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2010-01 A Case-based Approach to Business Process Monitoring, G. Leonardi, S. Montani,
March 2010.

2009-09 Supporting Human Interaction and Human Resources Coordination in Distributed
Clinical Guidelines, A. Bottrighi, G. Molino, S. Montani, P. Terenziani, M. Torchio,
December 2009.

2009-08 Simulating the communication of commands and signals in a distribution grid, D.
Codetta Raiteri, R. Nai, December 2009.

2009-07 A temporal relational data model for proposals and evaluations of updates, L.
Anselma, A. Bottrighi, S. Montani, P. Terenziani, September 2009.



An Intelligent Swarm of Markovian Agents

Andrea Bobbio1, Dario Bruneo3, Davide Cerotti2,
Marco Gribaudo2, Marco Scarpa3
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Abstract
We define a Markovian Agent Model (MAM) as an analytical model

formed by a spatial collection of interacting Markovian Agents (MAs),
whose properties and behavior can be evaluated by numericaltechniques.
MAMs have been introduced with the aim of providing a flexibleand
scalable framework for distributed systems of interactingobjects, where
both the local properties and the interactions may depend onthe geo-
graphical position. MAMs can be proposed to model biological inspired
systems since are suited to cope with the four common principles that
govern swarm intelligence: positive feedback, negative feedback, ran-
domness, multiple interactions. In the present work, we report some re-
sults of a MAM model for WSN routing protocol based on swarm in-
telligence, and some preliminary results in utilizing MAs for very basic
ACO benchmarks.

1 Swarm Intelligence: a modeling perspective

Swarm intelligent (SI) algorithms are variously inspired from the way
in which colonies of biological organisms self organize to produce a
wide diversity of functions [1, 2]. Individuals of the colony have a limited
knowledge of the overall behavior of the system and follow a small set of
rules that may be influenced by the interaction with other individuals or
by modifications produced in the environment. The collective behavior
of large groups of relatively simple individuals, interacting only locally
with few neighboring elements, produces global patterns. Even if many
approaches have been proposed that differentiate in many respects, four
basic common principles have been isolated that govern SI.



⋄ Positive feedback
⋄ Negative feedback
⋄ Randomness
⋄ Multiple interactions
The same four principles govern also a class of algorithms inspired

by the expansion dynamics of slime molds in the search for food [3, 4],
that have been utilized as the base for the generation of routing protocols
in Wireless Sensor Networks (WSN).

Through the adoption of the above four principles, it is possible to
design distributed, self-organizing, and fault tolerant algorithms able to
self-adapt to the environmental changes, that present the following main
properties [1]:i) Single individuals are assumed to be simple with low
computational intelligence and communication capabilities; ii) individ-
uals communicate indirectly, through modification of the environment
(this property is known asstigmergy [2]); iii) The range of the interaction
may be very short, nevertheless a robust global behavior emerges from
the interaction of the nodes;iv) The global behavior adapts to topological
and environmental changes.

The usual way to study such systems is through simulation, due to
the large number of involved individuals that lead to the well-known
state explosion problem. Analytical techniques are preferable if, starting
from the peculiarities of SI systems, allow to realize effective and scal-
able models. Along this line, new stochastic entities, called Markovian
Agents (MAs) [5, 6], have been introduced with the aim of providing a
flexible, powerful, and scalable technique for modeling complex systems
of distributed interacting objects, for which feasible analytical and nu-
merical solution algorithms can be implemented. Each object has its own
local behavior that can be modified by the mutual interdependencies with
the other objects. MAs are scattered over a geographical area and retain
their spatial position so that the local behavior and the mutual interdepen-
dencies may be related to their geographical positions and other features
like the transmittance characteristics of the interposed medium. MAs
are modeled by a discrete-state continuous-time finite CTMCwhose in-
finitesimal generator is influenced by the interaction with other MAs.
The interaction among agents is represented by amessage passing model
combined with aperception function. When resident in a state or during
a transition, an MA is allowed to send messages that are perceived by the
other MAs, according to a spatial dependentperception function, modi-



fying their behavior. Messages may model real physical messages (as in
WSN) or simply the mutual influences of an MA over the other ones.

The flexibility of the MA representation, the spatial dependency, and
the mutual interaction through message passing and perception func-
tion, make MA models suited to cope with various biological inspired
mechanisms governed by the four aforementioned principles. In fact, the
Markovian Agent Model (MAM), whose constituent elements are the
MAs, was specifically studied to cope with the following needs [6]:

i Provide analytical models that can be solved by numerical techniques,
thus avoiding the need of long and expensive simulation runs;

ii Provide a flexible and scalable modeling framework for distributed
systems of interacting objects;

iii Provide a framework in which local properties can be coupledwith
global properties;

iv Local and global properties and interactions may depend on the posi-
tion of the objects in the space (space-sensitive models);

v The solution algorithm self-adapts to variations in the system topol-
ogy and in the interaction mechanisms.

Interactive Markovian Agents have been first introduced in [7, 5] for
single class MAs and then extended to Multi-class Multi-message Marko-
vian Agent Model in successive works [8–10]. In [9, 11, 12] MAs have
been applied to routing algorithms in WSN, adopting SI principles [13].

