
Dipartimento di Informatica
Università del Piemonte Orientale “A. Avogadro”

Viale Teresa Michel 11, 15121 Alessandria
http://www.di.unipmn.it

Achieving completeness in bounded model checking of action theories
in ASP

L. Giordano, A. Martelli, D. Theseider Dupré
(laura.giordano@mfn.unipmn.it, mrt@di.unito.it,

daniele.theseider dupre@mfn.unipmn.it)

TECHNICAL REPORT TR-INF-2011-12-04-UNIPMN
(December 2011)

The University of Piemonte Orientale Department of Computer Science Research
Technical Reports are available via WWW at URL http://www.di.unipmn.it/.

Plain-text abstracts organized by year are available in the directory

Recent Titles from the TR-INF-UNIPMN Technical Report Series

2011-03 SAN models of a benchmark on dynamic reliability, D. Codetta Raiteri, December
2011.

2011-02 A new symbolic approach for network reliability analysis , M. Beccuti, S. Donatelli,
G. Franceschinis, R. Terruggia, June 2011.

2011-01 Spaced Seeds Design Using Perfect Rulers, L. Egidi, G. Manzini, June 2011.

2010-04 ARPHA: an FDIR architecture for Autonomous Spacecrafts based on Dynamic
Probabilistic Graphical Models, D. Codetta Raiteri, L. Portinale, December 2010.

2010-03 ICCBR 2010 Workshop Proceedings, C. Marling, June 2010.

2010-02 Verifying Business Process Compliance by Reasoning about Actions, D. D’Aprile,
L. Giordano, V. Gliozzi, A. Martelli, G. Pozzato, D. Theseider Dupré, May 2010.

2010-01 A Case-based Approach to Business Process Monitoring, G. Leonardi, S. Montani,
March 2010.

2009-09 Supporting Human Interaction and Human Resources Coordination in Distributed
Clinical Guidelines, A. Bottrighi, G. Molino, S. Montani, P. Terenziani, M. Torchio,
December 2009.

2009-08 Simulating the communication of commands and signals in a distribution grid, D.
Codetta Raiteri, R. Nai, December 2009.

2009-07 A temporal relational data model for proposals and evaluations of updates, L.
Anselma, A. Bottrighi, S. Montani, P. Terenziani, September 2009.

2009-06 Performance analysis of partially symmetric SWNs: efficiency characterization
through some case studies, S. Baarir, M. Beccuti, C. Dutheillet, G. Franceschinis,
S. Haddad, July 2009.

2009-05 SAN models of communication scenarios inside the Electrical Power System, D.
Codetta Raiteri, R. Nai, July 2009.

2009-04 On-line Product Configuration using Fuzzy Retrieval and J2EE Technology, M. Ga-
landrino, L. Portinale, May 2009.

2009-03 A GSPN Semantics for Continuous Time Bayesian Networks with Immediate Nodes,
D. Codetta Raiteri, L. Portinale, March 2009.

2009-02 The TAAROA Project Specification, C. Anglano, M. Canonico, M. Guazzone, M.
Zola, February 2009.

2009-01 Knowledge-Free Scheduling Algorithms for Multiple Bag-of-Task Applications on
Desktop Grids, C. Anglano, M. Canonico, February 2009.

Achieving completeness in bounded model
checking of action theories in ASP ∗

Laura Giordano 1 Alberto Martelli 2

Daniele Theseider Dupré 1

1 Dipartimento di Informatica, Università del Piemonte Orientale, Italy
2 Dipartimento di Informatica, Università di Torino, Italy

Abstract

Temporal logics are well suited for reasoning about actions, as they allow for
the specification of domain descriptions including temporal constraints as well as
for the verification of temporal properties of the domain. In this paper, we exploit
bounded model checking (BMC) techniques in the verification of dynamic linear
time temporal logic (DLTL) properties of an action theory, which is formulated in
a temporal extension of answer set programming (ASP). To achieve completeness,
in this paper, we propose an approach to BMC which exploits the Büchi automa-
ton construction while searching for a counterexample. The paper provides an
encoding in ASP of the temporal action domain and of bounded model checking
of DLTL formulas.

1 Introduction
Temporal logics are well suited for reasoning about actions, as they allow for the spec-
ification of temporal constraints in a domain description as well as for the verification
of temporal properties of the domain. Temporal logics have proved to be quite useful
in planning, where both CTL [27, 30] and LTL [6, 4] have been used in the specifi-
cation of temporally extended goals, as well as in the definition of domain dependent
search control knowledge [3], while strong fairness constraints are expressed in LTL in
[13] to restrict nondeterminism in generalized planning. LTL has been also used in the
verification of agent interaction protocols [22] and for enforcing regulations in auto-
mated Web service composition [31]. Claßen and Lakemeyer [10] introduced a second
order extension of the temporal logic CTL*, ESG, to reason about non-terminating
Golog programs. The ability to capture infinite computations is important as agents
and robots usually fulfill non-terminating tasks.

∗This work has been partially supported by Regione Piemonte, Project “ICT4Law - ICT Converging on
Law: Next Generation Services for Citizens, Enterprises, Public Administration and Policymakers”.

1

In this paper, we exploit Bounded Model Checking (BMC) techniques in the veri-
fication of properties of an action theory formulated in a temporal extension of answer
set programming (ASP [17]). BMC, as defined in [7], does not require a tableau or
automaton construction. Given a system model (a transition system) and a property
to be checked, it searches for a counterexample of the property as a path of length k,
generating a propositional formula that is satisfiable iff such a counterexample exists.
The bound k on the length of the path is iteratively increased and, if no model exists,
the procedure never stops. As a consequence, bounded model checking, as defined in
[7], provides a partial decision procedure for checking validity. Techniques for achiev-
ing completeness have been described in [7], where upper bounds for k are determined
for some classes of properties, namely unnested properties. To address the problem of
completeness, [9] proposes a semantic translation scheme, based on Büchi automata.

Helianko and Niemelä [28] developed a compact encoding of bounded model check-
ing of LTL formulas as the problem of finding stable models of logic programs. In [24]
this encoding is extended to deal with Dynamic Linear Time Temporal Logic (DLTL)
formulas, for reasoning about action theories including complex actions and programs.
These papers do not address the problem of achieving completeness.

In this paper we propose an alternative encoding of BMC of DLTL formulas in
ASP, with the aim of achieving completeness. Unlike [28, 24], here the search for a
counterexample exploits the Büchi automaton construction [20] as well as the transition
system. Unlike [9], a “counterexample” path is searched for, without assuming that the
Büchi automaton is constructed in advance. Our counterexample is an accepting path
of the product Büchi automaton which can be finitely represented as a (k,l)-loop , i.e.,
a finite path of length k terminating in a loop back to a previous state l, in which the
states are all distinct from each other.

The procedure for verifying a given property searches for a (k,l)-loop, providing a
counterexample to the property, increasing k until either a counterexample is found, or
no (k,l)-loop of length greater or equal to k can be found. The second condition can be
verified by checking that there is no path of length k whose states are all distinct from
each other.

