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Abstract

In this paper we tackle the dynamic kidney exchange problem. First, we propose a formal
definition through a mathematical model whose solution provides an optimal exchange policy,
then we analyze two almost myopic kidney exchange policies which are currently adopted in
practice by many transplant organizations. With respect to previous works in this area the
models proposed in this paper take into account the quality of the performed exchanges.

The dynamic kidney exchange problem is formulated through a Markov Decision Process
(MDP) model which allows to evaluate the performance of an optimal policy in a simplified
case (constraining the state space size of the MDP). The results obtained through numerical
solution of the MDP are then compared with the performance of two almost myopic policies
evaluated using simulation. The obtained results show that in this case the performance of
the considered policies is quite similar to that of the optimal policy.

The analysis is then extended to more realistic settings by means of a parametric simulator
(freely available for download) that allows to consider multiple characteristics of both donors
and recipients, different degrees of compatibility quantifying the quality of the exchange,
and different cost factors concurring to the definition of the reward function on which the
evaluation is based. The influence of the various parameters on the achievable reward is
thoroughly discussed.

Keywords: Kidney exchange problem, Markov Decision Processes, Simulation

1 Introduction

Kidney transplantation is the elective treatment for many kidney diseases and it is nowadays
a routine therapy. A patient needing a transplant may have a living donor, who is typically a
friend, or a relative. However, in several cases, the donor is not compatible with the patient due
to blood type or other physical characteristics, such as tissue type. To overcome this problem,
and to increase the number of living donors, the possibility of organizing kidney exchanges has
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been suggested by the medical community in [45] and further investigated by many points of
view in [33, 47, 57]. Nowadays, in many countries, incompatible pairs are allowed to swap
donors when a mutual compatibility condition is satisfied. These swaps can involve more than
two pairs, giving rise to cycles. The practical implementation of such exchanges raises several
questions, and some of them have been faced using mathematical models. In particular, there
is a rich literature devoted to the modeling and the efficient organization of kidney exchanges
in the static setting [12, 13, 39, 55, 48, 49, 50, 51, 40]. In particular, an integer-programming
model has been proposed in [15]. However, the real decision problem is better represented by a
dynamic model. Indeed, donor-recipient pairs join the system over time, not all simultaneously.
Most importantly, the matching policy, which regulates the exchanges, plays a key role in the
efficiency of the kidney exchange system. This is why, starting from [54], the interest in the
theoretical and practical aspects of dynamic matching mechanisms is growing [27].

In this paper, we consider a system where a centralized authority decides how to organize
2-way or 3-way exchanges over time, observing the evolution of the pool. More precisely, on
the basis of the available information, i.e. the pairs who joined the system until the decision
point, the decision maker chooses a feasible, possibly empty, set of exchanges (matching). This
choice influences the composition of the pool for future exchanges, and has also an impact on
the overall social welfare function employed by the institution in charge of the organization.
Therefore, when taking a decision, the central authority has to consider the immediate costs
and rewards, and also the future consequences of its decision.

The first contribution of this paper is a general model for the dynamic kidney exchange prob-
lem, showing that it can be conveniently formulated as a Markov Decision Process (MDP)[44]
under reasonable assumptions. At each decision point the decision maker has to choose a match-
ing from an available set of admissible exchanges. Moreover, a detailed probabilistic information
describing the distribution of blood types, age, etc. of expected future arrivals is available, and
should be taken into account. The performance of a chosen policy (i.e. a sequence of decisions)
is measured taking into consideration the number and the quality of the executed transplants,
the costs due to the organization of the exchanges and to unmatched patients still waiting. This
reward function takes into account several aspects that are relevant in the definition of a kidney
exchange problem. The definition of the reward could be thought as the scalarization of a multi-
criteria optimization problem, where the objectives to optimize include for instance the total
waiting time for each pair, the quality and the expected number of matchings. Since such MDP
has a high dimension in terms of possible states and available decisions, known optimization
techniques are not capable to solve it efficiently, and only heuristics have been considered so far
to approximate its solution (see [7]). In realistic situations it is thus practically impossible to
obtain an optimal policy by solving the MDP, but it is interesting to evaluate the performance
of policies that are adopted in practice using the MDP as reference model for comparison on
small size problems.

Among the possible dynamic matching policies, in this paper we focus on two specific classes
of policies adopted in practice by many transplant organizations all over the world (see for
instance [20, 32, 33]): they consist in a sequence of maximum weight matchings, i.e. sets of 2-
way and 3-way exchanges maximizing a suitably chosen welfare function in the static situation.
The first class organizes maximum weight matchings at regular intervals of time, while the
second performs them only when the number of waiting pairs in a certain class is above a given
threshold. We call these policies almost myopic, because they provide two possible decisions:
maximizing the immediate reward (as a myopic policy), or just waiting until the next decision
point without doing any exchange.

The second contribution presented in this paper is a parametric simulator used to study these
almost myopic policies under various conditions. The simulation results on the two considered

2



classes of almost myopic policies are first compared with the optimal exchange policy derived
by the MDP numerical solution on a stylized but significant example: this example represents a
simple model of the real situation, in which the types are defined considering the blood type of
the recipient and of the donor, and by the age of the donor (young or mature). We consider only
pairs in which the donor is of type B and the recipient is of type A and vice versa. In this stylized
model, the relevant features of the entire real situation are retained: the compatibility constraints
are present, and the difference in the quality of the transplants is determined by the age of the
donors (see also [40]). From the analysis of this case study we observe that the performance (in
terms of transplant quality) of the considered policies, evaluated through simulation, is quite
similar to that of the optimal policy computer from the MDP. Our simulation study is then
extended to more realistic settings by means of an ad-hoc developed parametric simulator that
allows us to consider multiple characteristics of both donors and recipients, different degrees of
compatibility (quantifying the quality of the transplant) and different cost factors concurring
to the definition of the reward function on which the evaluation is based. The influence of the
various parameters on the achievable reward is investigated in the paper.

The main original contribution of the work presented in this paper is thus twofold: a gen-
eral model able to take into account the quality of the transplants and other factors such as
organizational costs, and the implementation of a parametric simulator for the evaluation of two
classes of policies that can be applied to the model. Indeed, the quality of the transplants is an
important aspect; since the relationship between the graft survival and some characteristics of
the donor and the recipient has been highlighted by many papers (see [25, 38, 41, 42]) in the
medical literature. The simulator is available free of charge for academic institutions and non
profit organizations; it can run on Linux, Unix and MacOS X system. The ultimate goal of the
results presented in this paper is not to give recommendations in terms of the best policy to
be used, but rather the proposal of a flexible and easy to use simulation tool to investigate the
effect of different choices of the parameters.

The paper is organized as follows: in Section 2 the static problem is introduced, mainly
focusing on the aspects which are useful in the subsequent description of the dynamic case. In
Sections 3 and 4 the proposed MDP model for the dynamic case and the almost myopic policies
are described. Section 5 reports a comparison between almost myopic policies and the optimal
exchange policy derived by the MDP considering a simplified case study. In Sections 6 and 7
our parametric simulator is thoroughly described and used to analyze almost myopic policies in
a more realistic way. Finally, Section 8 reports some concluding remarks and future works.

1.1 Related work

The first model of a dynamical kidney exchange problem has been considered in [54], where a
compatibility of type 0-1 between patients and donors is assumed. A characterization of the
optimal policy is given when the model depends only on the blood type, and the costs are due
to patients in the waiting list. In this setting it is proved that in the case of 2-way exchanges the
optimal policy is the one which organizes exchanges as soon as they become available. In the
same paper it is also proved that the same conclusion does not hold if longer cycles are admitted.
In [7] the probabilistic information about the characteristics of patients is deeply exploited and
several stochastic and online learning algorithms are presented to approximate an optimal policy,
which provide encouraging results on simulated and real data. In [6], the authors focus on tissue
type incompatibility, while abstracting away from blood-type compatibility, and the considered
matching policies are similar to the ones studied in this paper. In their setting, the authors
show the importance of allowing chains initiated by an altruistic donor to increase the number
of possible matchings, as it was observed also in [21]. Another matching policy, based on weights
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assigned to different matches is proposed in [22]. Another recent line of work takes into account
the possibility of match failure when maximizing the expected number of transplants, see [23].
The problem of including additional constraints in order to ensure fairness of the proposed
matching policy is studied in [24]. A different dynamical model based on stochastic games is
considered in [34], where the fact that the health status of the patient worsens along time is taken
into account. A slightly different problem is considered in [58], where the effects of the exchange
system are studied in relationship with the waiting list for organs from deceased donors.