The present work describes the structure of MAMs and the numer-
ical solution algorithms in Section 2. Then, applications derived from
biological models are presented: a swarm intelligent algorithm for rout-
ing protocols in WSN (Section 3) and a simple Ant Colony Optimization
(ACO) example (Section 4).

2 Markovian Agents Models

The structure of a single MA is represented in Figure 1. States i, j, . . . , k
are the states of the CTMC representing the MA. The transitions among
the states are of two possible types that are drawn differently:

- Solid lines (like the transition fromi to j or the self-loops ini or
in j) indicate the fixed component of the infinitesimal generatorand



represent the local or autonomous behavior of the object that is inde-
pendent of the interaction with the other MAs (like, for instance, the
time to failure distribution, or the reaction to an externalstimulus).
Note that we include in the representation also self-loop transitions
that require a particular notation since are not visible in the infinites-
imal generator of the CTMC [14].

- Dashed lines (like the transition fromi to k or the transitions into
i or j) represent the transitions induced by the interaction withthe
other MAs. The way in which the rates of the induced transitions are
computed is explained in the following section.
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Fig. 1. Schematic structure of a Markovian Agent.

During a local transition (or a self-loop) an MA can emit a message
of any type with an assigned probability, as represented by the dotted ar-
rows in Figure 1 emerging from the solid transitions. The pair < gij, m >
denotes both the message generation probability and the message type.
Messages generated by an MA may be perceived by other MAs witha
given probability, according to a suitable perception function, and the in-
teraction mechanism between emitted messages and perceived messages
generates the induced transitions (dashed lines). The pair< m, aik >
denotes both the type of the perceived message and the corresponding
acceptance probability.

An MAM is a collection of interacting MAs defined over a geograph-
ical spaceV. Given a positionv insideV, we defineρ(v) the density of
MAs in v. According to the definition of the densityρ(v), we can classify
a MAM with the following taxonomy:



- An MAM is static if ρ(v) does not depend on time, anddynamic if it
does depend on time;

- An MAM is discrete if the geographical area on which the MAs are
deployed is discretized andρ(v) is a discrete function of the space or
it is continuous if ρ(v) is a continuous function of the space.

Further, MAs may belong to a single class or to different classes with
different local behaviors and interaction capabilities, and messages may
belong to different types where each type induces a different effect on the
interaction mechanism. The perception function describeshow a mes-
sage of a given type emitted by an MA of a given class in a given position
in the space is perceived by an MA of a given class in a different position.

Mathematical formulation

A Multiple Agent Class, Multiple Message Type MAM is defined by the
tuple [12]:

MAM = {C,M,V,U ,R}, (1)

where:
C = {1 . . . C} is the set of agent classes. We denote withMAc an

agent of classc ∈ C.
M = {1 . . .M} is the set of message types. Each agent (indepen-

dently of its class) can send or receive messages of typem ∈ M.
V is the finite space over which Markovian Agents are spread.
U = {u1(·) . . . uM(·)} is a set ofM perception functions (one for

each message type).
R = {ρ1(·) . . . ρC(·)} is a set ofC agent density functions (one for

each agent class).
Each agentMAc of classc is characterized by a state space withnc

states, and it is defined by the tuple:

MAc = {Qc(v),Λc(v),Gc(v, m),Ac(v, m),πc
0(v)}. (2)

where:
Qc(v) is the local component of the infinitesimal generator;
Λc(v) is the vector of the self-jump transition rates;
Gc(v, m) is the matrix containing the probabilities of generating a

message of typem;



Ac(v, m) is the matrix containing the probabilities of accepting a
message of typem;

πc
0(v) is the initial probability vector.

Note that even if the structure of the CTMC associated to eachMA c

of classc is the same for all the objects, the values of the parameters may
depend on positionv and, therefore, may vary from MAc to MAc.

An MAM can be analyzed solving a set of coupled differential equa-
tions. Let us callρci(t,v) the density of agents of classc, in statei, located
in positionv at timet. In the following, we will focus on static MAMs
thus assuming that the total density of agents in positionv remains con-
stant over the time; we have that:

nc
∑

i=1

ρci(t,v) = ρc(v) , ∀v, ∀t ≥ 0. (3)

We collect the state densities into a vectorρc(t,v) = [ρci(t,v)] and
we are interested in computing the transient evolution ofρc(t,v).

From the above definitions, we can compute the total rateβc
j (v, m)

at which messages of typem are generated by an agent of classc in state
j in positionv:

βc
j (v, m) = λc

j(v) g
c
jj(v, m) +

∑

k 6=j

qcjk(v) g
c
jk(v, m). (4)

where the first term in the r.h.s is the contribution of the messages of
type m emitted during a self-loop fromj and the second term is the
contribution of messages of typem emitted during a transition fromj to
anyk ( 6= j).