As in [24], verification is performed on a transition system provided by a domain
description in a temporal action theory, and our BMC approach is used for proving
properties of domain descriptions. The action theory is given in a temporal extension
of ASP, based on the generalization the notion of answer set [17] to temporal answer
sets. The temporal properties of a domain description can be proved by combining
the construction of temporal extensions of the domain with the verification of their
properties, according to a tableaux-based procedure which provides an encoding of
BMC in ASP. The correctness and completeness of this encoding is based on the re-
sults on Büchi automaton construction for DLTL formulas in [29] and in [21] (where
a construction on-the-fly of the automaton is provided). The encoding in ASP uses a
number of ground atoms which is linear in the size of the formula and quadratic in k.
Thanks to the completeness result, we provide a decision procedure for the verification
of satisfiability and validity properties of an action domain.

The outline of the paper is the following. First, we introduce the logic DLTL, we
describe the temporal action language and its answer sets, and we introduce verifi-
cation problems for action theories. We then describe our approach to action theory

2

verification by BMC. Finally we provide an ASP encoding of BMC and discuss related
work.

2 Dynamic Linear Time Temporal Logic
In this paper we refer to a formulation of DLTL (dynamic linear time temporal logic),
in [29], where the next state modality is indexed by actions and the until operator Uπ
is indexed by a program π which, as in PDL, can be any regular expression built from
atomic actions using sequence (;), nondeterministic choice (+) and finite iteration (∗).

Let Σ be a finite non-empty alphabet. The members of Σ are actions. Let Σ∗ and
Σω be the set of finite and infinite words on Σ. Let Σ∞ =Σ∗ ∪ Σω . We denote by
σ, σ′ the words over Σω and by τ, τ ′ the words over Σ∗. Moreover, we denote by≤ the
usual prefix ordering over Σ∗, namely, τ ≤ τ ′ iff ∃τ ′′ such that ττ ′′ = τ ′, and τ < τ ′

iff τ ≤ τ ′ and τ 6= τ ′. For u ∈ Σ∞, we denote by prf(u) the set of finite prefixes of u.
Let the set of programs (regular expressions) generated by Σ be Prg(Σ) ::= a |

π1 + π2 | π1;π2 | π∗, where a ∈ Σ and π1, π2, π range over Prg(Σ). A set of finite
words can be associated with each program by the mapping [[]] : Prg(Σ) → 2Σ∗ in
the usual way.

LetP = {p1, p2, . . .} be a countable set of atomic propositions. The set of formulas
of DLTL(Σ) is defined as:

DLTL(Σ) ::= p | ¬α | α ∨ β | 〈a〉α | αUπβ

where p ∈ P , π ∈ Prg(Σ) and α, β range over DLTL(Σ).
A model of DLTL(Σ) is a pair M = (σ, V) where σ ∈ Σω and V : prf (σ) → 2P

is a valuation function. Given a model M = (σ, V), a finite word τ ∈ prf (σ) and a
formula α, the satisfiability of a formula α at τ in M , written M, τ |= α, is defined as
follows:

• M, τ |= p iff p ∈ V (τ);

• M, τ |= ¬α iff M, τ 6|= α;

• M, τ |= α ∨ β iff M, τ |= α or M, τ |= β;

• M, τ |= αUπβ iff there exists τ ′ ∈ [[π]] such that ττ ′ ∈ prf(σ) andM, ττ ′ |= β.
Moreover, for every τ ′′ such that ε ≤ τ ′′ < τ ′, M, ττ ′′ |= α.

A formula α is satisfiable iff there is a modelM = (σ, V) and a finite word τ ∈ prf (σ)
such that M, τ |= α.

The symbols > and ⊥ can be defined as: > ≡ p ∨ ¬p and ⊥≡ ¬>. The derived
modalities 〈π〉α, [a]α,© (next), U , 3 and 2 can be defined as follows: 〈π〉α ≡ >Uπα,
[a]α ≡ ¬〈a〉¬α, ©α ≡

∨
a∈Σ〈a〉α, αUβ ≡ αUΣ∗β, 3α ≡ >Uα, 2α ≡ ¬3¬α,

UΣ∗ , Σ is taken to be a shorthand for the program a1 + . . .+ an.

3

3 Temporal action language
A domain description Π is a set of laws describing the effects of actions and their
executability preconditions. Atomic propositions describing the state of the domain are
called fluents. Actions may have direct effects, described by action laws, and indirect
effects, described by causal laws capturing the causal dependencies among fluents.

Let L be a first order language which includes a finite number of constants and
variables, but no function symbol. Let P be the set of predicate symbols, V ar the
set of variables and C the set of constant symbols. We call fluents atomic literals
of the form p(t1, . . . , tn), where, for each i, ti ∈ V ar ∪ C. A simple fluent literal
(or s-literal) l is an atomic literals p(t1, . . . , tn) or its negation ¬p(t1, . . . , tn). We
denote by LitS the set of all simple fluent literals. LitT is the set of temporal fluent
literals: if l ∈ LitS , then [a]l,©l ∈ LitT , where a is an action name (an atomic
proposition, possibly containing variables), and [a] and© are the temporal operators
introduced in the previous section. Let Lit = LitS ∪LitT ∪ {⊥}, where ⊥ represents
the inconsistency. Given a (simple or temporal) fluent literal l, not l represents the
default negation of l. A (simple or temporal) fluent literal possibly preceded by a
default negation, will be called an extended fluent literal.

The laws are formulated as rules of a temporally extended logic programming lan-
guage. Rules have the form

l0 ← l1, . . . , lm, not lm+1, . . . , not ln (1)

where the li’s are either simple fluent literals or temporal fluent literals, with the fol-
lowing constraints: (i) If l0 is a simple literal, then the body cannot contain temporal
literals; (ii) If l0 = [a]l, then the temporal literals in the body must have the form [a]l′;
(iii) If l0 = ©l, then the temporal literals in the body must have the form ©l′. As
usual in ASP, the rules with variables will be used as a shorthand for the set of their
ground instances.

In the following we use a notion of state: a set of ground fluent literals. A state is
said to be consistent if it is not the case that both f and ¬f belong to the state, or that⊥
belongs to the state. A state is said to be complete if, for each fluent name p ∈ P , either
p or ¬p belong to the state. The execution of an action in a state may possibly change
the values of fluents in the state through its direct and indirect effects, thus giving rise
to a new state.

We assume that a law as (1) can be applied in all states, while a law with the Init
prefix only applies to the initial state.

Example 1 This example describes a mail delivery agent, which checks if there is mail
in the mailbox of employees and delivers mail to them. The actions in Σ are: sense
(the agent verifies if there is mail in all mailboxes), deliver(E) (the agent delivers
the mail to employee E), wait. The fluent names are mail(E) (there is mail in the
mailbox of E). The domain description Π contains the following immediate effects
and persistency laws:

[deliver(E)]¬mail(E)
[sense]mail(E)← not [sense]¬mail(E)

4

©mail(E)← mail(E), not©¬mail(E)
©¬mail(E)← ¬mail(E), not©mail(E)

Their meaning is (in the order) that: after delivering the mail to E, there is no mail
for E any more; the action sense may (non-monotonically) cause mail(E) to become
true. The last two rules define the persistency of fluent mail.