2 The static model

In this section we are going to present a model for the static kidney exchange problem, where
a set of donor-recipient pairs is given, and the best (in some sense) admissible set of 2-way (or
2-way and 3-way) exchanges has to be selected. The restriction to 2-way and 3-way exchanges
derives from practical constraints, since in the real world the transplants involved in an exchange
must be performed at the same time. As already mentioned in the introduction, this problem
has been extensively studied (e.g. [12, 39, 48, 49, 50, 51, 55]). Given a set of donor-recipient
pairs available for the exchanges, we introduce a model which takes into account the qualitative
properties of the involved transplants. To this aim we fix a certain number of variables, clinical
or not, such as blood type, tissue type, age, body mass index and general health condition, as
well as number of days spent on the waiting list by the patient, or place where the patient lives.
It is not restrictive to model these characteristics as discrete variables ranging on a finite number
of values. In fact, for some of the mentioned characteristics this is natural, while for others can
be imposed by choosing a suitable discretization.

The same set of variables can be considered not only for the patient, but also for the donor.
On the basis of the values assumed by the chosen variables (both for the patient and the donor),
we can then categorize each donor-recipient pair into a finite set of pair types T := {1, . . . , n}.
The classification into distinct types allows us to incorporate in the model both the features
which are relevant in determining the quality of the transplant, and information of different
origin such as the geographic distance between pairs of different types. This possibility could
be relevant in the real application of the model.

The quality of a k-way exchange, with k ∈ {2, 3} is then measured in terms of a reward, taking
into account the relevant features of such exchange. A natural reward is obtained summing up
individual rewards measuring the quality of each involved transplant, but also other choices
may be considered. The standing assumption throughout the paper is the fact that the quality
of the exchanges is completely determined by the types of the involved pairs. We model this
by introducing a n × n compatibility matrix R, where the entry Rij expresses the quality of
a transplant from a donor of a pair of type i to a recipient of a pair of type j. In particular,
Rij = 0 means that a transplant from a pair of type i to one of type j is not feasible.

Mathematically speaking a (static) kidney exchange problem consists of the following objects:

a) a set of pairs, which can be identified with (s1, . . . , sn) ∈ Nn describing the number of
pairs of each type;

b) the compatibility matrix R of size n× n defined above.

Starting from an n-tuple of non negative integers s = (s1, . . . , sn) and the compatibility
matrix R, a kidney exchange problem can be identified with a directed weighted graph G(s),
with s1 + . . . + sn vertices, where a directed edge (i, j) is present in the graph if and only if,
called ti and tj the types of the pairs i and j, we have Rtitj > 0. The weight of each edge is
wij := Rtitj .
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A major aim of the literature on static kidney exchange problems is to devise a mecha-
nism, i.e. a procedure assigning a matching to each kidney exchange problem satisfying specific
properties.

Definition 1. (Matching) Let V be a finite set, let E ⊂ V 2, and let v : E → [0,+∞[. Let
G = (V,E, v) be the corresponding directed weighted graph. A matching in G is a subset of cycles
(possibly of length less than or equal to a given limit K) without nodes in common.

In the above definition vertices represent donor-recipient pairs, while weighted and directed
arcs represent the compatibility of the donor in the source node and the recipient of the desti-
nation node. A cycle involving k vertices represents a k − way exchange. The point of view is
the one of a central authority that must choose which exchanges to perform. If no distinction
between compatibility levels is made (i.e. if all graph arc weights are equal), in [49] the matching
guaranteeing a transplant to the highest possible number of participants (maximum cardinality
matching) is proposed as a solution. A solution taking into account the quality of the exchanges
is proposed in [48], but without restrictions on the cycle length, i.e. on the length of the number
of pairs involved in the same chain of exchanges. Defining M(s) the set of matchings in G(s),
and given an objective function f : M(s) → [0,+∞), measuring the quality of a matching,
in [55] a matching maximizing f was proposed as a solution. In this paper, we will consider
matchings involving 3 pairs at maximum, i.e. we will restrict to matchings involving only 2-way
and 3-way exchanges. Thus, from now on we will call matching a matching where the length of
the cycles is less or equal to 3. Given a function f we will use the following notation:

OM(G(s)) := {matchings involving 2-way and 3-way exchanges in G(s) maximizing f}. (1)

where G(s) is the graph whose vertices are all pairs present in state s and whose arcs connect all
compatible pairs according to the compatibility matrix R. In particular, if f(m) =

∑
(i,j)∈mwij ,

m ∈M(s) the solution is identified with a maximum weight matching, which can be computed
efficiently, using e.g. the algorithm proposed in [1] (see also Section 6).

In the real world, a necessary condition in order to have compatibility between a donor and
a recipient is the so called “negative cross-match”. Cross-matching is a very sensitive and final
test whose result is not totally predictable starting from physical characteristics as the ones we
mentioned in the definition of the types, but should be verified case by case. To deal with the
crossmatch it is possible to consider a probability of compatibility rather than a determinis-
tic compatibility between types. In this paper we use a deterministic matrix, since including
this type of possibility does not require different analysis techniques. Indeed, after a match-
ing has been devised, it is enough to discard a subset of transplants, based on the realization
of a random variable. Since we do not take into account the possibility of having a positive
crossmatch when organizing the exchanges, the subsequent results overestimate the number of
possible transplants.
This assumption, while simplifying the real situation, is considered acceptable also from a med-
ical point of view and is common in the literature studying kidney exchange problems [49].

3 The dynamic model

As discussed in the introduction, the static model is not enough to correctly face the kidney
exchange problem, which is intrinsically dynamic, since the pool of pairs waiting a transplant
evolves over time. The solution proposed in the static setting is no longer optimal if dynamic
effects are considered.
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Indeed, inefficiency in a dynamic environment could arise if decisions are taken without
considering the consequences of present decisions on future possibilities. In particular, the choice
of the exchange timing is relevant. We now propose a more realistic dynamic model, assuming
that each pair enters the process and leaves it only upon receiving a kidney. Moreover, we assume
that the pairs of each type i join the system according to a Poisson arrival process denoted by
Ni(t) and that the arrival processes of each type are independent. Let λi, i ∈ {1, . . . , n} the
arrival rates of each type. Such an assumption is considered consistent with the real situation and
it is adopted in many papers treating organ allocation [46, 58, 54, 11]. By definition of Poisson
process, the probability of having h arrivals of pairs of type i in the time unit, is independent
from the specific time period and satisfies

P[Ni(t) = h] =
λhi
h!
e−λi . (2)

To deal with the pool’s evolution, in this section we show that the problem of dynamic kidney
exchange can be conveniently formulated as an MDP [30, 44]).

Definition 2. A Markov decision process is a 4-tuple (S,A, r, p) where

• S is a set of states;

• A = (As)s∈S , where As is the set of actions available in state s

• r : S × A → R is the immediate reward function; rs(m) is the reward determined by
choosing action m being in state s;

• p is a probability distribution on S × S ×A, pss′(m) is the probability of passing from the
state s to the state s′ having chosen the action m.

We now discuss the choices of the various elements in Definition 2 for the kidney exchange
problem. Let T denote the set of time points in which a decision can be taken: we will always
assume that T is discrete and infinite. Such problems are classified as infinite horizon problems.
This seems a reasonable assumption, since the exchanges are likely to take place for a long period
of time.
State of the system. The system at time t is constituted by the set of donor-recipient pairs
available for an exchange at time t. We assume that there is a maximum number of pairs of each
type admitted to the system, and we call it N . Therefore, if n denotes the total number of pair
types, the state of the system is described by a vector s ∈ {0, . . . , N}n, where each component
si is the number of pairs of type i present in the system at the considered time point. We denote
the set of admissible states at time t by S, since it is independent of t.