The interdependencies among MAcs are ruled by a set of perception
functions whose general form is:

um(c,v, i, c′,v′, j, ) (5)

The perception functionum(.) in (5) represents how an MA of classc
in positionv in statei perceives the messages of typem emitted by an
MA of class c′ in positionv′ in statej. The functional form ofum(.)
identifies the perception mechanisms and must be specified for any given
application since it determines how an MA is influenced by themessages
emitted by the other MAs. The transition rates of the inducedtransitions
are primarily determined by the structure of the perceptionfunction.



A pictorial and intuitive representation of how the perception function
um(c,v, i, c′,v′, j, ) acts, is given in Figure 2. The MA in the top right
portion of the figure in positionv′ broadcasts a message of typem from
statej that propagates in the geographical area until reaches the MA in
the bottom left portion of the figure in positionv and in statei. Upon ac-
ceptance of the message according to the acceptance probability aik(v, m),
a new induced transition from statei to statek (represented by a dashed
line) is generated in the model.
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Fig. 2. Message passing mechanism ruled by a perception function.

With the above definitions we are now in the position to compute the
components of the infinitesimal generator of an MA that depend on the
interaction with the other MAs and that constitute the original and inno-
vative part of the approach.

We defineγc
ii(t,v, m) the total rate at which messages of typem

coming from the whole volumeV are perceived by an MA in statei in
locationv.

γ
c
ii(t,v,m) =

∫
V

C∑
c′=1

n
c
′∑

j=1

u
m(c,v, i, c′,v′

, j, )βc′

j (m)ρc
′

j (t,v′)dv′
. (6)

γc
ii(t,v, m) in Equation (6) is computed by taking into account the total

rate of messages of typem emitted by all the MAs in statej and in a given
positionv′ (the termβc

j (v, m)) times the density of MAs inv′ (the term
ρj(t,v

′)) times the perception function (the termum(c,v, i, c′,v′, j, ))



summed over all the possible statesj and classc′ of each MA and inte-
grated over the whole spaceV. From an MA in positionv and in statei
an induced transition to statek (drawn in dashed line) is generated with
rateγc

ii(t,v, m) aik(v, m) whereaik(v, m) is the appropriate entry of the
acceptance matrixA(v, m).

We collect the rates (6) in a diagonal matrixΓc(t,v, m) = diag(γc
ii(t,v, m)).

This matrix can be used to computeKc(t,v), the infinitesimal generator
of a classc agent at positionv at timet:

Kc(t,v) = Qc +
∑

m

Γc(t,v, m) [Ac(m)− I] . (7)

The first term in the r.h.s. is the local transition rate matrix and the second
term contains the rates induced by the interactions.

The evolution of the entire model can be studied by solving∀v, c the
following differential equations:

ρc(0,v) = ρc(v)πc
0 (8)

dρc(t,v)

dt
= ρc(t,v)Kc(t,v). (9)

From the density of agents in each state, we can compute the probability
of finding a classc agent at timet in positionv in statei as:

πc
i (t,v) =

ρci(t,v)

ρc(v)
. (10)

We collect all the terms in a vectorπc(t,v) = [πc
i (t,v)]. Note that

the definition of Equation (10) together with Equation (3) ensures that
∑

i π
c
i (t,v) = 1, ∀t, ∀v.

Note that each equation in (9) has the dimensionnc of the CTMC of
a single MA of classc. In this way, a problem defined over the product
state space of all the MAs is decomposed into several subproblems, one
for each MA, having decoupled the interaction by means of Equation
(6). Equations (9) provide the basic time-dependent measures to evaluate
more complex performance indices associated to the system.Equations
(9) are discretized both in time and space and are solved by resorting to
standard numerical techniques for differential equations.



3 A consolidated example: routing in WSN

In this section, we present our first attempt to model swarm intelligence
inspired mechanisms through the MAM formalism. This application de-
scribes a MAM model to the analysis of a swarm intelligence routing
protocol in WSN and was first proposed in [9] and then enrichedin
[12]. In the present work, we show new experiments to illustrate the
self-adaptability of the MAM model to the changing of environmental
conditions.

WSN are large networks of tiny sensor nodes that are usually ran-
domly distributed over a geographical region. The network topology may
vary in time in an unpredictable manner due to many differentcauses. For
example, in order to reduce power consumption, battery operated sensors
undergo cycles of sleeping - active periods; additionally,sensors may be
located in hostile environments increasing their likelihood of failure; fur-
thermore, data might also be collected from different sources at different
times and directed to different sinks. For this reason, multi-hop routing
algorithms used to route messages from a sensor node to a sinkshould
be rapidly adaptable to the changing topology. Swarm intelligence has
been successfully used to face these problems thanks to its ability in con-
verging to a single global behavior starting from the interaction of many
simple local agents.

3.1 A swarm intelligence based routing

In [15] a new routing algorithm, inspired to the biological process of
pheromone emission, has been proposed. The routing table ineach node
stores the “pheromone level” owned by each neighbor, coded as a natural
integer quantity [15]; when a data packet has to be sent it is forwarded to
the neighbor with the highest pheromone level. This approach correctly
works only if a sequence of increasing values of pheromone levels to-
wards the sinks exists; in other words, the sinks must have the maximum
pheromone level in the WSN and a decreasing pheromone gradient must
be established around the sinks covering all the net.