Observe that the persistency laws interact with the immediate effect laws above.
The execution of sense in a state in which there is no mail for some E (¬mail(E)),
may either lead to a state in which mail(E) holds (by the second action law) or to
a state in which ¬mail(E) holds (by persistency of ¬mail(E)). Thus, sense is a
nondeterministic action.

The following precondition laws:

[deliver(E)] ⊥← ¬mail(E)
[wait] ⊥← mail(E)

specify that, if there is no mail for E, deliver(E) is not executable, while, if there is
mail for E, wait is not executable.

We assume that there are only two employees, a and b and, in the initial state, there
is mail for a and not for b, i.e. Π includes Init mail(a) and Init ¬mail(b).

The language is also well suited to describe causal dependencies among fluents
[24] as static and dynamic causal laws similar to the ones in the action languages K
[15] and C+ [25].

3.1 Temporal answer sets
To define the the semantics of a domain description, we extend the notion of answer set
[17] to capture the linear structure of temporal models. In the following, we consider
the ground instantiation of the domain description Π, and we denote by Σ the set of all
the ground instances of the action names in Π.

Following [24], we define a temporal interpretation as a pair (σ, S), where σ ∈
Σω is a sequence of actions and S is a consistent set of ground literals of the form
[a1; . . . ; ak]l, where a1 . . . ak is a prefix of σ and l is a ground simple fluent literal,
meaning that l holds in the state obtained by executing a1 . . . ak. S is consistent iff
it is not the case that both [a1; . . . ; ak]l ∈ S and [a1; . . . ; ak]¬l ∈ S, for some l,
or [a1; . . . ; ak]⊥ ∈ S. A temporal interpretation (σ, S) is said to be total if either
[a1; . . . ; ak]p ∈ S or [a1; . . . ; ak]¬p ∈ S, for each a1 . . . ak prefix of σ and for each
fluent name p.

We define the satisfiability of a simple, temporal or extended literal t in a partial
temporal interpretation (σ, S) in the state a1 . . . ak, (written (σ, S), a1 . . . ak |= t) as
follows:

(σ, S), a1 . . . ak |= >, (σ, S), a1 . . . ak 6|= ⊥
(σ, S), a1 . . . ak |= l iff [a1; . . . ; ak]l ∈ S, for l s-literal
(σ, S), a1 . . . ak |= [a]l iff [a1; . . . ; ak; a]l ∈ S or

a1 . . . ak, a is not a prefix of σ
(σ, S), a1 . . . ak |=©l iff [a1; . . . ; ak; b]l ∈ S,

5

where a1 . . . akb is a prefix of σ
(σ, S), a1 . . . ak |= not l iff (σ, S), a1 . . . ak 6|= l

The satisfiability of rule bodies in a temporal interpretation is defined as usual. A rule
H ← Body is satisfied in a temporal interpretation (σ, S) if, for all action sequences
a1 . . . ak (including the empty action sequence ε), (σ, S), a1 . . . ak |= Body implies
(σ, S), a1 . . . ak |= H . A rule Init H ← Body is satisfied in a partial temporal
interpretation (σ, S) if, (σ, S), ε |= Body implies (σ, S), ε |= H .

Let Π be a set of rules over an action alphabet Σ, not containing default negation,
and let σ ∈ Σω .

Definition 1 A temporal interpretation (σ, S) is a temporal answer set of Π if S is
minimal (in the sense of set inclusion) among the S′ such that (σ, S′) is a partial
interpretation satisfying the rules in Π.

To define answer sets of a program Π containing negation, given a temporal in-
terpretation (σ, S) over σ ∈ Σω , we define the reduct, Π(σ,S), of Π relative to (σ, S)
extending Gelfond and Lifschitz’ transform [18] to compute a different reduct of Π for
each prefix a1, . . . , ah of σ.

Definition 2 The reduct, Π
(σ,S)
a1,...,ah , of Π relative to (σ, S) and to the prefix a1, . . . , ah

of σ , is the set of all the rules

[a1; . . . ; ah](H ← l1, . . . , lm)

such that H ← l1, . . . , lm, not lm+1, . . . , not ln is in Π and (σ, S), a1, . . . , ah 6|= li,
for all i = m+ 1, . . . , n.

The reduct Π(σ,S) of Π relative to (σ, S) is the union of all reducts Π
(σ,S)
a1,...,ah for all

prefixes a1, . . . , ah of σ.

We say that a rule [a1; . . . ; ah](H ← Body) is satisfied in a temporal interpretation
(σ, S) if, (σ, S), a1 . . . ak |= Body implies (σ, S), a1 . . . ak |= H .

Definition 3 A temporal interpretation (σ, S) is an answer set of Π if (σ, S) is an
answer set of the reduct Π(σ,S).

Although the answer sets of a domain description Π are partial interpretations, in
some cases, e.g., when the initial state is complete and all fluents are inertial, it is
possible to guarantee that the temporal answer sets of Π are total.

In case the initial state is not complete,we consider all the possible ways to com-
plete the initial state by introducing in Π, for each fluent name f , the rules:

Init f ← not ¬f
Init ¬f ← not f

The case of total temporal answer sets is of special interest as a total temporal answer
set (σ, S) can be regarded as temporal model (σ, VS), where, for each finite prefix
a1 . . . ak of σ, VS(a1, . . . , ak) = {p : [a1, . . . , ak]p ∈ S}. In the following, we

6

restrict our consideration to domain descriptions Π, such that all the answer sets of Π
are total.

A total temporal interpretation (σ, S) provides, for each prefix a1 . . . ak, a complete
state corresponding to that prefix. We denote by w(σ,S)

a1...ak the state obtained by the exe-
cution of the actions a1 . . . ak in the sequence, namely w(σ,S)

a1...ak = {l : [a1; . . . ; ak]l ∈
S}.

Given a domain description Π over Σ with total answer sets, a transition system
(W, I, T) can be associated with Π as follows:

- W is the set of all the possible consistent and complete states of the domain
description;

- I is the set of all the states in W satisfying the initial state laws in Π;

- T ⊆W ×Σ×W is the set of all triples (w, a,w′) such that: w,w′ ∈W , a ∈ Σ

and for some total answer set (σ, S) of Π: w = w
(σ,S)
[a1;...;ah] andw′ = w

(σ,S)
[a1;...;ah;a],

for some h.

It is possible to show that the next states of a given state w in the transition system
(W, I, T) above only depend on the statew. Let Πw be the domain description obtained
form Π by removing all the laws prefixed by Init while adding to Π Init l, for all l ∈ w.

Proposition 1 Let w be a state in W which is reachable form an initial state by the
action sequence a1 . . . ah. If (w, a,w′) ∈ T , then there is an answer set (σ′, S′) of
Πw, such that (1) σ = a1 . . . ahσ

′ and (2) [a]l ∈ S′ iff l ∈ w′. Vice versa, if there is an
answer set (σ′, S′) of Πw satisfying conditions (1) and (2) above, then (w, a,w′) ∈ T

Proposition 1 guarantees that, given a state w and an action a, a next state function
nextTSstate can be defined to compute all the states reachable in the transition system
from w by a. Such a function is indeed used in the following to describe the bounded
model checking construction.

