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2010-01 A Case-based Approach to Business Process Monitoring, G. Leonardi, S. Montani,
March 2010.

2009-09 Supporting Human Interaction and Human Resources Coordination in Distributed
Clinical Guidelines, A. Bottrighi, G. Molino, S. Montani, P. Terenziani, M. Torchio,
December 2009.

2009-08 Simulating the communication of commands and signals in a distribution grid, D.
Codetta Raiteri, R. Nai, December 2009.



A Provenly Correct Compilation of Functional Languages
into Scripting Languages

Paola Gianninia,1,∗, Albert Shaqirib
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Abstract

In this paper we consider the problem of translating core F#, a typed functional lan-
guage including mutable variables, into scripting languages such as JavaScript or Python.
In previous work, we abstracted the most significant characteristics of scripting lan-
guages in an intermediate language (IL for short), which is an imperative language
with definition of names (variables and functions) done in blocks and where a def-
inition of a name does not have to statically precede its use. We define a big-step
operational semantics for core F# and for IL and formalise the translation of F# ex-
pressions into IL. The main contribution of the paper is the proof of correctness of the
given translation, which is done by showing that the evaluation of a well-typed F# pro-
gram converges to a primitive value if and only if the evaluation of its translation into
IL converges to the same value. For this proof is crucial the type soundness of core F#
which is proved by giving a coinductive formalization of the divergence predicate and
proving that well-typed expressions either converge to a value or diverge and so they
are never stuck.

Keywords: scripting languages, functional languages, intermediate language,
translation

1. Introduction

Programming in JavaScript (or any other dynamically typed language) optimizes
the programming time, but can cause problems when big applications are created. The
absence of type checking, may cause unexpected application behaviour followed by
onerous debugging, and introduce serious difficulties in the maintenance of medium to
large applications. For this reason dynamically typed languages are used mostly for
prototyping and quick scripting.
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To deal with these problems, in previous work, [7] and [9], we proposed using
dynamically typed languages as “assembly languages” to which we translate the source
code from F# which is statically typed. In this way, we take advantage of the F#
type checker and type inference system, as well as other F# constructs and paradigms
such as pattern matching, classes, discriminated unions, namespaces, etc., and we may
use the safe imperative features introduced via F# mutable variables. There are also
the advantages of using an IDE such as Microsoft Visual Studio (code organization,
debugging tools, IntelliSense, etc.).

To provide translation to different target languages we introduced an intermediate
language, IL for short. This is useful, for instance, for translating to Python that does
not have complete support for functions as first class concept, or for translating to
JavaScript, using or not libraries such as jQuery.

In this paper we prove the correctness of the compilers produced. To do that we
formalize the dynamic semantics of the languages F#and IL, the type-checking for F#
and give a formal definition of the translation from the source language F# to IL. Fi-
nally, we prove that the translation preserves the dynamic semantics of F# expressions.
The language IL is imperative and untyped, and has some of the characteristics of the
scripting languages that makes them flexible, but difficult to check, such as blocks in
which definition and use of variables may be interleaved, and in which use of a variable
may precede its definition. (IL is partly inspired by IntegerPython, see [17].) There-
fore, the proof of correctness of the translation from the source language F# to IL
already covers most of the gap from functional to scripting languages.

In order to facilitate the proof of correctness, instead of the small-step semantics
we introduced in [7], we give a big-step semantics to both languages. Then we define
an equivalence between values and an equivalence between runtime configurations and
show that equivalent configurations produce equivalent values and also that divergence
is preserved. Since the big-step semantics of F# does not distinguish between non-
terminating computations and computations that “go wrong” we give a coinductive
characterization of divergent computations, and show that well-typed F# expressions
either converge to a value or diverge.

The paper is organized as follows: in Section 2 we formalize the fragment of F#
which is our source language and state its main properties. In Section 3 we introduce
IL by first highlighting some of the design choices made for the language and then
presenting its syntax and operational semantics. In Section 4 we briefly recall some
of the challenges of the translation, widely discussed in [7] and [9], then we formalize
the translation giving the translation of F# expressions to IL constructs. Finally, we
prove that an F# program converges to a primitive value if and only if its IL translation
converges to the same value. In the two appendices we give the proof of the lemmas of
type preservation and progress for F# expressions, stated in Section 2, which are the
results from which the soundness of the type system for F# is proved.

This paper is an extended and completely revised version of [7] and [9], whose
aim was to introduce IL and show the challenges of the translation. As already men-
tioned, in this paper we give a different definition of the operational semantics of both
languages and formalize and prove the correctness of the translation from the source
language F# to the target language IL. We also formalize and prove the soundness of
the type system for the dynamic semantics of F#.
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2. Core F#

The syntax for core F# language is presented in Fig. 1. We included constructs,
such as let, let mutable, and let rec that are used in the practice of programming
and that raise challenges in the translation to dynamic languages. We also did not
introduce imperative features through reference types, but through mutable variables,
as this is closer to the imperative style of programming. We present a simply typed
version of F#. However, our translator does not depend on the presence of types, since
it uses F# type inference.

e :: = x | n | tr | fls | F | e+e | if e then e else e | e e | e, e
| let [mutable] x :T=e in e | let rec w :T=F in e | x<-e expression

F :: = fun x :T->e function
T :: = int | bool | T → T type

Figure 1: Syntax of core F#

In the grammar for expressions, in Fig. 1, the square brackets “ [. . .]” delimit an
optional part of the syntax, we use x , y , z for variable names, and the overbar
sequence notation is used according to [10]. For instance: “ x :T=F” stands for “
x1:T1=F1 · · · xn:Tn=Fn”. The empty sequence is denoted by “ ∅”. For an F# ex-
pression e the free variables of e , FV (e), are defined in Fig. 2. Note that, in the
let rec construct, the occurrences of variables in w in F are bound. An expression e
is closed if FV (e) = ∅. We assume equality of expressions up to α-equivalence. With
e[x := e ′] we denote the result of substituting x with e ′ in e with renaming of bound
variables if needed.

• FV (x ) = {x},
• FV (n) = FV (tr) = FV (fls) = ∅,
• FV (fun x :T->{e}) = FV (e)− {x},
• FV (e1+e2) = FV (e1 e2) = FV (e1, e2) = FV (e1) ∪ FV (e2),

• FV (if e1 then e2 else e3) = FV (e1) ∪ FV (e2) ∪ FV (e3),

• FV (let [mutable] x :T=e1 in e2) = FV (e1) ∪ (FV (e2))− {x}),

• FV (let rec w :T=F in e) = (FV (e)
⋃

1≤i≤m FV (Fi))− {w},
• FV (x<-e) = FV (e) ∪ {x}.

Figure 2: Free variables of expressions

The let rec construct introduces mutually recursive functions. The let construct
(followed by an optional mutable modifier) binds the variable x to the value resulting
from the evaluation of the expression on the right-hand-side of = in the evaluation of
the body of the construct. In the (concrete syntax) of the examples, as in F#, “,” and “
in” are substituted by “carriage return” without indentation.

When the let construct is followed by mutable the variable introduced is muta-
ble. Only mutable variables may be used on the left-hand-side of an assignment. This

3



restriction is enforced by the type system of the language. The type system enforces
also the restriction that the body of a function cannot contain free mutable variables,
even though it may contain bound mutable variables. We did not model the fact that top
level mutable variables could be refereed in functions, however, our compiler, handles
such variables.

We present a simply and fully typed version of F#. Function parameters as well
as variables defined in the let, let mutable, and let rec constructs are annotated
with their type. This is just to simplify the proof of the correctness of the translation.
As already mentioned, our translator takes as input the standard polymorphically typed
F#.

A type environment Γ is defined by:

Γ ::= x :T ,Γ | x :T !,Γ | ∅

that is Γ associates variables with types, possibly followed by !. If the type is followed
by ! this means that the variable was introduced with the mutable modifier. Let †
denote either ! or the empty string, and let dom(Γ) = {x | x :T † ∈ Γ}. We assume
that for any variable x , in Γ there is at most an associated type. We say that the
expression e has type T in the environment Γ if the judgment

Γ ` e : T

is derivable from the rules of Fig. 3. In the rules of Fig. 3, with Γ[Γ′] we denote the
type environment such that dom(Γ[Γ′]) = dom(Γ) ∪ dom(Γ′) and:

• if x :τ † ∈ Γ′ then x :τ † ∈ Γ[Γ′], and

• if x :τ † ∈ Γ and x 6∈ dom(Γ′), then x :τ † ∈ Γ[Γ′].

In the following we describe the most interesting rules.
Consider rule (TYABS), to type the body of a function we need assumptions on its free
variables and formal parameter. From the definition of Γ[Γ′] we have that, in the
environment in which the function is defined, Γ[Γ′], there can be mutable variables, as
long as they are not needed to type the body of the function. Moreover, the body of the
function could contain bound mutable variables.
In the rule (TYLET), in typing e2 the variable x is bound to the type of the expression
e1, and in the rule (TYLETMUT) in typing e2 the variable y is bound to the type of the
expression e1 followed by !, so that inside e2 the variable y may be used on the left-
hand-side of an assignment (see rule (TYASSIGN)).
Finally in rule (TYREC), the variables w are bound to the types T , both in the typing of
the body e of the construct, and also in the typing of their definitions F . Moreover,
the type of the function definition, Fk, associated with wk must be Tk (1 ≤ k ≤ m).

In this paper, we give a big-step semantics for the language with an explicitly typed
evaluation stack for keeping the bindings of the immutable variables. The definition
of values and stacks is given in Fig. 4. Function values contain their definition stack,
i.e., are closures. For recursive functions the definition stack of the functions Fi should
include the definition Fi itself. To break circularity we use the let rec construct for
the expression part of the value of mutually recursive functions.
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x :T † ∈ Γ
(TYVAR)

Γ ` x : T
Γ ` n : int (TYNUM) Γ ` tr, fls : bool (TYBOOL)

Γ ` e1 : int Γ `e e2 : int
(TYSUM)

Γ ` e1+e2 : int

Γ′[x:T ′] ` e : T
∀y ,T ′′ y :T ′′! 6∈ Γ′

(TYABS)
Γ[Γ′] ` fun x :T ′->e : T ′ → T

Γ ` e : bool Γ ` e1 : T Γ ` e2 : T
(TYIF)

Γ ` if e then e1 else e2 : T

Γ ` e1 : T ′ → T Γ ` e2 : T ′

(TYAPP)
Γ ` e1 e2 : T

Γ ` e1 : T ′ Γ ` e2 : T
(TYSEQ)

Γ ` e1, e2 : T

Γ ` e1 : T ′ Γ[x :T ′] ` e : T
(TYLET)

Γ ` let x :T ′=e1 in e2 : T

Γ ` e1 : T ′ Γ[y :T ′!] ` e : T
(TYMUT)

Γ ` let mutable y :T=e1 in e2 : T

Γ[w :T ] ` F : T Γ[w :T ] ` e : T
(TYREC)

Γ ` let rec w :T=F in e : T

Γ ` e : T x :T ! ∈ Γ
(TYASSIGN)

Γ ` x<-e : T

Figure 3: Typing rules for core F#

v :: = n | tr | fls | (fun x :T->e, σ) | (let rec w :T=F in Fi, σ) value
σ :: = x :T 7→v , σ | ∅ stack

Figure 4: F# values

The domain of a stack dom(σ) is the set of variables x such that x :T 7→v ∈ σ. For
stacks we use the override notation σ[σ′] as for type environment.

The set of free variables of a value v = (e, x :T 7→v) is defined by: FV (v) =
(FV (e)− {x}) ∪ FV (v).

The standard α-conversion of functional languages, i.e.,

fun x :T->e=αfun z :T->e[x := z ] z 6∈ FV (e)

is extended to values with the transitive closure of the following rule

(e, x :T 7→v)=α(e[xi := z ], [x1 · · · xi−1 z xi+1 · · · xn:T 7→v ]) z 6∈ FV (e, σ) ∪ {x}

Equality of values will be considered up to α-conversion.
The lookup function that follows, given a variable and a stack, returns the value

associated to the variable in the stack, if any. It handles recursive function values, by
returning their body and a stack in which the name of the mutually recursive function
are bound to their recursive definition. That is, unrolling the let rec construct once.

Definition 1. The lookup function, lkp(σ), is defined by:
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• lkp(x , σ[x :T 7→v ]) = (Fk, σ[wi:Ti 7→(let rec w :T=F in Fi, σ)]1≤i≤m), if
v = (let rec w :T=F in Fk, σ)

• lkp(x , σ[x :T 7→v ]) = v , if v is not a recursive function,

• lkp(x , σ[x ′:T 7→v ]) = lkp(x , σ) if x 6= x ′.

The type environment associated with σ, env(σ), is defined by:

env(∅) = ∅ env(σ[x :T 7→v ]) = env(σ)[x :T ]

Our core F# language has imperative features, so for the definition of the operational
semantics we need a store which is a mapping between locations and values:

l1 7→ v1, . . . , ln 7→ vn

With ρ[x 7→ v ] we denote the mapping defined by: ρ[x 7→ v ](x ) = v and ρ[x 7→
v ](y) = ρ(y) when x 6= y .

The runtime configurations are triples “runtime expression, stack, store”, 〈e | σ |
ρ〉, where the runtime expressions, including locations (generated by the evaluation of
mutable variables definitions) are defined by adding the clauses:

e ::= · · · | l | l<-e

to the grammar of expression of Fig. 1. In Fig. 5 we give the rules for the evaluation
relation, ⇓, that given a runtime configuration produces a pair “value, store”, which
is the result of the evaluation of the expression. In particular, 〈e | σ | ρ〉 ⇓ 〈v | ρ′〉
means that the evaluation of e with the stack σ, in the store ρ produces the value v , and
modifies the store to be ρ′.

Evaluation of a variable produces the value returned by the lookup function applied
to the evaluation stack, rule (VAR-F). Evaluation of an integer or a boolean value pro-
duces the value itself, rule (PR-VAL-F), whereas to produce a function value from a func-
tion expression, in rule (FN-VAL-F), we associate with the function its definition stack.
(For recursive functions this is done with rule (LETREC-F).) Evaluation of a location, rule
(LOC-F), produces the value associated to the location in the store. The evaluation of the
sum expression evaluates the operands of the expression, and then returns n , which is
the numeral corresponding to the sum of the values of such operands n1 and n2. For
the conditional expression we first evaluate the condition and then return the evaluation
of the then or else branch depending on the (boolean) value of the condition. For an
application, rule (APP-F), we first evaluate the expression on the left, which result must
be a function value, then we evaluate the actual parameter, and then return the result of
the evaluation of the function body. The evaluation stack for the body is the definition
stack of the function on which we add the association between the formal parame-
ter x and the value of the actual parameter. Similarly for (LET-F), where the definition
stack of the expression is the current evaluation stack. Instead, for a mutable variable,
rule (LETMUT-F) , a new location l is generated, added to the store with the initial value
given by the evaluation of the expression associated with y , and the occurrences of
y in the body of the construct are substituted with such location. Between these oc-
currences there are the variables on the left-hand-side of assignments. Indeed, since
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lkp(x , σ) = v
(VAR-F)

〈x | σ | ρ〉 ⇓ 〈v | ρ〉

e = n ∨ e = tr ∨ e = fls
(PR-VAL-F)

〈e | σ | ρ〉 ⇓ 〈e | ρ〉

(FN-VAL-F)
〈F | σ | ρ〉 ⇓ 〈(F , σ) | ρ〉

ρ(l) = v
(LOC-F)

〈l | σ | ρ〉 ⇓ 〈v | ρ〉

〈e1 | σ | ρ〉 ⇓ 〈n1 | ρ1〉 〈e2 | σ | ρ1〉 ⇓ 〈n2 | ρ2〉 ñ = ñ1 +int ñ2

(SUM-F)
〈e1+e2 | σ | ρ〉 ⇓ 〈n | ρ2〉

〈e | σ | ρ〉 ⇓ 〈v | ρ1〉 ∧
( ( v = tr ∧ 〈e1 | σ | ρ1〉 ⇓ 〈v | ρ2〉 ) ∨ ( v = fls ∧ 〈e2 | σ | ρ1〉 ⇓ 〈v | ρ2〉 ) )

(IF-F)
〈if e then e1 else e2 | σ | ρ〉 ⇓ 〈v | ρ2〉

〈e1 | σ | ρ〉 ⇓ 〈(fun x :T->e, σ′) | ρ1〉 〈e2 | σ | ρ1〉 ⇓ 〈v | ρ2〉
〈e | σ′[x :T 7→v ] | ρ2〉 ⇓ 〈v ′ | ρ3〉

(APP-F)
〈e1 e2 | σ | ρ〉 ⇓ 〈v ′ | ρ3〉

〈e1 | σ | ρ〉 ⇓ 〈v1 | ρ1〉 〈e2 | σ | ρ1〉 ⇓ 〈v2 | ρ2〉
(SEQ-F)

〈e1, e2 | σ | ρ〉 ⇓ 〈v2 | ρ2〉

〈e1 | σ | ρ〉 ⇓ 〈v | ρ1〉 〈e2 | σ[x :T 7→v ] | ρ1〉 ⇓ 〈v ′ | ρ2〉
(LET-F)

〈let x :T=e1 in e2 | σ | ρ〉 ⇓ 〈v ′ | ρ2〉

〈e1 | σ | ρ〉 ⇓ 〈v | ρ1〉 〈e2[y := l ] | σ | ρ1[l 7→ v ]〉 ⇓ 〈v ′ | ρ2〉 l 6∈ dom(ρ1)
(LETMUT-F)

〈let mutable y :T=e1 in e2 | σ | ρ〉 ⇓ 〈v ′ | ρ2〉

〈e | σ[wi:Ti 7→(let rec w :T=F in Fi, σ)]1≤i≤n | ρ〉 ⇓ 〈v | ρ1〉
(LETREC-F)

〈let rec w :T=F in e | σ | ρ〉 ⇓ 〈v | ρ1〉

〈e | σ | ρ〉 ⇓ 〈v | ρ1〉
(ASS-F)

〈l<-e | σ | ρ〉 ⇓ 〈v | ρ1[l 7→ v ]〉

Figure 5: Big-step operational semantics for core F#

in well-typed expressions variables on the left-hand-side of assignments were always
introduced by let mutable, when an assignment is evaluated, rule (ASSIGN-F), we have
a configuration: 〈l<-e | ρ〉 which is evaluated by changing the value of the location l
to be result of the evaluation of e . The evaluation of let rec, rule (LETREC-F), produces
the result of the evaluation of the body e with an evaluation stack, σ′, which is the cur-
rent stack, σ, to which we add the associations between the names of the recursively
defined functions, wi, and the function values, (let rec w :T=F in Fi, σ), so that the
evaluation of an occurrence of wi in e will produce the evaluation of Fi with the stack

7



σ′, as it should be.
The typing rules in Fig. 3 are for the (source) expression language, so they do not

include a rule for locations. To type runtime expressions we need a store environment
Σ assigning types to locations. The type judgment is:

Γ | Σ ` e : T

and the typing rule for locations and assignment to a location are:

Γ | Σ ` l : Σ(l) (TYLOCF)
Γ | Σ ` e : T Σ(l) = T

(TYASSIGNLOC)
Γ | Σ ` l<-e : T

All the other rules are obtained by putting Γ | Σ on the left-hand-side of “`” in the
typing rules of Fig. 3, except for rule (TYABS) which becomes:

Γ′[x:T ] | ∅ ` e : T ′ ∀y ,T ′′ y :T ′′! 6∈ Γ′
(TYABS)

Γ[Γ′] | Σ ` fun x :T->e : T → T ′

In the following we define well-typed configurations, and prove the soundness re-
sult, which is derived from a big-step semantics version of the Subject Reduction and
Progress lemmas that follow. The soundness of the type system is essential for the
proof of correctness of our translation.

