
DiSIT, Computer Science Institute
Università del Piemonte Orientale “A. Avogadro”

Viale Teresa Michel 11, 15121 Alessandria
http://www.di.unipmn.it

Tracing sharing in an imperative pure calculus
P. Giannini, M. Servetto, E. Zucca (giannini@di.unipmn.it,

marco.servetto@ecs.vuw.ac.nz, elena.zucca@unige.it)

TECHNICAL REPORT TR-INF-2016-12-04-UNIPMN
(December 2016)

Research Technical Reports published by DiSIT, Computer Science Institute, Università
del Piemonte Orientale are available via WWW at URL http://www.di.unipmn.it/.

Plain-text abstracts organized by year are available in the directory

Recent Titles from the TR-INF-UNIPMN Technical Report Series

2016-03 SUPPORTING DATA COMMUNICATION AND PATIENT ASSESSMENT DUR-
ING EMERGENCY TRANSPORTATION, M. Canonico, S. Montani, M. Striani,
September 2016.

2016-02 TECHNICAL NOTE TO Forensic Analysis of the ChatSecure Instant Messaging
Application on Android Smartphones (see below for citation details), C. Anglano,
M. Canonico, M. Guazzone, September 2016.

2016-01 Reasoning in a rational extension of SROEL, L. Giordano, D. Theseider Dupré, May
2016.

2014-02 A Provenly Correct Compilation of Functional Languages into Scripting Lan-
guages, P. Giannini, A. Shaqiri, December 2014.

2014-01 An Intelligent Swarm of Markovian Agents, A. Bobbio, D. Bruneo, D. Cerotti, M.
Gribaudo, M. Scarpa, June 2014.

2013-01 Minimum pattern length for short spaced seeds based on linear rulers (revised), L.
Egidi, G. Manzini, July 2013.

2012-04 An intensional approach for periodic data in relational databases, A. Bottrighi, A.
Sattar, B. Stantic, P. Terenziani, December 2012.

2012-03 Minimum pattern length for short spaced seeds based on linear rulers, L. Egidi, G.
Manzini, April 2012.

2012-02 Exploiting VM Migration for the Automated Power and Performance Management
of Green Cloud Computing Systems, C. Anglano, M. Canonico, M. Guazzone, April
2012.

2012-01 Trace retrieval and clustering for business process monitoring, G. Leonardi, S.
Montani, March 2012.

2011-04 Achieving completeness in bounded model checking of action theories in ASP, L.
Giordano, A. Martelli, D. Theseider Dupré, December 2011.

2011-03 SAN models of a benchmark on dynamic reliability, D. Codetta Raiteri, December
2011.

2011-02 A new symbolic approach for network reliability analysis , M. Beccuti, S. Donatelli,
G. Franceschinis, R. Terruggia, June 2011.

2011-01 Spaced Seeds Design Using Perfect Rulers, L. Egidi, G. Manzini, June 2011.

2010-04 ARPHA: an FDIR architecture for Autonomous Spacecrafts based on Dynamic
Probabilistic Graphical Models, D. Codetta Raiteri, L. Portinale, December 2010.

2010-03 ICCBR 2010 Workshop Proceedings, C. Marling, June 2010.

Tracing sharing in an imperative pure calculus

Abstract
We introduce a type and effect system, for an imperative object calculus, which infers sharing
possibly introduced by the evaluation of an expression. Sharing is directly represented at the
syntactic level as a relation among free variables, thanks to the fact that the calculus is pure.
That is, imperative features are modeled by just rewriting source code terms. We consider both
standard variables and affine variables, which can occur at most once in their scope. The latter
are used as temporary references, to “move” a capsule (an isolated portion of store) to another
location in the store. The sharing effects inferred by the type system are very expressive, and
generalize notions introduced in literature by type modifiers.

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

In the imperative programming paradigm, sharing is the situation when a portion of the store
can be accessed through more than one reference, say x and y, so that a change to x affects y
as well. Unwanted sharing relations are common bugs: unless sharing is carefully maintained,
changes through a reference might propagate unexpectedly, objects may be observed in an
inconsistent state, and conflicting constraints on shared data may inadvertently invalidate
invariants. Preventing such errors is even more important in increasingly ubiquitous multi-
core and many-core architectures. An unfortunate scheduling of two threads sharing mutable
state could cause data-races, which leads to problems like lost updates, corrupted data and
unwanted non-determinism.

For this reasons, the last few decades have seen considerable interest in type systems
for controlling sharing and interference, notably using type modifiers to restrict the usage
of references. In particular, we can find in the literature variations of two notions: lent
references [24, 12] (also called borrowed [19]), whose reachable graph can be manipulated,
but not shared, by a client, and capsule references (also called externally unique [8], balloon
[1, 23], island [14, 11], isolated [13])), whose reachable graph should be an isolated portion
of store.

The type and effect system proposed in this paper takes a different approach. That is,
rather than declaring the permitted sharing by type modifiers, we infer sharing possibly
introduced by the evaluation of an expression. That is, given an expression e with free
variables, e.g., x, y, z, the type system computes the following effects of the evaluation of e:

A sharing relation S which is an equivalence relation on free variables, corresponding
to the possibly introduced sharing. For instance, the expression x.f =y;z.f introduces
sharing only between x and y.
A subset X of free variables, corresponding to those which will be possibly connected with
(an implicit variable denoting) the result of e. For instance, the result of the expression
above will be only connected to z.

In this way, the capsule notion becomes just a special case, that is, it is an expression
whose result will be disjoint from any free variable (X = ∅). For instance, the expression
x.f =y;new C(new D()).f is a capsule, whereas the previous expression is not. The lent
notion also becomes a special case: a variable x is used as lent in an expression if the
evaluation of the expression will neither connect x to any other variable, nor to the result (x
is a singleton in S, and x 6∈ X). For instance x is lent in x.f1=x.f2;z.f . In other words, our
type system generalizes lent variables (singletons) to arbitrary sets of variables.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

e ::= x | e.f | e.m(es) | e.f =e′ | new C(es) | {ds e} expression
d ::= T x=e; declaration
T ::= Cµ declaration type
µ ::= ε | a optional modifier

Figure 1 Syntax

As the reader may have noticed, we are able to express sharing in such a natural and
simple way thanks to the fact that references in the store (i.e., addresses, locations, unique
object identifiers) are directly represented at the syntactic level as variables. Indeed, we
define our type system on top of a pure calculus, where imperative features are modeled
by just rewriting source code terms, rather than by modifying an auxiliary structure which
mimics physical memory. This operational semantics will be informally introduced in Sect.2,
and formalized in Sect.5.

However, not all the variables of our calculus correspond to references in the store. We
also consider affine variables, which can occur at most once in their scope. These variables
are used as temporary references, to “move” a capsule (an isolated portion of store) to another
location in the store. Hence, they do not introduce sharing, and are simply ignored in the
sharing relation S and the effects X .

The rest of the paper is organized as follows: in Sect.2 we provide syntax and an informal
execution model, in Sect.3 the type system, and in Sect.4 some examples. The operational
semantics of the calculus is presented in Sect.5, and the main results and proofs in Sect.6.
Finally Sect.7 and Sect.8 discuss related and further work.

2 Language

The syntax of the language is given in Fig.1. We assume sets of variables x, y, z , class names
C ,D, field names f , and method names m. We adopt the convention that a metavariable
which ends by s is implicitly defined as a (possibly empty) sequence, for example, ds is
defined by ds ::= ε | d ds, where ε denotes the empty string.

The calculus is designed with an object-oriented flavour, inspired by Featherweight Java
[15]. This is only a presentation choice: all the ideas and results of the paper could be easily
rephrased, e.g., in a ML-like syntax with data type constructors and reference types.

An expression can be a variable (including the special variable this denoting the receiver
in a method body), a field access, a method invocation, a field assignment, a constructor
invocation or a block consisting of a sequence of declarations and a body. A declaration
specifies a type, a variable and an initialization expression. We assume that in well-formed
blocks there are no multiple declarations for the same variable, that is, ds can be seen as a
map from variables into expressions.

A declaration type is a class name with an optional modifier a, which, if present, indicates
that the variable is affine. An affine variable can occur at most once in its scope, and should
be initialized with a capsule, that is, an isolated portion of store. In this way, it can be
used as temporary reference, to “move” a capsule to another location in the store, without
introducing sharing.

In the examples we feel free to use expressions of primitive types such as int, but they
are omitted in the formal definition for simplicity. Moreover, we generally omit the brackets
of the outermost block, and abbreviate {T x=e; e′} by e;e′ when x does not occur free in e′.

Fig.2 shows an example of reduction sequence in the calculus, where we emphasize at
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

D z=new D(0); C x=new C(z,z); C y=x; D w=new D(y.f1.f+1); x.f2=w; x −→

D z=new D(0); C x=new C(z,z); D w=new D(x.f1 .f+1); x.f2=w; x −→
D z=new D(0); C x=new C(z,z); D w=new D(z.f +1); x.f2=w; x −→
D z=new D(0); C x=new C(z,z); D w=new D(0+1); x.f2=w; x −→
D z=new D(0); C x=new C(z,z); D w=new D(1); x.f2=w ; x −→
D z=new D(0); C x=new C(z,w); D w=new D(1); x

Figure 2 Example of reduction

each step the redex which is reduced.
The main idea is to use variable declarations to directly represent the store. That is,

a declared (non affine) variable is not replaced by its value, as in standard let, but the
association is kept and used when necessary, as it happens, with different aims and technical
problems, in cyclic lambda calculi [2, 17].

Assuming a program (class table) where class C has two fields f1 and f2 of type D, and
class D has an integer field f, in the initial term in Fig.2 the first two declarations can be seen
as a store which associates to z an object of class D whose field contains 0, and to x an object
of class C whose two fields contains (a reference to) the previous object. The first reduction
step eliminates an alias, by replacing occurrences of y by x. The next three reduction steps
compute x.f1.f+1, by performing two field accesses and one sum. The last step performs a
field assignment. The final result of the evaluation is an object of class C whose fields contain
two objects of class D, whose fields contain 0 and 1, respectively.

As usual, references in the store can be mutually recursive1, as in the following example,
where we assume a class B with a field of type B.

B x= new B(y); B y= new B(x); y

In the examples until now, store is flat, as it usually happens in models of imperative
languages. However, in our calculus, we are also able to represent a hierarchical store, as
shown in the example below, where we assume a class A with two fields of type B and D,
respectively.

