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Abstract

We define a Markovian Agent Model (MAM) as an analytical model
formed by a spatial collection of interacting Markovian Age (MAS),
whose properties and behavior can be evaluated by numesataliques.
MAMs have been introduced with the aim of providing a flexibled
scalable framework for distributed systems of interactbgects, where
both the local properties and the interactions may depenthemeo-
graphical position. MAMs can be proposed to model biologspired
systems since are suited to cope with the four common piexifnat
govern swarm intelligence: positive feedback, negatieaack, ran-
domness, multiple interactions. In the present work, wemegome re-
sults of a MAM model for WSN routing protocol based on swarm in
telligence, and some preliminary results in utilizing MAs fery basic
ACO benchmarks.

1 Swarm Intelligence: a modeling per spective

Swarm intelligent (SI) algorithms are variously inspiregdrh the way
in which colonies of biological organisms self organize toduce a
wide diversity of functions [1, 2]. Individuals of the colphave a limited
knowledge of the overall behavior of the system and follomaléset of
rules that may be influenced by the interaction with otheividdals or
by modifications produced in the environment. The collectiehavior
of large groups of relatively simple individuals, interiagt only locally
with few neighboring elements, produces global pattermenkf many
approaches have been proposed that differentiate in mapgets, four
basic common principles have been isolated that govern SI.



© Positive feedback

< Negative feedback

<~ Randomness

© Multiple interactions

The same four principles govern also a class of algorithregiiad
by the expansion dynamics of slime molds in the search fadl {8p4],
that have been utilized as the base for the generation ahgpptotocols
in Wireless Sensor Networks (WSN).

Through the adoption of the above four principles, it is flassto
design distributed, self-organizing, and fault toleragbéathms able to
self-adapt to the environmental changes, that presenbtiogving main
properties [1]:i) Single individuals are assumed to be simple with low
computational intelligence and communication capabsitii) individ-
uals communicate indirectly, through modification of theimmment
(this property is known astigmergy [2]); iii) The range of the interaction
may be very short, nevertheless a robust global behaviorgamdrom
the interaction of the nodes) The global behavior adapts to topological
and environmental changes.

The usual way to study such systems is through simulatioa,tdu
the large number of involved individuals that lead to the lskabwn
state explosion problem. Analytical techniques are padflerif, starting
from the peculiarities of Sl systems, allow to realize dffezand scal-
able models. Along this line, new stochastic entities,echMarkovian
Agents (MASs) [5, 6], have been introduced with the aim of pdowy a
flexible, powerful, and scalable technique for modeling ptar systems
of distributed interacting objects, for which feasible lgtiaal and nu-
merical solution algorithms can be implemented. Each ¢bjag its own
local behavior that can be modified by the mutual interdepeaigs with
the other objects. MAs are scattered over a geographicalaare retain
their spatial position so that the local behavior and theualihterdepen-
dencies may be related to their geographical positions #ret features
like the transmittance characteristics of the interposediom. MAs
are modeled by a discrete-state continuous-time finite CWiGse in-
finitesimal generator is influenced by the interaction withes MAs.
The interaction among agents is representedipgssage passing model
combined with goerception function. When resident in a state or during
a transition, an MA is allowed to send messages that areigeccey the
other MAs, according to a spatial dependpetception function, modi-



fying their behavior. Messages may model real physical agess(as in
WSN) or simply the mutual influences of an MA over the othersone

The flexibility of the MA representation, the spatial depencly, and
the mutual interaction through message passing and p&nefinc-
tion, make MA models suited to cope with various biologicapired
mechanisms governed by the four aforementioned principidact, the
Markovian Agent Model (MAM), whose constituent elemente #ne
MAs, was specifically studied to cope with the following ne¢@l:

i Provide analytical models that can be solved by numericaltegues,
thus avoiding the need of long and expensive simulation;runs

ii Provide a flexible and scalable modeling framework for thsted
systems of interacting objects;

iii Provide a framework in which local properties can be couptéti
global properties;

iv Local and global properties and interactions may depenti®padsi-
tion of the objects in the space (space-sensitive models);

v The solution algorithm self-adapts to variations in theteystopol-
ogy and in the interaction mechanisms.

Interactive Markovian Agents have been first introducedirb] for
single class MAs and then extended to Multi-class Multi-sag® Marko-
vian Agent Model in successive works [8-10]. In [9, 11, 12] MAave
been applied to routing algorithms in WSN, adopting S| gples [13].

The present work describes the structure of MAMs and the mume
ical solution algorithms in Section 2. Then, applicatiorsived from
biological models are presented: a swarm intelligent algar for rout-
ing protocols in WSN (Section 3) and a simple Ant Colony Ojtgtion
(ACO) example (Section 4).