4 Reasoning with DLTL on domain descriptions
As a total temporal answer set of a domain description can be interpreted as a DLTL
model, it is easy to combine domain descriptions with DLTL formulas. This can be
done by adding to the domain description Π a set of DLTL formulas C used as con-
straints on the executions of the domain description. We denote by (Π, C) the enriched
domain description, and we define the extensions of (Π, C) to be the temporal answer
sets (σ, S) of Π satisfying the constraints C, i.e. those such that all the formulas in C
are satisfied in the associated temporal model (σ, VS). Furthermore, DLTL formulas
can be used to encode properties to be verified on the enriched domain description.

Example 2 Assume we want to constrain our domain description in Example 1 so
that the agent continuously executes a loop where it senses mail and delivers the mail.
These constraints can be formulated as follows:

7

〈begin〉>
2[begin]〈sense; (del(a) + del(b) + wait); begin〉>

Furthermore, we may want to check that, if there is mail for a, the agent will even-
tually deliver it. This property, which can be formalized as 2(mail(a) ⊃ 3¬mail(a)),
does not hold as there is a possible scenario in which there is always mail for a and for
b, but the mail is repeatedly delivered to b and never to a. The mail delivery agent we
have described is not correct with respect to this property.

Given an enriched domain description (Π, C), some problems, e.g. planning, can be
formulated as satisfiability of a formula ϕ, and others, such as the one in the example
above, as validity of a formula ϕ. Usually, the validity of a property ϕ formulated
as a DLTL formula is reduced to the unsatisfiability of ¬ϕ. In this case, if a model
satisfying ¬ϕ is found, it represents a counterexample to the validity of ϕ.

5 Model checking
Satisfiability and validity problems can be solved by means of model checking tech-
niques. Given a domain description Π with its associated transition system, satisifia-
bility of a formula ϕ given a set of constraints C, amounts to find a path in the transition
system satisfying the DLTL formula

∧
C ∧ ϕ. On the other hand, to prove the validity

of ϕ we have to show that there is no path satisfying
∧
C ∧ ¬ϕ.

The standard approach to model checking for LTL is based on Büchi automata. A
Büchi automaton is a finite automaton over infinite words, and has the same compo-
nents as an automaton over finite words, except that final states are replaced by accept-
ing states. A Büchi automaton accepts an infinite sequence σ ∈ Σω iff there exists a
run (accepting run) of the automaton which visits (at least) one of the accepting states
infinitely often.

The satisfiability problem for LTL can be solved in deterministic exponential time
by constructing for a formula α ∈ LTL(Σ) a Büchi automaton Bα [20] such that the
language of ω-words accepted by Bα is non-empty if and only if α is satisfiable. It
can be shown that the language accepted by the automaton is nonempty iff there is a
reachable accepting state with a cycle back to itself.

Given a formula α, and a transition system TS, which corresponds to a Büchi
automaton BTS where all the states are accepting, model checking [8] allows to verify
that all the executions of the transition system satisfy α, by constructing the product
automaton of BTS and B¬α, and by checking for emptiness of the accepted language.

In [7] it has been shown that, in some cases, model checking can be more efficient
if, instead of building the product automaton and checking for an accepting run on it,
we look for a path of the transition system satisfying ¬α. This technique is called
bounded model checking (BMC), since it looks for infinite paths which can be repre-
sented as a finite path of length k with a back loop from state k to a previous state l in
the path (a (k,l)-loop). The BMC procedure proceeds iteratively, increasing the length
k until a model satisfying α is found — if one exists.

A BMC problem can be efficiently reduced to a propositional satisfiability problem
or to an ASP problem [28]. Unfortunately, if no model exists, the iterative procedure

8

never stops, if the transition system contains a loop; i.e., it is a partial decision proce-
dure for validity. Techniques for achieving completeness are described in [7] for some
kinds of LTL formulas.

6 BMC with Büchi automata
In this paper, we propose an approach to model checking which combines the advan-
tages of BMC, in particular the possibility of formulating it easily and efficiently as
an ASP problem, with the advantages of reasoning on the product Büchi automaton
described above, mainly its completeness.

In the following we show how to adapt the procedure for building a Büchi automa-
ton corresponding to a given DLTL formula [21] to the “on-the-fly” construction of the
product Büchi automaton, and we show how this construction can be used to build a
(k,l)-loop corresponding to a run of the product Büchi automaton.

In the following construction we assume that, as in [21], until formulas are indexed
with finite automata rather than regular expressions. Thus, we have αUA(q)β instead
of αUπβ, where L(A(q)) = [[π]]. We denote with A(q) a finite automaton A with
initial state q. The following equivalences hold for the until operator [29]:

αUA(q)β ≡ (β ∨ (α∧
∨
a∈Σ〈a〉

∨
q′∈δ(q,a) αUA(q′)β)) (q is a final state of A)

αUA(q)β ≡ (α ∧
∨
a∈Σ〈a〉

∨
q′∈δ(q,a) αUA(q′)β)

(q is not a final state of A)

The construction of the nodes makes use of tableau rules which handle DLTL
signed formulas, i.e. formulas prefixed with the symbol T or F. These rules are ap-
plied to a set of formulas1 as follows:

• φ⇒ ψ1, ψ2, if φ belongs to the set of formulas, then add ψ1 and ψ2 to the set

• φ⇒ ψ1|ψ2, if φ belongs to the set of formulas, then make two copies of the set
and add ψ1 to one of them and ψ2 to the other one.

The rules are the following:

Tor: T(α ∨ β)⇒ Tα|Tβ
For: F(α ∨ β)⇒ Fα,Fβ
Tneg: T¬α⇒ Fα
Fneg: F¬α⇒ Tα
TuntilFS: TαUA(q)β ⇒ T(β ∨ (α ∧

∨
a∈Σ〈a〉∨

q′∈δ(q,a) αUA(q′)β)) (q is a final state)

TuntilNFS: TαUA(q)β ⇒ T(α ∧
∨
a∈Σ〈a〉∨

q′∈δ(q,a) αUA(q′)β)(q is not a final state)

FuntilFS: FαUA(q)β ⇒ F(β ∨ (α ∧
∨
a∈Σ〈a〉∨

q′∈δ(q,a) αUA(q′)β)) (q is a final state)

1In this section “formula” means “signed DLTL formula”.

9

function nextF(F , a)
if F does not contain a formula T〈a〉α then return ∅
else return tableau({Tα|T〈a〉α ∈ F}

∪{Fα|F〈a〉α ∈ F})

Figure 1: Function nextF

FuntilNFS: FαUA(q)β ⇒ F(α ∧
∨
a∈Σ〈a〉∨

q′∈δ(q,a) αUA(q′)β) (q is not a final state)

We use a function tableau which takes as input a set of formulas s, adds to it
T
∨
a∈Σ〈a〉>, and returns a (possibly empty) set of sets of formulas, obtained by re-

peatedly applying the above rules (by possibly creating new sets) until all non-elementary
formulas in all sets have been expanded. We call elementary formulas the formulas of
the form Tφ or Fφ where φ is either >, or ⊥, or a proposition or 〈a〉α. Formula
T
∨
a∈Σ〈a〉> makes explicit that in DLTL each state must be followed by a next state.
If the expansion of a set of formulas produces an inconsistent set, then this set is

deleted. A set of formulas s is inconsistent in the following cases: (i) T⊥ ∈ s; (ii)
F> ∈ s; (iii) Tα ∈ s and Fα ∈ s; (iv) T〈a〉α ∈ s and T〈b〉β ∈ s with a 6= b, because
in a linear time logic two different actions cannot be executed in the same state.