D z= new D(0);
A w= {

B x= new B(y);
B y= new B(x);
A u= new A(x,z);
u}

w

Here, the store associates to w a block introducing local declarations, that is, in turn a store.
The advantage of this representation is that it models in a simple and natural way constraints
about sharing among objects, notably:

the fact that an object is not referenced from outside some enclosing object is directly
modeled by the block construct: for instance, the object denoted by y can only be reached
through w

1 However, mutual recursion is not allowed between declarations which are not evaluated, e.g.,
B x= new B(y.f); B y= new B(x.f); y is ill-formed.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

conversely, the fact that an object does not refer to the outside is modeled by the fact
that the corresponding block is closed (that is, has no free variables): for instance, the
object denoted by w is not closed, since it refers to the external object z.

In other words, our calculus smoothly integrates memory representation with shadowing
and α-conversion. However, there is a problem which needs to be handled to keep this
representation correct: reading (or, symmetrically, updating) a field could cause scope
extrusion. For instance, the term

C y= {D z= new D(0); C x= new D(z,z) x} y.f

under a naive reduction strategy would reduce to the ill-formed term

C y= {D z= new D(0); C x= new D(z,z); x} z

To avoid this problem, the above reduction step is forbidden. However, reduction is not
stuck, since we can transform the above term in an equivalent term where the inner block
has been flattened, and get the following correct reduction sequence:

C y= {D z= new D(0); C x= new D(z,z) x} y.f ∼=
D z= new D(0); C x= new D(z,z); C y= x; y.f −→
D z= new D(0); C x= new D(z,z); x.f −→
D z= new D(0); C x= new D(z,z); z ∼=
D z= new D(0); z

Formally, as in π-calculus [18], our operational semantics is defined by a congruence relation
∼= , which captures structural equivalence, in addition to the reduction relation which models
actual computation. Note also that in the final term the declaration of x can be removed
(again by congruence), since useless.

Moving declaration from a block to the directly enclosing block is not always safe. For
instance, in the following variant of the previous example

Ca y= {D z= new D(0); C x= new D(z,z) x} y.f

the affine variable is required to be initialized with a capsule, and this is the case indeed,
since the right-hand side of the declaration is a closed block. However, by flattening the
term:

D z= new D(0); C x= new D(z,z); Ca y= x; y.f

this property would be lost, and we would get an ill-typed term. Indeed, these two terms
are not considered equivalent in our operational model. Technically, this is obtained by
detecting, during typechecking, which local variables will be connected to the result of the
block, as z in the example, and preventing to move such declarations from a block which is
the initialization expression of an affine variable.

In this case, reduction proceeds by replacing the (unique) occurrence of the affine variable
by its initialization expression, as shown below.

Ca y= {D z= new D(0); C x= new D(z,z) x} y.f −→
{D z= new D(0); C x= new D(z,z) x}.f ∼=
D z= new D(0); C x= new D(z,z) x.f −→
D z= new D(0); C x= new D(z,z) z ∼=
D z= new D(0); z

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3 Type system

In this section we introduce the type and effect system for the language.
We use X ,Y to range over sets of variables.
A sharing relation S is an equivalence relation on variables. We will call connections

the elements 〈x, y〉 of a sharing relation, and say that x and y are connected. The intuitive
meaning is that, if x and y are connected, then their reachable graphs in the store are possibly
shared (that is, not disjoint), hence a modification of the reachable graph of x could affect y
as well, and conversely.

We syntactically represent a sharing relation S by a sequence2 of sets of variables, say,
X1 . . .Xn, meaning that S is the smallest equivalence relation which contains all pairs 〈x, y〉
which belong to some Xi. So, ε represents the identity relation. We define the following
operations on sharing relations:
S1 + S2 is the smallest equivalence relation containing S1 and S2. We also write S + Y ,
meaning that Y is a sequence of one element, hence representing the sharing relation
consisting of the connections 〈x, y〉 such that either x = y or x ∈ Y , y ∈ Y .
S[Y /x] is the sharing relation obtained by “replacing” x by Y in S, that is, the smallest
equivalence relation containing the following connections:

〈y, z〉, for each 〈y, z〉 ∈ S, y 6= x, z 6= x
〈y, z〉, for each 〈x, z〉 ∈ S, y ∈ Y

We also write X [Y /x], interpreting X as above.
S\Y is the sharing relation obtained by “removing” Y from S, that is, the smallest
equivalence relation containing the connections 〈x, y〉, for all 〈x, y〉 ∈ S, x, y 6∈ Y .
[Y]S is the equivalence class of Y in S, that is, {x | 〈x, y〉 ∈ S ∧ y ∈ Y }.
We say that S is finer than S ′, S v S ′ if for all x, [{x}]S ⊆ [{x}]S′ . So Si v S1 + S2
(i = 1, 2).

The class table is abstractly modeled by the following functions:
fields(C) gives, for each declared class C , the sequence C1 f1 . . .Cn fn of its fields
declarations
meth(C ,m) gives, for each method m declared in class C , the tuple
〈D|X |S, µ,T1 x1 . . .Tn xn, e〉 consisting of its return type, optional a modifier for this,
parameters, and body. The return type is in turn a triple consisting of a class name D, a
set of variables X , and a sharing relation S.

The typing judgement has shape

Γ ` e : C | X | S e′

where Γ is a type context, that is, an assignment of types to variables, written x1:T1, . . . , x1:Tn,
X is a set of variables, S is a sharing relation, and e′ is an annotated expression.

The intuitive meaning is that X is the set of free variables of e which, after the evaluation
of the expression, will be possibly connected with (an implicit variable denoting) the result
of the expression, and S represents the connections among the free variables of e possibly
introduced by the evaluation. Hence, the set X is always closed under S. An expression
where X is empty denotes a capsule, that is, reduces to an isolated portion of store. An affine

2 In rules and most examples sequences have length one, for a sequence of length two see page 13.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

(t-var) Γ ` x : C | {x} | ε x Γ(x) = C (t-affine-var) Γ ` x : C | ∅ | ε x Γ(x) = C a

(t-field-access)
Γ ` e : C | X | S e′

Γ ` e.fi : Ci | X | S e′.fi
fields(C) = C1 f1 . . .Cn fn
i ∈ 1..n

(t-invk)
Γ ` ei : Ci | Xi | Si e′i 0≤i≤n
Γ ` e0.m(e1, . . . , en) : C | X | S

e′0.m(e′1, . . . , e′n)

meth(C0,m)=〈C |X ′|S ′, µ0,T1 x1 . . .Tn xn, e〉
Ti = Cµi

i 1≤i≤n
µi = a⇒ Xi = ∅ 0≤i≤n
X = X ′[X0/this][X1/x1] . . . [Xn/xn]

S=
n∑
i=0
Si + S ′[X0/this][X1/x1] . . . [Xn/xn]

(t-field-assign)
Γ ` e1 : C | X1 | S1 e′1 Γ ` e2 : Ci | X2 | S2 e′2

Γ ` e1.fi=e2 : Ci | [X1 ∪X2]S | S e′1.fi=e′2

fields(C) = C1 f1 . . .Cn fn
i ∈ 1..n
S = S1 + S2 + (X1 ∪X2)

(t-new)
Γ ` ei : Ci | Xi | Si e′i 1≤i≤n

Γ ` new C(e1, . . . , en) : C | [
⋃

1≤i≤n Xi]S | S new C(e′1, . . . , e′n)

fields(C)=C1 f1 . . .Cn fn
S =

n∑
i=1
Si

(t-block)

Γ[Γ′] ` ei : Ci | Xi | Si e′i 1≤i≤n
Γ[Γ′] ` e : C | X ′ | S ′ e′

Γ ` {T1 x1=e1; . . .Tn xn=en; e} : C | [X ′]S\Y | S\Y
{[X′]S∩Y T1 x1=e′1; . . .Tn xn=e′n; e′}

Γ′ = x1:T1, . . . , xn:Tn
Y = dom(Γ′)
Ti = Cµi

i 1≤i≤n
µi=a =⇒

(Xi = ∅ ∧ xi affine) 1≤i≤n

S =
n∑
i=1

(Si + {xi}∪Xi) + S ′

Figure 3 Typing rules

variable will be never connected to another, nor to the result, since it is initialized with a
capsule and used only once.

Moreover, during typechecking expressions are annotated. The syntax of annotated
expressions is given by:

e ::= x | e.f | e.m(e1, . . . , en) | e.f =e′ | new C(es) | {Xds e}

where we use the same metavariable of source expressions for simplicity. As we can see,
blocks are annotated by the set X of the local variables which will be (possibly) connected
with the result of the body. Such annotations, as we will see in the next section, are used
to correctly define the congruence relation among terms. In particular, they prevent from
moving outside of a block which initializes an affine variable declarations of variables which
will be possibly connected to the result. Indeed, moving such declarations would make the
term ill-typed, as shown in the last example of Sect.2.

We assume a well-typed class table, that is, method bodies are expected to be well-typed
with respect to method types. Formally, if meth(C ,m) = 〈D|X |S, µ,T1 x1 . . .Tn xn, e〉, then
it should be

Γ ` e : D | X | S e′, with
Γ = this:Cµ, x1:T1, . . . , xn:Tn.

The typing rules are given in Fig.3.
In rule (t-var), the evaluation of a (non affine) variable does not introduce any connection.

So the resulting sharing relation is the identity. Moreover, the result is connected only with
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

the variable itself. In rule (t-affine-var), the evaluation of an affine variable does not introduce
any connection, and the variable is not even connected to the result. Indeed, affine variables
are temporary references and will be substituted with capsules.

In rule (t-field-access), the connections introduced by a field access are those introduced
by the evaluation of the receiver.

In rule (t-invk), if a parameter (including the implicit this parameter) is affine, then
the corresponding argument is required to be a capsule, that is, its result should have no
connections. The connections among free variables introduced by a method call are those
introduced by the evaluation of the receiver and the arguments (

n∑
i=0
Si), plus those introduced

by the evaluation of the method body (S ′) where this and parameters have been replaced
by the (equivalence classes of) the receiver and the arguments, respectively. Analogously,
the connections with the result are those of the method body, with the same substitution.
For instance, if method m has parameters x and y, and the evaluation of its body connects
x with this, and y with the result, then, given the method call z.m(x ′, y′), its evaluation
connects x ′ with z, and y′ with the result.

In rule (t-field-assign), the connections among free variables introduced by a field assignment
are those introduced by the evaluation of the two sides (S1 and S2), plus the connection
between the (equivalence classes of) the two results. The connections with the result are the
variables in the equivalence classes of those of the two sides in the resulting sharing relation.
For instance, given the assignment e.f =e′, if the evaluation of e connects y with z and x
with the result, and the evaluation of e′ connects y′ with z ′ and x ′ with the result, then the
evaluation of the field assignment connects y with z, y′ with z ′, and connects together x, x ′
and the result.

