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2011-03 SAN models of a benchmark on dynamic reliability, D. Codetta Raiteri, December
2011.

2011-02 A new symbolic approach for network reliability analysis , M. Beccuti, S. Donatelli,
G. Franceschinis, R. Terruggia, June 2011.

2011-01 Spaced Seeds Design Using Perfect Rulers, L. Egidi, G. Manzini, June 2011.

2010-04 ARPHA: an FDIR architecture for Autonomous Spacecrafts based on Dynamic
Probabilistic Graphical Models, D. Codetta Raiteri, L. Portinale, December 2010.

2010-03 ICCBR 2010 Workshop Proceedings, C. Marling, June 2010.

2010-02 Verifying Business Process Compliance by Reasoning about Actions, D. D’Aprile,
L. Giordano, V. Gliozzi, A. Martelli, G. Pozzato, D. Theseider Dupré, May 2010.
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Abstract

The agile workflow technology deals with flexible workflow adaptation and
overriding, in case of foreseen as well as unforeseen changes and problems in
the operating business environment. One key issue that an agile workflow
system should address is Business Process (BP) monitoring, which we define
as a set of activities for organizing process instance logs and for highlighting
non-compliances and adaptations with respect to the default process schema.
Such activities can be the starting point for a set of a-posteriori log analyses.

In this paper, we describe an automated support to BP monitoring, which
exploits the retrieval step of the Case-based Reasoning (CBR) methodology.
In particular, our framework allows to retrieve traces of process execution
similar to the current one. Moreover, it supports an automatic organiza-
tion of the trace database content through the application of hierarchical
clustering techniques. Results can provide support both to end users, in
the process instance execution phase, and to process engineers, in (formal)
process quality evaluation and long term process schema redefinition.

Retrieval and clustering rely on a distance definition able to take into
account temporal information in traces.

Keywords: Business Process Monitoring, Case-Based Retrieval,
Hierarchical Clustering, Temporal Constraints

1. Introduction

Business Process (BP) Management is a set of activities aimed at defining,
executing and optimizing BP, with the objective of making the business of an
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enterprise as effective and efficient as possible, and of increasing its economic
success. Such activities are highly automated, typically by means of the
workflow technology [1, 2].

BP optimization, in particular, may ask the enterprise to be able to flexi-
bly change and adapt the predefined process schema, in response to expected
situations (e.g. new laws, reengineering efforts) as well as to unanticipated
exceptions and problems in the operating environment (e.g. emergencies) [3].

The agile workflow technology [4] is the technical solution which has been
invoked to deal with such adaptation and overriding needs. It can support
both ad-hoc changes of individual process instances [5, 6], operated by end
users, and modifications at the general process schema level, operated by
process engineers - applicable even if the default schema is already in use by
some running instances [5, 7].

In order to provide an effective and quick workflow change support, many
agile workflow systems share the idea of recalling and reusing concrete ex-
amples of changes adopted in the past. To this end, Case-based Reasoning
(CBR) [8] has been proposed as a natural methodological solution. CBR is a
reasoning paradigm that exploits the specific knowledge of previously expe-
rienced situations, called cases. It operates by retrieving and reusing similar
cases in order to solve the problem at hand (after a possible revision of the
retrieved solutions, if needed). CBR is particularly well suited for managing
exceptional situations, even when they cannot be foreseen or preplanned. As
a matter of fact, in the literature cases have often been resorted to in order
to describe exceptions, in various domains (see e.g. [9]), and many examples
of CBR-based process change reuse and workflow adaptation support have
been proposed (see e.g. [10, 11, 6, 12, 13]).

A very critical issue to be addressed in agile workflow systems is the
one of BP monitoring (see e.g. [14]), which we define as a set of activi-
ties aiming at organizing process instance logs, and at highlighting possible
non-compliances with respect to the default process schema, thus serving as
the starting point for a-posteriori log analyses. Providing BP monitoring
functionality is non trivial. As a matter of fact, deviations from a default
process schema generate instance logs, typically stored as traces of actions,
that are different from how they were supposed to be. Often no contextual
information, which could justify the reasons for deviation, is recorded in the
traces themselves. A facility able to intelligently exploit traces of process ex-
ecutions, by retrieving similar ones, and by automatically organizing them,
would then be an added value for an agile workflow tool.
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In this paper, we propose an approach to BP monitoring which adopts
the retrieval step of the CBR methodology, in order to look for cases (i.e.
traces) similar to the current one. Our framework also supports an automatic
organization of the case base content (i.e. of all available traces) through the
application of hierarchical clustering techniques.