To build the pheromone gradient, the initial setting of the WSN is as
follow: the sinks are set to a fixed maximum pheromone level, whereas
the sensor nodes’ pheromone levels are set to0. When the WSN is oper-
ating, each node periodically sends a signaling packet withits pheromone
level and updates its value based on the level of its neighbors.



More specifically, the algorithm for establishing the pheromone gra-
dient is based on two types of nodes in the WSN, calledsinks andsensors
respectively, and the pheromone is assumed discretized into P different
levels, ranging from0 toP −1. In this way, routing paths toward the sink
are established through the exchange of pheromone packets containing
the pheromone levelp (0 ≤ p ≤ P − 1) of each node.

Sink nodes, once activated, set their internal pheromone level to the
highest valuep = P − 1. Then, they, at fixed time interval, broadcast
a pheromone message to their neighbors with the valuep. We assume
T1 is the time interval incurring between two consecutive sending of
pheromone message.

Instead, the pheromone level of a sensor node is initially set to 0 and
then it is periodically updated according to two distinct actions:Excita-
tion action (the positive feedback) andEvaporation action (the negative
feedback).

Excitation action: sensor nodes periodically broadcast to the neigh-
bors a pheromone message containing their internal pheromone levelp.
Like the sink node, sensor nodes perform the sending at regular time in-
terval T1. When a sensor node receives a pheromone levelpn sent by
a neighbor it comparespn with its own levelp and updates the latter if
pn > p. The new value is computed as a function of the current and
the received pheromone levelupdate(p, pn). In this context, we use the
mean value as the new updating value, thus the function is assumed to be
update(p, pn) = round((p+ pn)/2).

Evaporation action: it is triggered at regular time intervalT2 and it
simply decreases the current value ofp by one unit assuring it maintains
a value greater or equal to0.

We note that, despite all nodes perform their excitation action with
same fixed time intervalT1, no synchronization activity is required among
the nodes; all of them act asynchronously in accordance withthe prin-
ciples of biological systems where each entity acts autonomously with
respect to the others.

The excitation-evaporation process, like in biological systems, as-
sures the stability of the system and the adaptability to possible changes
in the environment or in some nodes. In fact any change in the network
condition is captured by an update of the pheromone level of the involved
nodes that modifies the pheromone gradient automatically driving the
routing decisions toward the new optimal solution. In this way, the net-



work can self-organize its topology and adapt to environmental changes.
Moreover, when link failures occur, the network reorganization task is
accomplished by those nodes near the broken links. This results in a ro-
bust and self-organized architecture.

The major drawback of this algorithm is the difficulty in appropri-
ately setting the parameterT1 andT2; in fact, as shown in [15, 12], the
stability of the system and thequality of the produced pheromone gradi-
ent is strictly dependent on the parameters ratio. WhenT1 decreases and
T2 is fixed, pheromone messages are exchanged more rapidly among the
nodes and their pheromone level tends to the maximum level because the
sink node always sends the same maximum level thus, without an appro-
priate balancing action, the pheromone level saturates allthe nodes of the
WSN. At the opposite, let us supposeT1 is fixed andT2 decreases; in
this case the pheromone level in each sensor node decreases more quickly
than its updating according to the value of the neighbors, asa result all
the levels will be close to zero. From this behavior, we note that: 1) both
timers are necessary to ensure that the algorithm could properly work,
and 2) a smart setting of both timers is necessary in order to have the best
gradient shape all over the network.

TheMAM model we are going to describe in the next section helps
in easily setting the best parameter values.

3.2 The MAM model

TheMAM model used to study the gradient formation is based on two
agent classes: the classsink node denoted by a superscripts and the class
sensor node denoted by a superscriptn. The pheromone intensity is dis-
cretized it intoP integer levels (ranging from0 to P − 1) in accordance
with the algorithm described earlier. The message exchangeis modeled
by usingM different message types. As we will explain later, since each
message is used to send a pheromone level, we setM = P .

Geographical space The geographical spaceV where theN agents are
located is modeled as anh × nw rectangular grid, and each cell has a
square shape with sideds. Sensors can only be located in the center of
each cell and we allow at most one node per cell: i.e., some cell might
be empty, andN ≤ nh × nw. Moreover, sink nodes are very few with
respect to the number of sensor nodes.



Agent’s structure and behavior Irrespective of the MA class consid-
ered, we model the pheromone level of a node with a state and this choice
determines two different MA structures.

P-1

P-1

λ

(a) Agent class = sink.

0 1 2 P-1

0 1 2 P-1

M(0,P-1)

µ µ µ
λ λ λ λ

M(0,2)

M(0,1)

M(1,P-1)

M(1,2)

M(2,P-1)

(b) Agent class = sensor.

Fig. 3. Markovian agent models.

The sink class (Fig. 3(a)) is very simple and is characterized by a
single state labeledP − 1 with a self-loop of rateλ = 1

T1
. In fact the

sink has always the same maximum pheromone level, and emits asingle
message of typeP − 1 with rateλ.