We describe now how to build a path of the product automaton, which is constructed
by the BMC procedure while searching for a counterexample. Each state s of the path
is a tuple s = (F , w, x, f), where F is an expanded set of formulas, w is a state of
the transition system whose literals are represented as signed formulas, x ∈ {0, 1} and
f ∈ {↓,X} are used to track fulfillment of until formulas, as we will describe below.

Given a domain description Π with the associated transition system TS, and a
DLTL formula α describing constraints and properties to be proved, the initial states
will have the form (F0, w0, 0,X), where F0 is a set of formulas obtained by applying
function tableau to α, and w0 is an initial state of TS, such that F0 ∪w0 is consistent.

Transitions of the product automaton are defined by function next states(s, a),
defined in Figure 2, which returns the set of successor states of s after a. This function
makes use of the functions nextTSstates(w, a), which returns the set of the states of
the transition system TS reached with a transition a from state w, and nextF(F , a),
which returns a set of formulas obtained by propagating the formulas in F through
action a. Function nextF is defined in Figure 1. This function first checks whether it
is possible to execute action a from F , then propagates elementary temporal formulas
through a and expands them with tableau.

The fields x and f are used to characterize accepting states of the product automa-
ton, and are used to check that all until formulas are fulfilled in a finite number of
steps.

If a state si of an accepting run ρ contains the until formula TαUA(q)β, then there
must be a state sj , i ≤ j in ρ satisfying the conditions given by the semantics of until.
We say that sj fulfills the until formula. If si does not fulfill the until formula, then
it is possible to show that, according to the axioms of until, si contains a formula
T〈ai〉αUA(q′)β, where q′ ∈ δ(q, ai)2 and, according to function nextF(Fi, ai), si+1

2δ is the transition relation of A.

10

function next states((F , w, x, f), a)
return {(F ′, w′, x′, f ′) such that
F ′ ∈ nextF(F , a),
w′ ∈ nextTSstates(w, a),
F ′ ∪ w′ is consistent,
if there exist no T〈a〉αUA(q)

x β ∈ F
then x′ = 1− x; f ′ = X
else x′ = x; f ′ =↓ }

Figure 2: Function next states

contains a formula TαUA(q′)β. We say that this until formula is derived from formula
TαUA(q)β in state si. If a state contains an until formula which is not derived from
a predecessor state, we say that the formula is new. New until formulas are obtained
during the expansion of tableau.

In order to check fulfillment of until formulas, we must be able to track them along
the states of the run. This is done by using the field x and by extending accordingly
signed formulas so that all true until formulas have a label 0 or 1, i.e. they have the
form TαUA(q)

l β where l ∈ {0, 1}. For each state (F , w, x, f), the label of an until
formula in F is assigned as follows: if it is a derived until formula, then its label is the
same as that of the until formula in the predecessor state it derives from, otherwise, if
the formula is new, it is given the label 1− x.

Function tableau must be suitably modified in order to deal with the labels of until
formulas. We assume that it has two parameters: a set of formulas and the value of x.

Let us assume that in a state si we have x = 0. Then all new until formulas of si
have label 1, and all until formulas with label 0 must be derived from previous states.
If si belongs to an accepting run, all until formulas will be fulfilled in a finite number
of steps. The value 0 of x is propagated to the next states until a state sj does not
contain any more until formulas with label 0. Then x is switched to 1, and we proceed
in the same way. Whenever x changes its value, we set f = X. A state with f = X is
an accepting state of the product automaton, and a run ρ containing infinite accepting
states is an accepting run.

It is an obvious consequence of the construction that:

Proposition 2 (i) Any accepting run of the product automaton corresponds an infinite
path of the transition system (i.e., a temporal answer set of Π) satisfying the initial
DLTL formula α; (ii) every infinite path of the transition system which is a model of α
corresponds to an accepting run of the product automaton.

The proof of this proposition, omitted for lack of space, exploits Theorems 4 and 5 in
[21].

Our approach to BMC relies on the well known result [8] that the language accepted
by a Büchi automaton is nonempty iff there is a reachable accepting state with a cycle
back to itself. The construction of the (k,l)-loop is described by the function BMC in
Figure 3. The construct choose in S returns any of the elements of set S or null if
S = ∅. With s0

a0→ s1
a1→ . . . si we represent a finite path of the product automaton,

where s0 is an initial state and si ∈ next states(si−1, ai−1). Given an integer k, we

11

function BMC(max k)
k := 0
do

path := choose in {s0
a0→ s1

a1→ . . . sk+1 such that
sj 6= sm for 0 ≤ j < m ≤ k,
sl = sk+1 for some l ≤ k,
sacc is an accepting state for some l ≤ acc ≤ k}

k := k + 1
while path = null ∧ k ≤ max k
return path

Figure 3: Function BMC

function max()
i := 0
do

i := i+ 1

path := choose in {s0
a0→ s1

a1→ . . . si such that
sj 6= sm for 0 ≤ j < m ≤ i}

while path 6= null
return i− 1

Figure 4: Function max

look for a path of length k + 1, such that sk+1 = sl for some previous state sl in the
path. Furthermore the loop must contain an accepting state. If such a loop is found, it
finitely represents an accepting run. Otherwise, k is increased until max k is reached.

Observe that the standard approach for bounded model checking in [7] does not
guarantee termination, because the path of length k is a path of the transition system,
and thus it is not possible to restrict the search to simple paths without missing so-
lutions. On the other hand, we can consider only simple paths, that is paths without
repeated states. This property allows to define a terminating algorithm, thus achieving
completeness, by passing the length of the longest simple path as parameter to BMC.

The length of the longest simple path can be found iteratively, searching for a sim-
ple path of length i (without loop), and incrementing i at each step (See Figure 4).
Since the number of different states if finite, this procedure terminates.

The set of tableau rules can be easily extended to deal with other boolean connec-
tives and derived modal operators. In the following, we use tableau rules for 2 and �,
using the equivalences 2β ≡ (β ∧©2β)) and 3β ≡ (β ∨©3β)). Observe that, as
false box formulae correspond to negated until formulas, we need to label them with x.

Example 3 Let us consider the domain description given in Example 1, with the con-
straints and the property given in Example 2. We describe some steps of the (non
deterministic) construction of a (k,l)-loop for k = 7.