In order to define well-typed runtime configurations we have to define well-typed
values, stacks and stores. The definition of well-typed values and stacks are mutually
recursive, however, there is no circularity, since stacks contain types, and are subterm
of value function terms.

Definition 2. 1. An F# value v has type T , |= v :T ,
(a) if v = n , then T = int

(b) if v = tr or v = fls, then T = bool

(c) if v = (fun x :T1->e, σ), then for some T2, we have T = T1 → T2,
env(σ) | ∅ ` fun x :T1->e : T1 → T2 and |= σ�

(d) if v = (let rec x :T=F in Fi, σ), then T = Ti, |= σ� and for all j,
1 ≤ j ≤ m, env(σ)[x :T ] | ∅ ` Fj : Tj .

2. A stack σ is well-typed, |= σ�, if for all x :T 7→v ∈ σ we have that |= v :T .
3. An F# store ρ is well-typed with respect to a store environment Σ, Σ |= ρ, if

dom(ρ) = dom(Σ) and for all l ∈ ρ we have that
(a) |= ρ(l):Σ(l) and
(b) if Σ(l) = T1 → T2 for some T1 and T2, then ρ(l) = (fun x :T1->e ′, σ′)

for some e ′ and σ′.
4. The F# configuration 〈e | σ | ρ〉 is well-typed, with respect to Σ, Σ |= 〈e | σ |
ρ〉�, if

(a) env(σ) | Σ ` e : T for some T
(b) |= σ� and
(c) Σ |= ρ.
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Evaluation of well-typed configurations preserves well-typed stores, and the type of
expressions.

Lemma 3 (Type Preservation). Let 〈e | σ | ρ〉 be such that Σ |= 〈e | σ | ρ〉�. If
〈e | σ | ρ〉 ⇓ 〈v | ρ′〉, then |= v :T where env(σ) | Σ ` e : T , and Σ′ |= ρ′ for some
Σ′ ⊇ Σ. Moreover, if T = T1 → T2, then v = (fun x :T1->e ′, σ′) for some e ′ and
σ′.

Proof:
The proof of the lemma is given in AppendixA.

The big-step semantics is convenient for the proof of correctness of the translation,
however, it has the disadvantage of not distinguishing between non terminating pro-
grams and programs that “get stuck”. In our previous papers, [7] and [9], we had
defined a small-step semantics which insures that well-typed programs do not “get
stuck”. Here, following [12], we give a coinductive characterization of the divergence
judgment 〈e | σ | ρ〉⇑ and show that well-typed configurations either diverge or con-
verge to a value. This insures that programs do not “get stuck”.

The divergence judgment 〈e | σ | ρ〉⇑ is defined in Fig. 6.
The rules are quite obvious. The evaluation of a sum expression, rule (SUM-⇑), di-

verges when either the evaluation of the first operand of the expression diverges, or
when this evaluation converges to a numeral and the evaluation of the second operand
diverges. The evaluation of a conditional expression, rule (IF-⇑), diverges when either
the evaluation of the condition diverges, or if this evaluation converges to either tr
or fls and the evaluation of the corresponding branch diverges. For an application,
rule (APP-⇑), the evaluation diverges if either the evaluation of the expression on the left
diverges, or if this evaluation converges to a function value and the evaluation of the
actual parameter diverges, or if also the evaluation of the actual parameter produces a
value, then the evaluation of the function body with the definition stack of the function
on which we add the association between the formal parameter x and the value of the
actual parameter diverges. Evaluation of a sequence of expressions, rule (SEQ-⇑), di-
verges if either the evaluation of the first expression diverges of if this converges to any
value and the evaluation of the second expression diverges. A let or let mutable

expressions diverges if either the evaluation of the expression associated with the de-
fined variable diverges or if this evaluation converges and the evaluation of the body
of the construct diverges. The evaluation of a let rec expression, rule (LETREC-⇑), di-
verges if it diverges the evaluation of its body with an evaluation stack, σ′, which is
the current stack, σ, on which we add the associations between the names of the re-
cursively defined functions, wi, and the function values, (let rec w :T=F in Fi, σ).
The evaluation of an assignment, rule (ASS-⇑), diverges if it diverges the evaluation of
its right-hand-side.

The following lemma expresses the progress property for big step semantics, which
says that well-typed configurations do not get stuck. Note that, the “either or” has to
be interpreted as an “exclusive or”, as the lemma states. It is important to prove this,
since the relations of convergence to a value and the one of divergence are specified by
two separate sets of rules that could be both applicable to a given configuration.
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〈e1 | σ | ρ〉⇑ ∨ ( 〈e1 | σ | ρ〉 ⇓ 〈n1 | ρ1〉 ∧ 〈e2 | σ | ρ1〉⇑ )
(SUM-⇑)

〈e1+e2 | σ | ρ〉⇑

〈e | σ | ρ〉⇑ ∨ ( ( 〈e | σ | ρ〉 ⇓ 〈tr | ρ1〉 ∧ 〈e1 | σ | ρ1〉⇑ ) ∨
( 〈e | σ | ρ〉 ⇓ 〈fls | ρ1〉 ∧ 〈e2 | σ | ρ1〉⇑ ) )

(IF-⇑)
〈if e then e1 else e2 | σ | ρ〉⇑

〈e1 | σ | ρ〉⇑ ∨ ( 〈e1 | σ | ρ〉 ⇓ 〈(fun x :T->e, σ′) | ρ1〉 ∧ 〈e2 | σ | ρ1〉⇑ ) ∨
〈e1 | σ | ρ〉⇓〈(fun x :T->e, σ′) |ρ1〉 ∧ 〈e2 | σ | ρ1〉⇓〈v |ρ2〉 ∧ 〈e | σ′[x 7→v ] |ρ2〉⇑

(APP-⇑)
〈e1 e2 | σ | ρ〉⇑

〈e1 | σ | ρ〉⇑ ∨ ( 〈e1 | σ | ρ〉 ⇓ 〈v1 | ρ1〉 ∧ 〈e2 | σ | ρ1〉⇑ )
(SEQ-⇑)

〈e1, e2 | σ | ρ〉⇑

〈e1 | σ | ρ〉⇑ ∨ ( 〈e1 | σ | ρ〉 ⇓ 〈v | ρ1〉 ∧ 〈e2 | σ[x :T 7→v ] | ρ1〉⇑ )
(LET-⇑)

〈let x :T=e1 in e2 | σ | ρ〉⇑

〈e1 | σ | ρ〉⇑ ∨
〈e1 | σ | ρ〉 ⇓ 〈v | ρ1〉 ∧ 〈e2[y := l ] | σ | ρ1[l 7→ v ]〉⇑ l 6∈ dom(ρ1)

(LETMUT-⇑)
〈let mutable y :T=e1 in e2 | σ | ρ〉⇑

〈e | σ[wi:Ti 7→(let rec w :T=F in Fi, σ)]1≤i≤n | ρ〉⇑
(LETREC-⇑)

〈let rec w :T=F in e | σ | ρ〉⇑

〈e | σ | ρ〉⇑
(ASS-⇑)

〈l<-e | σ | ρ〉⇑

Figure 6: Coinductive characterization of divergence

Lemma 4 (Progress). Let 〈e | σ | ρ〉 be such that Σ |= 〈e | σ | ρ〉�. Either 〈e | σ |
ρ〉 ⇓ 〈v | ρ′〉 for some value v and store ρ′, or 〈e | σ | ρ〉⇑. Moreover, it is not the case
that 〈e | σ | ρ〉 ⇓ 〈v | ρ′〉 for some value v and store ρ′ and 〈e | σ | ρ〉⇑.

Proof:
The proof of the lemma is given in AppendixB.

Soundness of the type system for the big step semantics is expressed by the following
theorem. Also in this theorem the “either or” has to be interpreted as an “exclusive or”.

Theorem 5 (Soundness). Let 〈e | σ | ρ〉 be such that Σ |= 〈e | σ | ρ〉� and env(σ) |
Σ ` e : T . Either 〈e | σ | ρ〉 ⇓ 〈v | ρ′〉, where |= v :T and Σ′ |= ρ′ for some Σ′ ⊇ Σ,
or 〈e | σ | ρ〉⇑.
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Proof:
Let 〈e | σ | ρ〉 be such that Σ |= 〈e | σ | ρ〉� and env(σ) | Σ ` e : T . From Lemma
4, either 〈e | σ | ρ〉 ⇓ 〈v | ρ′〉 for some value v and store ρ′, or 〈e | σ | ρ〉⇑. In case
〈e | σ | ρ〉 ⇓ 〈v | ρ′〉 for some value v and store ρ′, from Lemma 3, we have that
|= v :T and Σ′ |= ρ′ for some Σ′ ⊇ Σ.

Let Loc(e) be the set of locations occurring in the expression e . An F# program
is a well-typed closed expression e such that Loc(e) = ∅. The initial configuration
associated with a program is 〈e | ∅ | [ ]〉. From Theorem 5, either 〈e | ∅ | [ ]〉 ⇓ 〈v | ρ〉,
where v has the same type of e , and Σ |= ρ for some Σ or 〈e | ∅ | [ ]〉⇑.

3. Intermediate language

3.1. Design Choices
In designing the intermediate language, IL, our goals where, on one side to have

a language close enough to the structure of the dynamic languages target of the trans-
lation, namely JavaScript and Python and on the other to allow us to give a simple
enough translation, which could be formally proved to preserve the semantics of the
original functional language, F#.

Our IL is an imperative language with three syntactic categories: expressions,
statements and blocks. We introduce the distinction between expressions and state-
ments as many target languages do. This facilitates the translation process and prevents
some errors while building the intermediate abstract syntax tree, see [3] for a similar
choice. The block structure is inspired by IntegerPython, see [17]. Variables are stat-
ically scoped, in the sense that, if there is a definition of the variable x in a block, all
the free occurrences of x in the block refer to this definition. However, we can have
occurrences of x preceding its definition. As in Python and JavaScript closures are
expressions, but sequence of expressions are not expressions.

Many F# constructs can be directly mapped to JavaScript (or Python), but when
this is not the case we obtain a semantically equivalent behavior by using the primi-
tives offered by the target language. E.g., in F# a sequence of expressions is itself an
expression, while in JavaScript and Python it is a statement.

Citing the example from [7], suppose we want to translate a piece of code that cal-
culates a fibonacci number, binds the result to a name and also stores the information if
the result is even or odd, see left-side of Fig. 7. The JavaScript translation can be easily
accommodated by wrapping the sequence into a function, and calling the function, as
the JavaScript program on the left-side of Fig. 8 shows (line 5÷ 11). However, the
same cannot be done in Python as its support for closures is partial. In particular, in
Python we have to define a temporary function, say temp, in the global scope and to
execute it we have to call temp in the place where the original sequence should be.
However, variables such as even will be out of the scope of their definition and this
would make the translation wrong. To obtain a behavior semantically equivalent, we
have to pass to temp the variable even, by reference, since it may be modified in the
body of temp. The resulting translation is show on the right-side of Fig. 8. Note that,
this problem is not present in JavaScript where the closure is defined and called in the
scope of even.
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We abstract from this specific problem and consider the more general problem of
moving “open code” from its context, replacing it with an expression having the same
behavior and, taking inspiration from work on dynamic binding, see [15] and recent
work by one of the author, we define a pair of boxing/unboxing constructs, that we
call: code, and exc. The construct code wraps “open code” (in this case a sequence
of expressions) providing the information on the environment needed for its execution,
that is the mutable and immutable variables occurring in it. This construct defines a
value, similar to a function closure. The construct exc is used to execute the code
contained in code. To do this it must provide values for the immutable variables, in
our example the variable z and bindings for the mutable variables to variables in the
current environment, since when executing the code we have to modify the variable
even.

With these constructs, the F# code on the left-side of Fig. 7 would be translated
into the IL code on the right-side of Fig. 7.

let z=7
let mutable even = false
let x =

let rec fib x =
if x < 3 then 1
else

fib(x - 1) + fib(x - 2)
let temp = fib z
even <- (temp % 2 = 0)
temp

x

{ def y = code(
{ def fib = fun x ->

if x < 3 then 1
else
(fib(x-1)+fib(x-2));

def temp = fib u;
w := temp % 2 = 0;
temp },

w->EV, u);
def z = 7;
def even = false;
def x = exc(y, EV->even, z);
x }

Figure 7: F# program and the corresponding IL translation

(function() {
var z = 7;
var even = false;
var x = (function () {

var fib = function (x) {
if (x < 3) return 1;
else
return fib(x-1)+fib(x-2)};

var temp = fib(z);
even = (temp % 2) == 0;
return temp })();

return x })();

def temp1(w, z):
def temp2(w, fib, x):
if (x < 3): return 1
else: return fib(x-1)+fib(x-2)

fib = lambda x: temp2(w, fib, x)
temp = fib(z)
w.value = ((temp % 2) == 0)
return temp

def __main__():
z = 7
even = False
wrapper1 = ByRef(even)
x = temp1(wrapper1, z)
even = wrapper1.value
return x

__main__();

Figure 8: JavaScript and Python translations
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3.2. Syntax and Semantics of IL
In the syntax of IL, given in Fig. 9, there are three (main) syntactic categories:

blocks, statements, and expressions.

bl :: = {se} block
se :: = st | e | se; se sequence
st :: = x<-e | def x=e statement
e :: = x | n | tr | fls | fun x->bl | e+e | if e then bl else bl | e e

| code(bl , y 7→ Y , x ) | exc(e,Y 7→ y , e) expression
v :: = n | tr | fls | fun x->bl | code(bl , y 7→ Y , x ) value

Figure 9: Syntax of F#

Blocks are sequences of statements or expressions, enclosed in brackets. In our
translation we flatten the nested structure of let constructs so we need blocks in
which definitions and expressions/statements may be intermixed. Moreover, since we
do not have a specific let rec construct use of a variable may precede its definition,
e.g., when defining mutually recursive (or simply recursive) functions. Statements
may be either assignments or variable definitions. Our compiler handles many more
statements, but these are enough to show the ideas behind the design of IL. Forward
definition in a block are permitted, E.g.,

{def f = fun y−> {x}; def x = 5; f 2}

correctly returns 5, whereas the following code would produce a runtime error:

{def x = 7; if (x > 3) then {def f = fun y−> {x}; f 2; def x = 5; 3} else {4}}

since when f is called the variable x, defined in the inner block, has not yet been
assigned a value. Instead, if x was not defined in the inner block, like in the following

{def x = 7; if (x > 3) then {def f = fun y−> {x}; f 2} else {4}}

the block would return 7, since x is bound in the enclosing block. This is also the
behavior in JavaScript and Python. The construct code is used to move a block, bl ,
outside its definition context. To produce a closed term, the mutable variables free in
bl , y , are unbound by associating them to global names Y not subject to renaming. The
variables x , instead, are the immutable variables free in bl , i.e., they are not modified
by the execution of bl . The metavariables, X , Y , Z are used to denote names. Values
are integers, booleans, functions (as for F#) and code.

In Fig. 10, we define the free variables of an expression, FV (e), and the free
variables of a block, FV (bl). Since we may have forward definitions to define the free
variable of a block we first define the variables occurring in a sequence of statements or
expressions, se and the variable defined in se . Note that, assignment does not define
a variable.

The operational semantics of IL is given by defining evaluation relations, for the
syntactic categories of IL. In particular, we define ⇓bl for blocks, ⇓sq for sequences, ⇓st
for statements and ⇓ex for expressions. Configurations will be pairs, “〈C | ρ〉 ”,which

13



• FV (e), is defined by

– FV (x ) = {x}
– FV (n) = FV (tr) = FV (fls) = ∅
– FV (fun x->{bl}) = FV (bl)− {x}
– FV (e1+e2) = FV (e1 e2) = FV (e1) ∪ FV (e2)

– FV (if e then {bl1} else {bl2}) = FV (bl1) ∪ FV (bl2) ∪ FV (e)

– FV (code(bl , y 7→ Y , x ))) = FV ({se})− {x , y}
– FV (exc(e,Y 7→ y , e)) = FV (e) ∪ {y} ∪ FV (e)

• Var(se), is defined by

– Var(x<-e) = FV (e) ∪ {x}
– Var(def x=e) = Var(e) = FV (e)

– Var(se1; se2) = Var(se1) ∪Var(se)

• def(se) is defined by

– def (x<-e) = def (e) = ∅
– def (def x=e) = {x}
– def (se1; se2) = def (se1) ∪ def (se2)

• FV ({se}) = Var(se)− def (se)

Figure 10: Free variables of expressions and blocks

first component is a syntactic construct: block, sequence, statement, or expression and
the second a store. As for F#we have to add to the syntax of expressions locations, l , as
they are generated during the evaluation of blocks.The syntax of the runtime language
is generated by adding the the clauses for expressions and statements that follows.

st :: = · · · | l<-e | def l=e

e :: = · · · | l | code(bl , l 7→ Y , x ) | exc(e,Y 7→ l , e)

The rules of the operational semantics are defined in Fig. 11.
The first rule, (BLOCK), defines the evaluation of a block. We first allocate the loca-

tions for the variables defined in the block and then return the result of the evaluation
of the sequence of statements or expressions of the block. The function def (se) map-
ping a sequence to the set of variables defined in it is defined in Fig. 10. We want
to model forward declarations in blocks and the fact that the evaluation of an access
to a variables before it is assigned a value is not permitted. To this extent, the initial
value of the locations is set to undefined, ?, so that an access to this location before
the evaluation of an assignment or a definition for the corresponding variable would be
stuck. Note that, this will never happen for IL programs which are translation of F#
programs. After this initial allocation a closed block will not contain free variables.
The evaluation for sequence of statements or expressions is obvious.
Rules (ASS) and (DEF) define the evaluation of a statement. They both modify the loca-
tion on the left-hand-side to the value resulting from the evaluation of the expression
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〈se[x := l ] | ρ[l 7→ ?]〉 ⇓sq〈v | ρ′〉 {x} = def (se) {l} ∩ dom(ρ) = ∅
(BLOCK)

〈{se} | ρ〉 ⇓bl〈v | ρ′〉

〈se1 | ρ〉 ⇓sq〈v1 | ρ1〉 〈se2 | ρ1〉 ⇓sq〈v2 | ρ2〉
(SEQ)

〈se1; se2 | ρ〉 ⇓sq〈v2 | ρ2〉

〈st | ρ〉 ⇓st〈v | ρ′〉
(ST)

〈st | ρ〉 ⇓sq〈v | ρ′〉

〈e | ρ〉 ⇓ex〈v | ρ′〉
(EXPR)

〈e | ρ〉 ⇓sq〈v | ρ′〉

〈e | ρ〉 ⇓ex〈v | ρ1〉
(ASS)

〈l<-e | ρ〉 ⇓st〈v | ρ1[l 7→ v ]〉

〈e | ρ〉 ⇓ex〈v | ρ1〉
(DEF)

〈def l=e | ρ〉 ⇓st〈v | ρ1[l 7→ v ]〉

(VAL)
〈v | ρ〉 ⇓ex〈v | ρ〉

ρ(l) = v
(LOC)