Retrieval can provide support to end users in the process instance execu-
tion phase, especially when dealing with atypical situations. Indeed, sugges-
tions on how to modify the default process schema in the current situation
may be obtained by analyzing the most similar retrieved examples of change,
recorded as traces that share the starting sequence of actions with the current
query.

Moreover, clustering can help process engineers in quality evaluation (e.g.
as an input to a formal verification of the conformance of traces to proper
semantic constraints [15]). Additionally, since changes can also be due to a
weak or incomplete initial process schema definition, engineers can exploit
retrieval and clustering results to draw some suggestions on how to redefine
process schemas, in order to incorporate the most frequent and significant
changes once and for all.

Retrieval and clustering rely on a distance definition able to take into
account temporal information, i.e. quantitative as well as qualitative tempo-
ral constraints, in traces. Technical details of the approach are presented in
section 2.

Our approach is currently being experimented in the field of stroke man-
agement; experimental results are described in section 3.

Section 4 addresses some comparisons with related works; finally, section
5 is devoted to conclusions and future research directions.

2. A framework for supporting BP monitoring

Methodological and technical details on the realization of our framework
are described in the following. In particular, both retrieval and clustering
strongly rely on the notion of case, and on case distance definition, which
are illustrated in section 2.1. Section 2.2 then moves to the choice of specific
retrieval and clustering approaches.

2.1. Case representation and distance definition

We define a case as a trace of execution of an instance of a given process
schema. In particular, every trace is a sequence of actions, each one stored
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with its execution starting and ending times. The actions timestamps also
allow to derive information about action durations, as well as qualitative (e.g.
Allen’s before [16]) and quantitative temporal constraints (e.g. delay length)
between pairs of consecutive actions.

Case distance is then calculated on the basis of:

• atemporal information (i.e. action types);

• temporal information (i.e. action durations, qualitative and quantita-
tive constraints between pairs of consecutive actions).

Operatively, we first take into account action types, by calculating a mod-
ified edit distance which we have called trace edit distance. The minimiza-
tion of trace edit distance provides the optimal alignment of two traces.

Given the alignment, we can take into account temporal information. In
particular, we compare the durations of aligned actions by means of a metric
known as interval distance.

Moreover, we take into account the temporal constraints between two
pairs of corresponding actions on the traces being compared (e.g. actions A
and B in trace P ; the aligned actions A′ and B′ in trace Q). We quantify the
distance between their qualitative constraints (e.g. A and B overlap in trace
P ; A′ meets B′ in trace Q), by resorting to a metric known as neighbors-
graph distance. If neighbors-graph distance is 0, because the two pairs of
actions share the same qualitative constraint (e.g. A and B overlap in trace
P ; A′ and B′ also overlap in trace Q), we compare quantitative constraints
by properly applying interval distance (e.g. by calculating interval distance
between the two overlap lengths).

These three contributions (i.e. minimal trace edit distance, interval dis-
tance between durations, neighbors-graph distance or interval distance be-
tween pairs of actions) are finally combined in an additive way (a weighted
sum may be used as well).

Formal definitions of trace edit distance, interval distance and neighbors-
graph distance are provided below.

2.1.1. Trace edit distance

In order to calculate trace edit distance, we consider a set of edit opera-
tions on traces. Each edit operation performs a modification of the following
kinds: (i) substitute one action with a different one, (ii) insert a new action,
or (iii) delete an action.
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In our approach, the cost of a substitution is not always set to 1, as in
the classical edit distance. In fact, as in the weighted edit distance (see e.g.
[17]), we define it as a value ∈ [0, 1] which depends on what action appears
in a trace as a substitution of the corresponding action in the other trace.
In particular, we organize actions in a taxonomy, on the basis of domain
knowledge. The more two actions are close in the taxonomy, the less penalty
has to be introduced for substitution ([18]; see also [19, 20, 21]). In detail,
in our work substitution penalty is set to the taxonomic distance dt between
the two actions ([18], see Definition 2 below), i.e. to the normalized number
of arcs on the path between the two actions in the taxonomy.