For the initial state s0 we have w0 = {Tmail(a),Fmail(b)}, x0 = 0, f0 = X.
F0 contains the following formulas:

F0.1 : T〈begin〉>

12

F0.2 : T2[begin]〈A(q0)〉>
F0.3 : F21(mail(a) ⊃ 3¬mail(a))
F0.4 : T[begin]〈A(q0)〉>− from F0.2
F0.5 : T©2[begin]〈A(q0)〉> from F0.2
F0.6 : F©21(mail(a) ⊃ 3¬mail(a)) from F0.3

The first two formulas are the two constraints, where the automatonA(q0) is equiv-
alent to the regular program sense mail; (deliver(a) + deliver(b) +wait); begin (A
has states {q0, q1, q2, q3}, initial state q0, final state q3 and transition function q1 =
δ(q0, sense), q2 = δ(q0, del(a)) = δ(q0, del(b)) = δ(q0, wait), q3 = δ(q2, begin)).
The third formula is the negation of the property. Note that the 2 operator has label 1
since x0 = 0. All other formulas are obtained by applying the tableau rules3.

Since F0 contains the formula T〈begin〉>, we can only execute action begin in s0.
In s1 we have w1 = {Tmail(a),Fmail(b)}, from the domain description, and x1 = 1,
f0 = X. x1 changes its value from the previous state, because there are no formulas in
s0 with label 0.
F1 is obtained by propagating the “next” formulas in F0 and by applying tableau

to them:
F1.1 : T〈A(q0)〉0> from F0.4
F1.2 : T2[begin]〈A(q0)〉> from F0.5
F1.3 : F21(mail(a) ⊃ 3¬mail(a)) from F0.6
F1.4 : T〈sense〉〈A(q1)〉0> from F1.1
F1.5 : T[begin]〈A(q0)〉> from F1.2
F1.6 : T©2[begin]〈A(q0)〉> from F1.2
F1.7 : F(mail(a) ⊃ 3¬mail(a)) from F1.3
F1.8 : F¬mail(a)) from F1.7
F1.9 : F3¬mail(a)) from F1.7
F1.10 : F©3¬mail(a)) from F1.9

Because of F1.4 the next action will be sense. This action is non deterministic,
and we choose w2 = {Tmail(a),Tmail(b)}.

By continuing with the construction, we can get the following path (we omit the
value of the Fi’s in the states, and we write a form mail(a) and b for mail(b)).

(F0, {Ta,Fb}, 0,X)
begin→ (F1, {Ta,Fb}, 1,X)

sense→ (F2, {Ta,Tb}, 0,X)
del(b)→

(F3, {Ta,Fb}, 0, ↓)
begin→ (F4, {Ta,Fb}, 0, ↓)

sense→ (F5, {Ta,Tb}, 1,X)
del(b)→

(F6, {Ta,Fb}, 1, ↓)
begin→ (F7, {Ta,Fb}, 1, ↓)

sense→ (F8, {Ta,Tb}, 0,X)

SinceF8 = F2 , the two states n8 and n2 are equal. Thus we have an arc back from
s7 to s2, and the path from s2 to s7 contains an accepting state. The path represents a
counterexample to the property we wanted to prove.

Let us modify the domain description by adding a fluent pr(E) which associates a
priority to the mailboxes. We can add the following immediate effect and precondition
rules:
[deliver(E)]¬pr(E)
[deliver(E)]pr(E′)← E 6= E′,mail(E′)

3For lack of space we consider only the most significant formulas.

13

[deliver(E)] ⊥← ¬pr(E), pr(E′), E 6= E′

By applying function max, we obtain that the longest path has length 17. By ex-
ecuting function BMC(17) we get no solution. Therefore the property 2(mail(a) ⊃
3¬mail(a)) holds in the modified domain description.

7 Encoding bounded model checking in ASP
We now provide a translation into standard ASP of the above procedure for building
a path of the product Büchi automaton. We use predicates like fluent, action,

state to express the type of atoms. As we are interested in infinite runs represented
as (k,l)-loops, we assume a bound K to the number of states. States are represented in
ASP as integers from 0 to K, where K is given by the predicate laststate(State).
The predicate occurs(Action,State) describes transitions. Occurrence of exactly
one action per state can be encoded as:
-occurs(A,S):- occurs(A1,S),action(A),

action(A1),A!=A1,state(S).

occurs(A,S):- not -occurs(A,S),action(A),

state(S).

As we have seen, states are associated with a set of fluent literals, a set of signed
formulas, and the values of x and f . Fluent literals are represented with the predicate
holds(Fluent, State), T or F formulas with tt(Formula,State) or
ff(Formula,State), x with the predicate x(Val,State) and f with the predicate
acc(State), which is true if State is an accepting state.

States on the path must be all different, and thus we need to define a predicate
eq(S1,S2) to check whether the two states S1 and S2 are equal:
eq(S1,S2):- state(S1), state(S2),

not diff(S1,S2).

diff(S1,S2):- state(S1), state(S2),

tt(F,S1), not tt(F,S2).

diff(S1,S2):- state(S1), state(S2),

holds(F,S1), not holds(F,S2).

and similarly for other components of a state.
The following constraint requires all states up to K to be different:

:- state(S1), state(S2), S1!=S2, eq(S1,S2),

laststate(K), S1<=K, S2<=K.

Furthermore we need constraints stating that there is a transition from state K to a
previous state L4, and that there is a state S, L ≤ S ≤ K, such that acc(S) holds, i.e.
S is an accepting state. To do this we compute the successor of state K, and check that
it is equal to S.
loop(L):- state(L), laststate(K), L<=K,

SuccK=K+1, eq(L,SuccK).

accept:- loop(L), state(S), laststate(K),

L<=S, S<=K, acc(S).

4Since states are all different, there will be at most one state equal to the successor of K.

14

:- not accept.

Given a domain description Π and a set of DLTL formulas ϕ1, . . . ϕn, representing
constraints or negated properties, we want to compute the temporal answer sets of the
domain description Π satisfying the temporal formulas, if any. The rules in Π can be
easily translated to ASP, similarly to [17]. In the following we provide the translation
of our running example, see [24] for details.
action(sense).

action(deliver(a)).

action(deliver(b)).

action(wait).

fluent(mail(a)).

fluent(mail(b)).

action effects:
holds(mail(E),NS):- occurs(sense,S),

fluent(mail(E)), NS=S+1,

not -holds(mail(E),NS).

-holds(mail(E),NS):- occurs(deliver(E),S),

fluent(mail(E)), NS=S+1.

persistence:
holds(F,NS):- holds(F,S), fluent(F),NS=S+1,

not -holds(F,NS).

-holds(F,NS):- -holds(F,S),fluent(F),NS=S+1,

not holds(F,NS).

preconditions:
:- occurs(deliver(E),S),-holds(mail(E),S).

:- occurs(wait,S), holds(mail(E),S).

initial state:
-holds(mail(a),0). -holds(mail(b),0).

DLTL formulas are represented as ASP terms. In the encoding, each formula
αUA(q)β is represented as until(A,q,alpha,beta), where the automaton A is de-
scribed by the predicates trans(A,Q1,Act,Q2) defining transitions, and final(A,Q)
defining final states. Predicate x(L,S) gives the value L = 0, 1 of x in state S. We
introduce the terms until(A,q,alpha,beta,Lab) and diamond(Act,alpha) for
encoding labeled until formulas and 〈a〉α formulas. The expansion of signed formulas
can be formulated by means of ASP rules corresponding to the tableau rules given in
the previous section.