2 Markovian Agents Models

The structure of a single MA is represented in Figure 1. Statg . . ., &
are the states of the CTMC representing the MA. The tramsitaanong
the states are of two possible types that are drawn diffigrent

- Solid lines (like the transition from to j or the self-loops i or
in j) indicate the fixed component of the infinitesimal generatoi



represent the local or autonomous behavior of the objettghade-
pendent of the interaction with the other MAs (like, for iaste, the
time to failure distribution, or the reaction to an extersaimulus).
Note that we include in the representation also self-loapditions
that require a particular notation since are not visibldhminfinites-
imal generator of the CTMC [14].

- Dashed lines (like the transition fromnto & or the transitions into
1 or j) represent the transitions induced by the interaction with
other MAs. The way in which the rates of the induced transgiare
computed is explained in the following section.

Fig. 1. Schematic structure of a Markovian Agent.

During a local transition (or a self-loop) an MA can emit a Seage
of any type with an assigned probability, as representethéylotted ar-
rows in Figure 1 emerging from the solid transitions. The pai;;, m >
denotes both the message generation probability and theagesype.
Messages generated by an MA may be perceived by other MAsawith
given probability, according to a suitable perception tiorg and the in-
teraction mechanism between emitted messages and peroeessages
generates the induced transitions (dashed lines). The<pair, a;, >
denotes both the type of the perceived message and the mamckisg
acceptance probability.

An MAM is a collection of interacting MAs defined over a geogina
ical space). Given a positionv inside), we definep(v) the density of
MAs in v. According to the definition of the densityv), we can classify
a MAM with the following taxonomy:



- An MAM is dtaticif p(v) does not depend on time, adghamic if it
does depend on time;

- An MAM is discrete if the geographical area on which the MAs are
deployed is discretized andv) is a discrete function of the space or
it is continuousif p(v) is a continuous function of the space.

Further, MAs may belong to a single class or to differentsdaswith
different local behaviors and interaction capabilitias] anessages may
belong to different types where each type induces a diffetéect on the
interaction mechanism. The perception function descritmg a mes-
sage of a given type emitted by an MA of a given class in a givesitjpn
in the space is perceived by an MA of a given class in a diffigvesition.

M athematical formulation

A Multiple Agent Class, Multiple Message Type MAM is defined by the
tuple [12]:
MAM = {C, M, V,U, R}, (1)

where:

C = {1...C} is the set of agent classes. We denote wifhi“ an
agent of class € C.

M = {1...M} is the set of message types. Each agent (indepen-
dently of its class) can send or receive messages ofitygeM.

)V is the finite space over which Markovian Agents are spread.

U = {u'()...u()} is a set ofM perception functions (one for
each message type).

R = {p*(-)...p%()} is a set ofC agent density functions (one for
each agent class).

Each ageni\/ A¢ of classc is characterized by a state space with
states, and it is defined by the tuple:

MA® ={Q°(v), A%(v), G*(v,m), A(v,m), 7((v)}.  (2)

where:

Q¢(v) is the local component of the infinitesimal generator;

Ac(v) is the vector of the self-jump transition rates;

G¢(v,m) is the matrix containing the probabilities of generating a
message of type;



Ac(v,m) is the matrix containing the probabilities of accepting a
message of type:;

7§ (v) is the initial probability vector.

Note that even if the structure of the CTMC associated to &&&h
of classc is the same for all the objects, the values of the parametays m
depend on position and, therefore, may vary from MAo MA°®.

An M AM can be analyzed solving a set of coupled differential equa-
tions. Let us calp$(t, v) the density of agents of classin state;, located
in positionv at timet. In the following, we will focus on static MAMs
thus assuming that the total density of agents in positioemains con-
stant over the time; we have that:

> Pt V) =p(v), YV VE> 0. (3)
=1

We collect the state densities into a vecé(t,v) = [p5(¢, v)] and
we are interested in computing the transient evolutiop“¢f, v).

From the above definitions, we can compute the total pate, m)
at which messages of type are generated by an agent of clags state
j in positionv:

Bi(v,m) = A(v) g5, (v.m) + Y a5u(V) g5i(v,m). (4)
k#j

where the first term in the r.h.s is the contribution of the sages of
type m emitted during a self-loop from and the second term is the
contribution of messages of type emitted during a transition fromto
anyk (# j).

The interdependencies among K&fare ruled by a set of perception
functions whose general form is:

um(C’ V7i7 Cl? Vl?.j?) (5)

The perception functiom™(.) in (5) represents how an MA of clags
in positionv in statei perceives the messages of typeemitted by an
MA of class¢ in positionv’ in statej. The functional form ofu™(.)
identifies the perception mechanisms and must be specifi@thjyagiven
application since it determines how an MA is influenced byrttessages
emitted by the other MAs. The transition rates of the inducadsitions
are primarily determined by the structure of the percepfimction.