Insertions do not always cost 1 as well. In fact, the insertion of one (or
of a few) action(s) may sometimes introduce a (minor) change in a specific
trace with respect to a reference trace, without changing the overall seman-
tics/goals of the sequence of actions being considered. Our definition allows
to capture this situation, by distinguishing between indirections (i.e. inser-
tions of one or more actions within the trace, otherwise very similar to the
reference one - see figure 1, third case), and insertions in the head/tail portion
of the trace, which becomes a superstring of the reference one. Recognizing
indirections can be very relevant for many BP monitoring applications, e.g.
for medical ones1. Our definition introduces a knowledge-based parametrized
weight ∈ [0, 1] for indirections, which depends on the action type. The final
penalty of an indirection is therefore equal to 1 multiplied by the weight.
Naturally, the more actions are introduced, the more indirection is obtained
in the path, and the more penalties are added. Deletions simply work dually
with respect to insertions.

The trace edit distance traceed(P,Q) between two traces P and Q is
finally defined as the total cost of the set of edit operations which transform
one trace into the other.

Formally, we provide the following definitions:

Definition 1: Trace edit distance. Let P and Q be two traces of actions,
and let α and β be two actions. The trace edit distance between P and Q is

1Consider, for instance, two hospitals applying the same care protocol to their patients.
Suppose that, in the first hospital, an additional action, such as blood pressure measure-
ment, is always executed at 5 PM on all patients, including the ones following the protocol
at hand. Such action will be identified as an insertion with respect to the traces collected
at the second hospital: however, certainly it does not represent a major change. Our
system manages it as an indirection.
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Figure 1: Comparison of the i-th action B in trace P with the j-th action B′ in trace Q.
If the two actions are comparable (see terminology below - first case in the figure), the
distance is not increased (or minimally increased, if the actions are not identical), and the
next actions are considered. Otherwise, in order to discover insertions (and specifically
indirections), we also compare the (i − 1)-th action A in P with the (j − 1)-th action
A′ in Q. If their are not comparable (second case in the figure), no indirection is being
generated, and dt(B,B′) is added to the distance calculation. On the other hand, if A
and A′ are comparable, we need to compare B with the (j+1)-th action in Q: if they are
comparable as well (third case in the figure), B′ has been inserted creating an indirection
on trace Q, and the cost 1 ∗ wB′ must be added to the trace edit distance calculation;
otherwise (fourth case in the figure), a cost equal to dt(B,B′) will be added.
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defined as:

traceed(P,Q) =
k∑

i=1

c(ei)

where (e1, . . . , ek) transforms P into Q, and:
– c(ei) = dt(α, β), if ei is the substitution of α (appearing in P ) with β

(appearing in Q), with dt(α, β) defined as in Definition 2 below;
– c(ei) = 1∗wα, if ei is the insertion (the deletion) of action α in P (from

Q), with wα defined as in Definition 3 below.

Definition 2: Taxonomic distance. Let α and β be two actions in the
taxonomy t, and let γ be the closest common ancestor of α and β. The
taxonomic distance dt between α and β is defined as:

dt(α, β) =
N1 +N2

N1 +N2 + 2 ∗N3

where N1 is the number of arcs in the path from α and γ in t, N2 is the
number of arcs in the path from β and γ, and N3 is the number of arcs in
the path from the taxonomy root and γ2.

Terminology. Two actions α and β are comparable if dt(α, β) ≤ τ , where
τ is a threshold to be set on the basis of domain knowledge.

Definition 3: Action weight. Let P and Q be two traces of actions and
let α be an action (appearing in Q). The action weight wα of α is defined as:

– wα ∈ [0, 1] - to be set on the basis of domain knowledge - if α generates
an indirection (see figure 1, third case) in Q with respect to P ;

– wα = 1 otherwise (e.g. if P is a substring of Q, and α is an action in
the head or tail portion of Q, not matched to any action in P ).

An example of trace edit distance calculation is illustrated in figure 1 (for
the sake of clarity, an indirection due to a single action is considered in the
figure).

The minimal value of trace edit distance allows to find the optimal align-
ment between two traces being compared.