Set of actions. When the decision maker observes the state s, she/he chooses an action from
As, the set of allowable actions in s. If the observed state is s, the available actions are the
matchings (included the empty one) involving only 2 and 3-way exchanges, of the weighted graph
constructed on s according to the compatibility matrix R, and denoted by G(s) (see Section 2).
More precisely:

As = {am : am is a matching in G(s)} :=M(G(s)).

Immediate rewards. Given the state of the system and the chosen action, the immediate
reward is obtained by subtracting some costs to the gains due to the performed transplants.
There are some general fixed costs which are independent of whether the exchanges are organized
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or not, and other costs that are related to the exchange procedures. The general fixed costs can
be neglected, since they are constant with respect to the adopted policies. We model the costs
dividing them into two categories: the first one includes the costs due to the organization of the
exchanges, while the second takes into account the unmatched patients still on the waiting list.
More precisely, denoting by N(s, am) the number of transplants performed by choosing action
am in state s, the total cost of a matching is

C(s, am) =

{
0 if N(s, am) = 0

F + ctN(s, am) otherwise,
(3)

where ct is the unitary cost of a transplant. The fixed costs F may be interpreted as the costs
which are independent from the number of matched patients, but appear in correspondence of
any exchange round (management of the waiting list, special working staff, etc.). The variable
costs are assumed to be proportional to the number of matched patients, and they are due for
instance to the preliminary examinations, the surgeries, therapies, etc. Reasonable choices of
these parameters are discussed in the following.

The second kind of costs derives from the patients that are waiting, and is linear in the
number of patients that remain unmatched under action am, namely:

Cw(s, am) =

(
n∑
i=1

si −N(s, am)

)
cu,

where cu is the unitary cost of waiting for a time unit. Finally, for a given objective function
f measuring the matching quality (e.g. quality adjusted life years expected by the patient as
result of an exchange), the welfare function can be defined as follows:

rs(am) = f(am)− C(s, am)− Cw(s, am).

Transition probabilities. It follows from our assumptions that the state of the system at
time t depends only on the observed state at time t − 1, the arrivals and the chosen matching
and does not depend on the history of the process (due to the Markov property). The state at
the subsequent decision point is therefore entirely determined by a transition law. Thanks to
our assumptions about the arrival processes (see equation 2), the transition probabilities can be
explicitly computed and are stationary, i.e. they do not depend on time.

Denoting by m = (m1, . . . ,mn) the number of matched pairs of each type, and assuming
that a pair leaves the pool once it is matched and its recipient receives the selected transplant
immediately, we get

pss′(m) =

{
0 if ∃ i s.t. s′i < si −mi∏n
i=1 P[Ni = s′i − (si −mi)] otherwise.

(4)

Policies. The objective of the central authority organizing the exchanges is to find an optimal
policy according to certain criteria, as we will explain later. A policy π = (πt)t∈T (where T is
the set of decision points) is a sequence of decision rules, where πt in general may depend on
the past history of the system. More formally, we define the set of histories of the system up to
time t as

Ht = {(s0, a0, . . . , st−1, at−1, st) : sk ∈ S, for

k = 1, . . . , t; ak ∈ Ask for k = 1, . . . , t− 1}.
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A (deterministic) decision rule πt : Ht → Ast at time t specifies the action chosen with regard
to each history.

If the decision rule πt is independent of ((s0, a0), . . . , (st−1, at−1)) for every t ∈ N+ the policy
is said to be a Markov policy. If moreover the decision rules are independent of the time point t,
i.e. π0 = π1 = . . . the policy is called stationary. A stationary policy can be seen as a function
from S to ∪s∈SAs, with π(s) ∈ As for every s ∈ S.

A matrix P = (pij)i,j=1,...,n is said to be a transition matrix if pij ≥ 0 for all (i, j) and∑n
j=1 pij = 1 for all i = 1, . . . , n. Each Markov policy induces a transition matrix P (πt) and a

reward vector r(πt), defined as follows:

P (πt)ss′ = pss′(π
t(s)) ∀ s, s′ ∈ S × S and t ∈ T ;

r(πt)s = rs(πt(s)) ∀ s ∈ S and t ∈ T .

Optimality criterion. Several optimality criteria exist for infinite horizon problems. This
paper focuses on the maximization of the total expected δ-discounted reward, which is defined
as follows for a Markov policy π when the initial state of the system is s0:

vδs0(π) =
+∞∑
t=0

δt
∑
s∈S

Ps0,π[Xt = s]rs(πt(s)), (5)

where Xt is the random variable describing the state of system at time t, and Ps0,π[Xt = s]
denotes the probability that at time t the state is s, given that policy π is used and the initial
state is s0. More explicitly we can write:

vδ(π) =

+∞∑
t=0

δtP (π0) · · ·P (πt)r(πt),

which for a stationary policy becomes

vδ(π) =
+∞∑
t=0

δtP (π)tr(π).

Definition 3. Optimal policy. A policy π∗ is optimal if

vδs(π∗) ≥ vδs(π) ∀ s ∈ S and ∀π ∈ P,

where P denotes the set of admissible policies.
We define vδ = (vδs(π∗))s∈S the optimal reward associated with the optimal policy π∗.

The following theorem shows that for MDPs it is not restrictive to consider only stationary
policies, since an optimal policy of this type can always be found.

Theorem 1. Assume that S is finite, and let vδ be the optimal reward as defined in Definition 3.
Then vδ is the unique fixed point of the function

U : R|S| → R|S|
(Ux)s = maxa∈As{rs(a) + δ

∑
s′ pss′(a)xs}.

Let gx be such that

gx(s) ∈ argmaxa∈As
{rs(a) + δ

∑
s′

pss′(a)xs}.

Then the stationary policy defined by π(s) = gvδ(s) for all s ∈ S is optimal.
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The proof of Theorem 1 follows directly from Theorems 6.2.3, 6.2.5 and 6.2.10 in [44]. The
result can be directly applied to the kidney exchange problem in order to state that an optimal
solution exists according to the optimality criterion given by the maximization of the expected
total discounted reward.

The main drawback of this approach is that in practice the set of admissible states and of
admissible actions is huge, growing more than exponentially both with respect to the number
of types and with respect to the number of admitted pairs. This prevents the use of classical
algorithms such as value iteration or policy iteration (see [44]). An alternative approach which
avoids the complete computation of the state space and of the action space is discussed in [7].
The main idea is to find a sub-optimal policy by using only a small subset of the possible
scenarios. To deal with the complexity of the model, in this paper we are going to propose two
special sub-optimal policies.

4 Almost myopic policies

As a starting point of the dynamic analysis we focus on a specific class of policies, that we call
almost myopic.

Definition 4. (Almost myopic policy) A policy is called almost myopic if at each deci-
sion point the decision maker can choose between the empty matching and one maximizing the
objective function f (see (1)).

We call these policies almost myopic because they are similar to the myopic policy, the
main difference between the two is the possibility of choosing the empty matching (while my-
opic policies match compatible pairs as soon as they enter the system). We will consider two
kinds of almost myopic policies: elements of the first kind schedule a matching maximizing the
welfare function at regular intervals of time while policies of the second kind organize matching
maximizing the welfare function only when the number of pairs in the pool is above a fixed
threshold.

There is no evidence that an optimal policy should be of this form. Nonetheless, almost
myopic policies exhibit some features that make them sufficiently interesting. In fact, among
several existing programs of kidney exchanges around the world, there are at least two “common”
procedures in organizing kidney exchanges: the first one consists in organizing the exchanges
as soon as they become available (see [54]); the second one is to organize an exchange round at
regular intervals of time, see [32, 33].

Given a dynamic kidney exchange problem, using the notations of Section 3 and recalling
Equation 1, a time dependent almost myopic policy is defined as follows

πτ (s, t) =

{
m∗ ∈ OM(G(s)) if t = kτ for some k ∈ N,

empty matching otherwise,
(6)

where τ is an a priori fixed time interval. If OM(G(s)) contains more than one element, we
choose one of them, trying to favor the ones involving types that are subject to a long waiting
time (see Section 6 for more details). We call the time instants when a matching is organized
an exchange round.