〈l | ρ〉 ⇓ex〈v | ρ〉

〈e1 | ρ〉 ⇓ex〈n1 | ρ1〉 〈e2 | ρ1〉 ⇓ex〈n2 | ρ2〉 ñ = ñ1 +int ñ2

(SUM)
〈e1+e2 | ρ〉 ⇓ex〈n | ρ2〉

〈e | ρ〉 ⇓ex〈v | ρ1〉
(v = tr ∧ 〈bl1 | ρ1〉 ⇓bl〈v | ρ2〉) ∨ (v = fls ∧ 〈bl2 | ρ1〉 ⇓bl〈v | ρ2〉)

(IF)
〈if e then bl1 else bl2 | ρ〉 ⇓ex〈v | ρ2〉

〈e1 | ρ〉 ⇓ex〈fun x->bl | ρ1〉 〈e2 | ρ1〉 ⇓ex〈v | ρ2〉
〈bl [x := l ] | ρ2[l 7→ v ]〉 ⇓bl〈v ′ | ρ3〉 l 6∈ dom(ρ2)

(APP)
〈e1 e2 | ρ〉 ⇓ex〈v ′ | ρ3〉

〈e | ρ〉 ⇓ex〈code(bl , y 7→ Y , x ) | ρ1〉 〈e | ρ1〉 ⇓ex〈v | ρ2〉
bl ′ = (bl [x := l

′
])[yi := lj | Yi = Zj 1 ≤ i ≤ n] Y ⊆ Z

〈bl ′ | ρ2[l
′ 7→ v ]〉 ⇓bl〈v ′ | ρ3〉 {l

′} ∩ dom(ρ2) = ∅
(CODE)

〈exc(e,Z 7→ l , e) | ρ〉 ⇓ex〈v ′ | ρ3〉

Figure 11: Big-step operational semantics for IL

on the right-hand-side. So, after this, the value of l is no longer undefined.
The remaining rules define the evaluation of expressions. Rule (VAL) returns the value
and rule (LOC) the value contained in the location. The rules for + and if are obvious.
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In rule (APP), we first evaluate the expression on the left-hand-side, that must result in a
function, then the actual parameter of the function is evaluated. A location is allocated
in the memory, assigning to it its value and the location is substituted for the formal
parameter in the body of the function. Note that, being in an imperative language, the
formal parameter could be modified in the body of the function, however, this change
would not be visible in the calling environment, since the location is new. Finally, the
body of the function is evaluated. In the evaluation of the exc construct, rule (CODE),
the first argument has to evaluate to a code construct. The body of the construct is bl
and the names of its unbindings Y should be a subset of the names of the rebindings
provided by exc, which are Z . The execution proceeds with the evaluation of the
expressions in e , whose value should be associated to the variables x . The notation
〈e | ρ〉 ⇓ex〈v | ρ′〉 stands for

〈e1 | ρ0〉 ⇓ex〈v1 | ρ1〉 〈e2 | ρ1〉 ⇓ex〈v2 | ρ2〉 · · · 〈en | ρn−1〉 ⇓ex〈vn | ρn〉

where ρ0 = ρ and ρn = ρ′. As for application, new locations l
′

are allocated in the
store, associated with the values v and substituted for the variables x in bl . Instead, the
unbound variables y are substituted with the locations associated via the correspon-
dence of the names in Y and Z . So through assignment to the (local) variables y the
variable in the execution environment are modified.

Let C be an IL syntactic construct, Loc(C), is the set of locations occurring in C.
We define well-formed configurations.

Definition 6. 1. An IL store ρ is location closed if for all l ∈ dom(ρ), we have
that FV (ρ(l)) = ∅ and Loc(ρ(l)) ⊆ dom(ρ).

2. The IL configuration 〈C | ρ〉 is well-formed if ρ is location closed, FV (C) = ∅
and Loc(C) ⊆ dom(ρ).

The operational semantics of Fig. 11 preserves well-formed configurations, as the fol-
lowing theorem states.

Theorem 7. Let 〈C | ρ〉 be well-formed, if 〈C | ρ〉 ⇓ 〈v | ρ′〉, then 〈v | ρ′〉 is
well-formed.

Proof:
By induction on the derivation of ⇓ . We consider only the rules, (BLOCK), (APP) and
(CODE). For all the other rules the result follows from the induction hypotheses.

Rule (BLOCK) From the fact that 〈{se} | ρ〉 is well-formed, ρ is location closed, FV ({se}) =
∅ and Loc({se}) ⊆ dom(ρ). From FV ({se}) = ∅ and definition of Var in
Fig. 10 we have that Var(se) ⊆ def (se) = {x}. Therefore, FV (se[x := l ]) =
∅ and Loc(se[x := l ]) ⊆ dom(ρ[l 7→ ?]). Moreover, ρ[l 7→ ?] is location closed.
So 〈se[x := l ] | ρ[l 7→ ?]〉 is well-formed.
Let 〈se[x := l ] | ρ[l 7→ ?]〉 ⇓sq 〈v | ρ′〉, by induction hypothesis 〈v | ρ′〉 is
well-formed.

Rule (APP) From the fact that 〈e1 e2 | ρ〉 is well-formed, ρ is location closed, FV (e1) =
∅, FV (e2) = ∅, Loc(e1) ⊆ dom(ρ) and Loc(e2) ⊆ dom(ρ). Therefore, 〈e1 | ρ〉
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is well-formed.
Let 〈e1 | ρ〉 ⇓ex〈fun x->bl | ρ1〉, by induction hypotheses 〈fun x->bl | ρ1〉 is
well-formed. Since dom(ρ) ⊆ dom(ρ1) we have that Loc(e2) ⊆ dom(ρ1), so
〈e2 | ρ1〉 is well-formed.
Let 〈e2 | ρ1〉 ⇓ex〈v ′ | ρ2〉, by induction hypotheses 〈v ′ | ρ2〉 is well-formed.
From 〈fun x->bl | ρ1〉well-formed, we have that FV (bl) ⊆ {x} and Loc(bl) ⊆
dom(ρ1) so also Loc(bl) ⊆ dom(ρ2). From 〈v ′ | ρ2〉 well-formed, we get
FV (v ′) = ∅ and Loc(v ′) ⊆ dom(ρ2). Therefore, FV (bl [x := l ]) = ∅,
ρ2[l 7→ v ′] is location closed and Loc(bl [x := l ]) ⊆ dom(ρ2[l 7→ v ′]). There-
fore, 〈bl [x := l ] | ρ2[l 7→ v ′]〉 is well-formed.
Let 〈bl [x := l ] | ρ2[l 7→ v ′]〉 ⇓bl〈v | ρ′〉, by induction hypotheses, 〈v | ρ′〉 is
well-formed.

Rule (CODE) From the fact that 〈exc(e,Z 7→ l , e) | ρ〉 is well-formed, ρ is location
closed, FV (e) = ∅, FV (e) = ∅, Loc(e) ⊆ dom(ρ), Loc(e) ⊆ dom(ρ) and
{l} ⊆ dom(ρ). Therefore, 〈e | ρ〉 is well-formed.
Let 〈e | ρ〉 ⇓ex〈code(bl , y 7→ Y , x ) | ρ1〉, by induction hypotheses 〈code(bl , y 7→
Y , x ) | ρ1〉 is well-formed. From the fact that ρ1 is location closed we have that
〈e | ρ1〉 is well-formed.
Let 〈e | ρ1〉 ⇓ex 〈v | ρ2〉, by induction hypotheses, 〈v | ρ2〉 is well-formed.
Let bl ′ = (bl [x := l

′
])[yi := lj | Yi = Zj 1 ≤ i ≤ n]. From the fact that

FV (code(bl , y 7→ Y , x )) = ∅ and definition of Fig. 10 we have that FV (bl) ⊆
{x , y} and so FV (bl ′) = ∅. From Loc(bl) ⊆ dom(ρ1) and dom(ρ1) ⊆
dom(ρ2) we have that Loc(bl ′) ⊆ dom(ρ2[l

′ 7→ v ]). Moreover, 〈v | ρ2〉 well-
formed implies that FV (v) = ∅, Loc(v) ⊆ dom(ρ2) and therefore ρ2[l

′ 7→ v ]

is location closed. Therefore, 〈bl ′ | ρ2[l
′ 7→ v ]〉 is well-formed.

Let 〈bl ′ | ρ2[l
′ 7→ v ]〉 ⇓bl 〈v | ρ′〉, by induction hypotheses 〈v | ρ′〉 is well-

formed.

An IL program is a closed block, bl , such that Loc(bl) = ∅. The initial configuration
for a program is 〈{bl} | [ ]〉. An initial configuration is, therefore, well-formed. From
Theorem 7 we derive that the execution of an IL program produces a well-formed
configuration.

4. Translation of Core F# to IL

4.1. Challenges of the translation

In our translation we flatten the let constructs transforming them into definitions
of the corresponding variables followed by the translation of the expression in their
body. This may lead, in conjunction to the fact that in an IL block we may have
forward definitions to a wrong translation of an F# expression. E.g., consider the F#
expression on the top left side of Fig. 12. If its translation was the IL code on the top
right, it would be incorrect, since in the IL code the occurrence of y in the body of f

is bound to the definition of y that follows. Therefore the F# expression evaluates to
3 whereas its translation in IL evaluates to 5. Moreover, the flattening of consecutive
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let constructs, may lead to defining the same variable twice in a block, as the example
on the bottom part of Fig. 12 shows. Again the F# expression evaluates to 3, whereas
its translation in IL evaluates to 5 and has two declarations of the variable y in the
same block. (In JavaScript it is possible, even though strongly discouraged, to have
more than one var declaration of the same variable.)

let y = 3 in
if ( y = 3) then (

let f = (fun x -> y) in
let y = 5 in

(f y) )
else 4

{ def y = 3;
if ( y = 3) then {
def f = (fun x -> { y });
def y = 5;
(f y) }

else 4 }

let y = 3 in
let f = (fun x -> y) in

let y = 5 in
(f y) )

{ def y = 3;
def f = (fun x -> { y });
def y = 5;
(f y) }

Figure 12: Wrong binding of y in the the body of f and duplicated declaration of y

In the translation we use renaming to resolve both these problems, leading to an
IL program that has the same semantics of the original F# expression and in which
variables have at most one declaration in each block.

4.2. Formal definition of the translation

We define three translations of F# expressions. The first to IL expressions, [[·]]I,Mex ,
the second to IL sequences, [[·]]I,Msq and the third to IL blocks, [[·]]I,Mbl . The translations
are parametric in the sets of the immutable variables, I and mutable variables, M ,
of the context of the F# expression that is translated. The translations produce, in
addition to an IL expression/sequence/block also variable declarations bound to code

expressions. The metavariable δ denotes a declaration of a variable “def x=e” and δ
a sequence of declarations separated by “;” (semicolon).

Before giving the clauses of the formal translation, we introduce the definition of
the wrapping needed to extrude a block from its definition environment and how the
construct exc rebinds it in the runtime environment.

Definition 8. Let se be an IL sequence and let I = {x} and M = {y} be sets of
variables such that I ∩M = ∅ and FV (se) ⊆ I ∪M . Define seqToExp(se, I,M)
to be (exc(z ,Y 7→ y , x ), δ) where δ is def z=code({se}, y 7→ Y , x ), z is a fresh
variable and Y are fresh names.

In the following we give the translations of F# expressions into IL code. The main
translation is the one from F# expressions into sequences of statements or expressions.
However, to define it we need to define also the translation into IL blocks and expres-
sions. The three definitions are mutually recursive.

Definition 9. Let e be an F# expression such that x :T , y :T
′
! | ∅ ` e : T for some T

and let I = {x} and M = {y}. The functions [[e]]I,Msq , [[e]]I,Mex , [[e]]I,Mbl are defined as
follows.
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(sq) Define [[e]]I,Msq from F# expressions into IL sequences of statements or expres-
sions by:

1. if e is n or tr or fls or x or l , then [[e]]I,Msq = ( e, ∅ )

2. [[fun x :T->e]]I,Msq = ( fun x->bl , δ ) where [[e]]
I∪{x},∅
bl =( bl , δ )

3. [[e1+e2]]I,Msq = ( e ′1+e ′2, δ
1
; δ

2
) (or [[e1 e2]]I,Msq = ( e ′1 e ′2, δ

1
; δ

2
)) where

[[ei]]
I,M
ex = ( e ′i, δ

i
) (1 ≤ i ≤ 2)

4. [[if e1 then e2 else e3]]I,Msq = ( if e ′ then bl1 else bl2, δ; δ
1
; δ

2
) where

[[e1]]I,Mex = ( e ′, δ ) and [[ei]]
I,M
bl = ( bl i, δ

i
) (2 ≤ i ≤ 3)

5. [[e1, e2]]I,Msq = ( se1; se2, δ
1
; δ

2
) where [[ei]]

I,M
sq =( sei, δ

i
) (1 ≤ i ≤ 2)

6. (a) if x 6∈ I∪M then [[let x :T=e1 in e2]]I,Msq = ( def x=e ′1; se, δ
1
; δ

2
)

where [[e1]]I,Mex = ( e ′1, δ
1

) and [[e2]]I∪{x},Msq =( se, δ
2

)
(b) if x ∈ I ∪M , then [[let x :T=e1 in e2]]I,Msq =

[[let z :T=e1 in (e2[x := z ])]]I,Msq where z is a fresh variable

7. (a) if y 6∈ I∪M , then [[let mutable y :T=e1 in e2]]
I,M
sq = ( def y=e ′1; se, δ

1
; δ

2
)

where [[e1]]I,Mex = ( e ′1, δ
1

) and [[e2]]I,M∪{y}sq =( se, δ
2

)
(b) if y ∈ I ∪M , then [[let mutable y :T=e1 in e2]]

I,M
sq =

[[let mutable z :T=e1 in (e2[y := z ])]]I,Msq where z is a fresh vari-
able.

8. (a) if {w} ∩ (I ∪M) = ∅, then
[[let rec w :T=F in e]]I,Msq = ( defw=F

′
; se, δ

1
; · · · ; δ

m
; δ
′
) where

[[Fj ]]
I∪{w},M
ex = (F ′j , δ

j
) ( 1 ≤ j ≤ m) and [[e]]I∪{w},Msq =( se, δ

′
),

(b) if {w} ∩ (I ∪M) 6= ∅, then [[let rec w :T=v in e]]I,Msq =

[[let rec z :T=(v [w := z ]) in (e[w := z ])]]I,Msq where z are fresh vari-
ables

9. [[x<-e]]I,Msq = ( x<-e ′, δ ) where [[e]]I,Mex =( e ′, δ ).

(ex) Define [[e]]I,Mex from F# expressions into IL expressions as follows. Let [[e]]I,Msq

be ( se, δ ),

– if se = e ′ for some expression e ′, then [[e]]I,Mex = ( se, δ )

– otherwise [[e]]I,Mex = ( e ′, δ; δ ) where seqToExp(se, I,M) = ( e ′, δ ).

(bl) Define [[e]]I,Mbl from F# expressions into IL blocks as follows. Let [[e]]I,Msq =

( se, δ ). Then [[e]]I,Mbl = ( {se}, δ ).

Translation of constants, locations and variables is the identity, see clause 1 of
the previous definition. The translation of functions, clause 2, produces a function
whose body is the translation of the body into a block of the original function. In
the translation of the body of the function the variable x is added to the set of free
immutable variables I . For sums and applications, clause 3, we first translate into
expressions, e1 and e2, and then produce the corresponding construct and for the if
construct, clause 4, the condition is translated into an expression whereas the branches
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are translated into blocks. The translation of a sequence, clause 5, is the sequence of the
sequences of statements or expressions which are the translations of its subexpressions.

The translations of the let constructs, clauses 6, 7 and 8 produce a sequence in
which first are the definitions of the variables bound to the translation into expressions
of the associated expressions, followed by the translation into a sequence of the body
of the let construct. For the translations there are two clauses depending on the fact
that the variables defined are or are not already present in the context.
In case the variable defined is not already present in the context, to translate the let

construct to an IL sequence, clause 6, we produce a definition of the variable x bound
to the translation of e1 into an IL expression followed by the translation of e2 into a
sequence. For the translation of e2 the variable x is added to the immutable variables
of the context.
If the variable is already present in the context (either as immutable or mutable) the
let construct is α renamed substituting x with a fresh variable z . This insures that z
is not in I ∪M or occurs in the let expression.
The translation of let mutable, clause 7, differs only in the fact that in the translation
of e2, the variable y , being mutable, is added to M .
The translation of the letrec construct, clause 8, is similar to the one of the let

construct, just considering the fact that instead of defining a variable we define a set of
variables {w} (all immutable) and that the variables in {w} are also free in the function
definitions F .

Finally, the translation of assignment, clause 9, produces an assignment statement
in which the variable is assigned the translation to an expression of the expression on
the right-hand-side of the assignment expression.

The correctness of the translation of the let constructs, relays on the fact that the
renaming of variables used does not change the operational semantics of expressions,
as the following lemma asserts. In the lemma, if σ = x :T 7→v and z is such that
z 6∈ {x} ∪ FV (v). With σ[xi := z ] we denote the stack σ in which xi is substituted
with z , i.e., [x1 · · · xi−1 z xi+1 · · · xn:T 7→v ].

Lemma 10. Let σ = x :T 7→v and 〈e | σ | ρ〉 be such that Σ |= 〈e | σ | ρ〉�. Let
x ′ = xr1 · · · xrn be such that {x ′} ⊆ {x} and z be fresh variables; 〈e | σ | ρ〉 ⇓
〈v | ρ1〉 if and only if 〈e[x ′ := z ] | σ[x ′ := z ] | ρ〉 ⇓ 〈v ′ | ρ′1〉 where v = v ′,
dom(ρ1) = dom(ρ′1) and for all l ∈ dom(ρ1), ρ1(l) = ρ′1(l).

Proof:
By an easy induction on the derivation of 〈e | σ | ρ〉 ⇓ 〈v | ρ′〉, using the fact that
equality between values is up-to α-conversion.

For the translation of the F# construct into an IL expressions, we first translate
the construct to a sequence of statements or expressions. If the result is an expression
(clauses (1)÷(9)) then we return it, otherwise we return the exc construct generated by
the function seqToExp and the definition of a new variable bound to a code expression,
see Definition 8. Note that the sets of mutable and immutable variable of the context
are needed to generate the correct matching for the expressions exc and code.

For the translation of the F# construct into an IL block, we first translate the con-
struct to a sequence of statements or expressions and then add the curly brackets.
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The following lemma asserts the properties of the variables resulting from the trans-
lation of an F# expression into an IL sequence or expression.

Lemma 11. Let x y be a sequence of distinct variables. Let e be such that FV (e) ⊆
{x , y} and Loc(e) = ∅. Let [[e]]{x},{y}sq = ( se, δ ) where z = def (δ) and w =
def (se). Then

1. the variables in the sequence x y w z are distinct
2. FV (se) ⊆ {x , y , z}
3. for all def z=e ′ ∈ δ, we have that FV (e ′) ⊆ {z}
4. for all in z ∈ def (δ) there is only one def z= in δ and
5. for all in w ∈ def (se) there is only one def w= in se .

Properties 1 ÷ 4 hold also for [[e]]{x},{y}ex = ( se, δ ). Note that in this case since se is
an expression, {w} = ∅.

Proof:
By induction on the definition of the translation relations ≈sq and ≈ex (Definition
16(sq) and (ex)). The renaming in the clauses for the let constructs is needed to enforce
the property that the variables in def (se) are disjoint from the one in {x y}. The
variables in {z}, introduced in the translation [[e]]{x},{y}ex , are fresh so they are disjoint
from any other variable.