2Note that, if dt(α, β) > th, being th ∈ [0, 1] a proper, domain-dependent threshold,
dt(α, β) can be forced to 1.
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2.1.2. Interval distance

In our approach, action duration is represented as the length of the in-
terval bounded by the starting and ending point of the action itself; starting
and ending points of two consecutive actions also allow to identify the type
of qualitative constraint between the actions themselves (e.g. Allen’s interval
relations [16] meets, before, overlaps, etc), and to quantify it (e.g. length of
the delay, extension of the overlap). Delay lengths and overlap extensions
are interval lengths as well.

In order to compare the lengths of matching intervals (e.g. the dura-
tions of two aligned actions, the extensions of the delays between two pairs
of aligned actions), we resort to the interval distance (see [14]), defined as
follows:
Definition 4: Interval distance. Let i and j be two intervals of length
leni and lenj respectively. The interval distance between i and j is defined
as:

intervald(i, j) =
|leni − lenj|
|leni|+ |lenj|

Note that, in the case of two instantaneous actions, the interval distance
between their durations is set to 0 [14].

In some situations (corresponding to insertions/deletions), it may happen
that a specific action in a trace has no matching action in the other trace.
Consider e.g. figure 1, third case: action A in trace P is aligned to action A′

in trace Q; action B in P is aligned to action C ′ in Q, and B′ has no matching
action in trace P , since it is an insertion (indirection). Such a situation is
managed by calculating interval distance just referring to matching actions.
In the example, we thus calculate interval distance between the A - B delay,
and the sum of the A′ - B′ delay, the B′ - C ′ delay, and the duration of B′

(which globally corresponds to the A′ - C ′ delay in trace Q).

2.1.3. Neighbors-graph distance

When comparing two pairs of corresponding actions (e.g. A andB in trace
P ; the aligned actions A′ and B′ in trace Q), it may happen that they don’t
share the same qualitative constraint (e.g. A and B overlap in trace P ; A′ is
before B′ in trace Q). In this case, we cannot resort to interval distance to
compare the inter-action constraints, because they have a different semantic
meaning. On the other end, we can quantify the difference between the two
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Figure 2: The A-neighbors graph proposed by Freska [22].

qualitative constraints by resorting to the A-neighbors graph proposed by
Freska [22] (see figure 2).

On such a graph, we can define the neighbors-graph distance, as follows:
Definition 5: Neighbors-graph distance. Let i and j be two Allen’s
temporal relations [16], and let G be the A-neighbors graph in figure 2. The
neighbors-graph distance between i and j is defined as:

ngraphd(i, j) =
path(i, j, G)

max(path(., ., G))

where path(i, j, G) measures the shortest path on G between i and j, and
max(path(., ., G)) normalizes the distance considering the longest path on G.

2.2. Retrieval and clustering techniques

Given the distance definition illustrated above, our framework exploits it
to implement classical methodologies for retrieval and clustering.

In particular, trace retrieval is performed by a K-Nearest Neighbor tech-
nique, consisting in identifying the closest k cases (i.e. traces) with respect
to an input one, according to the distance definition we have introduced.
Clearly, the value of k is a critical parameter, which has to be (experimen-
tally) set according to the specific application domain needs.
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The clustering facility we have implemented resorts to a hierarchical clus-
tering technique, known as Unweighted Pair Group Method with Arithmetic
Mean (UPGMA) [23]. UPGMA is typically applied in bioinformatics, where
sequences of symbols (similar to our traces of actions) have to be compared.
The algorithm operates in a bottom-up fashion. At each step, the nearest
two clusters are combined into a higher-level cluster. The distance between
any two clusters A and B is taken to be the average of all distances between
pairs of objects “x” in A and “y” in B, that is, the mean distance between
elements of each cluster. After the creation of a new cluster, UPGMA prop-
erly updates a pairwise distance matrix it maintains. UPGMA also allows
to build the phylogenetic tree of the obtained clusters, which can be resorted
to for user-friendly visualization purposes, very useful in the BP monitoring
domain.

3. Experimental results

Since some experiments on our retrieval facility were already presented
in [24], in this paper we will concentrate on clustering.