Disjunction:
tt(F1,S) v tt(F2,S):- tt(or(F1,F2),S).

ff(F1,S):- ff(or(F1,F2),S).

ff(F2,S):- ff(or(F1,F2),S).

Negation:
ff(F,S):- tt(neg(F),S).

tt(F,S):- ff(neg(F),S).

Until:
tt(until(Aut,Q,F1,F2,1-N),S):- state(S),

15

tt(until(Aut,Q,F1,F2),S),x(N,S),label(N).

tt(or(F2,and(F1,

diamond(Act,until(Aut,Q1,F1,F2,Lab)))),S):-

tt(until(Aut,Q,F1,F2,Lab),S), state(S),

label(Lab),final(Aut,Q),occurs(Act,S),

choose(until(Aut,Q,F1,F2,Lab),S,Act,Q1).

tt(and(F1,

diamond(Act,until(Aut,Q1,F1,F2,Lab))),S):-

tt(until(Aut,Q,F1,F2,Lab),S), state(S),

label(Lab),not final(Aut,Q),occurs(Act,S),

choose(until(Aut,Q,F1,F2,Lab),S,Act,Q1).

ff(F2,S):- state(S),

ff(until(Aut,Q,F1,F2),S), final(Aut,Q).

ff(diamond(Act,until(Aut,Q1,F1,F2)),S):-

ff(until(Aut,Q,F1,F2),S), occurs(Act,S),

state(S), trans(Aut,Q,Act,Q1).

Diamond
tt(F,NS):- tt(diamond(Act,F),S), NS=S+1.

ff(F,NS):- ff(diamond(Act,F),S),

occurs(Act,S), NS=S+1.

Note that, to express splitting of sets of formulas, as in the case of disjunction, we
can exploit disjunction in the head of clauses, provided by some ASP languages such
as DLV, or choice constructs available in other languages. The predicate choose below
non deterministically chooses a transition Q1 among those possible for action Act in
the automaton Aut, and uses that choice in the expansion of the until formula:
choose(until(Aut,Q,F1,F2,Lab),S,Act,Q1):-

not -choose(until(Aut,Q,F1,F2,Lab),S,Act,Q1),

state(S), trans(Aut,Q,Act,Q1),action(Act).

-choose(until(Aut,Q,F1,F2,Lab),S,Act,Q1):-

choose(until(Aut,Q,F1,F2,Lab),S,Act,Q2),

state(S),action(Act),Q1!=Q2.

Inconsistency of signed formulas is formulated with the following constraints:
:- ff(true,S), state(S).

:- tt(F,S), ff(F,S), state(S).

:- tt(diamond(Act1,F),S),

tt(diamond(Act2,F),S), Act1!=Act2.

:- tt(F,S), not holds(F,S).

:- ff(F,S), not -holds(F,S).

As a difference with the tableau construction, rather than introducing the translation
of formula T

∨
a∈Σ〈a〉> in the initial state, we include the rule

tt(diamond(A,true),S):- occurs(A,S).

as we know that at least one action (and at most one) occurs in a state.
Predicates x and acc are defined as follows:

cont(S):- state(S), x(Lab,S),

tt(diamond(,until(, , ,Lab)),S).

x(Lab,SN):- x(Lab,S),SN=S+1, cont(S).

16

-acc(SN):- x(Lab,S),SN=S+1, cont(S). x(1-Lab,SN):- x(Lab,S),SN=S+1,

not cont(S).

acc(SN):- x(Lab,S),SN=S+1, not cont(S).

x(0,0). acc(0).

Finally, we must add a fact tt(tr(ϕi),0) for each DLTL formula ϕi to be satisfied
in the model, where tr(ϕi) is the ASP term representing ϕi.

It is easy to see that the (groundization of the) encoding in ASP is linear in the size
of the formula φ to be verified and in the number f of ground fluents while quadratic
in the size of k. Observe that, as the number of the subformulas of the initial formula
φ (including derived until formulas) is linear in the size of φ, the number of the ground
instances of predicates tt, ff is O(|φ| × k), the number of ground instances of pred-
icate holds is O(f × k), while the number of ground instances of predicates eq and
diff is O(k2). The encoding of the acceptance condition requires only a number of
ground propositions linear in k.

We can prove that there is a one to one correspondence between the extensions of a
domain description satisfying a given temporal formula and the answer sets of the ASP
program encoding the domain and the formula.

Proposition 3 Let Π be a domain description whose temporal answer sets are total,
let tr(Π) be the ASP encoding of Π (for a given k), and let φ be a DLTL formula. If
there is a temporal answer set of Π that satisfies the formula φ, then there exists an
answer sets of the ASP program tr(Π) ∪ tt(tr(φ), 0) (where tr(φ) is the ASP term
representing φ); and vice versa.

Proof sketch. We show that from any k-l loop computed by function BMC (introduced
in the previous section), we can construct an answer set of the ASP program tr(Π) ∪
tt(tr(φ, 0)). Vice versa, given an answer set of the ASP program tr(Π)∪ tt(tr(φ, 0)),
we can construct a k-l loop which is non-deterministically computed by the function
BMC. 2

For achieving completeness, the search for the longest simple path can be done by
removing from the above ASP encoding the rules for defining loops and the rules for
defining the Büchi acceptance condition.

The translation has been run in iClingo [16]. For the dining philosophers problems
in [28], the scalability of the approach in this paper is similar to the one for the method
(without Büchi automaton) in [24] and the one in [28], when looking for a counterex-
ample. E.g., a counterexample for DP(12) is found in 183 seconds, wrt 274 seconds for
a Clingo implementation of the method in [24] — see also Appendix C in that paper.

The search for the longest simple path is substantially more costly and practically
feasible only for problems where the action domain is sufficiently constrained. In par-
ticular, we are experimenting this approach in the verification of business processes
[12].

8 Conclusions
We have presented a bounded model checking approach for the verification of proper-
ties of temporal action theories in ASP. The temporal action theory is formulated in a

17

temporal extension of ASP, where DLTL constraints in the domain description allow
for state trajectory constraints to be captured. It provides a uniform ASP metodol-
ogy for specifying domain descriptions and for verifying them, which can be used for
several reasoning tasks, including reasoning about communication protocols [5, 21],
business process verification [12], planning with temporal constraints [2]. [23] is a
preliminary version of this paper, only dealing with LTL constraints.

Helianko and Niemelä [28] developed a compact encoding of bounded model check-
ing of LTL formulas as the problem of finding stable models of logic programs. In [24]
this encoding is extended to address the verification of action domains including DLTL
constraints. In this paper, we follow a different approach to BMC which exploits the
Büchi automaton construction to achieve completeness.

[9] first proposed the use of the Büchi automaton in BMC. As a difference, our
encoding in ASP is defined without assuming that the Büchi automaton is computed in
advance. The states of the automaton are computed on the fly, when building the path
of the product automaton. This requires the equality among states to be checked during
the construction of a (k,l)-loop, which makes the size of the translation quadratic in k.
Moreover, ASP provides a uniform nonmonotonic framework for representing direct
and indirect effects of actions, their persistence and BMC.