Analogously, we define a state dependent almost myopic policy as follows:

ξN (s) =

{
m∗ ∈ OM(G(s)) if

∑
i∈O si ≥ N ,

empty matching otherwise,
(7)
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where O is a subset of the pair types. We consider only a subset of all possible types since, as
noted in [54], under a long-run assumption, there will be in the pool an accumulation of so-called
under-demanded pairs. The under-demanded pairs can be identified from the medical data and
the arrival rates, and are a subset of pairs for which incompatibility is due to blood-type.

5 Optimal and almost myopic policy comparison on a simplified
model

In this section we estimate through simulation the total expected δ-discounted reward as defined
in (5), achieved by the policies πτ and ξN for different choices of τ and N , and compare it with
the one corresponding to the optimal policy that we will obtain by solving the MDP. The goal
of the comparison is twofold: on the one hand it is made between policies of the same class, in
order to gain some information on the most appropriate choices for τ and N ; on the other hand
we aim at assessing the quality of these exchange policies with respect to the optimal one. In
these simulations we will always consider as welfare function the one summing up the weights
of the exchanges, so that the efficient matchings are the maximum weight ones.

In order to make the problem numerically tractable, we analyze a stylized model of the
kidney exchange problem, restricting the number of possible pair types. Instead of considering
all the possible blood types we focus our attention only on the pairs in which the donor is of
type A and the intended recipient is of type B and the reciprocally compatible pairs in which
the donor is of type B and the recipient of type A. As mentioned in the introduction, one of the
novelties of our approach is the possibility of taking into account the quality of the exchanges.
There are many factors influencing the graft survival, see e.g. [25, 31, 38, 32, 41, 42, 39] for an
analysis of this issue. In this example we focus on the age of the donors, that we classify into two
distinct classes: young or mature (see also [40]). We suppose therefore that there are only four
pair types, and we call them 1 (recipient of type B and a young donor of type A), 2 (recipient of
type A and a mature donor of type B), 3 (recipient of type B and a mature donor of type A) and
4 (recipient of type A and a young donor of type B). In agreement with the assumptions made in
the description of the model, pairs of type i (i = 1, 2, 3, 4) arrive according to a Poisson process
with rate λi and they all join the exchange system. Reciprocal compatibilities are described by
the following compatibility table:

1 2 3 4

1 0 l/2 0 M/2
2 l/2 0 m/2 0
3 0 m/2 0 l/2
4 M/2 0 l/2 0

where we assume that
M > l > m, and M +m > 2l, (8)

so that an exchange between pairs of type 2 and 3 gives an outcome of m, one between 1 and 2
or 3 and 4 gives l, while one between 1 and 4 gives an outcome of M and it is thus preferable.
Moreover the matching {(1, 4)(2, 3)} has a higher weight than the matching {(1, 2)(3, 4)}. Note
that, given the structure of mutual compatibilities, 3-ways exchanges are not possible. In addi-
tion, even if we do not consider this possibility here, also 4-way exchange involving all the pairs
has a lower reward than the two exchanges (1, 4) and (2, 3), due to the assumption in (8).

The state of the system at time t is a subset of N4, and the simplicity of the chosen sit-
uation allows the explicit computation of the weight for the maximum weight matching once
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the composition of the pool is known. In fact, a maximum weight matching m∗ can be easily
characterized. Since pairs of the same type are indistinguishable in this model, we define two
matchings to be equivalent, if they prescribe the same number of exchanges between every fixed
pair of types. The following theorem states that the maximum weight matching is essentially
unique from this point of view.

Theorem 2. Let s = (s1, . . . , s4) be the state of the system, and let G(s) be the corresponding
graph. Then a maximum weight matching m∗ matches as much as possible pairs of types 1 and 4,
then the remaining pairs (if any) of type 2 or 3 with the available pairs of type 1 or 4 respectively,
and finally matches the remaining pairs of type 2 and 3. The corresponding maximum weight is
therefore

w(s) =


M ∗ s4 + r ·min{s1 − s4, s2}+
m ∗min{(s2 − s1 + s4)+, s3} if s1 ≥ s4;

M ∗ s1 + r ∗min{s4 − s1, s3}+
m ∗min{(s3 − s4 + s1)+, s2} if s1 < s4,

where the notation (x)+ stands for max{x, 0}.

Proof. Suppose that a is a maximum weight matching not equivalent to m∗. We distinguish
two cases: s1 ≥ s4 and s1 < s4. We analyze the first case, the second one being analogous. As
described above, m∗ matches the s4 pairs of type 4 with the pairs of type 1. If the matching a
does the same, then it is easy to prove that a is equivalent to m∗. Otherwise, suppose that there
exists a pair u of type 4 that is matched with a pair of type 1 through m∗, and is not matched
with a pair of type 1 through a. Two possibilities occur: either the pair is left unmatched, or
the pair is matched with a pair of type 3. Since we assumed s1 ≥ s4, and that a is a maximum
weight matching, the first possibility leads to a contradiction and does not take place. This
means that u is matched with a pair of type 3, so that only two cases are possible: either an
exchange of type (1, 4) having weight M in m∗ is replaced by one of type (3, 4), having weight l,
or two exchanges of type (1, 4)(2, 3) in m∗ are replaced by two of type (1, 2)(3, 4) in a. In both
cases assumption (8) leads to a contradiction. This implies that m is equivalent to m∗ in the
case s1 ≥ s4.

We remark that in general an explicit formula for the maximum weight matching is not
essential in the development of the simulations, since the maximum weight can be found using
efficient algorithms [37]. In this case, we exploit the simple structure of the model in order to
speed up the simulation.

5.1 Setting the parameters

The main difficulty in the study of the simulations is setting the parameters so to get a realistic
model. We decided to fix one day as the time unit, tuning the other parameters consequently.
Referring to the Italian situation, the following daily arrival rates are reasonable choices (see
[51]):

λ1 = 0.02, λ2 = 0.024, λ3 = 0.03, λ4 = 0.016.

Such rates are taken from [51], where the incompatible donor-recipient pairs participating to a
kidney exchange problem are simulated on the basis of a suitable tree decision model. There
are several factors influencing the distribution of blood types in the pool. In particular, as
explained in [51], pairs in which the recipient is of type B and the donor is of type A occur more
frequently than pairs in which the recipient is of type A and the donor is of type B, and the
arrival rates in this paper have been chosen accordingly. We also assume that mature donors
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appear more frequently than young ones. The specific choice of the arrival rates gives rise to an
unbalanced system, determining an accumulation effect. More specifically, in our simple model,
the expected number of pairs of type 1 and 3 is higher than the expected number of pairs of
type 2 and 4. Since pairs of type 1 and 3 can exchange only with pairs of type 2 and 4 and vice
versa, this implies that pairs of type 1 and 3 tend to accumulate, and this property is confirmed
in our simulations, as discussed below. Moreover, according to the chosen reward function (see
the compatibility table), it is better to match type 1 with type 4 pairs, and type 2 with type
3 pairs, than to reverse these. As such, since the recipients of pairs of type 1, arriving at rate
0.02, do not exceed the total supply of B donors (coming from pairs of type 2 and type 4 at
rate 0.04), then all of type 1 will be matched. So, in the long run, only type 3 will accumulate.

More delicate issues are the choices of the discount rate, of the costs and of the compatibility
values. One can justify the choice of the discount factor by explicitly considering the risk of
death if the patient continues dialysis. We set δ = 0.9999 (this choice coincides with the one
made in [58]).

Concerning the costs, which are primarily intended to reflect monetary costs, we set the cost
cs of a single exchange to be 1. This corresponds to ct = 0.5 in (3), since cs = 2ct. Considering
the fact that a kidney transplant costs approximately 100, 000 euros, cs corresponds to the
monetary value 200, 000 euros. Therefore, setting the fixed costs F = 0.1, which we recall
include all the expenses due to the maintenance and the management of the system for each
round of exchanges, looks as a reasonable choice. On the other hand, the purely monetary costs
of dialysis are about 50.000 euros per year. Hence, one day of dialysis is then about 140 euros,
namely cu = 0.0007cs.