Our experiments were conducted working on real patient traces taken
from the stroke management domain. Actually, Health-Care Organizations
(HCO) place strong emphasis on efficiency and effectiveness, to control their
health-care performance and expenditures: they thus need to evaluate exist-
ing infrastructures and the services provided. To perform this evaluation, it
is crucial to explore the data collected by the HCO systems, organizing them
in form of process logs (i.e. traces of execution), which can be seen as the
history of what happened in the HCO itself. Traces can be helpful to gain
a clear picture of the actual care process, through the use of BP monitoring
techniques [25], like the ones introduced in this paper. These considerations
motivated the choice of a medical application.

In particular, in our experiments we aimed at verifying whether the dis-
tance function described in this paper was able to overcome the performances
of classical edit distance, and of previous versions of our distance definition
we introduced in [24] and [26] respectively. Namely, in [24] we extended clas-
sical edit distance to trace edit distance. In [26] we also considered action
durations and delays between actions, but we were unable to treat qualita-
tive constraints other than before and meets, and we were unable to make
comparisons between different qualitative constraints.
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The hypothesis we wished to test was the following: including domain
knowledge (through trace edit distance) improves clustering performances;
including temporal information provides a further improvement (moreover,
obviously, the use of neighbors-graph distance allows to deal with all kinds of
traces, while only strictly sequential traces could be treated by the distance
definition in [26]).

Clustering performances were evaluated by studying the capability of
clearly isolating anomalous situations, and of refining cluster composition
(to this end, we resorted to homogeneity [27], see section 3.2).

The database on which we made our experiments was composed of 100
traces collected at one of the largest stroke management units in the Lom-
bardia region, Italy.

Details of the application domain and experimental results are provided
below.

3.1. Stroke management

A stroke is the rapidly developing loss of brain function(s) due to distur-
bance in the blood supply to the brain. This can be due to ischemia (lack
of glucose and oxygen supply) caused by thrombosis or embolism, or to a
hemorrhage. As a result, the affected area of the brain is unable to func-
tion, leading to inability to move one or more limbs on one side of the body,
inability to understand or formulate speech, or inability to see one side of
the visual field. A stroke is a medical emergency and can cause permanent
neurological damage, complications, and death. It is the leading cause of
adult disability in the United States and Europe. It is the number two cause
of death worldwide and may soon become the leading one.

The best medical practice [28] requires that stroke patients are treated
according to a management protocol, which is basically composed by four
steps:

1. emergency management;

2. hospitalization;

3. dismissal;

4. follow up.

Each step is in turn composed by a sequence of actions, which must respect
some criteria, although inter-patients and inter-hospitals variations are ad-
missible.
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In particular, in step 1, symptoms onset must be recognized, the patient
must be taken to the hospital, and a brain computer-assisted tomography
(CAT) must be executed. In step 2, diagnosis has to be finalized, by means
of a neurological evaluation and of several additional diagnostic investiga-
tions, meant to confirm the stroke hypothesis. Diagnostic procedures may
vary, but most patients undergo electrocardiogram and chest X-ray. At the
same time, administrative patient admission procedures must be fulfilled.
Finally, a proper therapy has to be initiated: up to 90% patients are treated
with antiaggregants. Rehabilitation also must be started as soon as possible
during hospitalization.

In our experiments, we used traces collected on real patients, detailing
the actions of steps 1 and 2.

3.2. Comparing different distance measures

We compared the clustering results obtained by adopting four different
distance measures, namely:

• (1) edit distance;

• (2) trace edit distance;

• (3) a distance measure able to deal with atemporal information, through
trace edit distance, as well as with action durations and delays between
actions, through interval distance (see [26]). Such a distance is unable
to treat qualitative constraints other than before and meets, and is
unable to compare different qualitative constraints;

• (4) the distance measure introduced in section 2.1.

We made our experiments working on two databases:

• DB1, in which some traces were properly modified, in order to remove
total or partial overlaps between actions; this change was obtained by
reducing the duration of some actions;

• DB2, containing the original, real-world traces collected in Lombardia.

Both databases contained 100 traces.
Figure 3 shows part of the cluster hierarchies we obtained by applying

distances (1) and (2) respectively, on DB1 (identical results were obtained
on DB2, since temporal information is ignored by these distances).
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We can observe that the structure of the hierarchies and the content of
the resulting clusters is very different in the two situations.

In particular, the hierarchy built using classical edit distance (distance
(1) - see figure 3, upper part) is very unbalanced: every node is split into two
children, one of which usually corresponds to a very big cluster (containing
most of the traces of its parent node), while the other contains just a few
traces.