Instead, thesensor class (Fig. 3(b)) hasP states identifying the range
of all the possible pheromone levels. Each state is labeled with the pheromone
intensityi (i = 0, . . . , P − 1) in the corresponding node and has a self-
loop of rateλ = 1

T1
that represents the firing of timer at regular intervals

equal toT1. This event causes the sending of a message (see Section 3.2).
The evaporation phenomenon is modeled by the solid arcs (local transi-
tions) connecting statei with statei−1 (0 < i ≤ P−1). The evaporation
rate is set toµ = 1

T2
; in such a way we represent the firing of timerT2.



Message types The types of messages in the model correspond to the
different levels of pheromone a node can store, thus we defineM =
{0, 1, . . . , P − 1}. Any self loop transition in statei emits a message
of the corresponding typei at a constant rateλ, either in sink and in
sensor nodes. The sink message is always of typeP − 1, representing
the maximum pheromone intensity, whereas the messages emitted by a
sensor node corresponds to the state where it actually is.

When a message of typem is emitted neighboring nodes are able to
receive it changing their state accordingly. This behavioris implemented
through the dashed arcs (whose labels are defined through eq.(11)) that
model the transitions induced by the reception of a message.In particular,
when a node in statei receives a message of typem, it immediately jumps
to statej if m ∈ M(i, j), with:

M(i, j) = {m ∈ [0 · · ·P − 1] : round((m+ i)/2) = j}
∀i, j ∈ [0 · · ·P − 1] : j > i.

(11)

In other words, an MA in statei jumps to the statej that represents the
pheromone level equal to the mean between the current leveli and the
levelm encoded in the perceived message.

Perception function Messages of any type sent by a node are char-
acterized by the same transmission rangetr that defines the radius of
the area in which an MA can perceive a message produced by another
MA. This property is reflected in the perception functionum(·) that,
∀m ∈ [1 · · ·M ], is defined as:

um(v, c, i,v′, c′, i′) =

{

0 dist(v,v′) > tr
1 dist(v,v′) ≤ tr,

(12)

where dist(v,v′) represents the distance between two nodes in position
v andv′.

As can be observed, the perception function in eq. (12) is defined ir-
respective of the message type, because in this kind of application the
reception of a message of any typei depends only on the distance be-
tween the emitting and the perceiving node. The transmission rangetr
depends on the properties of the sensor and it influences the numberη of
neighbors perceiving the message. In the numerical experimentation, we
considerds ≤ tr4 <

√
2 ds corresponding toη = 4.



Generation and acceptance probabilities In this application, messages
are only generated during self-loop transitions with probability 1, so that
∀i, j, gcii(m) = 1 andgcij(m) = 0, (i 6= j). Similarly, we assume ei-
theracij(m) = 0 or acij(m) = 1, that is incoming messages are always
accepted or always ignored.

3.3 Numerical results

In order to analyze the behavior of the WSN model, the main measure of
interest is the evolution ofπn

i (t,v) i.e., the distribution of the pheromone
intensity of a sensor node over the entire areaV as a function of the time.
The value ofπn

i (t,v) can be computed from (10) and allows us to obtain
several performance indices like the average pheromone intensityφ(t,v)
at timet for each cellv ∈ V:

φ(t,v) =
P−1
∑

i=0

i · πn
i (t,v). (13)

The distribution of the pheromone intensity over the entireareaV de-
pends both on the pheromone emission rateλ and on the pheromone
evaporation rateµ; furthermore, the excitation-evaporation process de-
pends on the transmission rangetr that determines the number of neigh-
boring cellsη perceived by an MA in a given position. To take into ac-
count this physical mechanism, we define the following quantity:

r =
λ · η
µ

, (14)

that regulates the balance between the pheromone emission and evap-
oration in the SI routing algorithm. For a complete discussion about the
performance indices that can be derived and analyzed using the described
MAM, refer to [12].

The numerical results have been obtained with the followingexperi-
mental setting. The geographical space is a square grid of sizesnh = nw

= 31, whereN = 961 sensors are uniformly distributed with a spatial
density equal to 1 (one sensor per cell). Further, we setλ = 4.0, P = 20,
andη = 4. The first experiment aims at investigating the formation ofthe
pheromone gradient around the sink as a function of the modelparam-
eters. To this end, a single sink node is placed in the center of the area
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(c) r=2.4.

Fig. 4. Distribution of the pheromone intensity varyingr.

and the pheromone intensity distribution is evaluated as a function of the
parameterr, by varyingµ beingλ andη fixed.

Figure 4 shows the distribution of the pheromone intensityφ(t,v)
measured in the stable state for three different values ofr. If the value
of r is small (r = 1.2) or high (r = 2.4), the quality of the gradient is
poor. This is due to the prevalence of one of the two feedbacks: negative
(with r = 1.2 evaporation prevails) or positive ( withr = 2.4 excitation
prevails and all sensors saturate). On the contrary, intermediate values
(r = 1.8) generate well-formed pheromone gradients able to cover the
whole area, thanks to the correct balance between such two feedbacks.
Then, an opportune evaluation of the value ofr has to be carried out
in order to generate a pheromone gradient that fits with the topological
specification of the WSN under exam.