We are left to fix the immediate reward of an exchange of a given quality. The choice of
this quantity is not obvious, and a possibility could be considering the Quality Adjusted Life
Years (QALYs) expected by the patient as a result of the obtained kidney [58]. A meaningful
numerical value for this quantity needs to reflect the cost of maintaining a patient on the waiting
list for some time. We chose to set the reward of a single transplant to correspond approximately
to the discounted cost of 30 years of dialysis, in the case the exchange is between pairs of type 1
and 4, and with 20 years for exchanges between pairs of types 1 and 2 and 3 and 4, and finally
with 15 years of dialysis for exchanges involving pairs of type 2 and 3. Our final choices are
therefore:

M l m

9 7 6

5.2 Optimal strategy computation through Markov Decision Processes

In this section we compute the optimal performance derived through the solution of the MDP
described in Section 3. The computational cost for generating and solving the MDP grows
rapidly as a function of the problem size (number of patient types, waiting queue size, ...); hence
the reported results have been derived by posing the following further constraints: four types of
donor-recipient pairs, waiting queue size limited to 36 for each type, maximum number of new
arrivals per time unit limited to 2. At any time, the MDP state represents the number of pairs
in queue for each type, the possible actions in each state correspond to the choice of possible
matchings (not necessarily maximal) that may be selected in such state. The state change after
an action has been chosen is probabilistically defined on the basis of the arrival rates of each
pair type, and on the queue size and maximum number of arrivals limits.

The number of MDP states for the given limits is 91, 250; it has been automatically derived
from a high level model representation expressed using the Markov Decision Well-formed Net
(MDWN) formalism [9, 10] to significantly reduce the probability of introducing errors, and to

12



τ Exp.Reward

1 552.50± 10.70
6 553.62± 10.76
10 554.76± 10.79
20 556.70± 10.83
30 558.21± 10.90
60 561.13± 10.94
90 561.49± 10.96
120 561.35± 10.98
180 558.34± 10.84
360 544.24± 10.56
500 532.09± 10.19
720 511.14± 9.78

Figure 1: Results obtained in the simulations varying the time interval τ , with waiting queue size limited to 36
for each type and maximum number of new arrivals per time unit limited to 2. The policies are evaluated through
simulation in terms of the total expected δ = 0.9999 discounted reward on a time horizon of ten years.

have a more parametric model from which different MDP could be derived for any given set of
parameters.

The MDWN model comprises two subnets, the non deterministic one, generating all possible
choices available in a given state, and the probabilistic one, generating the new arrivals as well
as the discharge of donor-recipient pairs when the maximum queue length is reached. The MDP
is generated by making the MDWN evolve (exhaustively) through the possible states, with an
alternation of non deterministic steps and probabilistic steps. Intuitively, for each reachable
state the set of all possible sets of pair associations compatible with that state (including the
decision to postpone some association) define the possible actions and are built incrementally.
For any given action, the next state is computed by selecting a few pairs to be dismissed (chosen
randomly) if the queue size limit has been reached, and then by generating up to two arrivals,
with probability distribution derived from the Poisson arrivals of each pair type and taking into
account the ratio between the arrival rate of each type w.r.t. the total arrival rate.

MDP generation from MDWN model requires, on an Intel i7 processor, less than 1 hour and
7.1Gb of memory; while its solution through policy iteration more than 1 day and 12.6Gb.

With the same constraints, we estimated the expected reward implementing policies πτ and
ξN for different values of τ and N on simulated sequences of arrivals over a time horizon of ten
years. The simulated experiments were executed using an ad-hoc developed simulator whose
functionalities will be described in the next section. Confidence intervals were computed for
each selected index, setting the confidence level to 95%. The expected reward obtained in these
simulations is plotted in Figs. 1 and 2.

The expected reward obtained by MDP solution (i.e. 563.68) is higher than the expected
rewards computed through simulation, however it falls within the confidence interval derived
through simulation for several values of τ and N . Moreover, it is important to highlight that
the computation of the performance of almost myopic policies through simulation requires sub-
stantially less computational resources (i.e. execution time: 5s. and memory used: 4Mb), so
that it can be applied to more complex cases, e.g. when the constraint on the queue size is
removed (see next section) and the solution of the MDP is not possible anymore. Finally, we
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N Exp.Reward

2 552.50± 10.70
4 552.83± 10.71
8 553.93± 10.81
10 554.78± 10.88
20 555.28± 11.06
30 553.31± 10.91
40 549.89± 10.46
60 528.14± 10.48
80 503.07± 10.44

Figure 2: Results obtained in the simulations varying the pool size required for matching with waiting queue
size limited to 36 for each type and maximum number of new arrivals per time unit limited to 2. The policies are
evaluated in terms of the total expected δ = 0.9999 discounted reward on a time horizon of ten years.

observed that the results of almost myopic policies obtained removing the constraints on the
waiting list size are similar to those in Figs. 1 and 2.

6 Kidney exchange simulator

In this section we present a new simulation tool that we developed to study the performance of
almost myopic policies on more realistic kidney exchange models.

The tool is implemented in C++ programming language and it is structured around two
main classes, i.e. the class implementing the core functionalities of the simulator and the class
implementing the kidney exchange model. This modularization in the simulator code facilitates
the integration of new simulator functionalities or model features. Moreover, the simulation
tool exploits the multi-platform LpSolve library (http://lpsolve.sourceforge.net) to efficiently
solve the optimization problem arising at each exchange round.

The simulator input parameters are divided in two sets: those related to the simulation
itself and those related to the description of the kidney exchange model. In details, for the
first set the user has to specify on the command line the following parameters: a)the simulation
duration, b)the transient phase in which simulation statistics are not gathered, c)the total
number of simulation runs, d)the confidence level to be used in the parameters estimation and
e)the simulation seed.

The second set of parameters describes the kidney exchange model in terms of its costs (i.e.
Fixed Cost, Patient Cost, Transplant cost) and rewards, number of time steps between two batch
arrivals1, distribution of the batch size at each arrival, distribution of types of arrived pairs, pair
compatibility degree, and the type of almost myopic policy under investigation with the required
parameters. These parameters are stored in a file that is passed as input to the simulator. Each
model parameter in the file is identified by a specific tag whose name was chosen to be self
explanatory. Taking the model description as an input parameter, rather than embedding it
into the code, allows modellers to study the almost myopic policies on different scenarios. We

1Time is discretized and the arrival of groups of up to k pairs are considered every n time steps.
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Figure 3: Model description files for the simplified model in Section 5

next briefly discuss how to deal with the compatibility constraints. There are different ways to
provide the pairs compatibility information as input to the simulator: they require to specify
all the admissible exchanges. More precisely, let K be the maximum length of the admissible
cycles (in our experiments K = 2 or 3): starting from the compatibility matrix R defined in
Section 2, the information provided to the simulator can be formalised as a set {e1, . . . , ene} of
all legal exchanges, where each ei is a sequence of pair types of length k, with k ∈ {2, . . . ,K},
which represents an admissible k-way exchange. More precisely, for each e ∈ {e1, . . . , ene}, there
exists k ∈ {2, . . . ,K} and t0, . . . , tk−1 in T such that

e = (t0, . . . , tk−1) and Rtl,t(l+1)modk
> 0 for every l ∈ {0, . . . , k − 1}. (9)

Note that an equivalence relation exists among sequences of pair types: two sequences are
equivalent under rotation, meaning that if one exchange e can be obtained from e′ by applying a
rotation to its elements (e.g. e = (t0, . . . , tk−1), e

′ = (t2, ..., tk−1, t0, t1)), they describe the same
k-way exchange. The reward associated with an exchange e = (t0, . . . , tk−1) is equal to the sum
of the rewards of each transplantation in the chain:

r(e) =

k−1∑
l=0

Rtl,t(l+1)modk
(10)

The first format for specifying the possible exchanges in the simulator input file requires to
provide the number of exchanges ne, their reward, and for each pair type the list of exchanges
where it is involved. The input file corresponding to the simplified model introduced in Section 5
according to this format is shown in Fig. 3(left): the number of exchanges that can be considered
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Table 1: Distribution of pair types.