On the other hand, the hierarchy built resorting to trace edit distance
(distance (2) - see figure 3, lower part) appears to be much more balanced,
and every node is normally split into two clusters of more comparable dimen-
sions. This is probably due to the strong penalty assigned by distance (1)
to all substitutions; such a penalty often isolates some traces as anomalous
ones (see also the discussion on trace no. 53 below).

We also studied the cluster contents, in order to verify cluster homogene-
ity. Homogeneity is a widely used measure of the quality of the output of a
clustering method (see e.g. [27, 29, 30, 31]). A classical definition of cluster
homogeneity is the following [27]:

H(C) =

∑
x,y∈C(1− dist(x, y))(|C|

2

)
where |C| is the number of elements in cluster C, and 1−dist(x, y) is the

similarity between any two elements x and y in C. Note that, in the case of
singleton clusters, homogeneity is set to 1 (see e.g. [31]).

The average of the homogeneity H of the individual clusters can then be
calculated on (some of) the clusters obtained through the method at hand,
in order to assess its quality. Average cluster homogeneity allows to compare
the output of different clustering techniques on the same dataset (or the
output obtained by differently setting up the same clustering technique, as
we did by running UPGMA with different distance measures).

An appropriate definition of dist(x, y) is problem dependent [27]. In our
domain, we exploited the normalized edit distance between pairs of traces.
The choice of the edit distance allowed us to compare our more complex
distance measures with a very classical metric, used as a common reference.

We calculated the homogeneity of the clusters obtained by using distances
(1) and (2). We then computed the average of cluster homogeneity values
level by level in the two hierarchies.
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Finally, we calculated an additional indicator, namely the average number
of traces inside a cluster not exceeding a normalized edit distance of 0.5.

Results are reported in the first two columns of table 1.
Specifically, clusters obtained by using distance (1) had an average ho-

mogeneity of 0.47 at level 3 of the hierarchy, while by using distance (2) they
reached an average homogeneity of 0.50. A similar trend was obtained if
working at other intermediate levels of the hierarchy (not reported due to
space constraints).

Additionally, with distance (2), the percentage of pairs of traces with
a distance < 0.5 was 37% on average at level 3 of the hierarchy, while it
dropped to 28% using distance (1).

Figure 4, on the other hand, shows part of the cluster hierarchies we
obtained by applying distances (3) and (4) respectively, on DB1.

As it can be observed in the figure, the hierarchies obtained by apply-
ing distance (3) and (4) are very similar (in topology and number of traces
contained in the clusters) to the one obtained by applying distance (2). How-
ever, they lead to higher homogeneity values. At level 3, homogeneity grows
to 0.60 when applying distance (3), and to 0.62 when applying distance (4).
Once again, a similar trend was obtained if working at other intermediate
levels of the hierarchy. The percentage of pairs of traces with a distance <
0.5 also grows progressively (see table 1)).

Finally, figure 5 reports part of the hierarchy of clusters obtained by
applying distance (4) to the original traces (DB2), which included all kinds
of qualitative temporal constraints. Distance (3) cannot be applied to this
database.

With distance (4) homogeneity reaches the average value of 0.62 at level 3
on DB2 as well, with an average percentage of pairs of traces with a distance
< 0.5 of 52% (see table 1), thus leading to the best overall experimental
results.

It is also interesting to comment on specific traces, early isolated in (some
of) the cluster hierarchies. In particular, all distances, except distance (2),
are able to quickly isolate trace no. 53. Such a trace contains some quite
unusual actions as substitutions of more common ones (specifically antico-
agulant drug provision instead of antiaggregant drug provision). Distance
(1) penalizes this difference, and early isolates the trace; on the other hand,
distance (2) doesn’t, because the two actions are very close in the stroke
domain taxonomy (indeed, they both describe therapeutic actions with very
similar pharmacological effects). The behavior of distance (2) is thus more
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Figure 3: Part of the cluster hierarchies obtained by applying distance (1) (top) and
distance (2) (bottom) on DB1. Every node represents a cluster and reports the number
of traces in the cluster itself, and their average normalized edit distance (in brackets).
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Figure 4: Part of the cluster hierarchies obtained by applying distance (3) (top) and
distance (4) (bottom) on DB1.
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correct, but neither distance (1) nor distance (2) take into account the role
of time. And indeed time is relevant in this example, because trace no. 53
is anomalous in its temporal component too (its delays between consecutive
actions are often longer than the ones of the other database traces). Actually,
distance (3) and distance (4), which introduce the temporal contribution, are
able to identify such a trace as an anomalous one, and to isolate it quite early
in their hierarchies (even if they resort to trace edit distance, i.e. to distance
(2), for the atemporal component calculation). Moving to more complete dis-
tance definitions thus allows to correctly take into account all the different
features (i.e. action types and temporal information) recorded in traces.