In rule (t-new), the connections among free variables introduced by a constructor invocation
are those introduced by the evaluation of the arguments. The connections with the result
are the variables in the equivalence classes of those of the arguments of the constructor.

In rule (t-block), the initialization expressions and the body of the block are typechecked
in the current type context, enriched by the association to local variables of their declaration
types. We denote by Γ[Γ′] the type environment which is equal to Γ′ when Γ′ is defined, to Γ
otherwise. If a local variable is affine, then its initialization expression is required to denote
a capsule. Moreover, the variable can occur at most once in its scope, as abbreviated by the
side condition “xi affine”.3 The connections among free variables are obtained by:

collecting those introduced by the evaluation of the initialization expressions (
n∑
i=1
Si) and

the body (S ′), plus, for each declared variable, the connection between the (equivalence
class of) the result and the variable itself, represented by the (single) equivalence class
{xi} ∪Xi;
then, removing from the resulting sharing relation S the local variables.

The connections with the result are the variables in the equivalence class of those of the
body in S, again removing the local ones. The block is annotated with the subset of local
variables which are in the sharing relation S with the variables connected to the result.

For a sequence of declarations ds, and a set of variables X , we define the subsequence of
ds containing the declarations of variables that are connected to variables in X .

3 In our case the affinity requirement can be simply expressed as syntactic well-formedness condition,
rather than by context rules, as in linear logic-style type systems.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

I Definition 1. Given X , and ds, define ds|X , by Tx x=ex;∈ ds|X if Tx x=ex;∈ ds, and either
x ∈ X or x ∈ FV(ez) for some Tz z=ez;∈ ds|X .

The following proposition formalizes the relevant properties of the type judgement, some
informally mentioned above.

I Proposition 1. Let Γ ` e : C | X | S e′. Then
1. if x ∈ X , then Γ(x) = C
2. if 〈x, y〉 ∈ S, x 6= y, then Γ(x) = Γ(y) = C
3. X is an equivalence class of S
4. if e = {ds eb}, then e′ = {Y ds′ e′b}, for some e′b, ds′, and Y such that Y ⊆ dom(ds|FV(eb))

Proof. By induction on type derivations. J

4 Examples

In this section we illustrate the expressiveness of the type system by programming examples,
and for some of them we show the type derivation. In particular, we show that significant
examples from [24, 12] are typechecked here in a much simpler and natural way.

I Example 2. Assume we have a class D with a field of type D, and a class C with two fields
of type C. Consider the following closed expression e:

D y= new D(y);
D x= new D(x);
Ca z= {D z2= new D(z2); D z1= (y.f= x); new C(z2 ,z2)};
z

The inner block (right-hand side of the declaration of z) refers to the external variables x
and y, that is, they occur free in the block. In particular, the execution of the block has
the sharing effect of connecting x and y. However, such variables will not be connected to
the final result of the block, since the result of the assignment will be only connected to a
local variable which is not used to build the final result, as more clearly shown by using the
sequence abbreviation: {D z2= new D(z2); y.f= x; new C(z2,z2)}.

Indeed, as will be shown in next section, the block reduces to
{D z2= new D(z2); new C(z2,z2)} which is a closed block.

In existing type systems supporting the capsule notion this example is either ill-typed
[13], or can be typed by means of a rather tricky swap typing rule [24, 12] which, roughly
speaking, temporarily changes, in a subterm, the set of variables which can be freely used.

I Example 3. As a counterexample, consider the following ill-typed term

D y= new D(y);
D x= new D(x);
Ca z= {D z1= (y.f= x); new C(z1 ,z1)};
z

Here the inner block is not a capsule, since the local variable z1 is initialized as an alias
of x, hence the final result will be connected to both x and y. Formally, the block reduces to
new C(y,y) which is not closed.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Type derivation for Example 2

Let Γ1 = y:D, x:D, z:Ca, and Γ2 = z2:D, z1:D.
In Fig.4 we give the type derivation that shows that expression e of Example 2 is well-

typed. To save space we omit the annotated expression produced by the derivation, and
show the annotations for the blocks at the bottom of the figure.

The type derivation D2 produces the judgement Γ1 ` e1 : C | ∅ | {x, y} where e1 is the
block on the right-hand-side of the declaration of z. The sharing relation resulting from the
evaluation of the right-hand side of the declarations and the body is represented by {x, y}
(z1 and z2 are only connected with themselves). The block is annotated with {z2}. Since e1
denotes a capsule, it may be used to initialize an affine variable.
D is the type derivation for the whole expression e. Note that, since z is an affine variable,
the body of the block (z) is not connected to any variable, so the annotation of the block e
is ∅.

D1 :

Γ1[Γ2] ` x : D | {x} | ε
Γ1[Γ2] ` y : D | {y} | ε

Γ1[Γ2] ` y.f=x : D | {x, y} | {x, y}

Γ1[Γ2] ` new D(y.f=x) : D | {x, y} | {x, y}

D2 :

Γ1[Γ2] ` z2 : D | {z2} | ε

Γ1[Γ2] ` new D(z2) : D | {z2} | ε D1

Γ1[Γ2] ` z2 : D | {z2} | ε

Γ1[Γ2] ` new C(z2, z2) : C | {z2} | ε

Γ1 ` {D z2=new D(z2); D z1=new D(y.f=x); new C(z2, z2)} : C | ∅ | {x, y}

D :

Γ1 ` y : D | {y} | ε

Γ1 ` new D(y) : D | {y} | ε

Γ1 ` x : D | {x} | ε

Γ1 ` new D(x) : D | {x} | ε D2 Γ1 ` z : C | ∅ | ε

` {D y=new D(y); D x=new D(x); Ca z=e1; z} : C | ∅ | ε

D2 yields e1′ = {{z2}D z2=new D(z2); D z1=new D(y.f=x); new C(z2, z2)}

D yields e′ ={∅D y=new D(y); D x=new D(x); Ca z=e1′; z}

Figure 4 Type derivation for Example 2

I Example 4. We provide now a more realistic programming example, assuming a syntax
enriched by usual programming constructs. The class CustomerReader below models reading
information about customers out of a text file formatted as shown in the example:

Bob
1 500 2 1300
Mark
42 8 99 100

In even lines we have customer names, in odd lines we have a shop history: a sequence
of product codes. The method CustomerReader.read takes a Scanner, assumed to be a class
similar to the one in Java, for reading a file and extracting different kinds of data.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

class CustomerReader {
static Customer read(Scanner s)/*X = ∅ S = ε*/{

Customer c=new Customer (s. nextLine ())
while(s. hasNextNum ()){

c. addShopHistory (s. nextNum ())
}
return c

}
}

class Scanner {
String nextLine ()/*X = ∅ S = ε*/{...}
boolean hasNextNum ()/*X = ∅ S = ε*/{...}
int nextNum ()/*X = ∅ S = ε*/{...}

Here and in the following, we insert after method headers, as comments, their sharing effects.
In a real language, a library should declare sharing effects of methods by some concrete syntax,
as part of the type information available to clients. In this example, CustomerReader.read
uses some methods of class Scanner. Having no parameters besides this, for such methods
the sharing relation is necessarily the identity, represented by S = ε. Moreover, their result
is not connected to the receiver, as specified by X = ∅ (for the last two methods this is
necessarily the case since the result is a primitive value).

A Customer object is read from the file, and then its shop history is added. Since methods
invoked on the scanner introduce no sharing, we can infer that the same holds for method
CustomerReader.read. In other words, we can statically ensure that the data of the scanner
are not mixed with the result. In previous work [24, 12] the same guarantee was obtained
by declaring lent (borrowed) the Scanner s parameter. In our type system, the fact that a
parameter is (used as) lent, that is, it will be neither connected to another parameter, nor
to the result, is inferred instead. Moreover, lent parameters (singletons) are generalized to
arbitrary sets of parameters, as will be shown in Example 5.

The following method update illustrates how we can “open” capsules, modify their values
and then recover the original capsule guarantee. The method takes a customer, which is
required to be a capsule by the fact that the corresponding parameter is affine, and a scanner
as before.
class CustomerReader {...// as before

static Customer update (Customera old , Scanner s)/*X = ∅ S = ε*/{
Customer c=old //we open the capsule ‘old ’
while(s. hasNextNum ()){

c. addShopHistory (s. nextNum ())
}
return c

}
}

Every method which only has affine and lent parameters can use the pattern illustrated
above: one (or many) affine parameters are opened (that is, assigned to local variables) and,
in the end, the result is guaranteed to be a capsule again. This mechanism is not possible
in [1, 8, 11] and relies on destructive reads in [13].

A less restrictive version of method update could take a non affine Customer old parameter,
that is, not require that the old customer is a capsule. In this case, the sharing effects would
be X = {old} S = ε. Hence, in a call Customer.update(c,s), the connections of c would be

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

propagated to the result of the call. In other words, the method type is “polymorphic” with
respect to sharing effects.

I Example 5. The following method takes two teams t1, t2. Both teams want to add a
reserve player from their respective lists p1 and p2, assumed to be sorted with best players
first. However, to keep the game fair, the two reserve players can only be added if they have
the same skill level.

static void addPlayer (Team t1 , Team t2 , Players p1 , Players p2)
/*X = ∅ S = {t1, p1}, {t2, p2}*/{

while(true){// could use recursion instead
if(p1. isEmpty ()|| p2. isEmpty ()) {/* error */}
if(p1.top (). skill ==p2.top (). skill){

t1.add(p1.top ());
t2.add(p2.top ());
return ;
}

else{
removeMoreSkilled (p1 ,p2);
}

}

The sharing effects express the fact that each team is only mixed with its list of reserve
players.

I Example 6. Finally, we provide a more involved example which illustrates the expressive
power of our approach. Assume we have a class C as follows:

class C {
C f;
C clone ()/*X = ∅ S = ε*/{...}
C mix(C x)/*X = {x, this} S = {x, this}*/{...}

}

The method clone is expected to return a deep copy of the receiver. Indeed, this method
has no parameters, apart the implicit non affine parameter this, and returns an object of
class C which is not connected to the receiver, as specified by the set ∅. Having no parameters
besides this, the sharing relation is necessarily the identity, represented by ε. Note that a
shallow clone method would be typed C clone()/*X = {this} S = ε*/.

The method mix is expected to return a “mix” of the receiver with the argument. Indeed,
this method has, besides this, a parameter x of class C, both non affine, returns an object
of class C and its effects are connecting x with this, and both with the result.