In order to understand the dynamic behavior of the SI algorithm, we
carried out a transient analysis able to highlight the different phases of
the gradient construction process when the position of the sink changes
in time. In particular, in the following experiment (see Figure 5) we an-
alyzed how the algorithm self adapts to topological modifications by re-
calculating the pheromone gradient when two different sinks are present
in the network and they are alternately activated. Figures 5(a)-5(b) show
how the pheromone signal is spread on the spaceV until the stable state
is reached. At this point (t = 17.5sec), we deactivated the old sink and
we activated a new one in a different position (Figure 5(c)).Figures 5(d)-
5(e) describe the evolution of the gradient modification. Itis possible to
observe that, thanks to the properties of the SI algorithm, the WSN is
able to rapidly discover the new sink and to change the pheromone gra-
dient by forgetting the old information until a new stable state is reached
(Figure 5(f)).
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(f) t = 29sec

Fig. 5. Distribution of the pheromone intensity with respect tot when two sinks are alternately
activated. The change is applied at timet = 17.5sec.

Finally, in order to test the scalability of the MAM in more complex
scenarios, we have assumed a rectangular grid withnh = nw = 100
hence withN = 100 × 100 = 10, 000 sensors, and we have randomly
scattered 50 sinks in the grid. The grid is represented in Figure 6, where
the sinks are drawn as black spots. Since each sensor is represented by
an MA with P = 20 states (see Figure 3(b)), the product state space of
the overall system hasN = 2010,000 states!

Fig. 6. The100 × 100 grid with 10, 000 cells and 50 randomly scattered sinks



The steady pheromone intensity distribution for the geographical space
represented in Figure 6 is reported in Figure 7. Through thisexperiment,
we can assess that the pheromone gradient is reached also when no sym-
metries are present in the network and that the proposed model is able to
capture the behavior of the protocol in generating a correctpheromone
gradient also in presence of different maximums. In fact, using the same
protocol configurations found for a simple scenario, the SI algorithm is
able to create a well formed pheromone gradient also in a completely
different situation, making such routing technique suitable in non pre-
dictable scenarios. Such scenario also demonstrates the scalability of the
proposed analytical technique that can be easily adopted inthe analysis
of very large networks.
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Fig. 7. Distribution of the pheromone intensity when the network iscomposed by a grid of 10,000
sensor nodes with 50 sinks.

4 Ant Colony Optimization

The aim of this section is to show how MAMs can be adopted to rep-
resent one of the more classical swarm intelligence problemknown as
Ant Colony Optimization (ACO) [2], that was inspired by the foraging
behavior of ant colonies which, during food search, exhibitthe ability to



solve simple shortest path problem. To this end, in the present work, we
simply show how to build a MAM that solve the famousDouble Bridge
Experiment which was first proposed by Deneubourg and colleagues in
the early 90’s [16,?], and that has been proposed as an entry benchmark
for ACO models.

In the experiment a nest of Argentine ants is connected to a food
source using a double bridge as shown in Figure 8. Two scenarios are
considered: in the first one the bridges have equal length (Figure 8 (a)), in
the second one the lengths of the bridges are different (Figure 8 (b)). The
collective behavior can be explained by the way in which antscommuni-
cate indirectly among them (stigmergy). During the journey from the nest
to the food source and vice versa, ants release on the ground achemical
substance calledpheromone, moreover ants can perceive pheromone and
they choose with greater probability a path marked by a stronger concen-
tration of pheromone. As a results, ants releasing pheromone on a branch,
increase the probability that other ants choose it. This phenomenon is the
realization of the positive feedback process described in Section 1 and
it is the reason for the convergence of ants to the same branchin the
equal length bridge case. When lengths are different, the ants choosing
the shorter path reach the food source quicker then those choosing the
longer path. Therefore, the pheromone trail grows faster onthe shorter
bridge and more ants choose it to reach food. As a result, eventually all
ants converge to follow the shortest path.

Nest Food

(a) Equal branches.

Nest Food

(b) Different branches.

Fig. 8. Experiment scenarios. Modified from Goss et al [17].

4.1 The MAM model

We represent the double bridge experiment through a Multiple Agent
Class and Multiple Message Type MAM. We model ants by messages,
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Fig. 9. Graph used to model the experiment scenarios.

and locations that ants traverse by MAs. Three different MA classes are
introduced: the classNest denoted by superscriptn, the classTerrain de-
noted by superscriptt, and the classFood denoted by superscriptf . Two
types of messages are used: ants walking from the nest to the food source
correspond to messages of typefw (forward), whereas ants coming
back to the nest correspond to messages of typebw (backward).