4.3. Correctness of the Translation

The translation preserves the dynamic semantics of the F# expressions. That is
consider an F# program e and its translation in then IL program bl . We want to show
that, if the evaluation in F# of e in the empty store produces a primitive value v , then
the evaluation of the block bl in the empty store in IL produces v . Moreover, if the
evaluation in F# of e does not terminate, then also the the evaluation of the block bl in
IL does not terminate.

Theorem 12 (Correctness). Let e be an F#program and let [[e]]∅,∅sq =( se, δ ). Then
〈e | [ ] | [ ]〉 ⇓ 〈v | ρ∗〉 for some ρ∗ and v either integer or boolean value if and only if
〈{δ; se} | [ ]〉[ ] ⇓bl〈v | ρ′∗〉 for some ρ′∗.

The proof of the theorem relays on Lemmas 18 and 19 and will be given at the end of
the current section.

To prove the result we define a translation relations between F# values and IL
values and between well-formed configurations of F#and well-formed configurations
of IL. Then we show that if the evaluation of an F# configuration converges, then the
evaluation of the related IL configuration converges and the result is a related value,
Lemma 18; moreover, if the evaluation of an F# configuration does not converge to a
value, then the evaluation of the related IL configuration does not converge, Lemma
19. Therefore, since an integer/boolean value in F# is translated into the same integer/-
boolean value in IL this proves the result.

Looking at the translation from F# to IL we can see that both immutable and mu-
table variables of F# are translated into IL (mutable) variables that are allocated in the
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store. Moreover, when we translate to an expression an F# expression whose transla-
tion produces a sequence we introduce new variables, see Definition 8, which will be
bound to code constructs. So, the store, ρ′, of a runtime IL configuration produced by
the execution of the translation of an F# expression can be partitioned in two parts, ρM

and ρI , where ρM correspond to store of the F# configuration, containing the values of
the mutable variables and ρI records the values of the F# immutable variables and con-
tains the values of the variables bound to code constructs. We assume that the names
of the location in ρM are equal to the corresponding ones in the F# store. Looking at
the evaluation rules of Fig. 11, we can see that, the locations in ρI will be assigned ?,
by the rule (BLOCK), when they are allocated in the store, before starting the execution of
the sequence of statements or expressions of the block containing the definition of the
immutable variables. Then they are assigned a value, when executing the def state-
ment associated to their definition. After this, the value of the associated location does
not change. In the following, when need to identify the two portions of the IL store we
denote ρ′ by ρI +ρM . The partitioning is always identified by the fact that the name of
locations in ρM coincide with the one of the locations in the corresponding F# store.

We now define the representation on the IL memory of a sequence of code con-
structs.

Definition 13. Let ρ′ be an IL store and δ be

def z1=code(bl1, y
1 7→ Y

1
, x 1); · · · ; def zm=code(blm, y

m 7→ Y
m
, xm)

δ is represented by l in ρ′ if {l} ⊆ dom(ρ′) and ρ′(li) = code(bl i[z := l ], y i 7→ Y
i
, x i)

(1 ≤ i ≤ m).

To define the correspondence between an F# configuration and the IL configuration
which arises from its translation we first define a translation relation between F# val-
ues and IL values. For function values, we need the IL store since the (immutable)
variables of the stack are translated in IL variables, which are, at runtime, allocated
in the store. Moreover, the IL store contains the code constructs generated by the
translation. So we relate an F# value with an IL configuration containing a value.

We assume equality between primitive values in F# and IL. In order to define the
equivalence between an F# function (or recursive function) F and its IL translation,
say F ′ we have to establish equivalence between the F# values associated to variables
in the definition stack of F , and the IL value contained in the location of the IL store
corresponding. To break circularity, we define the relation by induction on the depth
of the scope in which the value is defined, starting from primitive values and top level
functions that have an empty definition stack.

Definition 14. The translation relation between F# values and IL configurations, ∼=,
is defined by v ∼= 〈v ′ | ρ′〉, if for some k ∈ N, v ∼=k 〈v ′ | ρ′〉, where ρ′ = ρI + ρM ,
and the relations ∼=k are defined by induction on k as follows

1. ∼=0, is defined by
(a) n ∼=0 〈n | ρ′〉, tr ∼=0 〈tr | ρ′〉, fls ∼=0 〈fls | ρ′〉, for any ρ′

(b) (F , ∅) ∼=0 〈v ′[z := l
z
] | ρ′〉, if v ′, z , and l

z
are such that
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i. [[F ]]∅,{y}sq = ( v ′, δ ) for any y and
ii. δ is represented by l

z
in ρ′

(c) (let rec w :T=F in Fi, ∅) ∼=0 〈v ′i [w z i := l
w
l
zj

] | ρ′〉, if 1 ≤ i ≤ m

and there are l
w

, {lw} ⊆ dom(ρI), such that for all j, 1 ≤ j ≤ m,

i. [[Fj ]]
{w},{y}
sq = ( v ′j , δ

j
), for any y , z j = def (δ

i
),

ii. ρ′(lwj ) = v ′j [w z j := l
w
l
zj

] and

iii. δ
j

is represented by l
zj in ρ′.

2. ∼=k+1, is defined by
(a) (F , σ) ∼=k+1 〈v ′[x z := l

x
l
z
] | ρ′〉, if v ′, x , z , l

x
and l

z
are such that

i. x = dom(σ), {lx} ⊆ dom(ρI),
ii. [[F ]]{x},{y}sq = ( v ′, δ ) for any y ,

iii. δ is represented by l
z

in ρ′ and
iv. for all i, 1 ≤ i ≤ n, let xi:Ti 7→vi ∈ σ, we have that vi ∼=h 〈ρ′(lxi ) |

ρ′〉, for some h ≤ k
(b) (let rec w :T=F in Fi, σ) ∼=k+1 〈v ′i [x w z i := l

x
l
w
l
zi

] | ρ′〉, if 1 ≤
i ≤ m and there are l

w
and l

x
, {lw, lx} ⊆ dom(ρI), such that for all j,

1 ≤ j ≤ m,

• i. [[Fj ]]
{x ,w},{y}
sq = ( v ′j , δ

j
), for any y , z j = def (δ

i
),

ii. ρ′(lwj ) = v ′j [x w z j := l
x
l
w
l
zj

],

iii. δ
j

is represented by l
zj in ρ′,

• for all p, 1 ≤ p ≤ n, let xp:Tp 7→vp ∈ σ, we have that vp ∼=h 〈ρ′(lxp ) |
ρ′〉, for some h ≤ k.

All the locations involved in the previous definition, l
x

, l
z

and l
w

are in the domain
of ρI . So the translation relation between F# and IL values depends only on ρI .
Therefore, since, as we will prove evaluation of IL constructs does not modify ρI , the
existing relations between F# and IL values are preserved by evaluation. If the value
of a recursive definition is in the translation relation with an IL configuration, then the
function value which is the result of the lookup function of Definition 1 is also in the
translation relation with the IL configuration.

Lemma 15. If for all i, 1 ≤ i ≤ mwe have (let recw :T=F inFi, σ) ∼= 〈v ′i [x w z i :=

l
x
l
w
l
zi

] | ρ′〉, then for all j, 1 ≤ j ≤ m we have

(Fj , σ[wi:Ti 7→(let rec w :T=F in Fi, σ)]1≤i≤m) ∼= 〈v ′j [x w z i := l
x
l
w
l
zi

] | ρ′〉.

Proof:
Immediate from Definition 14.2 (b) and (c).

We define two translation relations between well-typed F# configurations and well-
formed IL configurations. The first and main relation,≈sq , between F# configurations
and IL configurations containing a sequence of statements and expressions, and the
second, ≈ex, in which the IL configuration contains an expression.
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Definition 16. Let 〈e | σ | ρ〉 be an F# configuration such that Σ |= 〈e | σ | ρ〉�
where Σ = l :T and x = dom(σ).
Let e◦ be such that e = e◦[y := l

y
], env(σ), y :T

y
! | ∅ ` e◦ : T for some T and

l
y
:T

y ⊆ Σ.
Let [[e◦]]{x},{y}sq = ( se◦, δ ) where z = def (δ) and w = def (se◦).

1. Σ, x , y |= 〈e | σ | ρ〉 ≈sq 〈se | ρ′〉 if 〈se | ρ′〉 is well-formed
(a) dom(ρ) = dom(ρM ) ⊆ dom(ρ′) (so ρ′ = ρI+ρM ) and there are mutually

disjoint sets of locations {lx}, {lz}, {lw} disjoint from {ly} such that
(b) se = se◦[x y w z := l

x
l
y
l
w
l
z
]

(c) {lx} ⊆ dom(ρI), δ is represented by l
z

in ρ′ and ρ′(l
w

) = ?
(d) for all i, 1 ≤ i ≤ n, let xi:Ti 7→vi ∈ σ, we have that vi ∼= 〈ρ′(lxi ) |

ρI + ρM 〉,
(e) for all l ∈ dom(ρ), we have that ρ(l) ∼= 〈ρ′(l) | ρI + ρM 〉.

2. Σ, x , y |= 〈e | σ | ρ〉 ≈ex 〈e ′ | ρ′e〉 if there are se and ρ′ such that,
Σ, x , y |= 〈e | σ | ρ〉 ≈sq 〈se | ρ′〉, and

(a) if se is an expression, then e ′ = se and ρ′e = ρ′

(b) otherwise e ′ = exc(l′,Y 7→ l
y
, l
x
) and ρ′e is such that:

ρ′e(l
′) = code({se◦}[z := l

z
], y 7→ Y , x ) where l ′ 6∈ dom(ρ′) and

for all l ∈ dom(ρ) ∪ {lx, lz} we have that ρ′e(l) = ρ′(l).

Note that, given an F# expression e and the sequences of variables x and y the IL se-
quence se is uniquely determined. Moreover, if e is not a let expression or a sequence
of expressions or an assignment the two definitions, ≈sq and ≈ex coincide.

Lemma 11 insures that the relation ≈se is well defined, in particular, that in clause
1(b), the variables in the sequence x y w z are all distinct and and the free variables of
se◦ should be a subset of {x , y , z} so FV (se) = ∅.

The following lemma shows how the translation relation between an F# expression
e and an IL sequence se induces relations between the subexpressions of e and se . of
se .

Lemma 17. Let Σ, x , y |= 〈e | σ | ρ〉 ≈sq 〈se | ρ′〉 be such that e = e◦[y := l
y
]

where l
y
:T

y ⊂ Σ and env(σ), y :T
y
! | ∅ ` e◦ : T for some T . Then

1. if e=x , then x = xi for some xi ∈ {x} and se = lxi
2. if e=n or e=tr or e=fls, then se=e and e ∼= 〈se | ρ′〉
3. if e=fun x :T1->e1, then se=fun x->bl for some bl , and (e, σ) ∼= 〈se | ρ′〉
4. if e=l for some location l , then l = lyj for some lyj ∈ l

y
and se = lyj

5. if e=e1+e2, then T = int,
(a) e◦ = e◦1+e◦2 for some e◦i such that ei = e◦i [y := l

y
],

env(σ), y :T
y
! | ∅ ` e◦i : int and env(σ) | ly:T

y ` ei : int (1 ≤ i ≤ 2)

(b) [[e◦i ]]{x},{y}ex = ( se◦i , δ
i
) for some δ

i
with def (δ

i
) = {z i} and l

zi such that
δ
i

is represented by l
zi in ρ′ (1 ≤ i ≤ 2)

(c) se = e ′1+e ′2 where e ′i = se◦i [x y z i := l
x
l
y
l
zi

] (1 ≤ i ≤ 2)

6. if e=if e1 then e2 else e3 then
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(a) e◦ = if e◦1 then e◦2 else e◦3 for some e◦i such that ei = e◦i [y := l
y
]

(1 ≤ i ≤ 3)
env(σ), y :T

y
! | ∅ ` e◦1 : bool env(σ) | ly:T

y ` e1 : bool
env(σ), y :T

y
! |∅ ` e◦j : T env(σ) | ly:T

y ` ej : T (2 ≤ j ≤ 3)

(b) [[e◦i ]]{x},{y}sq = ( se◦i , δ
i
) for some δ

i
with def (δ

i
) = {z i} and l

zi such that

δ
i

is represented by l
zi in ρ′ (2 ≤ i ≤ 3),

(c) se = if e ′1 then {se2} else {se3}, where
i. Σ, x , y |= 〈e1 | σ | ρ〉 ≈ex 〈e ′1 | ρ′〉,

ii. sei = se◦i [x y w i z i := l
x
l
y
l
w
l
zi

] where def (se◦i ) = {w} and
ρ′(l

wi
) = ? (2 ≤ i ≤ 3)

7. if e = e1 e2, then
(a) e◦ = e◦i e◦i for some e◦i such that ei = e◦i [y := l

y
] (1 ≤ i ≤ 2)

env(σ), y :T
y
! | ∅ ` e◦1 : T ′ → T and env(σ) | ly:T

y ` e1 : T ′ → T
env(σ), y :T

y
! | ∅ ` e◦2 : T ′ and env(σ) | ly:T

y ` e2 : T ′ for some T ′

(b) [[e◦i ]]{x},{y}ex = ( se◦i , δ
i
) for some δ

i
with def (δ

i
) = {z i} and l

zi such that
δ
i

is represented by l
zi in ρ′ (1 ≤ i ≤ 2)

(c) se = e ′2 e
′
1 where e ′i = se◦i [x y z i := l

x
l
y
l
zi

] (1 ≤ i ≤ 2)

8. if e=e1, e2 then
(a) e◦ = e◦1 , e

◦
2 for some e◦i such that ei = e◦i [y := l

y
], env(σ), y :T

y
! | ∅ `

e◦i : Ti and env(σ) | ly:T
y ` ei : Ti (1 ≤ i ≤ 2) for some Ti such that

T2 = T

(b) [[e◦i ]]{x},{y}sq = ( se◦i , δ
i
) for some δ

i
with def (δ

i
) = {z i} and l

zi such that

δ
i

is represented by l
zi in ρ′ (1 ≤ i ≤ 2)

(c) se = se1; se2, where sei = se◦i [x y w i z i := l
x
l
y
l
w
l
zi

] where def (se◦i ) =

{w i} and ρ′(l
wi

) = ? (1 ≤ i ≤ 2)

9. if e=let x :T ′=e1 in e2 and x 6∈ {x , y}, then
(a) e◦=let x :T ′=e◦1 in e◦2 for some e◦i such that ei = e◦i [y := l

y
] (1 ≤ i ≤

2)
env(σ) | ∅ ` e◦1 : T ′ and env(σ) | ly:T

y ` e1 : T ′

env(σ), x :T , y :T
y
! | ∅ ` e◦2 : T and env(σ), x :T | ly:T

y ` e2 : T

(b) [[e◦1 ]]I,Mex = ( e ′′1 , δ
1

) and [[e◦2 ]]{x x},{y}
sq = ( se◦2, δ

2
) with def (δ

i
) = {z i}

such that δ
i

is represented by l
zi in ρ′ (1 ≤ i ≤ 2),

(c) se = def lx=e ′1; se2 where
i. Σ, x , y |= 〈e1 | σ | ρ〉 ≈ex 〈e ′1 | ρ′〉 for e ′1 = e ′′1 [x y z 1 := l

x
l
y
l
z1

],
ii. se2 = se◦2[x x y w z 2 := lx l

x
l
y
l
w
l
z2

] where ρ′(lx) =?, w = def (se◦2)
and l

w
are such that ρ′(l

w
) = ?.

10. if e=let mutable y :T=e1 in e2 and y 6∈ {x , y}, then
(a) e◦=let mutable y :T ′=e◦1 in e◦2 for some e◦i such that ei = e◦i [y := l

y
]

(1 ≤ i ≤ 2) and for ly 6∈ {l
y} we have

env(σ) | ∅ ` e◦1 : T ′ and env(σ) | ly:T
y ` e1 : T ′

env(σ),y :T ′!,y :T
y
!|∅ ` e◦2 : T and env(σ)|ly:T ′,l

y
:T

y ` e2[y := ly] : T

(b) [[e◦1 ]]I,Mex = ( e ′′1 , δ
1

) and [[e◦2 ]]{x},{y y}
sq = ( se◦2, δ

2
) with def (δ

i
) = {z i}

such that δ
i

is represented by l
zi in ρ′ (1 ≤ i ≤ 2),
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(c) se = def ly=e ′1; se2 where
i. Σ, x , y |= 〈e1 | σ | ρ〉 ≈ex 〈e ′1 | ρ′〉 for e ′1 = e ′′1 [x y z 1 := l

x
l
y
l
z1

],
ii. se2 = se◦2[x y y w z 2 := l

x
ly l

y
l
w
l
z2

] where ρ′(ly) =?, w = def (se◦2)

and l
w

are such that ρ′(l
w

) = ?.
11. if e=let rec w :T=F in e1 and {w} ∩ {x , y} = ∅, then

(a) e◦=let rec w=F in e◦1 is such that e1=e◦1 [y := l
y
]

env(σ),w :T , y :T
y
! | ∅ ` e◦1 : T and env(σ),w :T | ly:T

y ` e1 : T
env(σ),w :T | ∅ ` Fj : Tj (1 ≤ j ≤ m),

(b) [[e◦1 ]]{x ,w},{y}sq = ( se◦1, δ ) with def (δ) = {z} and δ is represented by l
z

in
ρ′,
[[Fj ]]

{w x},{y}
sq = ( e ′j , δ

j
) with def (δ

j
) = {z j} such that δ

j
is represented

by l
zj in ρ′ (1 ≤ j ≤ m)

(c) se = def l
w

=e ′′; se1 where
i. e ′′j = e ′j [w x z j := l

w
l
x
l
zj

] and def (e ′j) = ∅ (since e′j is an expres-
sion) (1 ≤ j ≤ m)

ii. se1 = se◦1[w x w ′ z := l
w
l
x
l
w′

l
z
] where w ′ = def (se◦1) and l

w′

are

such that ρ′(l
w′

) = ?.
12. if e=l<-e1, then

(a) e◦ = y<-e◦1 such that e1 = e◦1 [y := l
y
], l = lyj for some j env(σ), y :T

y
! |

∅ ` e◦1 : T y
j and env(σ) | ly:T

y ` e1 : T y
j

(b) se = l<-e ′1 where Σ, x , y |= 〈e1 | σ | ρ〉 ≈ex 〈e ′1 | ρ′〉

Proof:

1. If e = x , then e◦ = x and since env(σ), y :T
y
! | ∅ ` e◦ : T for some i, we have

that xi ∈ dom(σ) and e◦ = xi. From Definition 9.1 then se◦ = xi and se = lxi .
2. In these cases e◦=e . From Definition 9.1 se◦=e and so also se=e . From Defi-

nition 14.1(a), we have e ∼=0 〈se | ρ′〉, therefore e ∼= 〈se | ρ′〉.
3. Let F=fun x :T1->e1. From Σ, x , y |= 〈F | ρ〉 ≈ 〈se | ρ′〉, we get e◦=fun x :T1->e◦1

is such that env(σ), y :T
y
! | ∅ ` fun x :T1->e◦1 : T1 → T2, for some T2

and T = T1 → T2. From rule (TYABS) of Fig. 3 we have that env(σ) | ∅ `
fun x :T1->e◦1 : T . Therefore, e◦=F . From Definition 9.2, [[F ]]{x},{y}sq =

( fun x->bl ′, δ ), where [[e1]]
{x ,x},∅
bl = ( bl ′, δ ) and from Definition 16.1(b) and

(c), since def (fun x->bl ′) = ∅ and {y} ∩ FV (F ) = ∅, then se=se◦[x z :=
l
x
l
z
], where def (δ) = z , δ is represented by l

z
in ρ′.