Blood Type Recipient 0 Recipient A Recipient B Recipient AB
Donor 0 [1] 0.14 [2] 0.063 [3] 0.024 [4] 0.005
Donor A [5] 0.378 [6] 0.068 [7] 0.061 [8] 0.005
Donor B [9] 0.12 [10] 0.051 [11] 0.012 [12] 0.002
Donor AB [13] 0.02 [14] 0.028 [15] 0.021 [16] 0.001

follows tag Exchanges, the list of rewards associated with each exchange follows tag Rewards),
while tag Constraints is followed by n lists, one for each pair type, indicating the (multi)set
of exchanges in which that pair can be involved (it is a multiset because two or three pairs of
the same type may be involved in an exchange, assuming the possibility that other factors not
explicitly represented in the model may justify the need for such an exchange).

An alternative representation for the input file when only 2-way exchanges are admitted (i.e.
K = 2), is a lower triangular matrix R′ defined as follows

R′i,j =

{
Ri,j +Rj,i if i ≥ j and Ri,jRj,i > 0

0 otherwise.

For instance, the file corresponding to the simplified model introduced in Section 5 is shown
in Fig 3(right) where after indicating the number m of possible exchanges (tag Exchanges) the
compatibility is specified through a matrix of size n × n (tag Matrix ). The number of non-
null elements in the matrix matches the number of possible exchanges. The position of these
elements indicates the pair types involved in the exchange, while the value indicates the reward
associated with that exchange.

Specifying the pair types. The set of possible pair types can be defined taking into account
several factors, besides blood type, that may influence the compatibility or the quality of the
exchange (see e.g. [25, 31, 38, 32, 41, 42, 39] for studies on this issue). The experiments in next
section for instance focus on the age of donor and recipient: this introduces a finer classification
in types induced by a distinction of the donors and the recipient into two classes: young and
mature (see also [40]). This is a relevant issue, since it has been observed that exchanges involving
young donors [43], or with a good match between donor and recipient age ensure an improved
graft survival [36].

As discussed in next section in our experiments we consider three scenarios with the following
characterization of pair types:

1. based only on donor and recipient blood types (which leads to 16 pair types);

2. based on donor and recipient blood type and donor age (which leads to 32 pair types);

3. based on donor and recipient blood type and donor and recipient age (which leads to 64
pair types).

In all considered scenarios, according to the assumptions made in the description of the
model, the pairs of type i arrive according to a Poisson process with rate λi and join the exchange
system. Actually the simulation time is discretized at steps of length ∆t (in our experiments
∆t = one day), up to k arrivals are generated once every n time steps, and the probability of
having k arrivals (up to a predefined maximum) is computed according to a Poisson distribution.
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Table 2: Quality of transplants based on donor’s age: M > m

Donor’s age Quality
Young Donor M
Mature Donor m

Table 3: Quality of transplants based on donor’s and recipient’s age: M > l > m

Age Young Recipient Mature Recipient
Young Donor M l
Mature Donor m M

There are several factors influencing the distribution of blood types in the pool. Referring
to the Italian situation, the daily arrival rates in Table 1 are reasonable choices for blood type
pairs. Such rates are taken from [51] (see also [26, 52, 57]) where the incompatible donor-
recipient pairs involved in a kidney exchange problem are simulated on the basis of a suitable
decision tree model. Moreover, considering the age aspect, the subclasses arrivals are derived by
considering that mature donors and mature recipient are more frequent than young ones, and
in our experiments they are the 63.2% of the population.

The specific choice of the arrival rates may lead to an unbalanced system, determining an
accumulation effect of some pair types. This was already observed in the small example in the
previous sections, and will be discussed with more details in the comments on our experiments.

Specifying compatibility and quality of exchanges. The definition of the pairs compati-
bility and exchanges quality as input is another important aspect of the simulator that provides
a tool to evaluate the impact of the exchange quality chosen value on the pairs selection at each
decision point. For instance in the three models studied in the next section, the quality of a
k-way exchange, for k ∈ {2, 3}, is given by the sum of the quality of each transplant in the
exchange set. In details in the first scenario considered in next section we assume that all the
transplants have the same quality index. In the second scenario, the quality of a transplant de-
pends on the age of the donor, see Table 2. In the the third scenario, the quality of a transplant
depends both on the age of the donor and of the recipient, according to Table 3. In all scenarios,
blood types do not influence the quality of transplants, but only determine the compatibility.

Integer Linear Programming model for computing maximal matching As mentioned
before, at each exchange round the simulator solves an optimization problem to compute the
maximal matching. There are several solutions available in the literature, see e.g. [1] and
references therein. Here we introduce an integer linear programming problem, whose dimension
is not affected by the number of pairs in the system, but only by the number of types and the
compatibility structure. In the simulations, the resulting integer programming problem will be
solved using the LpSolve library.

Let us consider again the set {e1, . . . , ene} of possible exchanges introduced earlier: each ei
represents a possible |ei|-way exchange. Let s = (s1, . . . , sn) be a state of the system, indicating
how many pairs of each type are currently present in the system. An optimal matching can be
found by solving the following integer linear programming problem, with ne integer variables
x1, . . . , xne, indicating how many exchanges of type e1, e2, . . . ene should be performed in state
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s. The objective function (to be maximized) is:

f(x1, . . . , xne) =
ne∑
j=1

r(ej)xj

under the following constraints:

∀i ∈ {1, .., n},
ne∑
j=1

xj count(ej , i) ≤ si

where r(ej) =
∑k−1

h=0Rth,t(h+1)modk
, with k = |ej |, is the reward associated with the k-way

exchange ej and function count(ej , i) denotes the number of occurrences of type i in ej . As
mentioned at the beginning, the number of variables of the optimization problem only depends
on the number of admissible exchanges, while the number of pairs in the system affects the
optimization problem only changing the constants in the constraints.

Fairness selection when several optimal solutions exist. Since several optimal solutions
can exist for an exchange round in given system state, one needs to define an appropriate
method to select one of them. In particular, in our tool we refined the objective function of the
optimization problem with the aim of balancing the waiting times of all pair types and mitigate
starvation of under-demanded pairs. Hence in the optimization problem the objective function
has been modified so that a slightly higher reward is associated to the exchanges involving pair
types that have experienced longer waiting times. This variation is applied only when defining
the optimization problem to be solved by LpSolve, not in the computation of the global reward
index estimated by the simulator. Note that this modification allows to select one among the
maximal matchings, and does not introduce new solutions. More specifically, the user-defined
reward associated with each exchange is thus incremented by a suitable function of the waiting
times of each involved type, for instance Rwij = R′ij + C ∗ WTi + C ∗ WTj where R′ is the
compatibility matrix derived from the input file, and WTi is the median of the waiting times
of type i. This ensures that types with a longer waiting time median will be favoured; it is
important to choose a small enough C constant, so that the selected optimal solution surely
belongs to the set of optimal solutions computed without increments.

We now consider the modified integer linear programming problem and show that it is
possible to introduce a perturbation based on observed waiting times without changing the
nature of the achieved optimal solution. In the following discussion we shall refer again to the
graph-based definition of the matching problem for simplicity in the proof, but it is not difficult
to map the graph based model into the corresponding ILP model. We recall that a maximum
weight matching is a set of cycles in a directed graph, that do not share nodes, and such that
no other set of disjoint cycles exists with greater overall weight (see Definition 1).

Lemma 1. Let V be a finite set, let E ⊂ V 2, and let v : E → [0,+∞[. Let G = (V,E, v) be the
corresponding directed weighted graph. Let ε : E → [0,+∞[, and let Gε = (V,E, v+ ε). Let w̄ be
the weight of a maximum weight matching (possibly with constrained maximum cycle length) in
G, and let O be the set of not optimal matchings in G. Let us define d as the minimum difference
between the weight of any maximal weight matching and the weight of any other non-optimal
matching:

d = w̄ − max
m′∈O

∑
(i,j)∈m′

vij (11)
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where m′ is a set of arcs in G defining a matching (i.e. the union of the arcs belonging to the
k-way disjoint cycles composing matching m′). Then, if max(i,j)∈E εij < d/|V |, any maximum
weight matching in Gε is a maximum weight matching in G.