Geographical space Agents (either nest, terrain, or food source) are
deployed on a discrete geographical spaceV represented as an undirected
graphG = (V,E), where the elements in the setV are the vertices and
the elements in the setE are the edges of the graph. In Figures 9(a)
and 9(b) we show the locations of agents for the equal and the different
length bridge scenarios, respectively. The squares are thevertices of the
graph and the labels inside them indicate the class of the agent residing
on the vertex. In this model we assume that only a single agentresides on
each vertex. Message passing from a node to another is depicted as little
arrows labeled by the message type. As shown in Figure 9, the different
lengths of the branches are represented by a different number of hops
needed by a message to reach the food source starting from thenest.
Figure 9(c) represents a three branches bridge with branches of different
length.

Agent’s structure and behavior The structure of the three MA classes
is described in the following.

MA Nest - The nest is represented by a single MA of classn, shown
in Figure 10(a). The nest MAn is composed by a single state that emits



messages of typefw at a constant rateλ, modeling ants leaving the nest
in search for food.

MA Terrain - An MA in class t (Figure 10(c)) represents a por-
tion of terrain on which an ant walks and encodes in its state space the
concentration of the pheromone trail on that portion of the ground. We
assume that the intensity of the pheromone trail is discretized inP levels
numbered 0, 1, ...P − 1.

With reference to Figure 10(c), the meaning of the states is the fol-
lowing:

t0 - denotes no pheromone on the ground and no ant walking on it;
ti - denotes a concentration of pheromone of leveli and no ant on the

ground;
tif - denotes an ant of forward type residing on the terrain whilethe

pheromone concentration is at leveli;
tib - denotes an ant of backward type residing on the terrain while the

pheromone concentration is at leveli.

The behavior of the MAt agent at the reception of the messages is the
following:

fw - forward ant; a message of typefw perceived by an MAt in states
ti, induces a transition to statet(i+1)f meaning that the arrival of a for-
ward ant increases the pheromone concentration of one level(positive
feedback);

bw - backward ant; a message of typebw perceived by an MAt in states
ti, induces a transition to statet(i+1)b meaning that the arrival of a
backward ant increases the pheromone concentration of one level
(positive feedback);

Ants sojourn on a single terrain portion for a mean time of1/η sec.,
then they leaves towards another destination. The local transitions from
statestif to statesti and the generation of messagefw model such behav-
ior for forward ants. An analogous behavior is represented for backward
ants by local transitions from statestib to statesti. The local transitions
at constant rateµ from statesti to statesti−1 indicate the decreasing of
one unit of the concentration of pheromone due to evaporation (negative
feedback).



MA Food source - An MA of classf represents the food source
(Figure 10(b)). The reception of a message of typefw in statef0 indi-
cates that a forward ant has reached the food source. After a mean time
of 1/η sec., such an ant leaves the food and starts the way back to the
nest becoming a backward ant (emission of message of typebw).

We assume that no more than one ant at the time can reside on a
portion of terrain or in the food source.

n0

λ

mfw

(a) MAn:
Agent of
class nest.

f0 f1

η

mfw

mbw

(b) MAf : Agent of
class food.
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(c) MAt: Agent of class terrain.

Fig. 10. Markovian agent models for the ACO experiment.

Perception function The perception function rules the interactions among
agents and, in this particular example, defines the probability that a mes-
sage (ant) follows a specific path both on the forward and backward di-
rection. The definition of the perception function takes inspiration on the
stochastic model proposed in [16,?] to describe the dynamic of the ant
colony. In such a model the probability of choosing the shorter branch is
given by:

pis(τ) =
(k + ϕis(τ))

α

(k + ϕis(τ))α + (k + ϕil(τ))α
(15)

wherepis(τ) (pil(τ)) is the probability of choosing the shorter (longer)
branch,ϕis(τ) (ϕil(τ)) is the total amount of pheromone on the shorter



(longer) branch at a timeτ . The parameterk is the degree of attraction
attributed to an unmarked branch. It is needed to provide a non-null prob-
ability of choosing a path not yet marked by pheromone. The exponent
α provides a non-linear behavior.

In our MA model the perception functionum(·) is defined,∀m ∈
{fw, bw}, as:

um(v, c, i,v′, c′, j, τ) =
(k + E[πc(τ,v)])α

∑

(c′′,v′′)∈Nextm(v′,c′)(k + E[πc′′(τ,v′′)])α

(16)
wherek andα have the same meaning of Equation (15),E[πc(τ,v)]
gives the mean value of the concentration of pheromone at a timeτ in po-
sitionv on the ground, and corresponds toϕ(τ). The functionNextm(v′, c′)
gives the set of pairs{(c′′,v′′)} such that the agent of classc′′ in posi-
tion v′′ perceives a message of typem emitted by the agent of classc′ in
positionv′. Figure 11(a) helps to interpret Equation (16). The multiple
box stands for all the agents receiving a messagem sent by the agent of
classc′ in positionv′. The value ofum(v, c, i,v′, c′, j, τ) is proportional
to the mean pheromone concentration of the agent in classc at position
v with respect to the sum of the mean concentrations of all the agents
that receive messagem by the agent in classc′ and positionv′. For in-
stance, we consider the scenario depicted in Figure 11(b), where a class
n agent in positionb0 sends messages of typefw to two other classt
agents at positionb1 andb2, and we computeufw(b2, t, i,b0, n, j, τ).
In such case, the evaluation of functionNextfw(b0, n) gives the set of
pair{(t,b1), (t,b2)} and the value of the function is:

ufw(b2, t, i,b0, n, j, τ) =
(k + E[πt(τ,b2)])

α

(k + E[πt(τ,b1)])α + (k + E[πt(τ,b2)])α

(17)
As a final remark, we highlight thatum(·) does not depend on the

state variablesi and j of the sender and receiver agents even if these
variables appear in the definition ofum(·) (Equation 16). Instead,um(·)
depends on the whole probability distributionπc(τ,v) needed to com-
pute the mean valueE[πc(τ,v)].