From Definition 16.1(d), for all i, 1 ≤ i ≤ n, let xi:Ti 7→vi ∈ σ, we have that
vi ∼= 〈ρ′(lxi ) | ρI + ρM 〉. Therefore, for all i, 1 ≤ i ≤ n, we have that, for some
ki, vi ∼=ki (ρ′(lxi ), ρI + ρM ). Let k = max{ki | 1 ≤ i ≤ n}, from Definition
14.2(a), (F , σ) ∼=k+1 〈se | ρ′〉 and therefore (F , σ) ∼= 〈se | ρ′〉.

4. If e = l , from env(σ), y :T
y
! | ∅ ` e◦ : T we derive that e◦ may not contain

locations. Therefore, for some j, e = lyj and e◦ = yj . From Definition 9.1 then
se◦ = yj and so se = lyj .
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All the other cases derive directly from Definition 16 (translation relations) and
Definition 9(sq), (ex) and (bl) (translation to sequences, expressions and blocks). We
show only the proof for the case of let mutable which is one of the most complex
cases.

10. Let e be let mutable y :T ′=e1 in e2. From y 6∈ {x , y} and e = e◦[y :=
l
y
], we have that e◦=let mutable y :T=e◦1 in e◦2 where ei = e◦i [y := l

y
]

(1 ≤ i ≤ 2). From env(σ), y :T
y
! | ∅ ` e◦ : T and rule (TYMUT), we derive

env(σ), y :T
y
! | ∅ ` e◦1 : T ′ and env(σ), y :T

y
!, y :T ′! | ∅ ` e◦2 : T . There-

fore, env(σ) | ly:T
y ` e◦1 [y := l

y
] : T ′ and if ly 6∈ {l

y} then env(σ) |
l
y
:T

y
, ly:T ′ ` e◦2 [y y := l

y
ly] : T . So clause (a) holds.

Let [[e◦]]{x},{y}sq = ( se◦, δ ) where z = def (δ), w = def (se◦) and z is repre-
sented by l

z
in ρ′ for some l

z
. From Definition 9(sq).7, se◦ is def y=e ′′1 ; se◦2

and δ = δ
1
; δ

2
where

(∗) [[e◦1 ]]I,Mex = ( e ′′1 , δ
1

) and

(?) [[e◦2 ]]I,M∪{y}sq =( se◦2, δ
2

).

Since def (se◦) = def (se◦2) ∪ {y}, from Definition 16.1(b) we have that se =
se◦[x y y w z := l

x
ly l

y
l
w
l
z
]. Therefore se = def ly=e ′1; se2 where

(∗∗) e ′1 = e ′′1 [x y z := l
x
l
y
l
z
]

(??) se2 = se◦2[x y y w z := l
x
ly l

y
l
w
l
z
].

Let z i = def (δ
i
) (1 ≤ i ≤ 2). From {z 1} ∩ {z 2} = ∅ we have that z = z 1z 2,

l
z

= l
z1
l
z2 and δ

i
is represented by l

zi in ρ′ (1 ≤ i ≤ 2). Moreover, from
Definition 16.1(c) both ρ′(ly) =? and ρ′(l

w
) = ?. So from (?) and (??) we

derive clauses (b) and (c).ii of the result.
From clauses (a), (c), and (d) of Definition 16 for Σ, x , y |= 〈e | σ | ρ〉 ≈sq 〈se |
ρ′〉, (∗), (∗∗) and Definition 9(ex) we get Σ, x , y |= 〈e1 | σ | ρ〉 ≈ex 〈e ′1 | ρ′〉
(clause (c).i), which concludes the proof.

Theorem 12 asserts the correctness result for the execution of an initial configuration
evaluating, if it converges, to a primitive value. To prove this result, however, we
have to deal with the intermediate configurations generated during the evaluation and
with function values. To this extent we prove the following lemma, which asserts that
configurations related by the translation relation evaluate to values and stores which
are related by the translation relation.

Lemma 18. Let Σ, x , y |= 〈e | σ | ρ〉 ≈C 〈se | ρ′〉 (C = se or C = ex), where ρ′ =
ρI + ρM (dom(ρM ) = dom(ρ)). If 〈e | σ | ρ〉 ⇓ 〈v | ρ∗〉, then 〈se | ρ′〉 ⇓C〈v ′ | ρ′∗〉,
where ρ′∗ = ρI∗ + ρM∗ (dom(ρM∗ ) = dom(ρ∗))

(A) v ∼= 〈v ′ | ρI∗ + ρM∗ 〉,
(B) for all l ∈ dom(ρI), ρ′(l) 6=? implies ρ′(l) = ρ′∗(l),
(C) for all l ∈ dom(ρ∗), we have that ρ∗(l) ∼= 〈ρ′∗(l) | ρI∗ + ρM∗ 〉 and
(D) dom(ρI) ⊆ dom(ρI∗).
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Proof:
We first prove the lemma for ≈sq by induction on the derivation of 〈e | σ | ρ〉 ⇓ 〈v |
ρ1〉. In doing the proof we will use also inductive hypotheses on ≈ex. Then we prove
that if the lemma holds for ≈sq then it also holds for ≈ex. So the use of the inductive
hypotheses on ≈ex in the proof for ≈sq are justified.

Let Σ, x , y |= 〈e | σ | ρ〉 ≈sq 〈se | ρ′〉. From Definition 16.1 we have that there
are sequences of locations l

x
such that {lx} ⊆ dom(ρI) and

(α) for all i, 1 ≤ i ≤ n, let xi:Ti 7→vi ∈ σ, we have that vi ∼= 〈ρ′(lxi ) | ρI + ρM 〉,
(β) for all l ∈ dom(ρ), we have that ρ(l) ∼= 〈ρ′(l) | ρI + ρM 〉.

Let 〈e | σ | ρ〉 ⇓ 〈v | ρ∗〉. By induction on the derivation of 〈e | σ | ρ〉 ⇓ 〈v | ρ∗〉. We
only show the most interesting cases which are the base cases, the rule for application,
let mutable and let rec and assignment. The others are similar.
Consider the last rule of Fig. 5 applied in the derivation.

Rule (VAR-F) In this case e=x and, from Lemma 17.1, for some i, x = xi, xi 7→vi ∈ σ
and se = lxi . Let 〈x | σ | ρ〉 ⇓ 〈v | ρ〉, where lkp(x , σ) = v . Applying rule (LOC)

of Fig. 11, we have that 〈se | ρ′〉 ⇓ex〈ρ′(lxi ) | ρ′〉 and from rule (EXPR) we get
〈se | ρ′〉 ⇓sq〈ρ′(lxi ) | ρ′〉.
If v = vi, i.e., the value is not a recursively defined function, then, from (α) we
have that v ∼= (ρ′(lxi ), ρ′). Therefore (A) holds.
If vi = (let rec w :T=F in Fk, σ) for some k, then

v = (Fk, σ[xj :Tj 7→(let rec x :T=F in Fj , σ)]1≤j≤m).

Since, from (α), vi ∼= (ρ′(lxi ), ρ′), from Lemma 15, we also have that v ∼=
(ρ′(lxi ), ρ′) and (A) holds.
Since ρ and ρ′ are not modified clauses (B), (C) and (D) hold.

Rule (PR-VAL-F) In this case e=n or e=tr or e=fls and 〈e | σ | ρ〉 ⇓ 〈e | ρ〉, i.e.,
v=e . From Lemma 17.2, we have that se=e . Applying rule (VAL) of Fig. 11, we
have that 〈se | ρ′〉 ⇓ex〈e | ρ′〉 and from rule (EXPR) we get 〈se | ρ′〉 ⇓sq〈e | ρ′〉.
From clause 1 of Definition 14 also e ∼= 〈e | ρ′〉. Therefore (A) holds.
Since ρ and ρ′ are not modified clauses (B) (C) and (D) hold.

Rule (FN-VAL-F) In this case e=fun x :T->e ′ and 〈e | σ | ρ〉 ⇓ 〈(e, σ) | ρ〉, i.e.,
v = (e, σ). From Lemma 17.3 we have that se is an IL value. As before,
applying rule (VAL) and (EXPR) of Fig. 11, we get 〈se | ρ′〉 ⇓sq〈se | ρ′〉.
From Lemma 17.3 we also get that (e, σ) ∼= 〈se | ρ′〉. Therefore (A) holds.
Since ρ and ρ′ are not modified clauses (B) (C) and (D) hold.

Rule (LOC-F) In this case e=l for some l ; so 〈l | σ | ρ〉 ⇓ 〈v | ρ〉where v = ρ(l). From
Lemma 17.4, we have that l = lyj for some lyj ∈ l

y
and se = lyj , so v = ρ(lyj ).

Applying rule (LOC) of Fig. 11, we have that 〈se | ρ′〉 ⇓ex〈ρ′(lyj ) | ρ′〉 and from
rule (EXPR) we get 〈se | ρ′〉 ⇓sq〈ρ′(lyj ) | ρ′〉.
From (β) we have that v ∼= (ρ′(lyj ), ρ′). Therefore (A) holds.
Since ρ and ρ′ are not modified clauses (B) (C) and (D) hold.
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Rule (APP-F) In this case e=e1 e2 for some e1, e2 and 〈e1 e2 | σ | ρ〉 ⇓ 〈v | ρ∗〉,
where 〈e1 | σ | ρ〉 ⇓ 〈(fun x :T1->eb, σ′) | ρ1〉, 〈e2 | σ | ρ1〉 ⇓ 〈vx | ρ2〉 and
〈eb | σ′[x :T1 7→vx] | ρ2〉 ⇓ 〈v | ρ∗〉.
From Lemma 17.7(c) we have that se = e ′1 e ′2 where e ′i = se◦i [x y z i :=

l
x
l
y
l
zi

] and [[e◦i ]]{x},{y}ex = ( se◦i , δ
i
) (1 ≤ i ≤ 2).

Consider the configurations 〈e1 | σ | ρ〉 and 〈e ′1 | ρ′〉. From Σ |= 〈e | σ | ρ〉�
and 17.7(a), we get Σ |= 〈e1 | σ | ρ〉�. From the fact that 〈se | ρ′〉 is well-
formed, and Definition 16.2, also 〈e ′1 | ρ′〉 is well-formed. Moreover, from
Lemma 17.7(b) and (c), (α) and (β) we derive that

Σ, x , y |= 〈e1 | σ | ρ〉 ≈ex 〈e ′1 | ρ′〉.

Applying the inductive hypothesis to 〈e1 | σ | ρ〉 ⇓ 〈(fun x :T->eb, σ′) | ρ1〉,
we get

(1) 〈e ′1 | ρ′〉 ⇓ex〈v ′′ | ρ′1〉

where ρ′1 = ρI1 + ρM1 (dom(ρM1 ) = dom(ρ1))

(A1) (fun x :T1->eb, σ′) ∼= 〈v ′′ | ρI1 + ρM1 〉,
(B1) for all l ∈ dom(ρI), ρ′(l) 6=? implies ρ′(l) = ρ′1(l),

(C1) for all l ∈ dom(ρ1), we have that ρ1(l) ∼= 〈ρ′1(l) | ρI1 + ρM1 〉 and

(D1) dom(ρI) ⊆ dom(ρI1).

Now consider the configurations 〈e2 | σ | ρ1〉 and 〈e ′2 | ρ′1〉where ρ′1 = ρI1+ρM1 .
From Lemma 3 we have that Σ1 |= ρ1 for some Σ1 ⊇ Σ and from Lemma
17.7(a), env(σ) | ly:T

y ` e2 : T1 and since l
y
:T

y ⊆ Σ1, we get Σ1 |= 〈e2 |
σ | ρ1〉�. Therefore, |= σ� implies Σ1 |= 〈e2 | σ | ρ1〉�. From Theorem 7 we
have that 〈v1 | ρ′1〉 is well-formed and, since Loc(se) ⊆ dom(ρ′) ⊆ dom(ρ′1),
then also Loc(e ′2) ⊆ dom(ρ′1). So 〈e ′2 | ρ′1〉 is well-formed.
From Lemma 17.7(b), δ

2
is represented by l

z2 in ρ′. From (B1), since {lz2} ⊆
dom(ρI), δ

2
is represented by l

z2 in ρ′1. Therefore from (B1) and (α), we have
that:

(α′) for all i, 1 ≤ i ≤ n, let xi 7→vi ∈ σ, vi ∼= (ρ′1(lxi ), ρ′1).

From Lemma 17.7(b) and (c), (α′) and (C1) we derive that

Σ1, x , y |= 〈e2 | σ | ρ1〉 ≈ex 〈e ′2 | ρ′1〉.

Applying the inductive hypothesis to 〈e2 | σ | ρ1〉 ⇓ 〈vx | ρ2〉, we get

(2) 〈e ′2 | ρ′1〉 ⇓ex〈v ′x | ρ′2〉

where ρ′2 = ρI2 + ρM2 (dom(ρM2 ) = dom(ρ2))

(A2) vx ∼= 〈v ′x | ρ′2〉,
(B2) for all l ∈ dom(ρI1), ρ′1(l) 6=? implies ρ′2(l) = ρ′1(l)
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(C2) for all l , l ∈ dom(ρ2), we have that ρ2(l) ∼= 〈ρ′2(l) | ρ′2〉 and

(D2) dom(ρI1) ⊆ dom(ρI2).

From (A1) and Definition 14 for some k, (fun x :T1->eb, σ′) ∼=k 〈v ′[x ′ z :=

l
x′

l
z
] | ρ′1〉 where v ′, x ′, z , l

x′

and l
z

are such that:

(P1) x ′ = dom(σ′), {lx
′

} ⊆ dom(ρI1),

(P2) [[fun x :T1->eb]]{x
′},{y}

sq = ( v ′, δ ) for any y and so v ′′ = fun x->{se◦[x ′ z :=

l
x′

l
z
]} where [[eb]]

{x ′,x},∅
bl = ( {se◦}, δ ) and δ is represented by l

z
in ρ′1

and

(P3) for all i, 1 ≤ i ≤ n, let x ′i :T
′
i 7→v ′i ∈ σ′, we have that v ′i ∼=h 〈ρ′1(lx

′

i ) | ρ′1〉,
for some h ≤ k

Let se ′ = se◦[x x ′ w z := lx l
x′

l
w
l
z
]. Consider the configurations: 〈eb |

σ′[x :T1 7→ vx] | ρ2〉 and 〈se ′ | ρ′2[lx 7→ v ′x, l
w 7→ ?]〉 where w = def (se◦).

From Lemma 17.7(a), env(σ) | ly:T
y ` e1 : T ′ → T . Since 〈e1 | σ | ρ〉 ⇓

〈(fun x :T1->eb, σ′) | ρ1〉, from Lemma 3 we have |= (fun x :T1->eb, σ′):T1 →
T and from Definition 2(c) and rule (TYABS) (which takes into account also the
location environment) preceding Definition 2 we derive that env(σ′)[x :T1] | ∅ `
eb : T and |= σ′�. Moreover, applying Lemma 3 to 〈e2 | σ | ρ1〉 ⇓ 〈vx | ρ2〉, we
have that, |= vx:T1 and for some Σ2 ⊇ Σ1, Σ2 |= ρ2. From |= σ′� and |= vx:T1

we get |= σ′[x :T1 7→ vx]�. So Σ2 |= 〈eb | σ′[x :T1 7→ vx] | ρ2〉�.
From 〈e ′1 | ρ′〉 ⇓ex 〈v ′′ | ρ′1〉 and Theorem 7, 〈v ′′ | ρ′1〉 is well-formed.
From (P1) and (P2), {x ′, z} ⊆ Loc(ρ′1) ⊆ Loc(ρ′2), therefore {x , z , lx, l

w} ⊆
Loc(ρ′2[lx 7→ v ′x, l

w 7→ ?]), so 〈se ′ | ρ′2[lx 7→ v ′x, l
w 7→ ?]〉 is well-formed.

From (P3) and (D2), since {lx
′

} ⊆ dom(ρI1), we have

(P ′3) for all i, 1 ≤ i ≤ n, let x ′i :T
′
i 7→v ′i ∈ σ′, we have that v ′i ∼= 〈ρ′2(lx

′

i ) | ρ′2〉

Therefore from (C2), (P2) and (P3) we derive that:

Σ2, x
′ x , ∅ |= 〈eb | σ′[x :T1 7→ vx] | ρ2〉 ≈se 〈se ′ | ρ′2[lx 7→ v ′x, l

w 7→ ?]〉.

Applying the induction hypothesis to 〈eb | σ′[x :T ′ 7→vx] | ρ2〉 ⇓ 〈v | ρ∗〉
we get 〈se ′ | ρ′2[lx 7→ v ′x, l

w 7→ ?]〉 ⇓sq 〈v ′ | ρ′∗〉, where ρ′∗ = ρI∗ + ρM∗
(dom(ρM∗ ) = dom(ρ∗))

(A3) v ∼= 〈v ′ | ρ′∗〉,
(B3) for all l ∈ dom(ρI2), ρ′2(l) 6=? implies ρ′∗(l) = ρ′2(l)

(C3) for all l , l ∈ dom(ρ∗), we have that ρ∗(l) ∼= 〈ρ′∗(l) | ρ′∗〉 and

(D3) dom(ρI2) ⊆ dom(ρI∗).

Applying rule (BLOCK) of Fig. 11 we have
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(3) 〈{se◦[x x ′ z := lx l
x′

l
z
]} | ρ′2[lx 7→ v ′x]〉 ⇓bl〈v ′ | ρ′3〉

From (1), (2) and (3) and v ′′ = fun x->{se◦[x ′ z := l
x′

l
z
]} applying rule

(APP) of Fig. 11 we have 〈e ′1 e ′2 | ρ′〉 ⇓ex〈v ′ | ρ′∗〉 and from rule (EXP)

(?) 〈e ′1 e ′2 | ρ′〉 ⇓sq〈v ′ | ρ′∗〉

From (B1), (B2), (B3), (D1), (D2) and (D3) we derive

(B′) for all l ∈ dom(ρI), ρ′(l) 6=? implies ρ′∗(l) = ρ′(l)

and from (D1), (D2), (D3) and transitivity of ⊆

(D′) dom(ρI) ⊆ dom(ρI∗).

So (?), (A3), (B′), (C3) and (D′) prove the result.

Rule (LET-MUT-F) In this case e=let mutable y :T=e1 in e2. Assume that y 6∈ {x , y},
〈let mutable y :T ′=e1 in e2 | σ | ρ〉 ⇓ 〈v | ρ∗〉 where 〈e1 | σ | ρ〉 ⇓ 〈vy | ρ1〉
and 〈e2[y := ly] | σ | ρ1[ly 7→ vy]〉 ⇓ 〈v | ρ∗〉 for ly 6∈ dom(ρ1).
From Lemma 17.10(c) we have that se=def y=e ′1; se2. Moreover, from Lemma
17.10(a) e◦=let mutable y :T=e◦1 in e◦2 where ei = e◦i [y := l

y
] (1 ≤ i ≤ 2).

From Lemma 17.10(c).i

Σ, x , y |= 〈e1 | σ | ρ〉 ≈ex 〈e ′1 | ρ′〉.