Another interesting example, which allows to comment on the difference
between distance (3) and distance (4), is represented by trace no. 20. Dis-
tance (3) isolates it early in the hierarchy, while distance (4) doesn’t. The
reason can be found in the types of qualitative constraints recorded in trace
no. 20, which includes many meeting consecutive actions. On the other hand,
in the majority of the other database traces, one action is typically before
the next one. Distance (3) does not differentiate between the two types of
constraints, it only applies interval distance to the delays between consec-
utive actions (delays that are typically equal to zero in trace no. 20, and
longer in other traces). The different contributions obtained on delays allow
to identify trace no. 20 as an anomalous one. On the other hand, trace
no. 20 does not appear as a peculiar one according to distance (4). In fact,
the two qualitative constraints meets and before are now compared according
to neighbors-graph distance. Neighbors-graph distance is low, because the
two relations are close in the graph; this contribution, therefore, does not
penalize trace no. 20 as much as interval distance did.

In conclusion, such experiments show that the use of domain knowledge
and of temporal information in the distance definition allows to obtain more
homogeneous and compact clusters (i.e. able to aggregate closer examples)
in the intermediate levels of the hierarchy, which is a desirable results - and
a meaningful outcome, in a domain like the one of emergency medicine, in
which the role of time is obviously central. Moreover, anomalous traces are
correctly isolated.

In particular, the best homogeneity values are obtained by resorting to
distance (4), which also allows to properly compare different qualitative tem-
poral constraints. Of course, distance (4) is also the only one which can be
applied to every database, including the one in which (partially) overlapping
traces are recorded.
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Figure 5: Part of the cluster hierarchy obtained by applying distance (4) on DB2.

Table 1: Average homogeneity (row 1) and average number of pairs of traces with a
distance < 0.5 (row 2). All values are referred to clusters at level 3 in the hierarchies

Distance (1) (2) (3) (4) (4-DB2)

Homogeneity 0.47 0.50 0.60 0.62 0.62

Pairs<0.5 28% 37% 43% 49% 52%

4. Related works

Examples of CBR tools in BP management, and specifically in process
change support, are described in the literature (e.g. [10, 11, 6, 12, 13]); a few
works exploiting clustering techniques are reported as well (e.g. [32, 33, 34])
- even though they mainly deal with process mining [35].

Since the main methodological contribution of our work consists in the
definition of a proper distance function, in our comparison with the existing
literature we will focus on this issue, and on the papers providing interesting
solutions in relation to it.

A number of distance measure definitions for agile workflows exist. How-
ever, these definitions typically require further information in addition to
the workflow structure, such as semantic annotations [36], or conversational
knowledge [4, 6]. Such approaches are usually context-aware, that is, the
contextual information is considered as a part of the similarity assessment
of workflows. Unfortunately, any contextual information, as well as con-
versational knowledge, is not always available, especially when instances of
process execution are recorded as traces of actions. Starting from this obser-
vation, a rather simple graph edit distance measure [37] has been proposed
and adapted for similarity assessment in workflow change reuse [12].
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Our approach somehow moves from the same graph edit distance defini-
tion. However, with respect to the work in [12], by focusing just on traces
of execution we do not need to deal with control flow elements (such as al-
ternatives and iterations). As a matter of fact, traces are always linear, i.e.
they just admit the sequence control flow element. From this point of view,
our approach is thus simpler than the one in [12].

On the other hand, when focusing on linear traces our approach is more
general and flexible. As a matter of fact, we resort to taxonomic knowledge
for comparing pairs of actions, so that two different actions do not always
have a zero similarity. Additionally, we are able to recognize an indirect
path from two actions, and to properly weight the degree of indirection in
a parametrized way. Moreover, we have introduced a distance definition
which also allows to take into account qualitative and quantitative temporal
constraints between actions in process logs. Such a capability is not provided
at all in [12].