Consider now the following closed expression e:

C c1= new C(c1);
C outC= {

C c2= new C(c2);
Ca inC= {

C c3= new C(c3);
C res= c2.mix(c1). clone ()
res.mix(c3)};

inC.mix(c2)};
outC

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

D1 :

Γ ` c1 : C | {c1} | ε
Γ ` c2 : C | {c2} | ε

Γ ` c2.mix(c1) : C | {c1, c2} | {c1, c2}

Γ ` c2.mix(c1).clone() : C | ∅ | {c1, c2}

D2 :
Γ ` res : C | {res} | ε
Γ ` c3 : C | {c3} | ε

Γ ` res.mix(c3) : C | {c3, res} | {c3, res}

D3 :

Γ ` c3 : C | {c3} | ε

Γ ` new C(c3) : C | {c3} | ε D1 D2

Γ1[Γ2] ` {C c3=new C(c3); C res=c2.mix(c1).clone(); res.mix(c3)} : C | ∅ | {c1, c2}

D4 :
Γ1[Γ2] ` c2 : C | {c2} | ε

Γ1[Γ2] ` new C(c2) : C | {c2} | ε D3

Γ1[Γ2] ` inC : C | ∅ | ε (t-var)
Γ1[Γ2] ` c2 : C | {c2} | ε (t-var)

Γ1[Γ2] ` inC.mix(c2) : C | {c2} | ε

Γ1 ` {C c2=new C(c2); Ca inC=e1; inC.mix(c2)} : C | {c1} | ε

D :

Γ1 ` c1 : C | {c1} | ε (t-var)
(t-new)

Γ1 ` new C(c1) : C | {c1} | ε D4 Γ1 ` outC : C | {outC} | ε (t-var)

` {C c1=new C(c1); C outC=e2; outC} : C | ∅ | ε

D3 yields e1′ = {{res,c3}C c3=new C(c3); C res=c2.mix(c1).clone(); res.mix(c3)}

D4 yields e2′ = {{c2}C c2=new C(c2); Ca inC=e1; inC.mix(c2)}

D yields e′ ={{outC}C c1=new C(c1); C outC=e2; outC}

Figure 5 Type derivation for Example 6

The key line in this example is C res=c2.mix(c1).clone().
Thanks to the fact that clone returns a capsule, we know that res will not be connected to
the external variables c1 and c2, hence also the result of the block will not be connected
to c1 or c2. However, the sharing between c2 and c1 introduced by the mix call is traced,
and prevents the outer block from being a capsule. The reader can check that, by replacing
the declaration of res with C res=c2.mix(c2).clone(), also the outer block turns out to be a
capsule, hence variable outC could be declared affine. Existing type systems supporting the
capsule notion [13, 24, 12] either do not discriminate between these two cases, or require
rather tricky and non syntax-directed rules.

Note that, none of the variables, except for inC, could be declared with the affine modifier.
Indeed the variables c1, c2, and c3 appear more than once, and outC, as already said, is
initialized with an expression whose result could be connected with the free variable c1.

Type derivation for Example 6

Let Γ1 = c1:C, outC:C, Γ2 = c2:C, inC:Ca, and Γ3 = c3:C, res:C.
In Fig.5 we give the type derivation that shows that the expression e of Example 6 is

well-typed.
Derivations D1 and D2 end with an application of rule (T-Invk). Consider D2. The method

mix produces sharing between its receiver and parameter, and also its result is connected
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

e ::= x | v.f | v.m(vs) | v.f =v | new C(vs) | {ds e} expression
d ::= T x=e; declaration

v ::= x | {Xdvs v} value
dv ::= C x=new C(xs); evaluated declaration

E ::= [] | {Xdvs T x=E ; ds e} | {Xdvs E} evaluation context

Figure 6 Syntax of calculus, values, evaluated declarations, and evaluation contexts

with receiver and parameter, then the call of mix with receiver res and parameter c3 returns
a result connected with both these variables and produces sharing between them. The call
of mix with receiver c2 and parameter c1 in the derivation D1 does the same with c2 and
c1. The type derivation D3 justifies the judgement Γ1[Γ2] ` e1 : C | ∅ | {c1, c2} where
e1 is the inner block, the initialization expression of inC. The sharing relation resulting
from the evaluation of the right-hand side of the declarations and the body is represented
by {c1, c2} {c3, res}. The block denotes a capsule, since the result of the body of the
block, res.mix(c3), is connected only to local variables. Therefore, e1 can be used as
initialization expression of the affine variable inC. The annotation for the block, i.e. the set
of local variables that may be connected to the result, is {res, c3}, so, when applying the
congruence relation, the variables res and c3 cannot be moved outside this block. The type
derivation D4 justifies the judgement Γ1 ` e2 : C | {c1} | ε, where e2 is the block which is
the initialization expression of outC. The sharing relation resulting from the evaluation of
initialization expressions and body is represented by {c1, c2} (this sharing is produced by
the evaluation of e1). The variable inC, being affine, is not connected to any other variable
(including inC itself). Indeed, it will be substituted with the result of the evaluation of e1
and so it will disappear. Only the local variable c2 may be connected to the result, so the
block is annotated with {c2}. Therefore, this block is not a capsule, and could not be used
to initialize an affine variable. Finally, D is the derivation for the expression e. The block is
a closed expression, and closed expressions are capsules. The block is annotated with the
local variables outC, which is its body.

5 The calculus

The calculus, defined in Fig.6, has a simplified syntax where we assume that, except from
right-hand sides of declarations and body of blocks, subterms of a compound expression are
only values. This simplification can be easily obtained by a (type-driven) translation of the
syntax of Fig.1 generating for each subterm which is not a value a local declaration of the
appropriate type.

A value is the result of the reduction of an expression, and is either a variable (a reference
to an object), or a block where the declarations are evaluated (hence, correspond to a local
store) and the body is in turn a value.

A sequence dvs of evaluated declarations plays the role of the store in conventional models
of imperative languages, that is, each dv can be seen as an association of an object state
new C(xs) to a variable (reference). An object state represents an elementary allocation
unit, and is a shorter form for a block {C x=new C(xs); x}, as formalized by congruence
rule (new) in Fig.7.

As anticipated in Sect.2, we allow mutual recursion only among evaluated declarations, e.g.,
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

{C x= new C(x); x)} is allowed, whereas {C x= x.f; x)} is not. Allowing general recursion
would require a sophisticated type system as in [22]. Here we take a simplifying assumption
since this is not the focus of this paper.

Evaluation contexts express standard left-to-right evaluation. In the evaluation context
{Xdvs T x=E ; ds e} we assume that no declaration in ds is evaluated. Indeed, we can always
move evaluated declarations first, as formalized by congruence rule (reorder) in Fig.7.

Semantics is defined by a congruence relation, which captures structural equivalence, and
a reduction relation, which models actual computation, similarly to what happens, e.g., in
π-calculus [18].

Both relations are defined on terms obtained through the typechecking phase, hence
where blocks have been annotated as described in the previous section. Formally, given an
annotated term e, and denoting by e− the term obtained by erasing annotations from e, we
assume that Γ ` e− : C | X | S e, for some Γ, C , X , and S.

In the following, for simplicity we show annotations only when they are relevant.
The congruence relation, denoted by ∼= , is defined as the smallest congruence satisfying

the axioms in Fig.7. We write FV(ds) and FV(e) for the free variables of a sequence of
declarations and an expression, respectively, and X [y/x], ds[y/x], and e[y/x] for the capture-
avoiding variable substitution on a set of variables, a sequence of declarations, and an
expression, respectively, all defined in the standard way.

(alpha) {Xds T x=e; ds′ e′} ∼= {X[y/x]ds[y/x] T y=e[y/x]; ds′[y/x] e′[y/x]}

(reorder) {Xds C x=new C(xs); ds′ e} ∼= {XC x=new C(xs); ds ds′ e}

(new) new C(vs) ∼= {{x}C x=new C(vs); x}

(garbage) {Xdvs ds e} ∼= {X\dom(dvs)ds e} (FV(ds) ∪ FV(e)) ∩ dom(dvs) = ∅

(block-elim) {∅ e} ∼= e

(body) {Y ds {Xds1 ds2 e}} ∼= {Y∪(X∩dom(ds1))ds ds1 {X\dom(ds1)ds2 e}}
FV(ds1) ∩ dom(ds2) = ∅
FV(ds) ∩ dom(ds1) = ∅

(dec)
{Y ds Cµ x={Xds1 ds2 e}; ds′ e′} ∼=

{Y ds ds1 Cµ x={X\dom(ds1)ds2 e}; ds′ e′}

FV(ds1) ∩ dom(ds2) = ∅
FV(ds ds′ e′) ∩ dom(ds1) = ∅
µ = a =⇒ dom(ds1) ∩X = ∅

(val-ctx) V[{Xdvs1 dvs2 v}] ∼= {X∩dom(dvs1)dvs1 V[{X\dom(dvs1)dvs2 v}]} FV(dvs1) ∩ dom(dvs2) = ∅
FV(V) ∩ dom(dvs1) = ∅

Figure 7 Congruence rules

Rule (alpha) is the usual α-conversion. The condition x, y 6∈ dom(ds ds′) is implicit by
well-formedness of blocks.

Rule (reorder) states that we can move evaluated declarations in an arbitrary order. Note
that, ds and ds′ cannot be swapped in our rules, because this could change the order of side
effects.

In rule (new), a constructor invocation can be seen as an elementary block where a new
object is allocated.

Rule (garbage) states that we can remove (or, conversely, add) a useless sequence of
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

evaluated declarations from a block. Note that, it is only possible to safely remove/add
declarations which are evaluated, since they do not have side effects. Rule (block-elim) states
the obvious fact that a block with no declarations is equivalent to its body.

With the remaining rules we can move a sequence of declarations from a block to the
directly enclosing block, or conversely, as it happens with rules for scope extension in the
π-calculus [18].

In rules (body) and (dec), the inner block is the body, or the right-hand side of a declaration,
respectively, of the enclosing block. The first two side conditions ensure that moving the
declarations ds1 does not cause either scope extrusion or capture of free variables. More
precisely: the former prevents to move outside a declaration in ds1 which depends on local
variables of the inner block. The latter prevents capturing with ds1 free variables of the
enclosing block. Note that the second condition can be obtained by α-conversion of the inner
block, but the first cannot. Finally, the third side condition of rule (dec) prevents, in case
the block initializes an affine variable, to move outside declarations of variables that will be
possibly connected to the result of the block. Indeed, in this case we would get an ill-typed
term. In case of a non affine declaration, instead, this is not a problem.