Proof. First note that the weight of a maximum weight matching in Gε is greater than or equal
to w̄ since ε is positive. Let m′ ∈ O. The weight of the matching m′ in Gε is

∑
(i,j)∈m′(vij + εij).

Note that |m′| ≤ |V | since at most we can have one arc departing from each node involved in
a cycle composing m′, hence

∑
(i,j)∈m′ εij < |m′|d/|V | ≤ d. Therefore the weight of m′ in Gε

satisfies ∑
(i,j)∈m′

(vij + εij) <
∑

(i,j)∈m′

vij + d ≤ w̄,

and thus m′ is not optimal in Gε.

In our experiments, we use the trick described in the previous lemma in order to favour
solutions which exhibit fairness among the optimal ones, and, for compatible pairs i and j with
i and j in {1, . . . , n} we set

εij = c ∗ (Wi +Wj)/N,

where N is (an upper bound for) the total number of pairs in the waiting list, Wi and Wj are
(upper bounds for) the median waiting times of pairs of type i and j and c is a small enough
constant chosen in order to verify the assumptions of Lemma 1,

A possible choice for c is c = δ/2mWuEu where δ < d, with d defined as in (11), Wu is an
upper bound for the waiting time and Eu is an upper bound on the number of possible exchanges
in the considered state, then the conditions imposed by the lemma are surely satisfied. If the
rewards in the original optimization problem are all integer2 we can safely choose any δ < 1
(e.g. δ = 0.9).

Dealing with the accumulation of under-demanded types in ξN policy. The accumu-
lation of so-called under-demanded pairs was observed in [54] and discussed in Section 4; when
a given pair type starts accumulating it may force the quasi myopic policy ξN to organize an
exchange round at each time step (so that it becomes a myopic policy). To avoid this effect
in our simulation tool we have explicitly implemented the possibility of specifying a set of pair
types (associated with tag NoAccumulation in the input file) whose number is not considered
in choosing when an exchange should be scheduled in policy ξN : this allows to define set O of
Eq.7.

Computing measures of interest. The simulator output is saved in two files: in the first
file, with extension .output, a set of measures of interest for each run is reported in textual
form. In the second file (with extension .cvs) the same set of measures associated with their
confidence intervals is saved as comma-separated values. In details for each run the following
measures are computed: a)average exchange reward for time unit; b)average exchange reward
for matching; c) average number of discharged patients per time unit; c) average number of
discharged patients per exchange round; d) average number of pairs in hospital per each type;
e) average waiting time per each type; d) ratio between the total number of discharged patients
and the total number of admitted patients; e) expected discounted reward; d) the number of
pairs in the hospital of each type at the end of simulation.

2The integer rewards hypothesis is not restrictive: as a matter of fact the only requirement is to have finite
precision rewards, which could be transformed into integers multiplying them by a suitable factor.
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The simulator is available free of charge for academic institutions and non profit organiza-
tions; it can run on Linux, Unix and MacOS X system: http://www.di.unito.it/~beccuti/

software.html

7 Evaluation of almost myopic policies on more complex sce-
narios

In this section we exploit our parametric simulator to evaluate the performance of the two
introduced classes of almost myopic policies in the three scenarios outlined in the previous
section. The main aim is therefore to derive some insight on how to choose the best timing
between two exchange rounds, or, for state dependent policies, a suitable threshold on the
optimal number of pairs in the waiting list (possibly filtering out accumulating pair types) that
should be used to trigger a matching. Moreover, we performed an experimental sensitivity
analysis to enlighten the role and the effects of the various parameters involved. Indeed, the
choices of the discount rate, of the costs, and of the compatibility values are a delicate issue.

In details, in our experiments we assume the arrival rates as described in the previous sec-
tion, 1 day as time unit, 3, 600 days as the simulation horizon, and 0.9999 as discount factor.
Concerning the model costs, which are primarily intended to reflect monetary costs, we will
report several experiments for different choices of the related parameters. In particular, accord-
ing to the consideration reported in Subsection 5.1, we assume as baseline/reference costs the
following values ct = 0.5, F = 0.1, and cu = 0.0007, and then we introduce small variations of
these values to study their effects on the simulation results.

With considerations similar to those of Subsection 5.1, we fixed the following choices for the
immediate reward of a transplant, in the three considered models (introduced in Section 6):

Model 1: in this case all the transplants are of the same quality. We fixed the immediate
reward of each transplant equal to 4.5 (hence an exchange involving two pairs has reward
9) corresponding approximately to the discounted cost of 30 years of dialysis;

Model 2: in this case the quality of the transplant depends on the age of the donor (see Table 2).
We fix M = 4.5, which again corresponds approximately to the discounted cost of 30 years
of dialysis, and m = 3.5 which corresponds to 20 years;

Model 3: in this case the quality of the transplant depends on the age of the donor and of
the recipient (see Table 3). Reasoning as in the previous cases, we fix M = 5, l = 4, and
m = 3.

The performance of the policies are measured and compared in terms of the total expected
discounted reward over 1, 000 runs for each experiment, and confidence intervals are computed
setting the confidence level to 99%. We ran the simulations for the three models, with the
following choice of parameters:

1. time dependent almost myopic policies for τ ∈ {15, 30, 60, 90, 120, 150, 180, 225, 240, 300, 360,
400, 450, 600, 720};

2. state dependent almost myopic policies forN ∈ {2, 4, 8, 10, 12, 14, 20, 22, 24, 30, 32, 34, 40, 60, 80};

Finally, Table 4 summarized how the performed experiments are organized with respect to
the three models and all parameters.
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Model 1 Model 2 Model 3

Policy πτ X X X

Policy ξN X X X

Varing F cost (i.e. 0.1, 0.5 and 1) X X X

Varing Cs cost (i.e. 0.1 and 1) X X X

Varing Cu cost (i.e. 0.00007,0.0014,0.0007). X X X

2-way exchanges X X X

2-way and 3-way exchanges X

with accumulated pairs for ξN policies X X X

without accumulated pairs for ξN policies X

without final match for ξN policies X X X

with final match for ξN policies X

Table 4: Summary of the 1,048 experiments performed.

Figure 4: πτ policy comparison for Model 1 with cs = 1 cu = 0.0007, and varying F (i.e. 0.1,
0.5 and 1).

Figure 5: πτ policy comparison for Model 1 with: cs = 1, F = 0.1, and cu = 0.0014(left), cs = 1,
F = 0.1, and cu = 0.00007 (center), and cs = 0.1, F = 0.1, and cu = 0.0007(right).
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Figure 6: ξN policy comparison for Model 1 with cs = 1 cu = 0.0007, and varying F (i.e. 0.1,
0.5 and 1).

Figure 7: ξN policy comparison for Model 1 with : cs = 1, F = 0.1, and cu = 0.0014(left),
cs = 1, F = 0.1, and cu = 0.00007 (center), and cs = 0.1, F = 0.1, and cu = 0.0007(right).

Figure 8: ξN policy for Model 1 with cs = 1, F = 0.1, and cu = 0.0007 considering accumulation
of under-demanded type(left), and ξN policy for Model 1 with cs = 1, F = 0.1, and cu = 0.0007
assuming a final match before ending the simulation(right).
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Policy comparison for Model 1 We start our discussion considering the results obtained
by the first model (i.e. based only on donor and recipient blood types) taking into account 2
and 3-way exchanges. We also recall that in this model all the transplants have the same quality
(i.e. reward). In Fig. 4(left) the results of our simulations with respect to the baseline costs
and τ policy are shown. With this choice of parameters, the total discounted expected reward
is approximately a decreasing function of τ , for the policies performing only 2-way exchanges.
This suggests that, in this setting, it is better to execute exchanges as soon as they become
available. This behavior is less emphasized for the policies allowing 3-way exchanges.

