting of sets of formulas, as in the case of disjunction, we can exploit disjunction in the head of clauses, provided by some ASP languages such as DLV, or choice constructs available in other languages. The predicate **choose** below non deterministically chooses a transition \(Q1 \) among those possible for action \(\text{Act} \) in the automaton \(\text{Aut} \), and uses that choice in the expansion of the until formula:

\[\text{choose}(\text{until}(\text{Aut}, Q, F1, F2, \text{Lab}), S, \text{Act}, Q1) :-
\]
\[\text{not \ -choose}(\text{until}(\text{Aut}, Q, F1, F2, \text{Lab}), S, \text{Act}, Q1),
\text{state}(S), \text{trans}(\text{Aut}, Q, \text{Act}, Q1), \text{action}(\text{Act}). \]

\[\text{-choose}(\text{until}(\text{Aut}, Q, F1, F2, \text{Lab}), S, \text{Act}, Q1) :-
\]
\[\text{choose}(\text{until}(\text{Aut}, Q, F1, F2, \text{Lab}), S, \text{Act}, Q1),
\text{choose}(\text{until}(\text{Aut}, Q, F1, F2, \text{Lab}), S, \text{Act}, Q2),
\text{state}(S), \text{action}(\text{Act}), Q1=Q2. \]

Inconsistency of signed formulas is formulated with the following constraints:

\[:- \text{ff}(\text{true}, S), \text{state}(S). \]

\[:- \text{tt}(F, S), \text{ff}(F, S), \text{state}(S). \]

\[:- \text{tt}(\text{diamond}(\text{Act1}, F), S),
\text{tt}(\text{diamond}(\text{Act2}, F), S), \text{Act1}!=\text{Act2}. \]

\[:- \text{tt}(F, S), \text{not \ holds}(F, S). \]

\[:- \text{ff}(F, S), \text{not \ -holds}(F, S). \]

As a difference with the tableau construction, rather than introducing the translation of formula \(T \bigvee_{a \in \Sigma} \langle \bar{a} \rangle^\top \) in the initial state, we include the rule

\[\text{tt}(\text{diamond}(A, \text{true}), S) :- \text{occurs}(A, S). \]

as we know that at least one action (and at most one) occurs in a state.

Predicates \(x \) and \(\text{acc} \) are defined as follows:

\[\text{cont}(S) :- \text{state}(S), x(\text{Lab}, S),
\text{tt}(\text{diamond}(\ldots, \text{until}(\ldots, \text{Lab}))), S). \]

\[x(\text{Lab}, \text{SN}) :- x(\text{Lab}, S), \text{SN}=S+1, \text{cont}(S). \]
\[-\text{acc}(SN) := \text{x}(\text{Lab}, S), SN = S + 1, \text{cont}(S). \]
\[\text{x}(\text{l-Lab}, SN) := \text{x}(\text{Lab}, S), SN = S + 1, \not\text{cont}(S).\]
\[\text{acc}(SN) := \text{x}(\text{Lab}, S), SN = S + 1, \not\text{cont}(S).\]
\[x(0, 0), \text{acc}(0).\]

Finally, we must add a fact \(\text{tt}(\text{tr}(\varphi_i), 0)\) for each DLTL formula \(\varphi_i\) to be satisfied in the model, where \(\text{tr}(\varphi_i)\) is the ASP term representing \(\varphi_i\).

It is easy to see that the (groundization of the) encoding in ASP is linear in the size of the formula \(\varphi\) to be verified and in the number \(f\) of ground fluents while quadratic in the size of \(k\). Observe that, as the number of the subformulas of the initial formula \(\varphi\) (including derived until formulas) is linear in the size of \(\varphi\), the number of the ground instances of predicates \(\text{tt}, \text{ff}\) is \(O(|\varphi| \times k)\), the number of ground instances of predicate \(\text{holds}\) is \(O(f \times k)\), while the number of ground instances of predicates \(\text{eq}\) and \(\text{diff}\) is \(O(k^2)\). The encoding of the acceptance condition requires only a number of ground propositions linear in \(k\).

We can prove that there is a one to one correspondence between the extensions of a domain description satisfying a given temporal formula and the answer sets of the ASP program encoding the domain and the formula.

Proposition 3 Let \(\Pi\) be a domain description whose temporal answer sets are total, let \(\text{tr}(\Pi)\) be the ASP encoding of \(\Pi\) (for a given \(k\)), and let \(\varphi\) be a DLTL formula. If there is a temporal answer set of \(\Pi\) that satisfies the formula \(\varphi\), then there exists an answer sets of the ASP program \(\text{tr}(\Pi) \cup \text{tt}(\text{tr}(\varphi), 0)\) (where \(\text{tr}(\varphi)\) is the ASP term representing \(\varphi\)); and vice versa.