Applying the inductive hypothesis to 〈e1 | σ | ρ〉 ⇓ 〈vx | ρ1〉, we get 〈e ′1 |
ρ′〉 ⇓sq〈v ′x | ρ′1〉, where ρ′1 = ρI1 + ρM1 (dom(ρM1 ) = dom(ρ1))

(A1) v1 ∼= 〈v ′x | ρ′1〉,
(B1) for all l ∈ dom(ρI), ρ′(l) 6=? implies ρ′(l) = ρ′1(l),

(C1) for all l ∈ dom(ρ1), we have that ρ1(l) ∼= 〈ρ′1(l) | ρ′1〉 and

(D1) dom(ρI) ⊆ dom(ρI1).

Consider now the configurations 〈e2[y := ly] | σ | ρ1[ly 7→ vy]〉 and 〈se2 |
ρ′1[ly 7→ v ′y]〉, where ρ′1[ly 7→ v ′y] = ρI1 + ρM1 (dom(ρM1 ) = dom(ρ1[ly 7→ vy])).
Note that ly ∈ dom(ρM1 ).

From Σ |= 〈e1 | σ | ρ〉� and Lemma 3 we have that Σ′ |= ρ1 for some Σ′ ⊇ Σ,
|= σ� and, since from Lemma 17.10(a), env(σ) | ly:T

y ` e1 : T ′, we also have
|= vy:T ′. Let Σ1 = Σ′, ly:T , we have that Σ1 |= ρ1[ly 7→ vy]. From Lemma
17.10(a), we also have env(σ) | ly:T

y
, ly:T ` e2 : T . So, Σ1 |= 〈e2[y := ly] |

σ | ρ1[ly 7→ vy]〉�.
From Lemma 17.10.(c).ii and (b), se2 = se◦2[x y y w z 2 := l

x
ly l

y
l
w
l
z2

] where
[[e◦2 ]]{x x},{y}

sq = ( se◦2, δ
2

), def (δ
i
) = {z i}, w = def (se◦2), such that δ

2
is

represented by l
z2 in ρ′ and ρ′(l

w
) = ?.

From Theorem 7, 〈v ′y | ρ′1〉 is well-formed and from Loc(se2) ⊆ dom(ρ′) ⊆
dom(ρ′1) we get that 〈se2 | ρ′1[ly 7→ v ′y]〉 is well-formed.
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From Lemma 17.10(c).i {lw} ∩ Loc(e ′1) = ∅, so since ρ′(l
w

) = ?, also ρ′1[lx 7→
v ′x](l

w
) = ?. Therefore, from Lemma 17.10.(b) and (c).ii we have that

Σ1, x , y y |= 〈e2[y := ly] | σ | ρ1[ly 7→ vy]〉 ≈se 〈se2 | ρ′1[ly 7→ v ′y]〉.

Applying the inductive hypothesis to 〈e2[y := ly] | σ | ρ1[ly 7→ vy]〉 ⇓ 〈v | ρ∗〉
we get 〈se2 | ρ′1[ly 7→ v ′y]〉 ⇓sq 〈v ′ | ρ′∗〉 where ρ′∗ = ρI∗ + ρM∗ (dom(ρM∗ ) =
dom(ρ∗))

(A2) v ∼= 〈v ′ | ρ′∗〉
(B2) for all l ∈ dom(ρI1), ρ′1[ly 7→ v ′y](l) 6=? implies ρ′∗(l) = ρ′1[ly 7→ v ′y](l)

(note that ly 6∈ dom(ρI1))

(C2) for all l , l ∈ dom(ρ∗), we have that ρ∗(l) ∼= 〈ρ′∗(l) | ρ′∗〉 and

(D2) dom(ρI1) ⊆ dom(ρI∗).

From 〈e ′1 | ρ′〉 ⇓ex〈v ′y | ρ′1〉 applying rule (DEF) of Fig. 5, for ly 6∈ domρ′1 we
derive: 〈def ly=e ′1 | ρ′〉 ⇓st 〈v ′y | ρ′1[ly 7→ v ′y]〉, and from 〈se2 | ρ′1[ly 7→
v ′y]〉 ⇓sq〈v ′ | ρ′∗〉 applying rule (SEQ) of Fig. 5 we get

(?) 〈def ly=e ′1; se2 | ρ′〉 ⇓st〈v ′ | ρ′∗〉

From (B1), (B2) and (D1), we derive that

(B′) for all l ∈ dom(ρI), ρ′(l) 6=? implies ρ′∗(l) = ρ′(l)

and from (D1), (D2) and transitivity of ⊆

(D′) dom(ρI) ⊆ dom(ρI∗)

Therefore,(?), (A2), (B′), (C2) and (D′) prove the result.

Rule (LETREC-F) In this case e=let rec w=F in e1 and e ⇓ 〈v | ρ1〉 where

〈e1 | σ[wj :Tj 7→(let rec w :T=F in Fj , σ)]1≤j≤m | ρ〉 ⇓ 〈v | ρ∗〉

From Lemma 17.11(c), se = def l
w

=e ′′; se1. Moreover, from Lemma 17.11(a)
and (b) we have that e◦=let rec w=F in e◦1 where [[e◦1 ]]{x ,w},{y}sq = ( se◦1, δ )

with def (δ) = {z} and δ is represented by l
z

in ρ′ and [[Fj ]]
{w x},{y}
sq = ( e ′j , δ

j
)

with def (δ
j
) = {z j} such that δ

j
is represented by l

zj in ρ′ (1 ≤ j ≤ m).
Consider the configurations 〈e1 | σ[wk:Tk 7→vRk ]1≤k≤m | ρ〉 where
vRk = (let rec w :T=F in Fk, σ) and 〈se1 | ρ′[l

w 7→ e ′′]〉 where e ′′j =

e ′i[w x z j := l
w
l
x
l
zj

] (1 ≤ j ≤ m).
From Lemma 17.11(a), env(σ),w :T | ly:T

y ` e1 : T and from Σ |= 〈e | σ |
ρ〉�, we have Σ |= ρ and |= σ�. From Lemma 17.11(a), for all j, 1 ≤ j ≤ m
we have env(σ),w :T | ∅ ` Fj : Tj and from rule (TYREC) of Fig. 3, for all
k, 1 ≤ k ≤ m, we derive env(σ),w :T | ∅ ` let rec w :T=F in Fk : Tk.
Therefore, |= vRk :Tk, which proves that

Σ |= 〈e1 | σ[wj :Tj 7→vRj ]1≤j≤m | ρ〉�
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From Lemma 17.11(c).ii Loc(se1) ⊆ dom(ρ′[l
w 7→ e ′′]), therefore since 〈se |

ρ′〉 is well-formed, also 〈se1 | ρ′[l
w 7→ e ′′]〉 is well-formed.

From [[Fj ]]
{w ,x},{y}
sq = ( e ′j , δ

j
), e ′′j = e ′j [w x z i := l

w
l
x
l
zj

] and (α), for all k,
1 ≤ k ≤ m, vRk ∼= (e ′′k , ρ

′[l
w 7→ e ′′]). Therefore from 17.11(c).ii we derive

Σ, x w , y |= 〈e1 | σ[wk:Tk 7→vRk ]1≤k≤m | ρ〉 ≈se 〈se1 | ρ′[l
w 7→ e ′′]〉.

Applying the inductive hypothesis to 〈e1 | σ[wk:Tk 7→vRk ]1≤k≤m | ρ〉 ⇓ 〈v |
ρ∗〉, we have that

(?) 〈se1 | ρ′[l
w 7→ e ′′]〉 ⇓sq〈v ′ | ρ′∗〉

where ρ′∗ = ρI∗ + ρM∗ (dom(ρM∗ ) = dom(ρ∗))

(A1) v ∼= 〈v ′ | ρ′∗〉,
(B1) for all l ∈ dom(ρI) ∪ {lw}, ρ′(l) 6=? implies ρ′(l) = ρ′∗(l),

(C1) for all l ∈ dom(ρ∗), we have that ρ∗(l) ∼= 〈ρ′∗(l) | ρ′∗〉 and

(D1) dom(ρI ∪ {lw}) ⊆ dom(ρI∗).

From (B1) and (D1) we also have that

(B′) for all l ∈ dom(ρI), ρ′(l) 6=? implies ρ′(l) = ρ′∗(l) and

(D′) dom(ρI) ⊆ dom(ρI∗).

Therefore, (?), (A1), (B′),(C1) and (D′) prove the result.

Rule (ASS-F) In this case e=l<-e1 and 〈l<-e1 | σ | ρ〉 ⇓ 〈v | ρ∗〉, where 〈e1 | σ | ρ〉 ⇓
〈v | ρ1〉 and ρ∗ = ρ1[l 7→ v ].
From Lemma 17.12(b) we have that se = l<-e ′1 where e ′1 is such that Σ, x , y |=
〈e1 | σ | ρ〉 ≈ex 〈e ′1 | ρ′〉. Applying the inductive hypothesis to 〈e1 | σ | ρ〉 ⇓
〈v | ρ1〉, we get 〈e ′1 | ρ′〉 ⇓ex 〈v ′ | ρ′1〉, where ρ′1 = ρI1 + ρM1 (dom(ρM1 ) =
dom(ρ1))

(A1) v ∼= 〈v ′ | ρI1 + ρM1 〉
(B1) for all l ∈ dom(ρI), ρ′(l) 6=? implies ρ′(l) = ρ′1(l),

(C1) for all l ∈ dom(ρ1), we have that ρ1(l) ∼= 〈ρ′1(l) | ρI1 + ρM1 〉 and

(D1) dom(ρI) ⊆ dom(ρI1).

From Lemma 17.12(b), we get that l ∈ dom(ρM1 ). From rule (ASS) of Fig. 11 we
derive 〈l<-e1 | ρ′〉 ⇓st〈v ′ | ρ∗〉 and from rule (ST) also 〈l<-e1 | ρ′〉 ⇓sq〈v ′ | ρ∗〉.
From (A1), we derive that (A1) ÷ (D1) hold also replacing ρ1 with ρ∗ and ρ′1
with ρ′∗, which proves the result.

We now prove the statement of the Lemma where C = ex, assuming it for C = se.
Let Σ, x , y |= 〈e | σ | ρ〉 ≈ex 〈e ′ | ρ′e〉. From Definition 16.2 there are se and ρ′ such
that Σ, x , y |= 〈e | ρ〉 ≈sq 〈se | ρ′〉.
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• Assume first that clause (a) of Definition 16.2 holds. Then e ′ = se and ρ′e = ρ′.
If 〈e | σ | ρ〉 ⇓ 〈v | ρ∗〉, then 〈e ′ | ρ′e〉 ⇓sq 〈v ′ | ρ′∗〉 and (A) ÷ (D) hold.
Looking at the rules of Fig. 11 the only rule that could have been applied to
derive 〈e ′ | ρ′e〉 ⇓sq〈v ′ | ρ′∗〉 is (EXP). Therefore, 〈e ′ | ρ′e〉 ⇓ex〈v ′ | ρ′∗〉, which
proves the result.

• If, instead, clause (b) of Definition 16.2 holds, let [[e◦]]{x},{y}sq = ( se◦, δ ) where
e = e◦[y := l

y
], e ′ = exc(l ′,Y 7→ l

y
, l
x
), where l ′ 6∈ dom(ρ′), ρ′e is such that

– ρ′e(l
′) = code({se◦}[z := l

z
], y 7→ Y , x ) (l ′ 6∈ dom(ρ′)) and

– for all l ∈ dom(ρ) ∪ {lx, lz} we have that ρ′e(l) = ρ′(l).

From rule (LOC) of Fig. 5, we have

(1) 〈l | ρ′e〉 ⇓ex〈code({se◦}[z := l
z
], y 7→ Y , x ) | ρ′e〉 and

(2) 〈lx | ρ′e〉 ⇓ex〈v ′ | ρ′e〉 where v ′i = ρ′(lxi ) (1 ≤ i ≤ n).

Let se ′ = se◦[x y w z := l
′
l
y
l
w
l
z
] where {l ′} ∩ dom(ρ′e) = ∅. Define ρ′1 =

ρ′e[l
′ 7→ ρ′(l

x
)] and ρ′2 = ρ′1[l

w 7→ ?]. Since 〈se | ρ′〉 is well-formed, then
〈se ′ | ρ′2〉 is well-formed. From definition of ρ′2, for all l ∈ dom(ρ) ∪ {lx, lz},
ρ′2(l) = ρ′(l). Therefore, from Definition 16.1(d), we get that: for all i, 1 ≤
i ≤ n, let xi 7→vi ∈ σ, vi ∼= (ρ′2(l ′i), ρ

′
2), and from Definition 16.1(e), for all

l ∈ dom(ρ), ρ(l) ∼= 〈ρ′2(l) | ρ′2〉 that implies

Σ, x , y |= 〈e | σ | ρ〉 ≈se 〈se ′ | ρ′2〉.

Let ρ′2 = ρI2 + ρM2 (dom(ρM2 ) = dom(ρ)). If 〈e | σ | ρ〉 ⇓ 〈v | ρ∗〉, then
〈se ′ | ρ′2〉 ⇓sq〈v ′ | ρ′∗〉, where ρ′∗ = ρI∗ + ρM∗ (dom(ρM∗ ) = dom(ρ∗))

(A1) v ∼= 〈v ′ | ρ′∗〉
(B1) for all l ∈ dom(ρI2), ρ′2(l) 6=? implies ρ′2(l) = ρ′∗(l),

(C1) for all l ∈ dom(ρ∗), we have that ρ∗(l) ∼= 〈ρ′∗(l) | ρ′∗〉 and

(D1) dom(ρI2) ⊆ dom(ρI∗).

From 〈se ′ | ρ′2〉 ⇓sq〈v ′ | ρ′∗〉, applying rule (BLOCK) of Fig. 5, we have

(3) 〈{se ′} | ρ′1〉 ⇓bl〈v ′ | ρ′∗〉

Therefore, from (1), (2) and (3), applying rule (CODE) of Fig. 5, we derive that
〈e ′ | ρ′e〉 ⇓ex〈v ′ | ρ′∗〉.
From (B1), (D1) and ρI ⊂ ρI2, we have that

(B′) for all l ∈ dom(ρI), ρ′(l) 6=? implies ρ′(l) = ρ′∗(l),

(D′) dom(ρI) ⊆ dom(ρI∗).

Therefore 〈e ′ | ρ′e〉 ⇓ex〈v ′ | ρ′∗〉, (A1), (B′), (C1), (D′) prove the result.
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The following lemma asserts that if the evaluation of an F# expression does not
converge to a value, then also the evaluation of a translation related IL sequence of
statement or expressions does not converge to a value.

Lemma 19. Let Σ, x , y |= 〈e | σ | ρ〉 ≈C 〈se | ρ′〉 (C = se or C = ex), where ρ′ =
ρI + ρM (dom(ρM ) = dom(ρ)). If 〈se | ρ′〉 ⇓C〈v ′ | ρ′∗〉, then 〈e | σ | ρ〉 ⇓ 〈v | ρ∗〉,
for some v and ρ∗.

Proof:
By case analysis on the shape of e , and then induction on the derivation of the judg-
ment 〈se | ρ′〉 ⇓C〈v ′ | ρ′∗〉.
We first prove the lemma for C = se.
If e = x , from Σ, x , y |= 〈e | σ | ρ〉 ≈se 〈se | ρ′〉 and Lemma 17.1, x = xi and
se = lxi , so 〈se | ρ′〉 ⇓sq〈ρ′(lxi ) | ρ′〉 and 〈e | σ | ρ〉 ⇓ 〈lkp(x , σ) | ρ〉.
If e=n , or e=tr, or e=fls, or e=fun x :T ′->e1, then we have that se = e , 〈se |
ρ′〉 ⇓sq〈se | ρ′〉 and 〈e | σ | ρ〉 ⇓ 〈v | ρ〉 for some v .
If e = l , from Σ, x , y |= 〈e | σ | ρ〉 ≈se 〈se | ρ′〉 and Lemma 17.4, l = lyj and se = lyj
and again 〈se | ρ′〉 ⇓sq〈ρ′(l) | ρ′〉 and 〈e | σ | ρ〉 ⇓ 〈ρ(l) | ρ〉.

For the structured expressions, we only show the proof for application and let re-
cursive and mutable. The others are similar.

e=e1 e2 for some e1, e2. Assume that Σ, x , y |= 〈e | σ | ρ〉 ≈se 〈se | ρ′〉. From
Lemma 17.7(c) we have that e1 e2 = (e◦1 [y := l

y
]) (e◦2 [y := l

y
]) for some e◦i

and se = e ′1 e
′
2 where e ′i = se◦i [x y z i := l

x
l
y
l
zi

] and [[e◦i ]]{x},{y}ex = ( se◦i , δi )

(1 ≤ i ≤ 2). Moreover, from Lemma 17.7(a), env(σ) | ly:T
y ` e1 : T ′ → T .

Consider the configurations 〈e1 | σ | ρ〉 and 〈e ′1 | ρ′〉. From Σ |= 〈e | σ | ρ〉�
and Lemma 17.7(a), we get Σ |= 〈e1 | σ | ρ〉�. From the fact that 〈se | ρ′〉 is
well-formed, and Definition 16.2, also 〈e ′1 | ρ′〉 is well-formed. Moreover, from
Σ, x , y |= 〈e | σ | ρ〉 ≈se 〈se | ρ′〉, we have

• for all i, 1 ≤ i ≤ n, let xi:Ti 7→vi ∈ σ, we have that vi ∼= 〈ρ′(lxi ) | ρI+ρM 〉
and

• for all l ∈ dom(ρ), we have that ρ(l) ∼= 〈ρ′(l) | ρI + ρM 〉.

Therefore
Σ, x , y |= 〈e1 | σ | ρ〉 ≈ex 〈e ′1 | ρ′〉.

From 〈e ′1 e ′2 | ρ′〉 ⇓sq 〈v ′ | ρ′∗〉 and rule (EXP) of Fig. 11 we have that 〈e ′1 e ′2 |
ρ′〉 ⇓ex 〈v ′ | ρ′∗〉. From rule (APP) of Fig. 11, we have that 〈e ′1 | ρ′〉 ⇓ex
〈fun x->{se ′} | ρ′1〉 for some e ′ and ρ′1. Applying the inductive hypotheses
we derive 〈e1 | σ | ρ〉 ⇓ 〈v1 | ρ1〉 for some v1 and ρ1. From Lemma 3, we get
|= v1:T ′ → T , v1 = (fun x :T ′->eb, σ′) for some eb and σ′ and Σ1 |= ρ1 for
some Σ1 ⊇ Σ.
From Lemma 18, let ρ′1 = ρI1 + ρM1 where dom(ρM1 ) = dom(ρ1), we have that

(A1) (fun x :T ′->eb, σ′) ∼= 〈fun x->{se ′} | ρI1 + ρM1 〉,
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(B1) for all l ∈ dom(ρI), ρ′(l) 6=? implies ρ′(l) = ρ′1(l),

(C1) for all l ∈ dom(ρ1), we have that ρ1(l) ∼= 〈ρ′1(l) | ρI1 + ρM1 〉 and

(D1) dom(ρI) ⊆ dom(ρI1).

Considering the configurations 〈e2 | σ | ρ1〉 and 〈e ′2 | ρ′1〉 where ρ′1 = ρI1 + ρM1 ,
we can prove, as for the case of Rule (APP-F) of Lemma 18, that

Σ1, x , y |= 〈e2 | σ | ρ1〉 ≈ex 〈e ′2 | ρ′1〉.