Generation and acceptance probabilities As in Section 3, also in this
ACO-MAM model we allow onlygci,j(m) = 0 or gci,j(m) = 1 and
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Fig. 11. Perception function description.

aci,j(m) = 0 or aci,j(m) = 1 ∀c,m. In particular, for the terrain agent
MA t, messages of typefw are sent with probabilitygtif,i(fw) = 1, and
are accepted with probabilityati,(i+1)f (fw) = 1 only in ati state inducing
a transition to at(i+1)f state. An analogous behavior is followed during
emission and reception of messages of typebw.

4.2 Numerical results for ACO Double Bridge Experiment

We have performed several experiments on the ACO model. In particular
we studythe mean value of the concentration of pheromone at a timeτ
in positionv for a classc agent,E[πc(τ,v)], defined as:

E[πc(τ,v)] =
∑

s∈Sc

πs(v, c)I(s) (18)

whereSc denotes the state space of a classc agent,I(s) represents the
pheromone level in states, and it corresponds to:

I(s) = i ∀ s ∈ {ti} ∪ {tif} ∪ {tib} (19)

This value is used in Equation (16) to computeum(·) which, as previ-
ously said, rules the ant’s probability to follow a specific path, therefore
such performance index provides useful insight of the modeled ant’s be-
havior.



We consider the three scenarios depicted in Figure 9, the labelsbi

denote the positions where we compute the mean value of the concentra-
tion of pheromone. In all the experiments the intensity of the pheromone
trail is discretized inP = 8 levels.
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Fig. 12. Mean pheromone concentration withλ = 1.0, µ = 1 andη = 1 for the equal branches
experiment.

In Figure 12, the mean pheromone concentrationE[πc(τ,bi)] over
the time for the equal branches experiment is plotted. As it can be seen,
both mean pheromone concentrations have exactly the same evolution
proving that ants do not prefer one of the routes.
The case with two different branches is considered in Figure13. Speed
of the ants (i.e., parameterη) is considered in the column (the left col-
umn corresponds toη = 1.0 and the right column toη = 10), while
the evaporation of the pheromone is taken into account on therows (re-
spectively withµ = 0, µ = 0.5, andµ = 2). When no evaporation is
considered (Figure 13(a) and 13(b)), both paths are equallychosen due
to the finite amount of the maximum pheromone level considered in this
work. However the shorter path reaches its maximum level earlier than
the longer route. In all the other cases, it can be seen that the longer path
is abandoned after a while in favor of the shorter one. The evaporation
of the pheromone and the speed of the ants both play a role in the time
required to drop the longer path. Increasing either of the two, reduces the



time to discover the shorter route.
Finally, Figure 14 considers a case with three branches of different

length and different evaporation levels (η = 1 andη = 10). Also in this
case the model is able to predict that ants will choose the shortest route.
It also shows that longer paths are dropped in an order proportional to
their length: the longest route is dropped first, and the intermediate route
is discarded second. Also in this case, the evaporation rates determine the
speed at which paths are chosen and discarded.

5 Conclusions

In this work, we have presented how the Markovian Agents performance
evaluation formalism can be used to study swarm intelligentalgorithms.
Although the formalism was developed to study largely distributed sys-
tems like sensor networks, or physical propagation phenomena like fire
or earthquakes, it has been proven to be very efficient in capturing the
main features of swarm intelligence.

Beside the two cases presented in this chapter, routing in WSN and
Ant Colony Optimization, the formalism is capable of considering other
cases like Slime Mold models.

Future research lines will try to emphasize the relations between Marko-
vian Agents and Swarm Intelligence, trying to integrate both approaches:
using Markovian Agents to formally study new swarm intelligent algo-
rithms, and use swarm intelligent techniques to study complex Marko-
vian Agents models in order to find optimal operation points and best
connection strategies.
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(b) Mean pheromone concentrationλ =
1.0, µ = 0 andη = 10.
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(c) Mean pheromone concentrationλ = 1.0,
µ = 0.5 andη = 1.
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(d) Mean pheromone concentrationλ =
1.0, µ = 0.5 andη = 10.
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(e) Mean pheromone concentrationλ = 1.0,
µ = 2 andη = 1.
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(f) Mean pheromone concentrationλ = 1.0,
µ = 2 andη = 10.

Fig. 13. Mean pheromone concentration for the case with two different branches.
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Fig. 14. Mean pheromone concentration for the case with three different branches.