Rule (valu-ctx) handles the cases when the inner block is a subterm of a field access,
method invocation, field assignment or constructor invocation. Define a value context V to
be any position of the previous expressions in which we could have a value, i.e.,

V ::= [] | V.f | V.f =v | v.f =V | new C(vs,V, vs′)

In case in the position defined by the hole of V we have a block value, some of its (evaluated)
declarations can be moved outside the construct. As for rule (body), the first side condition
prevents moving outside a declaration in dvs which depends on local variables of the inner
block. The following side condition prevents capturing some free variables of V. E.g.,
if V = new C(vs, [], vs′), we would have V[{Xdvs v}] = new C(vs, {Xdvs v}, vs′), and
{Xdvs V[v]} = {Xdvs new C(vs, {∅ v}, vs′)}. If some of the free variables of either vs or vs′
are in the domain of dvs, they would be captured by the declaration dvs. This condition
can be satisfied by α-conversion of such variables in {Xdvs v}. In this example, the first
condition is trivially satisfied since we move all the declarations of the block.

The following proposition shows that values are either references or congruent to blocks
whose body is a variable and that do not contain useless evaluated declarations.
I Proposition 2 (Canonical Form for Values). If v is a value, then v ∼= v′ where v′ = x, or
v′ = {Xdvs x}, where dvs 6= ε and dvs|x = dvs.

Proof. Let v = {Xdvs u}. By induction on u.
Case: u = x. Using rule (reorder), we have that {Xdvs′ dvs|x x} ∼= {Xdvs x} for some dvs′.
By definition of dvs|x , (FV(dvs|x) ∪ {x}) ∩ dom(dvs′) = ∅. Therefore, applying rule (garbage),
{Xdvs|x x} ∼= {X−dom(dvs′)dvs x}. If dvs|x is not empty then v′ = {Xdvs|x x}, otherwise
{Xdvs|x x} ∼= x applying rule (block-elim), so v′ ∼= {Xdvs x}, which proves the result.
Case: u is a block. By induction hypothesis u ∼= {Y dvs′ y}, and dvs′|y = dvs′. Therefore,
v ∼= {Xdvs {Y dvs′ y}}. We first apply rule (alpha) to rename the variables declared in dvs′

to be different from the bound and free variables of dvs, producing {Y ′
dvs′′ y′}. Then

rule (body) can be applied to obtain v ∼= {X∪Y ′
dvs dvs′′ {∅ y′}} and with rule (block-elim) we

obtain v ∼= {X∪Y ′
dvs dvs′′ y′}. Finally applying rule (garbage) as done for the base case of

the induction we have that: v ∼= {X∪Y ′
dvs1 y′}, where dvs1|y′ = dvs1. J

Values of the shape {Xdvs x}, such that FV({Xdvs|x x}) = ∅ are capsules. Their inner
objects can be reached only through a reference to the block.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

We introduce now some notations which will be used in reduction rules. We write dvs(x)
for the declaration of x in dvs, if any (recall that in well-formed blocks there are no multiple
declarations for the same variable).

We write HB(E) for the hole binders of E , that is, the variables declared in blocks enclosing
the context hole, defined by:

if E = {dvs T x=E ′; ds e}, then HB(E) = dom(dvs) ∪ {x} ∪ HB(E ′)
if E = {dvs E ′}, then HB(E) = dom(dvs) ∪ HB(E ′)

We write Ex and dec(E , x) for the sub-context including of the declaration of x and the
declaration of x extracted from E , defined as follows:

let E = {dvs T y=E ′; ds e};
if dvs(x) = dv and x 6∈ HB(E ′), then Ex = {dvs T y=[]; ds e} and dec(E , x) = dv
else Ex = {dvs T y=E ′x ; ds e} and dec(E , x) = dec(E ′, x)

let E = {dvs E ′};
if dvs(x) = dv and x 6∈ HB(E ′), then Ex = {dvs []} and dec(E , x) = dv
else Ex = {dvs E ′x}, and dec(E , x) = dec(E ′, x)

Note that Ex and dec(E , x) are not defined if x is not declared in any block enclosing the
context hole, that is, if x 6∈ HB(E).

Finally, we write e[v/x] for the expression obtained by replacing all (free) occurrences of
x in e by v, defined in the standard way.

Reduction rules are given in Fig.8.

(congr)
e1 −→ e2

e′1 −→ e′2
e1 ∼= e′1
e2 ∼= e′2

(field-access) E [x.fi] −→ E [xi]
dec(E , x) = C x=new C(x1, . . . , xn);
E = Ex [E ′] ∧ xi 6∈ HB(E ′)
fields(C) = C1 f1 . . .Cn fn

(met-call)
E [v.m(v1, .., vn)] −→
E [{Cµ this=v; T1 x1=v1; ..Tn xn=vn; e}]

class(E , v) = C
meth(C ,m) = 〈_, µ,T1 x1..Tn xn, e〉

(field-assign) E [x.fi=y] −→ Ex=v[y]

dec(E , x) = C x=new C(x1, . . . , xi, xs);
E = Ex [E ′] ∧ y 6∈ HB(E ′)
fields(C) = C1 f1 . . .Cn fn
v = new C(x1, . . . , xi−1, y, xs)

(alias-elim) E [{Xdvs C x=y; ds e}] −→ E [{Xdvs ds e}[y/x]]

(affine-elim) E [{dvs C a x=v; ds e}] −→ E [{dvs ds e}[v/x]]

Figure 8 Reduction rules

Rule (congr) states that congruence can be used to reduce a term which otherwise would
be stuck, as it happens for α-rule in lambda calculus.

In rule (field-access), given a field access of shape x.f , the first enclosing declaration for x
is found (through the auxiliary function dec). Since dec(E , x) is defined, also Ex is defined,
identifying the sub-context E ′, such that E ′[x.f] is contained in the block of the declaration
of x. The fields of the class C of x are retrieved from the class table. If f is actually the
name of a field of C , say, the i-th, then the field access is reduced to the reference xi stored
in this field. The side condition xi 6∈ HB(E ′) ensures that there are no inner declarations for
xi (otherwise xi would be erroneously bound). This can be always obtained by rule (congr)

using rule (alpha) of Fig.7.
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

For instance, assuming a class table where class A has an int f field, and class B has an
A f field, the term

A a= new A(0);B b= new B(a); {A a= new A(1); b.f}

is reduced to

A a= new A(0);B b= new B(a); {A a1= new A(1); a}

In rule (invk), the class C of the receiver v is found (through the auxiliary function class,
whose formal definition is omitted), and method m of C , if any, is retrieved from the class
table. In this case, the call is reduced to a block where declarations of the appropriate type
for this and the parameters are initialized with the receiver and the arguments, respectively.

In rule (field-assign), given a field assignment of shape x.f =y, the first enclosing declaration
for x is found (through the auxiliary function dec). If f is actually the name of a field of C ,
say, the i-th, then the i-th field of the right value of x is updated to y. We write Eu=E [x] for
the evaluation context obtained from E by replacing the right-hand side of the declaration of
x by u (the obvious formal definition is omitted). As for rule (field-access) we have the side
condition that y 6∈ HB(E ′). This side condition, requiring that there are no inner declarations
for the reference y, prevents scope extrusion, since if y ∈ HB(E ′), Eu=u[x] would take y
outside the scope of its definition. The congruence rule of Fig.7 can be used to correctly
move the declaration of y outside its declaration block, as previously described. For example,
without the side condition, the term (without annotations)

D x=new D (...); {C y=new C(); x.f=y}

would reduce to

D x=new D(y); {C y=new C(); y}

The previous term is congruent to

D x=new D (...); C y=new C(); x.f=y

by applying rule (body), and then (block-elim). This term reduces correctly to

D x=new D(y); C y=new C(); y

The last two rules eliminate evaluated declarations from a block.
In rule (alias-elim), a reference (non affine variable) x which is initialized as an alias of

another reference y is eliminated by replacing all its occurrences. In rule (affine-elim), an
affine variable is eliminated by replacing its unique occurrence.

6 Results

In this section we present the main formal results of our calculus. In particular, we show the
soundness of the type system for the operational semantics. We also give a refined version of
subject reduction, Theorem 15, showing that reduction preserves type and sharing relation
of subexpressions, so that capsule subexpressions reduce to closed values. This is significant
since the congruence relation may change the block structure of terms.

The following definition introduces the type judgement for annotated expressions derived
from the one of their underlined (user-level) expression, and extends the judgement to
sequences of declarations.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

I Definition 7. Let e be an annotated expression, the judgement Γ ` e : C | X | S
stands for Γ ` e− : C | X | S e where e− is obtained by erasing the annotations from
e.
Let ds be Cµ1

1 x1=e1; . . .Cµn
n xn=en; where ei are annotated expressions, Γ ` d1 · · · dn : S,

stands for,
1. Γ ` ei : Ci | Xi | Si, for some Xi, and Si (1 ≤ i ≤ n),
2. S =

n∑
i=1
Si+({xi} ∪Xi), and

3. if µi=a then Xi=∅ (1 ≤ i ≤ n).

Given Γ, let Γ \ x be the type environment obtained by removing the type association for
x from Γ, if there is one. Typing depends only on the free variables of the expression.

I Lemma 8 (weakening). Let Γ ` e : C | X | S e′. If x 6∈ FV(e), then
1. Γ[x:T] ` e : C | X | S e′ for all T , and
2. Γ \ x ` e : C | X | S e′.

Proof. By induction on derivations. J

Let ds be T1 x1=e1; . . .Tn xn=en; where the ei are annotated expressions, the type envir-
onment associated to ds, Γds is x1:T1, . . . , xn:Tn.

The following lemma asserts that congruent expressions have the same type, produce
results which are connected to the same variables, and induce sharing relations that coincide
on the free variables of both expressions.

I Lemma 9. Let e1 and e2 be annotated terms such that Γ ` e1 : C1 | X1 | S1 and
Γ ` e2 : C2 | X2 | S2. If e1 ∼= e2, then C1 = C2, X1 = X2, and S1 = S2.

Proof. By cases on the congruence rule used. We do the most interesting cases, which are
rule (dec), and (garbage) of Fig.7.