A pictorial and intuitive representation of how the peréaptfunction
u™(e,v,i,c,v', j,) acts, is given in Figure 2. The MA in the top right
portion of the figure in position’ broadcasts a message of typdrom
statej that propagates in the geographical area until reaches theaM
the bottom left portion of the figure in positianand in staté. Upon ac-
ceptance of the message according to the acceptance gitybapiv, m),

a new induced transition from stat¢o statek (represented by a dashed
line) is generated in the model.

Fig. 2. Message passing mechanism ruled by a perception function.

With the above definitions we are now in the position to corapthe
components of the infinitesimal generator of an MA that delpem the
interaction with the other MAs and that constitute the arajiand inno-
vative part of the approach.

We definev (¢, v, m) the total rate at which messages of type
coming from the whole volum& are perceived by an MA in staten
locationv.

C N

vii(t,v,m) = / Z Z u™ (e, v,i,¢,v', ], )ﬂ;/(m)pj (t,v')dv'. (6)
V=1 j=1

v (t, v,m) in Equation (6) is computed by taking into account the total

rate of messages of type emitted by all the MAs in statgand in a given

positionv’ (the termj$(v, m)) times the density of MAs iv’ (the term

pi(t,v'")) times the perception function (the terat(c,v,:, ¢, v, j,))



summed over all the possible staeand class’ of each MA and inte-
grated over the whole spade From an MA in positiorv and in state
an induced transition to state(drawn in dashed line) is generated with
rates (¢, v, m) a;x(v, m) wherea,, (v, m) is the appropriate entry of the
acceptance matriA (v, m).

We collect the rates (6) in a diagonal matfix¢, v, m) = diag(~v5 (¢, v, m)).
This matrix can be used to comp& (¢, v), the infinitesimal generator
of a class: agent at positiow at timet:

Ke(t,v) = Q°+ ) _T°(t,v,m)[A%(m) —1T]. 7)

The firstterm in the r.h.s. is the local transition rate nxeand the second
term contains the rates induced by the interactions.

The evolution of the entire model can be studied by solvinge the
following differential equations:

6°(0,v) = o () ®)
W — P (E VK (V). 9)

From the density of agents in each state, we can compute dhalpiity
of finding a class agent at time in positionv in state; as:

o(t
m(tv) = V), (10
pe(v)
We collect all the terms in a vectar®(t,v) = [n{(¢,v)]. Note that

the definition of Equation (10) together with Equation (3p@res that
>t v) = 1,Vt, Vv.

Note that each equation in (9) has the dimensioof the CTMC of
a single MA of class:. In this way, a problem defined over the product
state space of all the MAs is decomposed into several sulgmshone
for each MA, having decoupled the interaction by means ofafiqn
(6). Equations (9) provide the basic time-dependent meagarevaluate
more complex performance indices associated to the sy&quations
(9) are discretized both in time and space and are solveddoytiieg to
standard numerical techniques for differential equations



3 A consolidated example: routing in WSN

In this section, we present our first attempt to model swarelligence
inspired mechanisms through the MAM formalism. This apgilan de-
scribes a MAM model to the analysis of a swarm intelligenagting
protocol in WSN and was first proposed in [9] and then enricimed
[12]. In the present work, we show new experiments to illaistrthe
self-adaptability of the MAM model to the changing of envirmental
conditions.

WSN are large networks of tiny sensor nodes that are usuatly r
domly distributed over a geographical region. The netwopotogy may
vary in time in an unpredictable manner due to many diffecanses. For
example, in order to reduce power consumption, batteryabpeisensors
undergo cycles of sleeping - active periods; additionabysors may be
located in hostile environments increasing their liketidof failure; fur-
thermore, data might also be collected from different sesiat different
times and directed to different sinks. For this reason, iaimalp routing
algorithms used to route messages from a sensor node to atsinkd
be rapidly adaptable to the changing topology. Swarm igtatice has
been successfully used to face these problems thanks talitg a0 con-
verging to a single global behavior starting from the intéicn of many
simple local agents.

3.1 A swarm intelligence based routing

In [15] a new routing algorithm, inspired to the biologicabpess of
pheromone emission, has been proposed. The routing tabé&emnode
stores the pheromone level” owned by each neighbor, coded as a natural
integer quantity [15]; when a data packet has to be sentarigdrded to
the neighbor with the highest pheromone level. This apgraacrectly
works only if a sequence of increasing values of pheromowneldeo-
wards the sinks exists; in other words, the sinks must havetdgximum
pheromone level in the WSN and a decreasing pheromone gtadiest
be established around the sinks covering all the net.

To build the pheromone gradient, the initial setting of thEMVis as
follow: the sinks are set to a fixed maximum pheromone leveeneas
the sensor nodes’ pheromone levels are set When the WSN is oper-
ating, each node periodically sends a signaling packetitgifheromone
level and updates its value based on the level of its neighbor



More specifically, the algorithm for establishing the phreome gra-
dientis based on two types of nodes in the WSN, cadileks andsensors
respectively, and the pheromone is assumed discretizedinlifferent
levels, ranging front to P — 1. In this way, routing paths toward the sink
are established through the exchange of pheromone paakaisitng
the pheromone level (0 < p < P — 1) of each node.