On the other hand, a treatment of temporal information in trace distance
calculation has been proposed in [14]. Somehow similarly to our approach,
the distance defined in that work combines a contribution related to action
similarity, and a contribution related to delays between actions. As regards
the temporal component, in particular, it relies on an interval definition
which is very close to ours. Differently from what we do, however, the work
in [14] always starts the comparison from the last two action in the traces:
no search for the optimal action alignment is performed. Moreover, it stops
the calculation if the distance between two actions/intervals exceeds a given
threshold, while we always calculate the overall distance: as a matter of fact,
even high distance values are resorted to by the clustering algorithm. The
distance function in [14] does not exploit action duration, and does not rely
on taxonomical information about actions, as we do. Finally, it does not
deal with different types of qualitative temporal constraints, since it cannot
manage (partially) overlapping actions. We thus believe that our approach
is potentially more flexible in practice.

Another contribution [38] addresses the problem of defining a similar-
ity measure able to treat temporal information, and is specifically designed
for clinical workflow traces. Interestingly, the authors consider qualitative
temporal constraints between matched pairs of actions, resorting to the A-
neighbors graph proposed by Freska [22], as we do. However, in [38] the
alignment problem is strongly simplified, as they only match actions with
the same name. Our approach thus extends their work.
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It is also worth citing the approach in [34], which adapts edit distance to
trace clustering (as we do), allowing to automatically derive the cost of edit
operations. In such a work, however, temporal information is not considered.
Moreover, clustering is mainly resorted to for improving process mining (by
clustering instances in advance to process mining, the authors succeed in
obtaining less “spaghetti like” process mining results). Process monitoring
is not addressed.

5. Conclusions and future work

In this work, we have described a case retrieval approach to BP mon-
itoring. In particular, we have defined a proper case structure and a new
distance measure, that are exploited to retrieve traces of execution similar
to the current one. Our system also allows to automatically cluster the trace
database content by resorting to hierarchical clustering techniques.

We believe that such functionalities can help end users who need to adapt
a process instance to some unforeseen situation, by retrieving changes applied
in the past to other instances of the same process. Moreover, process engi-
neers can take advantage of the retrieval and clustering results for identifying
the most frequent changes to the same process schema. Such changes can
be an index of non conformance of process executions with respect to proper
constraints, but can also be a suggestion for properly revising an incorrect
or obsolete process schema definition.

The experimental results presented in this paper testify the advantages
of adopting a similarity metric which explicitly takes into account tempo-
ral information, and show the potential usefulness of the tool in the stroke
management domain, in which we are conducting our first evaluations. Addi-
tional tests will be performed in the future; applications to different domains
will be considered as well.

By now we made tests on small database sizes. However, calculation of
similarity (for retrieval and clustering) can become computationally expen-
sive when moving to very large databases. This problem has already been
highlighted in process instance databases [39]. To this end, in the future we
plan to investigate techniques to avoid exhaustive search of similar traces,
focusing on particularly promising regions of the search space and neglecting
the others. Specifically, we plan to resort to pivoting-based techniques, such
as the AESA algorithm (see e.g. [40]).
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Remarkably, our work is also being incorporated as a set of plug-ins in the
ProM tool [41], which is an open source framework for process mining. As it
is well known, process mining [35] describes a family of a-posteriori analysis
techniques exploiting the information recorded in traces of actions. This
process information can be used to discover the underlying process schema,
when no a priori model is available. Once the process schema is obtained, our
facilities can be used to support an analysis of deviations from the process
schema itself3. Clustering could also support the process mining task (see
e.g. [34]).

Additionally, our tool could also support the retrieval of similar traces in
systems for recommendations on next process steps (see e.g. [42]). These
tools are very interesting, because they offer an on-line support for process
execution, and are based on process logs - instead of process schemas, which
can be difficult to acquire/mine.

Furthermore, our approach could be properly adapted in order to cluster
change logs, as suggested in [43]. Change logs are quite different from execu-
tion traces, as they record only changes with respect to the default process
schema (and not all the flow). On the other hand, contextual information
is sometimes available. This adaptation would thus probably rise some is-
sues, however it seems to us an interesting research direction, which we will
consider in our future work.
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