The other two graphs in Fig. 4 show that if the fixed cost F is increased (i.e. 0.25 and 1 resp.)
then the choice of waiting between a matching and the subsequent one looks more important
because the maintenance and the management of the system makes it more convenient to wait
for more than one transplant for each round of exchanges. For instance for F = 0.5, i.e.
Fig. 4(center), the reward is maximized for τ close to 90, while for F = 0.1 the reward is
maximized for τ close to 225.

In Figs. 5(left) and 5(center) the results of our simulations varying the costs of dialysis cu
are reported. As effect of decreasing cu we obtain a better reward increasing the waiting time
between one exchange and the other. However this effect is less evident than one obtained by
increasing F because all the transplants have the same quality.

The variation of the cost cs of a single exchange does not affect the results trend: the reward
values are all scaled proportionally. In Figs. 5(right) the results obtained assuming cs = 0.1 are
shown, while all the other costs are fixed to the baseline values.

In Fig. 6(left) the results of our simulations with respect to the baseline costs and N policy
are shown. In this situation the policies ξN performing only 2-way exchanges, as well as the
ones allowing 3-way exchanges, show that better rewards are obtained for N values between 2
and 14. Fig. 6 suggests that when the Fixed cost F is increased to 0.25 the reward is slightly
better for N values between 10 and 14. Instead fixing F = 1 a non monotonic trend appears
as shown for τ policy, and better rewards are derived for N close to 24. Moreover if we focus
on the N values between the two dashed vertical lines in Figs. 6, in which the average waiting
time between two matches is in the same range of the τ values considered in πτ experiments,
conclusions similar to that proposed for τ policies can be derived.

The variation of the cu cost or cs cost does not affect the general shape of the resulting curve
as shown in Fig 7, but the obtained reward values are substantially different.

The plot in Fig. 8(left) shows how ξN policy rewards for the baseline case are affected by
including under-demanded types (i.e. donor A, recipient O and donor A, recipient O) for the
count triggering the exchanges. As expected, the match frequency is substantially increased due
to an accumulation effect making less significant the reward difference when varying N . For
instance the average waiting time between two matches for N = 50 is ∼ 50 times smaller than
the same measure computed excluding under-demanded types.

Fig. 8(right) reports instead the results obtained by the baseline case introducing a final
matching before ending the simulation. This makes the rewards a bit higher, in particular
for higher values of N. Indeed, increasing N we have an higher probability of having possible
matches at the simulation end.

Finally, comparing the maximum total discounted expected reward, we observe that, as
expected, both policies allowing for 3-way exchanges give better results with respect to those
involving only 2-way exchanges. Moreover a higher maximum total discounted expected reward
is obtained by τ policies than ξN policies this can be partially justified by the effect of under-
demanded pairs.
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Figure 9: πτ policy comparison for Model 2 and 3 with cs = 1 cu = 0.0007, and varying F (i.e.
0.1, 0.5 and 1).

Figure 10: πτ policy comparison for Model 2 and 3 with: cs = 1, F = 0.1, and cu = 0.0014(left),
cs = 1, F = 0.1, and cu = 0.00007 (center), and cs = 0.1, F = 0.1, and cu = 0.0007(right).

Figure 11: ξN policy comparison for Model 2 and 3 with cs = 1 cu = 0.0007, and varying F (i.e.
0.1, 0.5 and 1).
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Figure 12: ξN policy comparison for Model 1 with : cs = 1, F = 0.1, and cu = 0.0014(left),
cs = 1, F = 0.1, and cu = 0.00007 (center), and cs = 0.1, F = 0.1, and cu = 0.0007(right).

Policies comparison for Model 2 and 3 In this kidney exchange models differently by the
Model 1 we take into account the quality of the executed transplants assuming different rewards
(see previous section for detailed reward definition). While overall the comments are similar to
those made for Model 1, one characteristic which distinguishes the results of the simulations for
Model 2 and 3 from the ones for Model 1, is the fact that in general, in this case, it seems better
to wait to perform transplants of higher quality.

As before, we start analyzing our default setting for τ policies. The total discounted expected
reward is again a decreasing function of τ for Model 2, while for Model 3, where more pair types
are involved, the benefits that can derive from waiting are more evident. In this case, as shown
in Fig. 9(left) the total discounted expected reward is increasing for τ varying from 120 to 150,
and then it starts to decrease.

As reported by Figs. 9(center) and 9(right) this latter tendency is observed also for Model
2 increasing the Fixed cost F to 0.5 and 1. However, the benefits of waiting are still more
amplified for Model 3, that shows a greater variation among the rewards. For instance assuming
F = 1, better total discounted expected rewards are obtained for τ varying from 225 to 300 for
both models.

In Figs. 10(left) and 10(center) the results of our simulations varying the costs of dialysis
cu are reported. Differently by Model 1 the cu variation has a stronger effect on the rewards.
Indeed the advantages of waiting in Model 3 are lost if F is 0.0014 (see Figs. 10(left), while they
become much more evident, in both the models, when F is equal to 0.00007.

Moreover, as in the Model 1, the variation of the cost cs of a single exchange does not affect
the result trend. Indeed, Fig. 10(right) shows that all the reward values are scaled proportionally
with respect to those reported in Fig. 9(left) for the baseline case.

For ξN policies the simulation results, shown in Figs 11 and 12 , come to the same conclusions
already discussed for τ policies. This is more evident if we focus on the N values between the
two dashed vertical lines in which average waiting time between two matches is in the same
range of the considered τ values.

In both policies we observe that better results are obtained when the exchange quality takes
into account the blood type and the age of the the donor and recipient (i.e. Model 3). This can
be justified by the fact that in this case exchanges with higher rewards can be favoured.

Moreover a higher maximum total discounted expected reward is still achieved by τ policies
than ξN policies, even if this trend is less evident with respect to the Model 1.
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8 Conclusions

In this paper we showed how the dynamic kidney exchange problem can be conveniently modelled
by a MDP model taking into account the quality of the performed exchanges as well as the
organizational cost. However, the complexity of the MDP, in terms of possible states and
available decisions, prevents the possibility to compute the optimal policy in real cases, so that
only heuristic approaches can be exploited to obtain a sub-optimal solution. Among these
heuristic approaches we focused on almost myopic policies, because they are currently adopted
by many transplant organizations.

In particular, a time dependent and a state dependent almost myopic policy were proposed
and studied in this paper. The performance of these two almost myopic policies were first
estimated through simulation and compared with the optimal policy obtained by numerical
solution of the MDP model in a simplified case. The obtained results show that the performance
of these two policies is quite similar to that of the MDP optimal policy.

Then, these two policies were investigated in more realistic scenarios thanks to a paramet-
ric simulator (freely available for download at http://www.di.unito.it/~beccuti/software.
html) which allows users to consider multiple characteristics of both donors and recipients, dif-
ferent degrees of compatibility (quantifying the quality of each possible exchange) and different
cost factors concurring to the definition of the reward function on which the evaluation is based.
This simulation model and parameters are described in the paper, showing how the simulator
can be used to study different scenarios that can be configured by modifying the rich set of input
parameters. The results of several experiments are proposed to show how (1) different scenarios
can be configured and (2) varying the parameter values it is possible to investigate their impact
on the overall performance (e.g. the kidney transplant costs, dialysis costs, . . . ) i.e. on the
achievable reward. The study of other sub-policies as well as their integration in our simulator
will be carried out as future works. Moreover, models taking into account other aspects such as
tissues compatibility and/or body mass index will be investigated.
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[50] A. E. Roth, T. Sönmez, U. M. Ünver, Efficient kidney exchange: Coincidence of wants in a
structured market, American Econom. Rev. 97 (2007) 828–851.

29



[51] D. L. Segev, S. E. Gentry, D. S. Warren, B. Reeb, R. A. Montgomery, Kidney paired
donation and optimizing the use of live donor organs, JAMA 293 (2005) 1883–1890.

[52] D. L. Segev, S. E. Gentry, J. K. Melancon, R. A. Montgomery, Characterization of waiting
times in a simulation of kidney paired donation, American Journal of Transplantation 5
(2005) 2448–2455.

[53] X. Su, S. A. Zenios, Patient choice in kidney allocation: A sequential stochastic assignment
model, Operations Research 53 (2005) 443–455.
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