From 〈e ′1 e ′2 | ρ′〉 ⇓ex 〈v ′ | ρ′′〉 and rule (APP) of Fig. 11, we have that 〈e ′2 |
ρ′1〉 ⇓ex〈v ′x | ρ′2〉. Applying the inductive hypotheses we derive 〈e2 | σ | ρ1〉 ⇓
〈vx | ρ2〉 for some vx and ρ2. From Lemma 18, let ρ′2 = ρI2 + ρM2 where
dom(ρM2 ) = dom(ρ2), we have that

(A2) vx ∼= 〈v ′x | ρ′2〉,
(B2) for all l ∈ dom(ρI1), ρ′1(l) 6=? implies ρ′2(l) = ρ′1(l)

(C2) for all l , l ∈ dom(ρ2), we have that ρ2(l) ∼= 〈ρ′2(l) | ρ′2〉 and

(D2) dom(ρI1) ⊆ dom(ρI2).

From (A1) and Definition 14 for some k, (fun x :T ′->eb, σ′) ∼=k 〈v ′′[x ′ z :=

l
x′

l
z
] | ρ′1〉 where v ′′, x ′, z , l

x′

and l
z

are such that:

(P1) x ′ = dom(σ′), {lx
′

} ⊆ dom(ρI1),

(P2) [[fun x :T ′->eb]]{x
′},{y}

sq = ( v ′′, δ ) for any y and so fun x->{se ′} =

fun x->{se◦[x ′ z := l
x′

l
z
]} where [[eb]]

{x ′,x},∅
bl = ( {se◦}, δ ) and δ is

represented by l
z

in ρ′1 and

(P3) for all i, 1 ≤ i ≤ n, let x ′i :T
′
i 7→v ′i ∈ σ′, we have that v ′i ∼=h 〈ρ′1(lx

′

i ) | ρ′1〉,
for some h ≤ k

Consider the configurations: 〈eb | σ′[x :T ′ 7→ vx] | ρ2〉 and 〈se ′[x w := lx l
w

] |
ρ′2[lx 7→ v ′x, l

w 7→ ?]〉 where w = def (se◦). Again, as for the case of Rule
(APP-F) of Lemma 18, we can prove that

Σ2, x
′ x , ∅ |= 〈eb | σ′[x :T ′ 7→vx] | ρ2〉≈se〈se ′[x w := lx l

w
] | ρ′2[lx 7→v ′x, l

w 7→?]〉.

Again from 〈e ′1 e ′2 | ρ′〉 ⇓ex 〈v ′ | ρ′′〉 and rule (APP) of Fig. 11, we have that
〈{se ′[x := lx]} | ρ′2[lx 7→ v ′x]〉 ⇓bl〈v ′ | ρ′∗〉, and so, from rule (BLOCK) of Fig. 11,
〈se ′[x w := lx l

w
] | ρ′2[lx 7→ v ′x, l

w 7→ ?]〉 ⇓sq〈v ′ | ρ′∗〉. Applying the inductive
hypotheses, we get that 〈eb | σ′[x :T1 7→vx] | ρ2〉 ⇓ 〈v | ρ∗〉 for some v and ρ∗,
which concludes the proof.

e=let mutable y :T=e1 in e2 for some e1 and e2. Assume that y 6∈ {x , y} and
Σ, x , y |= 〈e | σ | ρ〉 ≈se 〈se | ρ′′〉. From Lemma 17.10(c) we have that
se=def ly=e ′1; se2. where

Σ, x , y |= 〈e1 | σ | ρ〉 ≈ex 〈e ′1 | ρ′〉.
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From 〈def ly=e ′1; se2 | ρ′〉 ⇓sq 〈v ′ | ρ′∗〉 and rule (SEQ) of Fig. 11, we have
〈def ly=e ′1 | ρ′〉 ⇓sq〈v ′y | ρ′2〉, and, 〈se2 | ρ′2〉 ⇓sq〈se2 | ρ′∗〉. From 〈def ly=e ′1 |
ρ′〉 ⇓sq〈v ′y | ρ′2〉 and rule (ST), we get 〈def ly=e ′1 | ρ′〉 ⇓st〈v ′y | ρ′2〉 and from rule
(DEF), 〈e ′1 | ρ′〉 ⇓ex〈v ′y | ρ′1〉 where ρ′2 = ρ′1[ly 7→ v ′y]. Applying the inductive
hypotheses to 〈e ′1 | ρ′〉 ⇓ex〈v ′y | ρ′1〉 we derive 〈e1 | σ | ρ〉 ⇓ 〈vy | ρ1〉. From
Lemma 18, let ρ′1 = ρI1 + ρM1 where dom(ρM1 ) = dom(ρ1), we have that

(A1) vy ∼= 〈v ′y | ρI1 + ρM1 〉,

(B1) for all l ∈ dom(ρI), ρ′(l) 6=? implies ρ′(l) = ρ′1(l),

(C1) for all l ∈ dom(ρ1), we have that ρ1(l) ∼= 〈ρ′1(l) | ρI1 + ρM1 〉 and

(D1) dom(ρI) ⊆ dom(ρI1).

Consider now the configurations 〈e2[y := ly] | σ | ρ1[ly 7→ vy]〉 and 〈se2 | ρ′2〉,
where ρ′2 = ρI2 + ρM2 (dom(ρM2 ) = dom(ρ1[ly 7→ vy])). As for the case of Rule
(LET-MUT-F) of Lemma 18, we can prove that

Σ1, x , y y |= 〈e2[y := ly] | σ | ρ1[ly 7→ vy]〉 ≈se 〈se2 | ρ′2〉.

Applying the inductive hypotheses to 〈se2 | ρ′2〉 ⇓sq 〈se2 | ρ′∗〉 we derive that
〈e2[y := ly] | σ | ρ1[ly 7→ vy]〉 ⇓ 〈v | ρ∗〉. Therefore, from rule (LETMUT-F) of
Fig. 5, 〈let mutable y :T=e1 in e2 | σ | ρ〉 ⇓ 〈v | ρ∗〉 for some v and ρ∗,
which proves the result.

e=let rec w=F in e1 for some e1, w and F . Assume that {w} ∩ {x , y} = ∅ and
Σ, x , y |= 〈e | σ | ρ〉 ≈se 〈se | ρ′′〉. From Lemma 17.11(c) we have that
se = def l

w
=e ′′; se1 where

1. [[Fi]]
{w x},{y}
sq = ( e ′i, δi ) and e ′′i = e ′i[w x z i := l

w
l
x
l
zi

]

2. se1 = se◦1[w x w ′ z := l
w
l
x
l
w′

l
z
] where w ′ = def (se◦1), and [[e◦1 ]]{x ,w},{y}sq =

( se◦1, δ ).

Let vRk = (let rec w :T=F in Fk, σ) (1 ≤ k ≤ m). Consider the configura-
tions 〈e1 | σ[wk:Tk 7→vRk ]1≤k≤m | ρ〉 and 〈se1 | ρ′[l

w 7→ e ′′]〉. As for the case
of Rule (LETREC-F) of Lemma 19, we can prove that

Σ, x w , y |= 〈e1 | σ[wk:Tk 7→vRk ]1≤k≤m | ρ〉 ≈se 〈se1 | ρ′[l
w 7→ e ′′]〉.

Since the expressions e ′′ are function definitions, and their evaluation does not
modify the store, from 〈def l

w
=e ′′; se1 | ρ′〉 ⇓sq〈v ′ | ρ′∗〉, rules (SEQ), (ST), (DEF)

and (VAL) of Fig. 11, we have 〈def l
w

=e ′′ | ρ′〉 ⇓sq 〈e ′′m | ρ′[l
w 7→ e ′′]〉 and

〈se1 | ρ′〉 ⇓sq 〈v ′ | ρ′∗〉. Applying the inductive hypotheses to 〈se2 | ρ′[l
w 7→

e ′′]〉 ⇓sq〈v ′ | ρ′∗〉 we get 〈e1 | σ[wk:Tk 7→vRk ]1≤k≤m | ρ〉 ⇓ 〈v | ρ∗〉 for some
v and ρ∗. Therefore, from rule (LETREC-F) of Fig. 5, 〈let rec w=F in e1 | σ |
ρ〉 ⇓ 〈v | ρ∗〉 which proves the result.
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We now prove the result for C = ex.
For the base cases and application, since the expressions are translated into IL expres-
sions ≈se and ≈ex coincide. So the result holds.
Let e be a let expression, assignment or a sequence expression. Let Σ, x , y |=
〈e | σ | ρ〉 ≈ex 〈e ′ | ρ′e〉. From Definition 16.2 there are se and ρ′ such that
Σ, x , y |= 〈e | σ | ρ〉 ≈sq 〈se | ρ′〉. Moreover, se is not an expression. Therefore,
let [[e◦]]{x},{y}sq = ( se◦, δ ) where e = e◦[y := l

y
], e ′ = exc(l ′,Y 7→ l

y
, l
x
) for l ′ 6∈

dom(ρ′), ρ′e(l
′) = code({se◦}[z := l

z
], y 7→ Y , x ) and for all l ∈ dom(ρ)∪{lx, lz}

we have that ρ′e(l) = ρ′(l).
From 〈e ′ | ρ′e〉 ⇓ex〈v ′ | ρ′∗〉 and rule (CODE) of Fig. 11 we get 〈l ′ | ρ′e〉 ⇓ex〈code({se◦[z :=
l
z
]}, y 7→ Y , x ) | ρ′e〉, 〈l

x | ρ′e〉 ⇓ex〈v ′) | ρ′e〉 where v ′i = ρ′(lxi ) (1 ≤ i ≤ n).
Let se ′ = se◦[x y w z := l

′
l
y
l
w
l
z
] where {l ′} ∩ dom(ρ′e) = ∅. Define ρ′′1 = ρ′e[l

′ 7→
v ′] and ρ′′1 = ρ′e[l

w 7→ ?]. As for the corresponding case of the proof of Lemma 18, we
can prove that

Σ, x , y |= 〈e | σ | ρ〉 ≈se 〈se ′ | ρ′′〉.

From 〈se ′ | ρ′′〉 ⇓bl〈v ′ | ρ′∗〉 and rule (BLOCK) of Fig. 11 we get 〈{se ′} | ρ”1〉 ⇓sq〈v ′ |
ρ′∗〉. Therefore, applying the inductive hypotheses we derive that 〈e | σ | ρ〉 ⇓ 〈v | ρ∗〉
for some v and ρ∗ which proves the result.

Proof of Theorem 12 (correctness):
Let e be an F#program, then for some T we have that ∅ | ∅ ` e : T and so ∅ |= 〈e |
∅ | ∅〉�.
Let e′i = code(bl i, y

i 7→ Y
i
, x i), δ = def z=e ′, ρ′ = [l

z 7→ e ′[z 7→ l
z
], l

w 7→ ?] and
se ′ = se[z w := l

z
l
w

]. From Lemma 11.2 and 3, FV (se ′) = ∅, Loc(se ′) ⊆ dom(ρ′)
and for all l ∈ dom(ρ′) we have that FV (ρ′(l)) = ∅ and Loc(ρ′(l)) ⊆ dom(ρ′).
Therefore, the IL configuration 〈se | ρ′〉 is well-formed and ∅, ∅, ∅ |= 〈e | ∅ | ∅〉 ≈sq
〈se ′ | ρ′〉.
Assume that for some ρ and v , 〈e | [ ] | [ ]〉 ⇓ 〈v | ρ〉. From Lemma 18, 〈se ′ | ρ′〉 ⇓sq
〈v ′ | ρ′∗〉 where v ∼= 〈v ′ | ρ′∗〉. Let ρ′′ = [l

z 7→ ?, l
w 7→ ?], since for all def z=e ′ ∈ δ

we have that e ′ is a value (so also e ′[z := l
z
] is a value), applying (repeatedly) rules

(SEQ) and (DEF) of Fig. 11, we derive that 〈def l
z
=(e ′[z := l

z
]) | ρ′′〉 ⇓sq〈v ′′ | ρ′〉 for

some v ′′. Applying rule (SEQ), we get 〈(δ; se)[z w := l
z
l
w

] | ρ′′〉 ⇓sq 〈v ′ | ρ′∗〉 and
from rule (BLOCK) we derive that 〈δ; se | [ ]〉 ⇓sq〈v ′ | ρ′∗〉. Since v ∼= 〈v ′ | ρ′∗〉 and v is
an integer or boolean value, from Definition 14 we have that v = v ′.
On the other side, assume that 〈{δ; se} | [ ]〉[ ] ⇓bl〈v | ρ′∗〉 for some v and ρ′∗. Applying
rule (BLOCK) of Fig. 11 we have that 〈(δ; se)[z w := l

z
l
w

] | ρ′′〉 ⇓sq〈v | ρ′∗〉. Therefore,
from repeated application of rules (SEQ) and (DEF) of Fig. 11 we have that, for some v ′′,
〈δ[z w := l

z
l
w

] | ρ′′〉 ⇓sq〈v ′′ | ρ′′〉 and 〈se[z w := l
z
l
w

] | ρ′′〉 ⇓sq〈v | ρ′∗〉. From
∅, ∅, ∅ |= 〈e | ∅ | ∅〉 ≈sq 〈se ′ | ρ′〉 and Lemma 19, we derive that 〈e | [ ] | [ ]〉 ⇓ 〈v ′ |
ρ∗〉 for some ρ∗ and v ′. From Lemma 18, v ′ ∼= 〈v | ρ′∗〉 and since v ′ is an integer or
boolean value we have that v = v ′.
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5. Implementation

The compiler was implemented in F#. The implementation relies on two features,
namely F# code quotations and reflection, with which one can reason about the source
code and through transformation processes generate target language code. Follows a
brief description of the compiler implementation. The aim of this section is to pro-
vide a general idea of the compiler’s architecture, data structures and the implemented
compiler phases needed to transform F# code into target language code.

5.1. Data structures

The IL grammar is described by discriminated unions defining three main syntactic
categories of our intermediate language, namely blocks, statements and expressions.
This is a traditional approach adopted by most functional implementations, e.g., see
[3]. This data structure allows us to represent input programs as traditional abstract
syntax trees that can be naturally traversed and manipulated in any functional language.

5.2. Architecture and translation

From an abstract point of view, the compiler’s architecture can be thought of as in
Fig. 13.

F# IL

JavaScript

Python

...

Figure 13: Compiler architecture

The F# source code is translated to IL. The compiler then delegates the translation of
IL code to a target-specific driver. Currently, we implemented drivers for JavaScript
and Python. A driver is an implementation of an F# interface defining methods that
take in input an IL tree and return the target language code. The translation is done
through a series of recursive method calls dispatched according to the construct type
being translated.

The IL tree is generated from an AST representing the F# source code. This latter
is obtained with the Quotations library that allows a programmer to mark F# code
that should be ignored by the compiler and whose AST should be returned. This way,
lexical and semantic analysis are done for us by the Quotation library. Fig. 14 shows an
example of Quotations in action and the value of the ast constant is shown in Fig. 15.
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open Microsoft.FSharp.Quotations

let ast = <@@ let add x y = x + y in add 2 3 @@>

Figure 14: Example F# quotations

val ast : Quotations.Expr =
Let (add,

Lambda (x,
Lambda (y,
Call (None,

Int32 op_Addition[Int32,Int32,Int32](Int32, Int32),
[x, y]))),

Application (Application (add, Value (2)), Value (3)))

Figure 15: Result of example F# quotations

That is, instead of evaluating the code between <@@ @@>, the compiler returns an ab-
stract syntax tree of the enclosed expression. The drawback of this method is that you
may have to enclose many expressions making the code hard to read. For this reason,
the Microsoft .NET platform has ReflectedDefinitionAttribute, a special at-
tribute, that can be applied to a whole function, method or, in F# 3.x, to a module. The
compiler will thus ignore the compilation of all constructs marked with this attribute
and will instead return their abstract syntax tree representation.

To obtain the AST of all the functions or methods marked ReflectedDefinition
we proceed as follows:

1. we compile at runtime the module containing the functions or methods, obtaining
this way a compiled assembly

2. from the compiled assembly, by using the .NET reflection, we take all the defined
types and other definitions

3. we filter out definitions without the ReflectedDefinition attribute
4. for each function/method with a ReflectedDefinition attribute we take the

desired AST

Once the F# tree is constructed, we traverse it recursively relying on pattern match-
ing and gradually build the corresponding IL tree. The Quotation library provides us
with a rich set of active patterns for working with F# abstract syntax trees.

5.3. Extensions

We developed several extensions and are currently experimenting with new ones.

JavaScript DOM and project template. We developed a DOM manipulation library
with a simple DSL for generating web pages. The DSL allows us to build web pages
in a type-safe manner. Also, we implemented a small F# library that makes devel-
oping JavaScript applications easier. Thanks to this library, when the user launches a
JavaScript application, the generated JavaScript code is put in a .js file that is loaded
into a .html file, that in turn is served to the user through a browser by a small HTTP
server that is automatically launched by the project.
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Native and target code mix-ins. We are studying and have already partially imple-
mented constructs for mixing in a type-safe manner native F# and target language
code. This technique would let a developer reuse existing JavaScript code in a type-
safe manner.

New language drivers. We emphasize that driver extensions are really easy to im-
plement. Also, target language drivers can freely use target language libraries. For
example, one could generate target language code that uses jQuery instead of plain
JavaScript. Such a driver could inherit all the code from the original JavaScript driver
and then just override the methods that should generate jQuery code.

Debugging. We are studying a debugging system that, when an error occurs in a target
language, would correctly indicate the origin of errors in the origin language code.

Client-Server code. Also, following the example of [16], it would be useful to allow
a programmer to separate client- and server-side code in a type-safe manner. This
extension is in a very early stage.

Source languages. Many other extensions are possible. The IL in itself is not strongly
linked to the source language, so one could implement a compiler which translates
from a different source language.

The project can be downloaded at:

https://www.assembla.com/spaces/bluestorm

6. Comparisons with other work

Similar projects exist and are based on similar translation techniques, although, as
far as we know, we are the first to introduce an intermediate language in order to trans-
late to different target languages. Pit, see [5], and FunScript, see [4], are open source
F# to JavaScript compilers. They support only translation to JavaScript. FunScript ha
support for integration with JavaScript code. Websharper, see [11], is a professional
web and mobile development framework, also available under an open source license.
It is a very rich framework offering extensions for ExtJs, jQuery, Google Maps, WebGL
and many more. Again it supports only JavaScript. F# Web Tools is an open source
tool whose main objective is not the translation to JavaScript, instead, it is trying to
solve the difficulties of web programming: “the heterogeneous nature of execution, the
discontinuity between client and server parts of execution and the lack of type-checked
execution on the client side”, see [16]. It does so by using meta-programming and
monadic syntax. One of it features is translation to JavaScript. Finally, a translation
between Ocaml byte code and JavaScript is provided by Ocsigen, and described in [18].

On the theoretical side, a framework integrating statically and dynamically typed
(functional) languages is presented in [13]. Support for dynamic languages is provided
with ad hoc constructs in Scala, see [14]. A construct similar to code, is studied in
recent work by one of the authors, see [2], where it is shown how to use it to realize
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dynamic binding and meta-programming, an issue we are planning to address. The
only work to our knowledge that proves the correctness of a translation between a
statically typed functional language, with imperative features to a scripting language
(namely JavaScript) is [6].