Sink nodes, once activated, set their internal pheromores te the
highest valuep = P — 1. Then, they, at fixed time interval, broadcast
a pheromone message to their neighbors with the vali®e assume
T'1 is the time interval incurring between two consecutive semaf
pheromone message.

Instead, the pheromone level of a sensor node is initiatlyos@and
then it is periodically updated according to two distindi@as: Excita-
tion action (the positive feedback) and Evaporation action (the negative
feedback).

Excitation action: sensor nodes periodically broadcast to the neigh-
bors a pheromone message containing their internal pheremevelp.
Like the sink node, sensor nodes perform the sending ataegoie in-
terval T'1. When a sensor node receives a pheromone |eyvsent by
a neighbor it compares, with its own levelp and updates the latter if
p, > p. The new value is computed as a function of the current and
the received pheromone levebdate(p, p,). In this context, we use the
mean value as the new updating value, thus the function usressto be
update(p, p,) = round((p + pn)/2).

Evaporation action: it is triggered at regular time intervdl2 and it
simply decreases the current valuepdfy one unit assuring it maintains
a value greater or equal (o

We note that, despite all nodes perform their excitatioroactvith
same fixed time interval'l, no synchronization activity is required among
the nodes; all of them act asynchronously in accordance twélprin-
ciples of biological systems where each entity acts autausty with
respect to the others.

The excitation-evaporation process, like in biologicasteyns, as-
sures the stability of the system and the adaptability tsipdes changes
in the environment or in some nodes. In fact any change in ¢twork
condition is captured by an update of the pheromone levéleirivolved
nodes that modifies the pheromone gradient automaticalyngrthe
routing decisions toward the new optimal solution. In theywthe net-



work can self-organize its topology and adapt to enviroralerhanges.
Moreover, when link failures occur, the network reorgafi@atask is
accomplished by those nodes near the broken links. Thi#tsesiwa ro-
bust and self-organized architecture.

The major drawback of this algorithm is the difficulty in appri-
ately setting the paramet&rl and7'2; in fact, as shown in [15, 12], the
stability of the system and trgpiality of the produced pheromone gradi-
ent is strictly dependent on the parameters ratio. Whedecreases and
T2 is fixed, pheromone messages are exchanged more rapidlygahen
nodes and their pheromone level tends to the maximum lecallse the
sink node always sends the same maximum level thus, witmoapgpro-
priate balancing action, the pheromone level saturatéseatiodes of the
WSN. At the opposite, let us suppo%eé is fixed and7'2 decreases; in
this case the pheromone level in each sensor node decreaseguitkly
than its updating according to the value of the neighbors, eesult all
the levels will be close to zero. From this behavior, we nbéd:t1) both
timers are necessary to ensure that the algorithm couldepsopork,
and 2) a smart setting of both timers is necessary in ordeave the best
gradient shape all over the network.

The M AM model we are going to describe in the next section helps
in easily setting the best parameter values.

3.2 The M AM modd

The M AM model used to study the gradient formation is based on two
agent classes: the clagsk node denoted by a superscriptind the class
sensor node denoted by a superscript The pheromone intensity is dis-
cretized it intoP integer levels (ranging frordto P — 1) in accordance
with the algorithm described earlier. The message excheang@deled

by usingM different message types. As we will explain later, sincéneac
message is used to send a pheromone level, wi/set P.

Geographical space The geographical spadéwhere theN agents are
located is modeled asm@a, x n, rectangular grid, and each cell has a
square shape with sid&. Sensors can only be located in the center of
each cell and we allow at most one node per cell: i.e., someraght

be empty, andV < n, x n,,. Moreover, sink nodes are very few with
respect to the number of sensor nodes.



Agent’s structure and behavior Irrespective of the MA class consid-
ered, we model the pheromone level of a node with a state &chbice
determines two different MA structures.

-
P-1

(a) Agent class = sink.

(b) Agent class = sensor.

Fig. 3. Markovian agent models.

The sink class (Fig. 3(a)) is very simple and is characterized by a
single state labele® — 1 with a self-loop of rate\ = % In fact the
sink has always the same maximum pheromone level, and esiitg/le
message of typ® — 1 with rate\.

Instead, thesensor class (Fig. 3(b)) ha# states identifying the range
of all the possible pheromone levels. Each state is labeibdne pheromone
intensityi (i = 0,..., P — 1) in the corresponding node and has a self-
loop of rate) = % that represents the firing of timer at regular intervals
equal tol'1l. This event causes the sending of a message (see Section 3.2)
The evaporation phenomenon is modeled by the solid arcal {liezmsi-
tions) connecting statewith state;—1 (0 < ¢ < P—1). The evaporation

rate is settqu = %; in such a way we represent the firing of tin¥e2.