Rule (dec). In this case
1. e1 = {Y ds Cµ x={Xds1 ds2 e}; ds′ e′},
2. e2 = {Y ds ds1 Cµ x={X\dom(ds1)ds2 e}; ds′ e′},
3. FV(ds1) ∩ dom(ds2) = ∅,
4. FV(ds ds′ e′) ∩ dom(ds1) = ∅, and
5. if µ = a then dom(ds1) ∩X = ∅.
Let Γ ` e1 : C1 | X1 | S1, define Γ1 = Γ[Γds, x:Cµ,Γds′], and Zd = dom(ds) ∪ dom(ds′) ∪ {x}.
From 1. and rule (T-block) we have that
(a) Γ1 ` e′ : C1 | X ′ | S ′ for some X ′ and S ′, and
(b) Γ1 ` ds Cµ x={Xds1 ds2 e}; ds′ : Sd, where Sd = Sds + Sx + Sds′ for some Sds, Sx, and
Sds′ .

Therefore, Y = [X ′](Sd+S′) ∩ Zd, X1 = [X ′](Sd+S′)\Zd, and S1 = (Sd + S ′)\Zd. From (b)
we have that Γ1 ` {Xds1 ds2 e} : C | Yx | Sx, for some Yx, and Sx, and if µ = a, then
Yx = ∅. Let Γ′1 = Γ′1[Γds1 ,Γds2], S ′x = Sds1 + Sds2 + S, and Z = dom(ds1) ∪ dom(ds2) from
rule (T-Block)

(c) Γ′1 ` e : C | X ′′ | S for some X ′′ and S,
(d) Γ′1 ` ds1 : Sds1 for some Sds1 ,
(e) Γ′1 ` ds2 : Sds2 for some Sds2 , and
(f) Sx = S ′x\Z , Yx = [X ′′]S′

x
\Z , and X = [X ′′]S′

x
∩ Z .

From 4., we may assume that dom(Γ1) ∩ dom(ds1) = ∅. So Γ′1 = Γ1,Γds1 [Γds2]. Let
S ′′x = Sds2 + S. From (c) and (e) applying rule (T-Block) we have that

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

(∗) Γ1,Γds1 ` {X\dom(ds1)ds2 e} : C | [X ′′]S′′
x
\dom(ds2) | S ′′x\dom(ds2).

Assume that µ = a. Since S ′x = S ′′x + Sds1 , we have that [X ′′]S′′
x
⊆ [X ′′]S′

x
. Moreover,

from Yx = [X ′′]S′
x
\Z = ∅, and 5. we get that [X ′′]S′

x
\dom(ds2) = ∅, and therefore also

[X ′′]S′′
x
\dom(ds2) = ∅.

Define Γ′′1 = Γ[Γds,Γds1 , x:Cµ,Γds′]. From 4. we have that Γ′′1 = Γ1,Γds1 . From (a) and
Lemma 8.1, we derive
(a1) Γ′′1 ` e′ : C1 | X ′ | S ′.
From (d), 3., 4., and Lemma 8.2, we have that Γ′′1 ` ds1 : Sds1 . Therefore, from (b), (∗), and
Lemma 8.1, we derive
(b1) Γ′′1 ` ds ds1 Cµ x={X\dom(ds1)ds2 e}; ds′ : S ′d, where S ′d = Sds +Sds1 +(S ′′x\dom(ds2))+
Sds′ .

Let Z ′ = dom(ds) ∪ dom(ds′) ∪ dom(ds1) ∪ {x}. From (a1), (b1) and rule (T-block) we get

Γ ` {Y ′
ds ds1 Cµ x={X\dom(ds1)ds2 e}; ds′ e′} : C1 | X ′1 | S ′1

where, Y ′ = [X ′](S′
d

+S′) ∩ Z ′, X ′1 = [X ′](S′
d

+S′)\Z ′ and S ′1 = (S ′d + S ′)\Z ′. Let Z ′ =
dom(ds) ∪ dom(ds′)dom(ds1) ∪ {x}. For 4., and Proposition 1.1 and 3, we have that the
domain of Sds +(S ′′x\dom(ds2))+Sds′ and X ′′ do not contain variables in dom(ds1). Therefore,
Y ′ = Y , X ′1 = X1, and S ′1 + S1. Therefore, Γ ` e2 : C1 | X1 | S1.
In a similar way we can prove that Γ ` e2 : C2 | X2 | S2 implies Γ ` e1 : C2 | X2 | S2, which
proves the result.

Rule (garbage). In this case
1. e1 = {Xdvs ds e},
2. e2 = {X\dom(dvs)ds e},
3. (FV(ds) ∪ FV(e)) ∩ dom(dvs) = ∅.
From 3., and Definition 1 we have that, dvs|(FV(e)∪FV(ds)) = ε. Therefore, from Proposition 1.4,
we have that X = X \ dom(dvs).
Let Γ ` e1 : C1 | X1 | S1, from 1. and rule (T-block) we have that
(a) Γ[Γdvs,Γds] ` e : C1 | Y | S for some Y and S,
(b) Γ[Γdvs,Γds] ` ds : S ′ for some S ′, and
(c) Γ[Γdvs,Γds] ` dvs : S ′′ for some S ′′.
Let Z = dom(dvs) ∪ dom(ds), we have that X = [Y](S+S′+S′′) ∩ Z , X1 = [Y](S+S′+S′′)\Z ,
and S1 = (S + S ′ + S ′′)\Z . From 3., (a), (b), and Lemma 8.2, we have that
(a1) Γ[Γds] ` e : C1 | Y | S, and
(b1) Γ[Γds] ` ds : S ′.
From (a1), (b1), and rule (T-block) we get Γ ` {Xds e} : C1 | X ′1 | S ′1 where X ′1 =
[Y](S′+S)\dom(ds) and S ′1 = (S ′+S)\dom(ds). From 3., and Proposition 1.1 and 3, we have
that the domain of S ′ + S and Y do not contain variables in dom(dvs). Therefore, X ′1 = X1,
and S ′1 = S1. Therefore, Γ ` e2 : C1 | X1 | S1.
On the other side, assume that Γ ` e2 : C2 | X2 | S2, from 2., and rule (T-block) we have that
(a2) Γ[Γds] ` e : C2 | Y | S for some Y and S,
(b2) Γ[Γds] ` ds : S ′ for some S ′.
where X2 = [Y](S+S′)\dom(ds), and S2 = (S + S ′)\dom(ds). Since we have that Γ ` e1 :
C1 | X1 | S1, from rule (T-Block),
(c2) Γ[Γdvs,Γds] ` dvs : S ′′ for some S ′′.
From 3., (a2), (b2), and Lemma 8.1, we have that
(a3) Γ[Γdvs,Γds] ` e : C2 | Y | S, and
(b3) Γ[Γdvs,Γds] ` ds : S ′.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Therefore, from (a3), (b3), (c2), and rule (T-block) we get Γ ` {Xdvs ds e} : C2 | X ′2 | S ′2, where
X ′2 = [Y](S+S′+S′′)\(dom(ds) ∪ dom(dvs)), and S ′2 = (S + S ′ + S ′′)\(dom(ds) ∪ dom(dvs)).
From 3., and Proposition 1.1 and 3, we have that the domain of S ′+S and Y do not contain
variables in dom(dvs). Therefore, X ′2 = X2 and S ′2 = S2, which proves the result. J

To prove subject reduction and progress, we introduce the set of redexes, and show
that, expressions can be decomposed in a unique way in an evaluation context filled with a
redex. So that, an expression is either a value or it matches the left-hand-side of exactly one
reduction rule.

I Definition 10. Redexes, ρ, are defined by:

ρ ::= x.fi | v.m(v1, . . . , vn) | x.f =y | {Xdvs C x=y; ds e} | {dvs C a x=v; ds e}

I Lemma 11 (Unique Decomposition). If e is not a value, then there are E, and ρ such that
e ∼= E [ρ]. Moreover, ρ is unique and E is unique up to congruence.

Proof. By structural induction on expressions. We show some cases.
Case e.f . If e is not a value, then by induction hypothesis, there are E , and ρ such that

e ∼= E [ρ]. Let E ′ = E.f , we have that e.f ∼= E ′[ρ]. Moreover, E ′, is unique up to congruence.
If e is a value, and e = x, then the result holds, since x.f is a redex, and with E = [] we
have that e.f = E [x.f].
If e ∼= {Xdvs′ u}, by Lemma 2, e ∼= {Xdvs x} then e.f = {Xdvs x}.f , and {Xdvs x}.f ∼=
{Xdvs x.f }. Let E = {Xdvs []}, and ρ = x.f , e.f ∼= E [ρ].

Case new C(es). If for some i, 1 ≤ i ≤ n, ei is not a value, by induction hypothesis, there
are E , and ρ such that ei ∼= E [ρ] using E ′ = new C(vs, E , es) we have that new C(es) ∼= E ′[ρ].
If we have new C(xs, v1, . . . , vn), and v1 is not a variable, then since by Lemma 2 v1 ∼=
{Y1dvs1 y1}, applying congruence rule (new-arg) we have
new C(xs, vs) ∼= {Y1\dom(dvs1)dvs1 new C(xs, y1, v2 . . . , vn)}. Iterating the application of
rule (new-arg), followed by rule (body), we obtain that new C(es) ∼= {Xdvs new C(xs, ys)} for
some dvs, ys, and X . Finally, applying rule (new), new C(es) ∼= e′, where
e′ = {X∪{x}dvs C x=new C(xs, ys); x}. Since e′ is a value the result is proved.

Case {Xds e}. If the block is not a value then either ds = dvs T x=e1; ds1 where e1 is not
a value or ds = dvs and e is not a value. In the first case, by induction hypothesis, there are E ,
and ρ such that e′ ∼= E [ρ]. Consider the block bl = {Xdvs dvs1T x=e′; ds2 e} where dvs1 are all
the evaluated declarations of ds1. Applying rule (reorder) of Fig.7, bl ∼= {Xdvs T x=e1; ds1 e}.
Let E ′ = {Xdvs dvs1T x=E ; ds2 e}, we have that {Xds e} ∼= E ′[ρ].
If the expression is {Xdvs e}, and e is not a value, by induction hypothesis, there are E , and
ρ such that e ∼= E [ρ]. The context E ′ = {Xdvs E} proves the result.
Otherwise the expression is {Xdvs v}, which is a value. J

Given an evaluation context E , let ΓE be the type environment extracted from E , defined
by:

if E = {dvs T x=E ′; ds e}, then ΓE = Γdvs, x:T ,Γds[ΓE′],
if E = {dvs E ′}, then ΓE = Γdvs[ΓE′], and
for all other contexts ΓE = ΓE′ , where E ′ is the (unique) sub-context of E .

The following lemma asserts that, subexpressions of typable expressions are themselves
typable, and may be replaced with expressions that have the same type, but could have a
less sharing and whose result may be connected to less variables.