Apart from the presence of the temporal constraints, the action language we intro-
duced in Section 3 has strong relations with the languagesK and C. The logic program-
ming based planning language K [14, 15] is well suited for planning under incomplete
knowledge and which allows concurrent actions. The temporal action language intro-
duced in section 3 for defining the rules in Π can be regarded as a fragment of K in
which concurrent actions are not allowed. The planning system DLV K provides an
implementation of K in the disjunctive logic programming system DLV. DLV K does
not appear to support other kinds of reasoning besides planning, and, in particular, does
not allow to express and verify temporal properties.

The languages C and C+ [26, 25] also deal with actions with indirect and non-
deterministic effects and with concurrent actions, and are based on nonmonotonic cau-
sation rules syntactically similar to those ofK. Their semantics is based on a nonmono-
tonic causal logic [25]. If a causal theory is definite (the head of a rule is an atom), it
is possible to reason about it by turning the theory into a set of propositional formulas
by means of a completion process, and then invoke a satisfiability solver. In this way
it is possible to perform various kinds of reasoning such as prediction, postdiction or
planning. However the language does not exploit standard temporal logic constructs to
reason about actions.

The action language defined in this paper can be regarded as a temporal extension
of the languageA [19]. The extension allows to deal with general temporal constraints
and infinite computations. Instead, it does not deal with concurrent actions and incom-
plete knowledge.

The presence of temporal constraints in our action language is related to the work
on temporally extended goals in [11, 6], which, however, is concerned with expressing
preferences among goals and exceptions in goal specification.
ESG [10] is a second order extension of CTL* for reasoning about nonterminating

Golog programs. The paper presents a method for verification of a first order CTL
fragment of ESG, using model checking and regression based reasoning. Because of

18

first order quantification, this fragment is in general undecidable.
In [1] the verification problem for action logic programs with nonterminating be-

havior is addressed using an action formalism based on a temporalized description logic
ALCO-LTL, obtained from LTL by allowing ALCO-assertions in place of proposi-
tions. The behaviors of the program on which verification is performed are given by
a Büchi automaton. As a difference, in our approach the action domain is given as
a temporal ASP action theory. Concerning the verification language, DLTL does not
allow for first order constructs as ALCO-LTL, while it allows for the specification of
regular expressions.

References
[1] Franz Baader, Hongkai Liu, and Anees ul Mehdi. Verifying properties of infinite

sequences of description logic actions. In ECAI, pages 53–58, 2010.

[2] F. Bacchus and F. Kabanza. Planning for temporally extended goals. Annals of
Mathematics and AI, 22:5–27, 1998.

[3] F. Bacchus and F. Kabanza. Using temporal logics to express search control
knowledge for planning. Artificial Intelligence, 116(1-2):123–191, 2000.

[4] Jorge A. Baier, Fahiem Bacchus, and Sheila A. McIlraith. A heuristic search
approach to planning with temporally extended preferences. Artif. Intell., 173(5-
6):593–618, 2009.

[5] M. Baldoni, C. Baroglio, and E. Marengo. Behavior-oriented Commitment-based
Protocols. In Proc. 19th ECAI, pages 137–142, 2010.

[6] C. Baral and J. Zhao. Non-monotonic temporal logics for goal specification. In
IJCAI 2007, pages 236–242, 2007.

[7] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. Advances in Computers, 58:118–149, 2003.

[8] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT
Press, 2001.

[9] E.M. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Completeness and
complexity of bounded model checking. In VMCAI, pages 85–96, 2004.

[10] J. Claßen and G. Lakemeyer. A logic for non-terminating Golog programs. In
Proc. KR 2008, pages 589–599, 2008.

[11] U. Dal Lago, M. Pistore, and P: Traverso. Planning with a language for extended
goals. In Proc. AAAI02, 2002.

[12] D. D’Aprile, L. Giordano, V. Gliozzi, A. Martelli, G. L. Pozzato, and D. Thesei-
der Dupré. Verifying Business Process Compliance by Reasoning about Actions.
In CLIMA XI, volume 6245 of LNAI, 2010.

19

[13] Giuseppe De Giacomo, Fabio Patrizi, and Sebastian Sardiña. Generalized plan-
ning with loops under strong fairness constraints. In Proc. KR 2010, 2010.

[14] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming
approach to knowledge-state planning, II: The DLVk system. Artificial Intelli-
gence, 144(1-2):157–211, 2003.

[15] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming
approach to knowledge-state planning: Semantics and complexity. ACM Trans.
Comput. Log., 5(2):206–263, 2004.

[16] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele.
Engineering an incremental ASP solver. In Proc. ICLP08, volume 5366 of LNCS,
pages 190–205, 2008.

[17] M. Gelfond. Handbook of Knowledge Representation, chapter 7, Answer Sets.
Elsevier, 2007.

[18] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Logic Programming, Proc. of the 5th Int. Conf. and Symposium, 1988.

[19] M. Gelfond and V. Lifschitz. Representing action and change by logic programs.
Journal of logic Programming, 17:301–322, 1993.

[20] R. Gerth, D. Peled, M.Y.Vardi, and P. Wolper. Simple on-the-fly automatic ver-
ification of linear temporal logic. In Proc. 15th Work. Protocol Specification,
Testing and Verification, 1995.

[21] L. Giordano and A. Martelli. Tableau-based automata construction for dynamic
linear time temporal logic. Annals of Mathematics and AI, 46(3):289–315, 2006.

[22] L. Giordano, A. Martelli, and C. Schwind. Specifying and verifying interaction
protocols in a temporal action logic. Journal of Applied Logic (Special issue on
Logic Based Agent Verification), 5:214–234, 2007.

[23] L. Giordano, A. Martelli, and D. Theseider Dupré. Verifying properties of action
theories by bounded model checking. In NRAC 2011, 2011. Barcelona, Spain.

[24] L. Giordano, A. Martelli, and D. Theseider Dupré. Reasoning about actions with
temporal answer sets. Theory and Practice of Logic Programming, To appear.
Available at http://arxiv.org/abs/1110.3672.

[25] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, , and H. Turner. Nonmonotonic
causal theories. Artificial Intelligence, 153(1-2):49–104, 2004.

[26] E. Giunchiglia and V. Lifschitz. An action language based on causal explanation:
Preliminary report. In AAAI/IAAI, pages 623–630, 1998.

[27] Enrico Giunchiglia. Planning as satisfiability with expressive action languages:
Concurrency, constraints and nondeterminism. In Proc. KR 2000, pages 657–666,
2000.

20

[28] K. Heljanko and I. Niemelä. Bounded LTL model checking with stable models.
TPLP, 3(4-5):519–550, 2003.

[29] J.G. Henriksen and P.S. Thiagarajan. Dynamic linear time temporal logic. Annals
of Pure and Applied logic, 96(1-3):187–207, 1999.

[30] M. Pistore and P. Traverso. Planning as model checking for extended goals in
non-deterministic domains. In Proc. IJCAI 2001, pages 479–486, 2001.

[31] Shirin Sohrabi and Sheila A. McIlraith. Optimizing web service composition
while enforcing regulations. In The Semantic Web - ISWC 2009, 8th International
Semantic Web Conference, ISWC 2009, Chantilly, VA, USA, October 25-29, vol-
ume 5823 of Lecture Notes in Computer Science, pages 601–617, 2009.

21