Message types The types of messages in the model correspond to the
different levels of pheromone a node can store, thus we defihe-
{0,1,..., P — 1}. Any self loop transition in staté emits a message
of the corresponding typéat a constant rate, either in sink and in
sensor nodes. The sink message is always of fype 1, representing
the maximum pheromone intensity, whereas the messageteérit a
sensor node corresponds to the state where it actually is.

When a message of type is emitted neighboring nodes are able to
receive it changing their state accordingly. This behasgamplemented
through the dashed arcs (whose labels are defined throughlgythat
model the transitions induced by the reception of a messagarticular,
when a node in stateeceives a message of type it immediately jumps
to statej if m € M(i, j), with:

M(i,j)={me€[0---P—1]:round((m+1)/2) = j}

11
Vi,jel0---P—1]:j>1i. (1)

In other words, an MA in statejumps to the statg that represents the
pheromone level equal to the mean between the currentlevad the
level m encoded in the perceived message.

Perception function Messages of any type sent by a node are char-
acterized by the same transmission ramgéhat defines the radius of
the area in which an MA can perceive a message produced bieanot
MA. This property is reflected in the perception functiafi(-) that,

Vm € [1--- M], is defined as:

" ., . JOdistv,v') > t,
U <V7C7Z’V’C’Z)_{1diSt(V,V/)§tr, (12)

where distv, v') represents the distance between two nodes in position
v andv’.

As can be observed, the perception function in eq. (12) ineefir-
respective of the message type, because in this kind ofcapioin the
reception of a message of any typdepends only on the distance be-
tween the emitting and the perceiving node. The transnrissinget,
depends on the properties of the sensor and it influencesithber, of
neighbors perceiving the message. In the numerical expeatation, we
considerd, < t,, < v/2d, corresponding tg = 4.



Generation and acceptance probabilities In this application, messages
are only generated during self-loop transitions with ptolitg 1, so that
Vi, j, gi;(m) = 1 andgg;(m) = 0, (i # j). Similarly, we assume ei-
therag;(m) = 0 or ag;(m) = 1, that is incoming messages are always
accepted or always ignored.

3.3 Numerical results

In order to analyze the behavior of the WSN model, the mainsoneeof
interest is the evolution of!(¢, v) i.e., the distribution of the pheromone
intensity of a sensor node over the entire avess a function of the time.
The value ofr}'(¢, v) can be computed from (10) and allows us to obtain
several performance indices like the average pheromoeesityo (¢, v)

at timet for each cellv € V:

P—1
B(t,v) =Y i 7t V). (13)

1=

The distribution of the pheromone intensity over the erdgirea)’ de-
pends both on the pheromone emission ratend on the pheromone
evaporation rate:; furthermore, the excitation-evaporation process de-
pends on the transmission rangehat determines the number of neigh-
boring cellsy perceived by an MA in a given position. To take into ac-
count this physical mechanism, we define the following giyant

=" (14)

that regulates the balance between the pheromone emissibavap-
oration in the Sl routing algorithm. For a complete discassibout the
performance indices that can be derived and analyzed userdgiscribed
MAM, refer to [12].

The numerical results have been obtained with the follovexyeri-
mental setting. The geographical space is a square grideds| = n,,
= 31, whereN = 961 sensors are uniformly distributed with a spatial
density equal to 1 (one sensor per cell). Further, we set4.0, P = 20,
andn = 4. The first experiment aims at investigating the formatiothef
pheromone gradient around the sink as a function of the nuat@m-
eters. To this end, a single sink node is placed in the cefitdrecarea
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(a) r=1.2. (b) r=1.8. (c) r=2.4.

Fig. 4. Distribution of the pheromone intensity varying

and the pheromone intensity distribution is evaluated ametion of the
parameter, by varyingu being A andn fixed.

Figure 4 shows the distribution of the pheromone intensity v)
measured in the stable state for three different values tfthe value
of r is small ¢ = 1.2) or high (- = 2.4), the quality of the gradient is
poor. This is due to the prevalence of one of the two feedba@gative
(with » = 1.2 evaporation prevails) or positive ( with= 2.4 excitation
prevails and all sensors saturate). On the contrary, irgéiaie values
(r = 1.8) generate well-formed pheromone gradients able to cower th
whole area, thanks to the correct balance between such tudbdeks.
Then, an opportune evaluation of the valuerdfias to be carried out
in order to generate a pheromone gradient that fits with thelégical
specification of the WSN under exam.