Proof sketch. We show that from any k-l loop computed by function BMC (introduced in the previous section), we can construct an answer set of the ASP program \(\text{tr}(\Pi) \cup \text{tt}(\text{tr}(\varphi), 0)\). Vice versa, given an answer set of the ASP program \(\text{tr}(\Pi) \cup \text{tt}(\text{tr}(\varphi), 0)\), we can construct a k-l loop which is non-deterministically computed by the function BMC. \(\square\)

For achieving completeness, the search for the longest simple path can be done by removing from the above ASP encoding the rules for defining loops and the rules for defining the Büchi acceptance condition.

The translation has been run in iClingo [16]. For the dining philosophers problems in [28], the scalability of the approach in this paper is similar to the one for the method (without Büchi automaton) in [24] and the one in [28], when looking for a counterexample. E.g., a counterexample for DP(12) is found in 183 seconds, wrt 274 seconds for a Clingo implementation of the method in [24] — see also Appendix C in that paper.

The search for the longest simple path is substantially more costly and practically feasible only for problems where the action domain is sufficiently constrained. In particular, we are experimenting this approach in the verification of business processes [12].

8 Conclusions

We have presented a bounded model checking approach for the verification of properties of temporal action theories in ASP. The temporal action theory is formulated in a
temporal extension of ASP, where DLTL constraints in the domain description allow for state trajectory constraints to be captured. It provides a uniform ASP methodology for specifying domain descriptions and for verifying them, which can be used for several reasoning tasks, including reasoning about communication protocols [5, 21], business process verification [12], planning with temporal constraints [2]. [23] is a preliminary version of this paper, only dealing with LTL constraints.

Helianko and Niemelä [28] developed a compact encoding of bounded model checking of LTL formulas as the problem of finding stable models of logic programs. In [24] this encoding is extended to address the verification of action domains including DLTL constraints. In this paper, we follow a different approach to BMC which exploits the Büchi automaton construction to achieve completeness.

[9] first proposed the use of the Büchi automaton in BMC. As a difference, our encoding in ASP is defined without assuming that the Büchi automaton is computed in advance. The states of the automaton are computed on the fly, when building the path of the product automaton. This requires the equality among states to be checked during the construction of a \((k, l)\)-loop, which makes the size of the translation quadratic in \(k\). Moreover, ASP provides a uniform nonmonotonic framework for representing direct and indirect effects of actions, their persistence and BMC.

Apart from the presence of the temporal constraints, the action language we introduced in Section 3 has strong relations with the languages \(K\) and \(C\). The logic programming based planning language \(K\) [14, 15] is well suited for planning under incomplete knowledge and which allows concurrent actions. The temporal action language introduced in section 3 for defining the rules in \(\Pi\) can be regarded as a fragment of \(K\) in which concurrent actions are not allowed. The planning system \(DLV^K\) provides an implementation of \(K\) in the disjunctive logic programming system DLV. \(DLV^K\) does not appear to support other kinds of reasoning besides planning, and, in particular, does not allow to express and verify temporal properties.

The languages \(C\) and \(C^+\) [26, 25] also deal with actions with indirect and nondeterministic effects and with concurrent actions, and are based on nonmonotonic causation rules syntactically similar to those of \(K\). Their semantics is based on a nonmonotonic causal logic [25]. If a causal theory is definite (the head of a rule is an atom), it is possible to reason about it by turning the theory into a set of propositional formulas by means of a completion process, and then invoke a satisfiability solver. In this way it is possible to perform various kinds of reasoning such as prediction, postdiction or planning. However the language does not exploit standard temporal logic constructs to reason about actions.

The action language defined in this paper can be regarded as a temporal extension of the language \(A\) [19]. The extension allows to deal with general temporal constraints and infinite computations. Instead, it does not deal with concurrent actions and incomplete knowledge.

The presence of temporal constraints in our action language is related to the work on temporally extended goals in [11, 6], which, however, is concerned with expressing preferences among goals and exceptions in goal specification.

\(ESG\) [10] is a second order extension of CTL* for reasoning about nonterminating Golog programs. The paper presents a method for verification of a first order CTL fragment of \(ESG\), using model checking and regression based reasoning. Because of
first order quantification, this fragment is in general undecidable.

In [1] the verification problem for action logic programs with nonterminating behavior is addressed using an action formalism based on a temporalized description logic \(ALCO\)-LTL, obtained from LTL by allowing \(ALCO\)-assertions in place of propositions. The behaviors of the program on which verification is performed are given by a Büchi automaton. As a difference, in our approach the action domain is given as a temporal ASP action theory. Concerning the verification language, DLTL does not allow for first order constructs as \(ALCO\)-LTL, while it allows for the specification of regular expressions.

References