In [6] the proof of correctness is done by embedding the JavaScript translation in
the functional language and showing that the semantics is preserved. Our proof instead
is direct; we define a translation relation between F# and IL values and configuration
and prove the correctness of the translation. That is, the evaluations of an F# configu-
ration converge to a value if and only if the evaluation of the IL configuration which
is in the relation translation with it converges to a related value. The soundness of the
F# type system w.r.t. the operational semantics is essential in order to prove the cor-
rectness of the translation. Therefore, in the appendices we give also the proofs of type
preservation and progress for well typed F# expressions w.r.t. the big-step semantics
introduced. The use of a big-step semantics, for both languages, facilitates the already
quite complex proof of equivalence, however, it introduced the need to characterize
also non terminating computations, and prove that a well-typed F# expression either
converges to a value or diverges.

7. Conclusions and future work

In this paper we proved that the translation of a significant fragment of F# to an
intermediate language close to scripting languages such as Python and JavaScript is
correct, in the sense that it preserves the dynamic semantics of the language. A richer
version of the intermediate language, IL, and a preliminary version of the translation
were presented at ICSOFT 2013, see [7] and [9]. We have a prototype implementation
of the compiler that can be found at the project site [8]. The compiler is implemented
in F# and is based on two metaprogramming features offered by the .net platform:
quotations and reflection. Our future work will be on the practical side to use the inter-
mediate language to integrate F# code and JavaScript or Python native code. (Some of
the features of IL, such as dynamic type checking, which are not present in the current
paper, as they were not relevant for the proof of correctness, were originally introduced
for this purpose.) The current implementation also supports features such as names-
pacing, classes, pattern matching, discriminated unions, etc., some of which have poor
or no support at all in JavaScript or Python. On the theoretical side, we are planning to
do the proofs of correctness of the translations from IL to Python and JavaScript. For
this, we need to formalize Python and JavaScript. (We anticipate that these proofs will
be easier than the one from F# to IL.) Moreover, we want to formalize the integration
of native code, and more in general meta-programming on the line of recent work by
the authors, see [2] and [1].

AppendixA.

In this appendix we prove the Subject Reduction lemma.

Lemma 20. If Γ[y :T ′!] | Σ ` e : T and l 6∈ dom(Σ), and |= v :T ′ then Γ | Σ[l :T ′] `
e[l := v ] : T .
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Proof:
By structural induction on e .

Lemma 21 (Inversion). 1. If Γ | Σ ` n : T , then T = int and if Γ | Σ `
tr, fls : T then T = bool.

2. If Γ | Σ ` x : T , then x :T † ∈ Γ.
3. If Γ | Σ ` l : T , then Σ(l) = T .
4. If Γ | Σ ` e1+e2 : T then T = int, and Γ | Σ ` ei : int (1 ≤ i ≤ 2).
5. If Γ | Σ ` if e then e1 else e2 : T then Γ | Σ ` e1 : bool, and Γ | Σ ` ei : T

(2 ≤ i ≤ 3).
6. If Γ | Σ ` fun x :T1->e : T then for some T2, Γ1 and Γ2

(a) T = T1 → T2, Γ = Γ1[Γ2],
(b) Γ2[x:T1] | ∅ ` e : T2 and
(c) ∀y ,T y :T ! 6∈ Γ2.

7. If Γ | Σ ` e1 e2 : T then Γ | Σ ` e1 : T ′ → T for some T ′ and Γ ` e2 : T ′.
8. If Γ | Σ ` e1, e2 : T then Γ | Σ ` e1 : T ′ for some T ′ and Γ | Σ ` e2 : T .
9. If Γ | Σ ` let x :T1=e1 in e2 : T then Γ | Σ ` e1 : T1 and Γ[x:T1] | Σ ` e2 :

T .
10. If Γ | Σ ` let mutable y :T1=e1 in e2 : T then Γ | Σ ` e1 : T1 and

Γ[y :T1!] | Σ ` e2 : T .
11. If Γ | Σ ` let rec w :T=F in e : T then Γ[w :T ] | Σ ` Fj : Tj (1 ≤ j ≤ n)

and Γ[w :T ] | Σ ` e : T .
12. If Γ | Σ ` l<-e : T then Γ | Σ ` e : T and Σ(l) = T .

Proof:
By induction on typing derivations. For each case, we have that the last rule applied in
the derivation of Γ ` e : T is the typing rule corresponding to the syntactic construct
e . The result follows by analysis of the structural rules.

Proof of Lemma 3 (Type Preservation):
Let 〈e | σ | ρ〉 be such that Σ |= 〈e | σ | ρ〉�. From Definition 2,

1. env(σ) | Σ ` e : T for some T

2. |= σ� and
3. Σ |= ρ.

Let 〈e | σ | ρ〉 ⇓ 〈v | ρ′〉. By induction on the derivation of ⇓. We only show the
most interesting cases which are the base cases, the rule for application, let recursive
and mutable and assignment. The others are similar. Consider the last rule applied in
the derivation.

Rule (VAR-F) In this case e=x and 〈e | σ | ρ〉 ⇓ 〈lkp(x , σ) | ρ〉. Let x :T 7→v ′ ∈ σ. If
lkp(x , σ) = v ′, then, from 2, |= v ′:T , otherwise v ′ = (let rec x :T=F inFk, σ)
and v = (Fk, σ[xi:Ti 7→(let rec x :T=F in Fi, σ)]1≤i≤n). From |= v ′:T
we have that T = Tk and env(σ)[x :T ] | ∅ ` Fk : Tk. Therefore, from
Definition 2.1(c) we also have |= v :T . Note that, if T = T1 → T2 then
v = (fun x :T1->e ′, σ′) for some e ′ and σ′. Moreover, from 3, we have Σ |= ρ.
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Rule (PR-VAL-F) In this case e=n or e=tr or e=fls and 〈e | σ | ρ〉 ⇓ 〈e | ρ〉, i.e.,
v=e . From 1 and Lemma 21.1, we have that for e = n then T = int and for
e=tr or e=fls then T = bool. Therefore, from Definition 2.1(a) and (b) we
have |= v :T . Note that, T = T1 → T2 and v = (fun x :T1->e ′, σ′).Moreover,
from 3, we have Σ |= ρ.

Rule (FN-VAL-F) In this case e=fun x :T1->e ′ and 〈e | σ | ρ〉 ⇓ 〈(e, σ) | ρ〉, i.e.,
v = (e, σ). From 1 and Lemma 21.6, T = T1 → T2, env(σ) = Γ1[Γ2],
Γ2[x:T ] | ∅ ` e ′ : T2 and ∀y ,T y :T ! 6∈ Γ2. Since in env(σ) there are not
y :T !, also env(σ)[x:T ] | ∅ ` e ′ : T2. Therefore, from Definition 2.1(c), we get
|= (e, σ):T . Moreover, from 3, we have Σ |= ρ.

Rule (LOC-F) In this case e=l for some l ; so 〈l | σ | ρ〉 ⇓ 〈v | ρ〉where v = ρ(l). From
1 and Lemma 21.3, T = Σ(T ). From 3 and Definition 2.3 we have |= ρ(l):T ,
Σ |= ρ and, in case T is a function type, v has the required shape.

Rule (APP-F) In this case e=e1 e2 for some e1 and e2. From 〈e | σ | ρ〉 ⇓ 〈v | ρ∗〉 we
have that 〈e1 | σ | ρ〉 ⇓ 〈(fun x :T1->eb, σ′) | ρ1〉, 〈e2 | σ | ρ1〉 ⇓ 〈vx | ρ2〉
and 〈eb | σ′[x :T1 7→vx] | ρ2〉 ⇓ 〈v | ρ∗〉 for some T1. From 1 and Lemma 21.7,
we have that Γ | Σ ` e1 : T ′ → T , Γ | Σ ` e2 : T ′ for some T ′. From 2
and 3, Σ |= 〈e1 | σ | ρ〉�. Applying the inductive hypothesis to 〈e1 | σ | ρ〉 ⇓
〈(fun x :T1->eb, σ′) | ρ1〉 we have that |= (fun x :T1->eb, σ′):T ′ → T and
Σ1 |= ρ1 for some Σ1 ⊇ Σ.
From Γ | Σ ` e2 : T ′, 2 and Σ1 |= ρ1, we derive Σ1 |= 〈e2 | σ | ρ1〉�. Applying
the inductive hypothesis to 〈e2 | σ | ρ1〉 ⇓ 〈vx | ρ2〉 we have that |= vx:T ′ and
Σ2 |= ρ2 for some Σ2 ⊇ Σ1.
From |= (fun x :T1->eb, σ′):T ′ → T and Definition 2.1(c), env(σ′) | Σ `
fun x :T1->eb : T ′ → T . From Lemma 21.6, T ′ = T1 and env(σ′)[x:T1] |
∅ ` eb : T . Moreover, we have that |= σ′�. From |= vx:T1, we have that
|= σ′[x:T1 7→ vx]� and so Σ2 |= 〈eb | σ′[x:T1 7→ vx] | ρ2〉�. Applying the
inductive hypothesis to 〈eb | σ′[x :T1 7→vx] | ρ2〉 ⇓ 〈v | ρ∗〉 we have that |= v :T
and Σ′ |= ρ∗ for some Σ′ ⊇ Σ2 which proves the result. In case T is a function
type, from the inductive hypotheses we also have that v has the required shape.

Rule (LET-MUT-F) In this case e=let mutable y :T ′=e1 in e2, and 〈e | σ | ρ〉 ⇓ 〈v |
ρ∗〉, where 〈e1 | σ | ρ〉 ⇓ 〈vy | ρ1〉, 〈e2[y := ly] | σ | ρ1[ly 7→ vy]〉 ⇓ 〈v | ρ∗〉
where ly 6∈ ρ1.
From 1 and Lemma 21.10, we have that T ′ = T1 and Γ | Σ ` e1 : T1,
so from 2 and 3, Σ |= 〈e1 | σ | ρ〉�. Applying the inductive hypothesis to
〈e1 | σ | ρ〉 ⇓ 〈vy | ρ1〉 we have that |= vy:T1 and Σ1 |= ρ1 for some Σ1 ⊇ Σ.
From Lemma 21.10 and Σ1 ⊇ Σ, Γ[y :T1!] | Σ1 ` e2 : T . From Lemma 20,
since ly 6∈ dom(ρ1) we derive Γ | Σ1[ly:T1] ` e2[y := ly] : T . Moreover,
Σ1[ly:T1] |= ρ1[ly 7→ vy]. Therefore, from 2, Σ1[ly:T1] |= 〈e2[y := ly] | σ |
ρ1[ly 7→ vy]〉�. Applying the inductive hypothesis to 〈e2[y := ly] | σ | ρ1[ly 7→
vy]〉 ⇓ 〈v | ρ∗〉 we have that |= v :T and Σ′ |= ρ∗ for some Σ′ ⊇ Σ1[ly:T ′]
which proves the result. In case T is a function type, from the inductive hy-
potheses we also have that v has the required shape.
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Rule (LETREC-F) In this case e=let rec w=F in e1 and 〈e | σ | ρ〉 ⇓ 〈v | ρ∗〉 where
〈e1 | σ′ | ρ〉 ⇓ 〈v | ρ∗〉where σ′ = σ[wj :Tj 7→(let recw :T=F inFj , σ)]1≤j≤m.
From Lemma 21.11 and 2 we get |= σ′�, and Γ[w :T ] | Σ ` e : T . There-
fore, from 3, Σ |= 〈e1 | σ′ | ρ〉�. Applying the inductive hypothesis to
〈e1 | σ′ | ρ〉 ⇓ 〈v | ρ∗〉 we have that |= v :T and Σ′ |= ρ∗ for some Σ′ ⊇ Σ. In
case T is a function type, from the inductive hypotheses we also have that v has
the required shape.

Rule (ASS-F) In this case e=l<-e1 and 〈e | σ | ρ〉 ⇓ 〈v | ρ∗〉 where 〈e1 | σ | ρ〉 ⇓ 〈v |
ρ1〉 and ρ∗ = ρ1[l 7→ v ].
From 1 and Lemma 21.12, we have that Γ | Σ ` e1 : T , therefore from 2 and 3
Σ |= 〈e1 | σ | ρ〉�. Applying the inductive hypothesis to 〈e1 | σ | ρ〉 ⇓ 〈v | ρ1〉,
we have that |= v :T and Σ1 |= ρ1 for some Σ1 ⊇ Σ.
From Lemma 21.12, Σ(l) = T , so also Σ1(l) = T , and from |= v :T , Σ1 |=
ρ1[l 7→ v ].
In case T is a function type, from the inductive hypotheses we also have that v
has the required shape.

AppendixB.

In this appendix we prove the Progress lemma. Since we give a coinductive inter-
pretation to the rules of Fig. 6, the proof of the lemma uses coinduction. In particular,
we prove that the assumption that “either 〈e | σ | ρ〉 ⇓ 〈v | ρ∗〉 for some v and ρ∗ or
〈e | σ | ρ〉⇑” is compatible with the rules defining the judgment 〈e | σ | ρ〉⇑ and also
that the “or” is an “exclusive or”.

Proof of Lemma 4 (Progress):
From Σ |= 〈e | σ | ρ〉� we have

1. env(σ) | Σ ` e : T for some T

2. |= σ� and
3. Σ |= ρ.

The proof is by coinduction and case analysis over e .
For the cases e=n , e=tr, e=fls, e=fun x :T1->e1, e = x and e = l we have

that 〈e | σ | ρ〉 ⇓ 〈v | ρ〉 for some v . (For e = x and e = l we have to use 1 to prove
that the corresponding rule is applicable.)
For the structured expressions, we only show the proof for application and let mutable.
The others are similar and simpler.

e=e1 e2 for some e1, e2. By excluded middle, either 〈e1 | σ | ρ〉 ⇓ 〈v | ρ1〉 (for some
v1 and ρ1) or not.
In the latter case, the judgment 〈e | σ | ρ〉⇑ follows from rule (APP-⇑) of Fig. 6 and
the coinductive hypothesis 〈e1 | σ | ρ〉⇑ using the first disjunct of the premises.
Moreover, 〈e1 | σ | ρ〉 ⇓ 〈v | ρ∗〉 for some v and ρ∗ is false.
From 1 and rule (TYAPP), we have env(σ) | Σ ` e1 : T ′ → T and env(σ) | Σ `
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e2 : T ′ for some T ′.
If 〈e1 | σ | ρ〉 ⇓ 〈v1 | ρ1〉, from Lemma 3, we derive that v1 = (fun x :T ′->eb, σ′)
for some eb and σ′, |= (fun x :T ′->eb, σ′):T ′ → T and Σ1 |= ρ1 for some
Σ1 ⊇ Σ. From env(σ) | Σ ` e2 : T ′ we also have that Σ1 |= 〈e2 | σ | ρ1〉�.
By excluded middle, either 〈e2 | σ | ρ1〉 ⇓ 〈vx | ρ2〉 (for some vx and ρ2) or not.
In the latter case, the judgment 〈e | σ | ρ〉⇑ follows from rule (APP-⇑) of Fig. 6,
〈e1 | σ | ρ〉 ⇓ 〈v1 | ρ1〉 and the coinductive hypothesis 〈e2 | σ | ρ1〉⇑ using the
second disjunct of the premises. Moreover, 〈e | σ | ρ〉 ⇓ 〈v | ρ∗〉 for some v and
ρ∗ is false.
If 〈e2 | σ | ρ1〉 ⇓ 〈vx | ρ2〉 from Lemma 3, we derive that |= vx:T ′ and Σ2 |= ρ2
for some Σ2 ⊇ Σ1. From |= (fun x :T ′->eb, σ′):T ′ → T and rule (TYABS) of
Fig. 3 we have env(σ′), x :T ′ | ∅ ` eb : T and |= σ′�. Therefore, from |= vx:T ′

follows that |= σ′[x :T ′ 7→ vx]� and so Σ2 |= 〈eb | σ′[x :T ′ 7→ vx] | ρ2〉�.
By excluded middle again, either 〈eb | σ′[x :T ′ 7→ vx] | ρ2〉 ⇓ 〈v | ρ∗〉 (for some
v and ρ∗) or not. In the latter case, the judgment 〈e | σ | ρ〉⇑ follows from rule
(APP-⇑) of Fig. 6, 〈e1 | σ | ρ〉 ⇓ 〈(fun x :T ′->eb, σ′) | ρ1〉, 〈e2 | σ | ρ1〉 ⇓ 〈vx |
ρ2〉 and the coinductive hypothesis 〈eb | σ′[x :T1 7→ vx] | ρ2〉⇑ using the third
disjunct of the premises. Moreover, 〈e | σ | ρ〉 ⇓ 〈v | ρ∗〉 for some v and ρ∗ is
false.
Instead, if 〈eb | σ′[x :T1 7→ vx] | ρ2〉 ⇓ 〈v | ρ∗〉, then from 〈e1 | σ | ρ〉 ⇓
〈(fun x :T ′->eb, σ′) | ρ1〉, 〈e2 | σ | ρ1〉 ⇓ 〈vx | ρ2〉 and rule (APP-F) of Fig. 5 we
derive 〈e | σ | ρ〉 ⇓ 〈v | ρ∗〉. Moreover, it is not the case that 〈e | σ | ρ〉⇑. This
concludes the proof.

e=let mutable y :T=e1 in e2 for some e1 and e2. By excluded middle, either 〈e1 |
σ | ρ〉 ⇓ 〈vy | ρ1〉 (for some vy and ρ1) or not.
In the latter case, the judgment 〈e | σ | ρ〉⇑ follows from rule (LETMUT-⇑) of
Fig. 6 and the coinductive hypothesis 〈e1 | σ | ρ〉⇑, using the first disjunct of the
premises. Moreover, 〈e | σ | ρ〉 ⇓ 〈v | ρ∗〉 for some v and ρ∗ is false.
From 1 and rule (TYMUT) of Fig. 3, env(σ) | Σ ` e1 : T ′ for some T ′ and
env(σ), y :T ′! | Σ ` e2 : T . If 〈e1 | σ | ρ〉 ⇓ 〈vy | ρ1〉, from Lemma 3 we
have that |= vy:T ′ and Σ1 |= ρ1 for some Σ1 ⊇ Σ. If ly 6∈ dom(ρ1), from
Lemma 20, we derive that env(σ) | Σ, ly:T ′ ` e2[y := ly] : T . Moreover, from
Σ1 |= ρ1 and |= vy:T ′ it follows that Σ1[ly:T ′] |= ρ1[ly 7→ vy]. Therefore, we
get ρ1[ly 7→ vy] |= 〈e2[y := ly] | σ | ρ1[ly 7→ vy]〉�.
By excluded middle, we must have that either 〈e2[y := ly] | σ | ρ1[ly 7→ vy]〉 ⇓
〈v | ρ∗〉 (for some v and ρ∗) or not. In the latter case, the judgment 〈e | σ | ρ〉⇑
follows from rule (LETMUT-⇑) of Fig. 6, 〈e1 | σ | ρ〉 ⇓ 〈v | ρ1〉 and the coinductive
hypothesis 〈e2[y := ly] | σ | ρ1[ly 7→ vy]〉⇑ using the second disjunct of the
premises. Moreover, 〈e | σ | ρ〉 ⇓ 〈v | ρ∗〉 for some v and ρ∗ is false.
If, instead, 〈e2[y := ly] | σ | ρ1[ly 7→ vy]〉 ⇓ 〈v | ρ∗〉, then from 〈e1 | σ | ρ〉 ⇓
〈vy | ρ1〉 and rule (LETMUT-F) of Fig. 5 〈e | σ | ρ〉 ⇓ 〈v | ρ∗〉. Moreover, it is not
the case that 〈e | σ | ρ〉⇑. This concludes the proof.
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