In order to understand the dynamic behavior of the Sl algorjtwe
carried out a transient analysis able to highlight the daff phases of
the gradient construction process when the position of itiiechanges
in time. In particular, in the following experiment (see &ig 5) we an-
alyzed how the algorithm self adapts to topological modiitzes by re-
calculating the pheromone gradient when two differentsiue present
in the network and they are alternately activated. Figu(ay5(b) show
how the pheromone signal is spread on the spaaatil the stable state
is reached. At this pointt(= 17.5sec), we deactivated the old sink and
we activated a new one in a different position (Figure 5¢€)gures 5(d)-
5(e) describe the evolution of the gradient modificatiorms fossible to
observe that, thanks to the properties of the Sl algorithma,WSN is
able to rapidly discover the new sink and to change the phenengra-
dient by forgetting the old information until a new stablatstis reached

(Figure 5(f)).
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(a) t = Osec (b) t = 17sec (c) t = 17.5sec

(d) t = 19sec (e) t = 24sec (f) t = 29sec

Fig. 5. Distribution of the pheromone intensity with respect twhen two sinks are alternately
activated. The change is applied at time 17.5sec.

Finally, in order to test the scalability of the MAM in moreroplex
scenarios, we have assumed a rectangular grid myjth= n,, = 100
hence withV = 100 x 100 = 10,000 sensors, and we have randomly
scattered 50 sinks in the grid. The grid is represented iarEi§, where
the sinks are drawn as black spots. Since each sensor iseaped by
an MA with P = 20 states (see Figure 3(b)), the product state space of
the overall system ha¥ = 20199 states!

Fig.6. The100 x 100 grid with 10, 000 cells and 50 randomly scattered sinks



The steady pheromone intensity distribution for the geigical space
represented in Figure 6 is reported in Figure 7. Througheygeriment,
we can assess that the pheromone gradient is reached alsoma/kgm-
metries are present in the network and that the proposedInsaalde to
capture the behavior of the protocol in generating a coipeeromone
gradient also in presence of different maximums. In fadhgithe same
protocol configurations found for a simple scenario, thel§bdthm is
able to create a well formed pheromone gradient also in a =ieip
different situation, making such routing technique suéah non pre-
dictable scenarios. Such scenario also demonstratesaltadsity of the
proposed analytical technique that can be easily adopttteianalysis
of very large networks.

Fig. 7. Distribution of the pheromone intensity when the networkdmposed by a grid of 10,000
sensor nodes with 50 sinks.

4 Ant Colony Optimization

The aim of this section is to show how MAMs can be adopted te rep
resent one of the more classical swarm intelligence protdeown as
Ant Colony Optimization (ACO) [2], that was inspired by therdging
behavior of ant colonies which, during food search, exhi@tability to



solve simple shortest path problem. To this end, in the pteserk, we
simply show how to build a MAM that solve the famobDsuble Bridge
Experiment which was first proposed by Deneubourg and colleagues in
the early 90’s [167], and that has been proposed as an entry benchmark
for ACO models.

In the experiment a nest of Argentine ants is connected tad fo
source using a double bridge as shown in Figure 8. Two samare
considered: in the first one the bridges have equal lengtu(gi8 (a)), in
the second one the lengths of the bridges are different (€igb)). The
collective behavior can be explained by the way in which aotamuni-
cate indirectly among thenst{(gmergy). During the journey from the nest
to the food source and vice versa, ants release on the grocimehaical
substance callegheromone, moreover ants can perceive pheromone and
they choose with greater probability a path marked by a ggpooncen-
tration of pheromone. As a results, ants releasing pheremanma branch,
increase the probability that other ants choose it. Thispheenon is the
realization of the positive feedback process describedeti& 1 and
it is the reason for the convergence of ants to the same briantte
equal length bridge case. When lengths are different, thedmosing
the shorter path reach the food source quicker then thosastipthe
longer path. Therefore, the pheromone trail grows fastethershorter
bridge and more ants choose it to reach food. As a resulttesinall
ants converge to follow the shortest path.

Nest Q Food  Nest Food

(a) Equal branches. (b) Different branches.

Fig. 8. Experiment scenarios. Modified from Goss et al [17].

41 The M AM mode

We represent the double bridge experiment through a Malthgent
Class and Multiple Message Type MAM. We model ants by message



(a) Equal branches. (b) Two different branches. (c) Three different branches.

Fig. 9. Graph used to model the experiment scenarios.

and locations that ants traverse by MAs. Three different Ne&sses are
introduced: the clad¥est denoted by superscript the clasderrain de-
noted by superscrigt and the clasBood denoted by superscrigt Two
types of messages are used: ants walking from the nest toddesburce
correspond to messages of type (forward), whereas ants coming
back to the nest correspond to messages of iyp&ackward).

Geographical space Agents (either nest, terrain, or food source) are
deployed on a discrete geographical spdcepresented as an undirected
graphG = (V, E), where the elements in the Sétare the vertices and
the elements in the sef are the edges of the graph. In Figures 9(a)
and 9(b) we show the locations of agents for the equal anditfezenht
length bridge scenarios, respectively. The squares areettiees of the
graph and the labels inside them indicate the class of thet agsiding

on the vertex. In this model we assume that only a single agsittes on
each vertex. Message passing from a node to another is eéeaistlittle
arrows labeled by the message type. As shown in Figure 9,iffleeeht
lengths of the branches are represented by a different nuaildeops
needed by a message to reach the food source starting fromegte
Figure 9(c) represents a three branches bridge with braraftaifferent
length.