I Lemma 12 (Context). Let Γ ` E [e] : C | X | S, then
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1. Γ[ΓE] ` e : D | Y | S1 for some D, Y and S1,
2. if Γ[ΓE] ` e′ : D | Y ′ | S ′, where Y ′ ⊆ Y and S ′ v S1, then Γ ` E [e′] : C | X ′ | S ′′ such

that X ′ ⊆ X and S ′′ v S.

Proof. By induction on evaluation contexts. J

I Lemma 13 (Substitution). 1. Let Γ, x:Da ` e : C | X | S, and Γ ` v : D | ∅ | ε. Then
Γ ` e[v/x] : C | X | S.

2. Let Γ, x:D ` e : C | X | S, and Γ ` v : D | Y − {x} | S. Then Γ ` e[v/x] : C | X | S.

Reduction preserves types but may produce expressions whose results have less connections,
and yield less sharing between variables.

I Theorem 14 (Subject Reduction). If Γ ` e1 : C | X | S, and e1 −→ e2, then Γ ` e2 : C |
X ′ | S ′ where X ′ ⊆ X , and S ′ v S.

Proof. By Lemma 11, e1 ∼= E [ρ]. Since e1 −→ e2, then E [ρ] −→ E ′[e′], where E ′ = E for all
the rules applied except for (field-assign). From Lemma 12.1, and Γ ` e1 : C | X | S, we have
that Γ[ΓE] ` ρ : D | Y | Sρ for some D, Y and Sρ. By case analysis on redexes, we can prove
that the expression, e, such that E [e] = e2 is such that Γ[ΓE] ` e : D | Y1 | S1, where Y1 ⊆ Y
and S1 v Sρ. For alias and affine elimination, the result follows by Lemma 13. Therefore,
for all the rules except for (field-assign), by Lemma 12.2 we derive that Γ ` e2 : C | X ′ | S ′,
where X ′ ⊆ X , and S ′ v S.
Consider rule (field-assign). It is easy to see that ΓE = ΓE′ since the only change in the
evaluation contexts is the update of the field of x with a reference with the correct type for
the field. So, from Lemma 12.2, we derive the result. J

In addition to soundness, we state that expressions whose type has a capsule modifier
actually ensures the expected behaviour. A nice consequence of our non standard operational
model is that this can be easily expressed and proved, as shown below, since a capsule is
simply a closed value.

I Theorem 15 (Capsule). Let E and e be such that ΓE ` e : C | X | S. If E [e] −→? E ′[v],
where ΓE = ΓE′ , then ΓE ` e′ : C | X ′ | S ′ where X ′ ⊆ X , and S ′ v S. Therefore, if X = ∅,
then v ∼= {dvs x}, such that FV({dvs x}) = ∅.

Proof. The proof is similar to the one of Subject Reduction. J

Define HE for E 6= [] to the block containing the hole of E . That is,
Let E = {dvs T y=E ′; ds e}; if E ′ = [] then HE = E , else HE = HE′ .
Let E = {dvs E ′}; if E ′ = [] then HE = E , else HE = HE′ .

Closed expressions are not “stuck”, so they are either values or reduce to some term.

I Theorem 16 (Progress). If ` e1 : C | X | S, and e1 is not a value, then e1 −→ e2 for some
e2.

Proof. By Lemma 11, if e1 is not a value, then e1 ∼= E [ρ]. For all ρ, except field access and
field update, we have that the corresponding reduction rule is applicable, so e1 −→ e2 for
some e2.

If ρ is x.fi, from Lemma 12.1, rule (t-field-access), and rule (T-var) of Fig.3, we have that
ΓE ` x.fi : Ci | {x} | ε where fields(C) = C1 f1 . . .Cn fn. So, we have that Ex is defined, and,
for some E ′, E = Ex [E ′]. If xi 6∈ HB(E ′), then rule (Field-Access) is applicable.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Otherwise, since xi ∈ HB(E ′), we have that E ′xi
is defined, and E ′[x.fi] = E1[HE′

xi
[E2[x.fi]]]

for some E1 and E2 such that HE′
xi

[E2[x.fi]] = {Xdvs T xi=v; ds e}. Using rule (alpha) of Fig.7
we have that {Xdvs T xi=v; ds e} ∼= {X[y/xi]dvs[y/xi] T y=v[y/xi]; ds′[y/xi] e[y/xi]} where y
can be chosen such that y 6∈ HB(E ′′). Therefore Ex [E ′[x.fi]] ∼= Ex [E3[x.fi]] where xi 6∈ HB(E3).
So Ex [E3[x.fi]] −→ e2 by applying rule (field-access), and Ex [E ′[x.fi]] −→ e2 by applying rule
(congruence).

If ρ is x.fi=y, from Lemma 12.1, rule (t-field-assign), and rule (T-var) of Fig.3, we have that
ΓE ` x.fi=y : Ci | {x, y} | {x, y} where fields(C) = C1 f1 . . .Cn fn. So, we have that Ex is
defined, and E = Ex [E ′] for some E ′. Therefore, for some E ′1, E = E ′1[HEx [E ′]]. If y 6∈ HB(E ′),
then rule (Field-Assign) is applicable.
Otherwise, since y ∈ HB(E ′), we have that E ′y is defined, and E ′[x.fi=y] = E1[HE′

y
[E2[x.fi=y]]]

for some E1 and E2 such that HE′
y
[E2[x.fi=y]] = {Y dvs|FV(v) T y=v; ds e}.

By induction on the number n > 0 of blocks from which we have to extrude the declaration
of y. Let dvs1 = T y=v; dvs|FV(v). If n > 1, then for some E ′′ 6= [],
(a) either {Xdvs′ T x=v′; E ′′[{Y dvs1 ds e}]}
(b) or {Xdvs′ T x=v′; T z=E ′′[{Y dvs1 ds e}]; ds′ e′},
For (a), by induction hypothesis we have that,

{Xdvs′ T x=v′; E ′′[{Y dvs1 ds e}]} ∼= {Xdvs′ T x=v′; {Y ′
dvs1 ds′ e′}} for some ds′, e′,

and Y ′.
Applying rule (Body) of Fig.7 we have that

{Xdvs′ T x=v′; {Y ′
dvs1 ds′ e′}} ∼= {X′

dvs′ T x=v′; dvs1 {Y ′\dom(dvs1)ds′ e′}} where X ′ =
X ∪ (Y ′ ∩ dom(dvs1)).

For (b), by induction hypothesis we have that,
{Xdvs′ T x=v′; T z=E ′′[{Y dvs1 ds e}]; ds′ e′} ∼= {Xdvs′ T x=v′; T z={Y ′

dvs1 ds′ e′}; ds′′ e′′}
for some ds′, ds′′, e′, e′′, and Y ′.

If y 6∈ Y ′, from Proposition 1 we have that dom(dvs|FV(val)) ∩Y ′ = ∅. Applying rule (Dec) of
Fig.7 we get

{Xdvs′ T x=v′; T z={Y ′
dvs1 ds′ e′}; ds′′ e′′} ∼= {Xdvs′ T x=v′; dvs1 T z={Y ′

ds′ e′}; ds′′ e′′}.
If y ∈ Y ′, from ` e1 : C | X | S, Lemma 12, ΓE1 ` {Y dvs1 ds e} : D | {Z} | S for some D, Z ,
and S such that T = Dµ. From ΓE ` x.fi=y : Ci | {x, y} | {x, y} and y ∈ Y we also have
that x ∈ Z . Therefore µ 6= a. Applying rule (Dec) we get

{Xdvs′ T x=v′; T z={Y ′
dvs1 ds′ e′}; ds′′ e′′} ∼= {Xdvs′ T x=v′; dvs1 T z={Y ′\dom(dvs1)ds′ e′}; ds′′ e′′}.

Therefore Ex [E ′[x.fi=y]] ∼= Ex [E3[x.fi=y]] for some E3 such that y 6∈ HB(E3). So Ex [E3[x.fi=y]] −→
e2 by applying rule (field-assign), and Ex [E ′[x.fi=y]] −→ e2 by applying rule (congruence). J

7 Related work

As mentioned in the Introduction, by the type and effect system in this paper we can express
in a simple way and generalize two key notions which have been introduced in the literature
on sharing and interference control.

An expression has the capsule property if its evaluation returns an object graph that has
no sharing with previously existing objects. We generalize this by always computing the
set of references connected with the result, rather than just checking its emptiness.
A reference is used as lent if the object graph it denotes can be updated, but not connected
with objects which were previously disjoint. We generalize this to sets of references, rather
than just singletons.

The capsule property has many variants in the literature, such as isolated [13], external
uniqueness [8], balloon [1, 23], island [11], and the fact that aliasing can be controlled by

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

using lent (borrowed) references is well-known [19]. However, before the work in [13], the
capsule property was only detected in simple situations, such as using a primitive deep clone
operator, or composing subexpressions with the same property.

The important novelty of the type system in [13] has been recovery, that is, the ability
to detect properties (e.g., capsule or immutability) by keeping into account not only the
expression itself but the way the surrounding context is used. Additional typing rules
recognize special conditions on the context where the property can emerge. For instance, an
expression which does not use external references at all is clearly a capsule, but this is the
case also when used external references are all immutable.

In [24, 12] recovery has been improved, under the name of promotion, by including in the
type system the lent notion as well: a capsule expression can use external mutable references
as lent, and, moreover, lent references can be temporarily aliased, if all the other references are
regarded as lent (swapping). Also the Pony language [9] builds on the recovery mechanisms of
[13], but goes in a different direction, by distinguishing many different reference capabilities.

With respect to all these proposals, the type and effect system in this paper takes a
drastically different approach: the (generalization of the) capsule and lent properties are
inferred rather than imposed by declaring type modifiers. Whereas type inference has been
sometimes included in works before [13], see, e.g., [3], this is at our knowledge the first time
it is employed to express recovery/promotion. In this way, the desired properties emerge
smoothly by normal bottom-up typechecking, and we obtain, roughly, the same expressive
power of [24, 12], but in a much simpler and natural way. This can be seen as a radically
simplified version of a region type system, as in [16].

A closed stream or research is that on ownership (see an overview in [7]) which, however,
offers in a sense a specular approach. That is, a formal way is provided to express and prove
the ownership invariant, which, however, is expected to be guaranteed by defensive cloning.
In our approach, instead, the capsule concept models an efficient ownership transfer. In
other words, when an object x is “owned” by another object y, it remains always true that y
can be only accessed only through x , whereas the capsule notion is more dynamic: a capsule
can be “opened”, that is, assigned to a standard reference and modified, and then we can
recover the original capsule guarantee, as shown in the example at page 10.