Agent’s structure and behavior The structure of the three MA classes
is described in the following.

MA Nest - The nest is represented by a single MA of classhown
in Figure 10(a). The nest MAis composed by a single state that emits



messages of typgw at a constant rate, modeling ants leaving the nest
in search for food.

MA Terrain - An MA in classt (Figure 10(c)) represents a por-
tion of terrain on which an ant walks and encodes in its stpées the
concentration of the pheromone trail on that portion of theugd. We
assume that the intensity of the pheromone trail is distzdtin P levels
numbered O, 1, .P — 1.

With reference to Figure 10(c), the meaning of the stateBaddl-
lowing:

to - denotes no pheromone on the ground and no ant walking on it;

t; - denotes a concentration of pheromone of levahd no ant on the
ground;

tiy - denotes an ant of forward type residing on the terrain witiée
pheromone concentration is at levgl

t;» - denotes an ant of backward type residing on the terrainevthi
pheromone concentration is at level

The behavior of the MAagent at the reception of the messages is the
following:

fw - forward ant; a message of tygev perceived by an MAin states
t;, induces a transition to statg, ;) meaning that the arrival of a for-
ward ant increases the pheromone concentration of one(fmsgive
feedback);

bw - backward ant; a message of tyfpe perceived by an MAin states
t;, induces a transition to statg, ), meaning that the arrival of a
backward ant increases the pheromone concentration of eweé |
(positive feedback);

Ants sojourn on a single terrain portion for a mean time 6of sec.,
then they leaves towards another destination. The locasitrans from
stateg; to states; and the generation of messafge model such behav-
ior for forward ants. An analogous behavior is represenvedackward
ants by local transitions from stateg to states;. The local transitions
at constant rate from stateg; to stateg; ; indicate the decreasing of
one unit of the concentration of pheromone due to evaparéatiayative
feedback).



MA Food source - An MA of class f represents the food source
(Figure 10(b)). The reception of a message of typein statef, indi-
cates that a forward ant has reached the food source. Afteraa tme
of 1/n sec., such an ant leaves the food and starts the way back to the
nest becoming a backward ant (emission of message obtype

We assume that no more than one ant at the time can reside on a
portion of terrain or in the food source.

mfw

)\ I\_ﬂ/:
mfw’: mbw':

(@) MA": (b) MA': Agent of

Agent ofclass food.
class nest.

m m
At o
- —_ > -
B B s
My, n /M n /My
N N AN
S @ n e @ n e n
-~ -~ -~ ane-
Y £y 0y
mbw mbw mbw

(c) MA®: Agent of class terrain.

m fuw

=
4

4

Fig. 10. Markovian agent models for the ACO experiment.

Per ception function The perception function rules the interactions among
agents and, in this particular example, defines the prabatiiat a mes-
sage (ant) follows a specific path both on the forward andWwad di-
rection. The definition of the perception function takegpiration on the
stochastic model proposed in [I§,to describe the dynamic of the ant
colony. In such a model the probability of choosing the sbrdstanch is
given by: : )

k + ¢is(T))"
E+ on(D) + (k + oD o)
wherep;s(7) (pu(7)) is the probability of choosing the shorter (longer)
branch,p;s(7) (vi(7)) is the total amount of pheromone on the shorter

pis(T) = (



(longer) branch at a time. The parametek is the degree of attraction
attributed to an unmarked branch. Itis needed to providenand prob-
ability of choosing a path not yet marked by pheromone. Thpoegnt
« provides a non-linear behavior.

In our MA model the perception function™(-) is defined,ym &
{fw,bw}, as:

(k + E[mc(1,v)])*

Z(c“,v”)eNe:Dtm(v’,c’) (k + E[ﬂ-c” (7-7 V//)])a

(16)
wherek and o have the same meaning of Equation (1B6)s¢(7, v)]
gives the mean value of the concentration of pheromone iatesrtin po-
sitionv on the ground, and corresponds@-). The functionVezt™ (v', )
gives the set of pairg(¢”, v")} such that the agent of clas$ in posi-
tion v” perceives a message of typeemitted by the agent of clasgsin
positionv’. Figure 11(a) helps to interpret Equation (16). The mudtipl
box stands for all the agents receiving a messagent by the agent of
classc in positionv’. The value ofu (v, c,7,v', ¢, j, ) is proportional
to the mean pheromone concentration of the agent in elagposition
v with respect to the sum of the mean concentrations of all tjents
that receive message by the agent in class and positionv’. For in-
stance, we consider the scenario depicted in Figure 11{@®rena class
n agent in positiorby sends messages of tyga to two other class
agents at positiob, andb,, and we compute/* (b, t,i, bg, n, j, 7).
In such case, the evaluation of functidiezt/* (b, n) gives the set of
pair{(¢,b;), (t,bz)} and the value of the function is:

um(v,c,i,v' d 1) =

(k + E[m'(1,bg)])*
(k + E[mt(t,b1)])* + (k + E[r!(T, b”%)fn
As a final remark, we highlight that™(-) does not depend on the
state variablesg and j of the sender and receiver agents even if these
variables appear in the definition of*(-) (Equation 16). Instead,™(-)
depends on the whole probability distributieti(7, v) needed to com-
pute the mean valug[z“(7, v)].

ufw(b27 tv i) b07 n)jv T) =

Generation and acceptance probabilities As in Section 3, also in this
ACO-MAM model we allow onlyg;(m) = 0 or g;,(m) = 1 and



(t, by
“'m (C, V”) ’
(c, v)
\;n c, v) (t, b,)
(a) General case. (b) Example of scenario in Figure 9(b)

Fig.11. Perception function description.

ag;(m) = 0 orag,;(m) = 1 Ve, m. In particular, for the terrain agent
MA!, messages of typgw are sent with probabilityggﬁi(fw) =1, and
are accepted with probabilit;gy(iﬂ)f(fw) = 1 only in at; state inducing
a transition to &;;1); state. An analogous behavior is followed during

emission and reception of messages of type

4.2 Numerical resultsfor ACO Double Bridge Experiment

We have performed several experiments on the ACO model.rticpkar
we studythe mean value of the concentration of pheromone at a timer
in positionv for a class: agent,E[w(r, v)|, defined as:

Eln(r,v)] = 3 m(v, 1) (18)

sese

whereS¢ denotes the state space of a clasgent,/(s) represents the
pheromone level in state and it corresponds to:

I(s)=i Vse{ti}U{tiy}U{ts} (19)

This value is used in Equation (16) to compute-) which, as previ-
ously said, rules the ant’s probability to follow a specifatip therefore
such performance index provides useful insight of the nemtlaht’s be-
havior.



We consider the three scenarios depicted in Figure 9, theddal
denote the positions where we compute the mean value of tieentra-
tion of pheromone. In all the experiments the intensity efpheromone
trail is discretized inP = 8 levels.

2.5

E[T(t, b)]

0 10 20 30 40 50 60 70 80
T

Fig. 12. Mean pheromone concentration with= 1.0, © = 1 andn = 1 for the equal branches
experiment.

In Figure 12, the mean pheromone concentrafitdn(r, b;)] over
the time for the equal branches experiment is plotted. Aantlme seen,
both mean pheromone concentrations have exactly the saphgiex
proving that ants do not prefer one of the routes.

The case with two different branches is considered in Fig®.eSpeed
of the ants (i.e., paramete) is considered in the column (the left col-
umn corresponds tg = 1.0 and the right column tg = 10), while
the evaporation of the pheromone is taken into account orothie (re-
spectively withyy = 0, © = 0.5, andp = 2). When no evaporation is
considered (Figure 13(a) and 13(b)), both paths are eqaatgen due
to the finite amount of the maximum pheromone level consitlaréhis
work. However the shorter path reaches its maximum levdieedhan
the longer route. In all the other cases, it can be seen tedbtiger path
is abandoned after a while in favor of the shorter one. The@waion
of the pheromone and the speed of the ants both play a role itintfe
required to drop the longer path. Increasing either of thee teduces the



time to discover the shorter route.

Finally, Figure 14 considers a case with three branches ftéreint
length and different evaporation levels £ 1 andn = 10). Also in this
case the model is able to predict that ants will choose thaettaoute.
It also shows that longer paths are dropped in an order ptiopat to
their length: the longest route is dropped first, and theinéeliate route
is discarded second. Also in this case, the evaporatios determine the
speed at which paths are chosen and discarded.

5 Conclusions

In this work, we have presented how the Markovian Agentsgoetance
evaluation formalism can be used to study swarm intelligégarithms.
Although the formalism was developed to study largely ihsted sys-
tems like sensor networks, or physical propagation phenartike fire
or earthquakes, it has been proven to be very efficient inuciaygt the
main features of swarm intelligence.

Beside the two cases presented in this chapter, routing iN A&l
Ant Colony Optimization, the formalism is capable of corsidg other
cases like Slime Mold models.

Future research lines will try to emphasize the relatiosabéen Marko-
vian Agents and Swarm Intelligence, trying to integratentagiproaches:
using Markovian Agents to formally study new swarm intediig algo-
rithms, and use swarm intelligent techniques to study cemMarko-
vian Agents models in order to find optimal operation poinid aest
connection strategies.
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Fig. 13. Mean pheromone concentration for the case with two diffelbeenches.
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