Among the many works in this stream, we mention Rust [26], which uses ownership and
type modifiers for memory management, and Kappa [6]. In the latter, types are compositions
of one or more capabilities, and expose the union of their operations. The modes of the
capabilities in a type control how resources of that type can be aliased. The compositional
aspect of capabilities is an important difference from type modifiers, as accessing different
parts of an object through different capabilities in the same type gives different properties.

Two other dimensions of comparison of our work with others are deep versus shallow
approach and linearity versus destructive reads.

In our approach, as in [1, 12, 13, 23, 24], properties have a deep interpretation, in the sense
that they are propagated to the whole reachable object graph. In a shallow interpretation,
instead, as in [3, 4, 19, 20], it is possible, for instance, to reach a mutable object from an
immutable object. In this sense, approaches based on ownership, or where it is somehow
possible to have any form of “internal mutation” are shallow, as in [6, 14, 16, 26]. This also
includes [8], where an unique object can point to arbitrarly shared objects, if they do not, in
turn, point back to the unique object itself.

The advantage of the deep interpretation is that libraries can declare strong intentions
in a coherent and uniform way, independently of the concrete representation of the user
input (that, with the use of interfaces, could be unknown to the library). On the other side,

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

providing (only) deep modifiers means that we do not offer any language support for (as an
example) an immutable list of mutable objects.

In our approach uniqueness is guaranteed by linearity, that is, by allowing at most one
use of an affine reference, rather than by destructive reads as in [13, 4].

Approaches based on destructive reads lead to the style of programming outlined below:

a.f=c. doStuff (a.f)// style suggested by others
// during execution of doStuff , ’a.f’ is null

The object referenced by a has an isolated field f containing an object b. This object b is
passed to a client c, which can use (potentially modifying) it. A typical pattern is that the
result of such computation is a reference to b, which a can then recover. This approach allows
isolated fields, as shown above, but has a serious drawback: an isolated field can become
unexpectedly not available (in the example, during execution of doStuff), hence any object
contract involving such field can be broken. In our approach, fields can not be affine: the
“only once” use of capsule local variables, ensured by linear types, makes no sense on fields.
Levereging on our sharing control, previous code can be rewritten as follows:

c. doStuff (a.f())// our suggested style
// doStuff guarantees absence of aliasing : A=empty
// during execution of doStuff , ’a.f()’ is there

Alias analysis is a fundamental static analysis, used in compilers and code analysers.
Algorithms such as Steensgaard’s algorithm, [25], infer equivalence classes that may alias. In
[10] is presented a refined version of such algorithm, performing a uniqueness analysis, similar
to our detection of “capsule” values. However, the aim of our work is to design a language in
which annotations, such as the affine modifier, can be used by the user to enforce properties
of its code. Then the inference system checks that such annotations are correctly used.

Finally, an important distinguishing feature of our work is that sharing can be directly
represented at the syntactic level as a relation among free variables, thanks to the fact that
the calculus is pure. Models of the imperative paradigm as pure calculi have been firstly
proposed in [21, 5].

8 Conclusion

We have presented a type and effect system which infers sharing possibly introduced by
the evaluation of an expression. As shown by the examples of Sect.4, this type system is
very powerful. Notably, it discriminates between well-typed and ill-typed terms in situations
where type systems based on declaring modifiers are either too restrictive or require rather
tricky and non algorithmic rules [13, 24, 12]. Sharing is directly represented at the syntactic
level as a relation among free variables, thanks to the fact that the calculus is pure. That is,
imperative features are modeled by just rewriting source code terms.

In this operational semantics, reduction is defined on typechecked terms, where blocks
have been annotated with the information of which local variables will be connected to the
result. In this way, it is possible to define a rather sophisticated notion of congruence among
terms, which allows to move declarations outside from a block only when this preserves well-
typedness. Results include, besides soundness, the fact that the evaluation of an expression
has a sharing effect only among those inferred by the type system.

In further work, we plan to enrich the type system to also handle immutable references.
We will also investigate (a form of) Hoare logic on top of our model. We believe that the
hierarchical structure of our memory representation should help local reasoning, allowing

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

specifications and proofs to mention only the relevant portion, similarly to what is achieved
by separation logic [20].

References
1 Paulo Sérgio Almeida. Balloon types: Controlling sharing of state in data types. In

ECOOP’97 - Object-Oriented Programming, volume 1241 of Lecture Notes in Computer
Science, pages 32–59. Springer, 1997.

2 Zena M. Ariola and Matthias Felleisen. The call-by-need lambda calculus. Journ. of
Functional Programming, 7(3):265–301, 1997.

3 Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich. Fraction-polymorphic permission
inference.

4 John Boyland. Semantics of fractional permissions with nesting. ACM Transactions on
Programming Languages and Systems, 32(6), 2010.

5 Andrea Capriccioli, Marco Servetto, and Elena Zucca. An imperative pure calculus. Elec-
tronic Notes in Theoretical Computer Science, 322:87–102, 2016.

6 Elias Castegren and Tobias Wrigstad. Reference capabilities for concurrency control. In
Shriram Krishnamurthi and Benjamin S. Lerner, editors, ECOOP’16 - Object-Oriented
Programming, volume 56 of LIPIcs, pages 5:1–5:26. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016.

7 Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. Ownership types: A survey.
In Dave Clarke, James Noble, and Tobias Wrigstad, editors, Aliasing in Object-Oriented
Programming. Types, Analysis and Verification, volume 7850 of Lecture Notes in Computer
Science, pages 15–58. Springer, 2013.

8 David Clarke and Tobias Wrigstad. External uniqueness is unique enough. In ECOOP’03
- Object-Oriented Programming, volume 2473 of Lecture Notes in Computer Science, pages
176–200. Springer, 2003.

9 Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil. Deny capab-
ilities for safe, fast actors. In Elisa Gonzalez Boix, Philipp Haller, Alessandro Ricci, and
Carlos Varela, editors, International Workshop on Programming Based on Actors, Agents,
and Decentralized Control, AGERE! 2015, pages 1–12. ACM Press, 2015.

10 Arnab De and Deepak D’Souza. Scalable flow-sensitive pointer analysis for java with strong
updates. In James Noble, editor, ECOOP 2012 - Object-Oriented Programming - 26th
European Conference, Beijing, China, June 11-16, 2012. Proceedings, volume 7313 of Lec-
ture Notes in Computer Science, pages 665–687. Springer, 2012. URL: http://dx.doi.
org/10.1007/978-3-642-31057-7_29, doi:10.1007/978-3-642-31057-7_29.

11 Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic universe types. In
ECOOP’07 - Object-Oriented Programming, volume 4609 of Lecture Notes in Computer
Science, pages 28–53. Springer, 2007.

12 Paola Giannini, Marco Servetto, and Elena Zucca. Types for immutability and aliasing
control. In ICTCS’16 - Italian Conf. on Theoretical Computer Science, volume 1720 of
CEUR Workshop Proceedings, pages 62–74. CEUR-WS.org, 2016. URL: http://ceur-ws.
org/Vol-1720/full5.pdf.

13 Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy.
Uniqueness and reference immutability for safe parallelism. In ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA 2012),
pages 21–40. ACM Press, 2012.

14 John Hogg. Islands: Aliasing protection in object-oriented languages. In ACM Symp. on
Object-Oriented Programming: Systems, Languages and Applications 1991, pages 271–285.
ACM Press, 1991.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.1007/978-3-642-31057-7_29
http://dx.doi.org/10.1007/978-3-642-31057-7_29
http://dx.doi.org/10.1007/978-3-642-31057-7_29
http://ceur-ws.org/Vol-1720/full5.pdf
http://ceur-ws.org/Vol-1720/full5.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems,
23(3):396–450, 2001.

16 Robert L. Bocchino Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann,
Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung, and Mohsen Vakilian.
A type and effect system for deterministic parallel java. In Shail Arora and Gary T. Leavens,
editors, Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2009, October 25-29, 2009,
Orlando, Florida, USA, pages 97–116. ACM, 2009. URL: http://doi.acm.org/10.1145/
1640089.1640097, doi:10.1145/1640089.1640097.

17 John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda calculus.
Journ. of Functional Programming, 8(3):275–317, 1998.

18 Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge University
Press, 1999.

19 Karl Naden, Robert Bocchino, Jonathan Aldrich, and Kevin Bierhoff. A type system for
borrowing permissions. In ACM Symp. on Principles of Programming Languages 2012,
pages 557–570. ACM Press, 2012.

20 John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proc.
IEEE Symp. on Logic in Computer Science 2002, pages 55–74. IEEE Computer Society,
2002.

21 Marco Servetto and Lindsay Groves. True small-step reduction for imperative object-
oriented languages. FTfJP’13- Formal Techniques for Java-like Programs, 2013.

22 Marco Servetto, Julian Mackay, Alex Potanin, and James Noble. The billion-dollar fix -
safe modular circular initialisation with placeholders and placeholder types. In ECOOP’13
- Object-Oriented Programming, volume 7920 of Lecture Notes in Computer Science, pages
205–229. Springer, 2013.

23 Marco Servetto, David J. Pearce, Lindsay Groves, and Alex Potanin. Balloon types for safe
parallelisation over arbitrary object graphs. In WODET 2014 - Workshop on Determinism
and Correctness in Parallel Programming, 2013.

24 Marco Servetto and Elena Zucca. Aliasing control in an imperative pure calculus. In
Xinyu Feng and Sungwoo Park, editors, Programming Languages and Systems - 13th Asian
Symposium (APLAS), volume 9458 of Lecture Notes in Computer Science, pages 208–228.
Springer, 2015.

25 Bjarne Steensgaard. Points-to analysis by type inference of programs with structures and
unions. In Tibor Gyimóthy, editor, Compiler Construction, 6th International Conference,
CC’96, Linköping, Sweden, April 24-26, 1996, Proceedings, volume 1060 of Lecture Notes
in Computer Science, pages 136–150. Springer, 1996. URL: http://dx.doi.org/10.1007/
3-540-61053-7_58, doi:10.1007/3-540-61053-7_58.

26 Aaron Turon. Rust: from POPL to practice (keynote). In Giuseppe Castagna and An-
drew D. Gordon, editors, ACM Symp. on Principles of Programming Languages 2017,
page 2. ACM Press, 2017.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://doi.acm.org/10.1145/1640089.1640097
http://doi.acm.org/10.1145/1640089.1640097
http://dx.doi.org/10.1145/1640089.1640097
http://dx.doi.org/10.1007/3-540-61053-7_58
http://dx.doi.org/10.1007/3-540-61053-7_58
http://dx.doi.org/10.1007/3-540-61053-7_58
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

