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Abstract

We present the forensic analysis of the artifacts generated on Android smart-
phones by Instant Messaging applications, like Telegram Messenger and
ChatSecure applications. Telegram Messenger is the official client for the
Telegram instant messaging platform, which provides various forms of secure
individual and group communication, by means of which both textual and
non-textual messages can be exchanged among users, as well as voice calls.
ChatSecure is a secure instant messaging application that provides strong
encryption for transmitted and locally-stored data to ensure the privacy of
its users.

Specifically, in this technical report, we focus on the ChatSecure applica-
tion as a case study, and we describe how to concretely configure and use the
various tools that we rely upon to create and run an Android Virtual Device
(AVD), and to carry out the analysis of its persistent and volatile memory.
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1. Configuring and using the Android Emulator, LiME, and Volatil-
ity

In this technical report, we illustrate how to configure and use the software
tools used to carry out the analysis methodology described in this work,
and in particular the Android Mobile Device Emulator (AMDE) to create
and manage Android Virtual Devices (AVD) (1.1), LiME (1.2) to dump the
contents of volatile memory, and Volatility (1.3) to analyze these dumps. We
focus on the ARM architecture sinceit is the only one that supports the
analysis of both persistent and volatile memory. For our experiments, we
follow the approach proposed in [9, 10].

1.1. Configuring and using the Android Mobile Device Emulator

In this work we use AVDs in place of a real device to carry out the
experiments. Using an AVD entails two distinct steps, namely: (1) the AVD
must be created first, and then (2) it must be started by the AMDE, so that
the needed apps and services may be installed and used.

All the software tools required to create AVDs, as well as the AMDE,
are included in the Android SDK Tools [5] and the Application Binary In-
terface (ABI) for ARM EABI v7a System Image software, that we assume
are already installed and properly configured on the machine(s) used for the
experiments. 1

To create an AVD on the machine where the emulator runs, the android
create avd command needs to be used as reported below (character ’$’ denotes
the shell prompt):

$ and ro i d c r e a t e avd −n cha tSecu r eTes t −t ’ andro id −21’ −b ’
d e f a u l t / armeabi−v7a ’ −c 2G

where:

-n chatSecureTest is the name of the AVD;

-t ’android-21’ is the target ID of the new AVD (the characteristics of this
target are showed in Listing 1);

-b ’default/armeabi-v7a’ is the Application Binary Interface;

1The installation and configuration of these tools is outside the scope of this appendix.
Various tutorials explaining how to configure and install Android SDK Tools are available
on Android developers web pages [2].
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-c 2G is the size of SD card (in this case, it is set to 2 GBytes).

Listing 1: Charateristics of ’android-21’ target.

id : 5 or ‘ ‘ android −21 ’ ’
Name : Android 5 . 0 . 1
Type : Platform
API l e v e l : 21
Rev i s ion : 2
Skins : HVGA, QVGA, WQVGA400, WQVGA432, WSVGA,

WVGA800 ( d e f a u l t ) , WVGA854, WXGA720, WXGA800,
WXGA800−7in

Tag/ABIs : no ABIs .

Once the AVD has been created, it can be used as a real device by means
of the AMDE, that provides a GUI allowing the user to interact with it after
having started it by means of the following command:

$ emu la to r −avd cha tSecu r eTes t &

To run the experiments discussed in this work, we install ChatSecure on
the running AVD by means of the following commands:

$ wget h t t p s : // g u a r d i a n p r o j e c t . i n f o / r e l e a s e s / cha t s e cu r e−
l a t e s t . apk

$ adb i n s t a l l c ha t s e cu r e− l a t e s t . apk

Furthermore, to extract data generated by ChatSecure from the internal
memory of the device, we use the File Explorer tool provided by the Android
Device Monitor [3]. Alternatively, the pull action provided by the Android
Debug Bridge can also be used as described below:

$ adb p u l l <remote> < l o c a l>

where the < remote > and < local > indicate the file/folder to extract, and
where to store it on the machine used for the experiments, respectively.

1.2. Configuring and using LiME for volatile memory extraction

The procedure described in the previous section allows the experimenter
to extract the data stored in the persistent memory of the device. To extract
the contents of volatile memory of an AVD, we resort instead to a different
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procedure involving LiME, that is arguably the most accurate open-source
tool for memory extraction available on Linux systems [7, 6].

LiME consists in a loadable kernel module (LKM) that, once loaded into
the running kernel, dumps the contents of the volatile memory either on
an SD card placed in the device, or over a TCP connection. Therefore, to
enable the usage of LiME, the Android kernel running on the AVD must
provide loadable modules support.

Unfortunately, the standard AVD kernel (i.e., the default kernel provided
with AVDs) does not provide such a support, so to use LiME it is necessary
to first configure and compile it (as described in 1.2.1 below), and then to
compile LiME as a loadable module for this kernel (as described in 1.2.2
below).

1.2.1. Compiling the Goldfish kernel

To include loadable memory support, the Android kernel (that is named
Goldfish) must be properly configured and recompiled. To ensure that the
recompiled kernel works correctly on the AVD, it is necessary to identify the
kernel version running on it, so that the correct source can be used for the
recompilation.

The version of the Goldfish kernel running on the AVD can be determined
by inspecting the contents of the /proc/version special file on the AVD, that
can be done as reported below:

$ adb s h e l l c a t / proc / v e r s i o n
L inux v e r s i o n 3.4.67−01422− gd3 f f c c7−d i r t y ( d i g i t @ t y r i o n . par

. co rp . goog l e . com) ( gcc v e r s i o n 4 .8 (GCC) ) #1 PREEMPT
Tue Sep 16 19 : 34 : 06 CEST 2014

The kernel version is identified by the so-called point of development, that in
the example above is gd3ffcc7.

Once this information is known, it is necessary to (a) download the kernel
config file from the AVD (this file contains the compilation options for the
running kernel), (b) download the toolchain [4] containing the tools required
for the compilation, (c) download the source code of the correct kernel version
that has been just identified, and (d) add loadable module support to the
config file. These steps are reported below, where character ’#’ denotes a
comment:

# >>>>> c r e a t e the t e s t−g o l d f i s h f o l d e r
$ mkdir −p ˜/ and ro i d / t e s t−g o l d f i s h
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$ cd ˜/ and ro i d / t e s t−g o l d f i s h
# >>>>> get c o n f i g . gz f i l e from the emu la to r and unz ip i t
$ adb p u l l / proc / c o n f i g . gz
$ gunz ip c o n f i g . gz
# >>>>> get the t o o l c h a i n
$ g i t c l o n e
h t t p s : // and ro i d . g o og l e s o u r c e . com/ p l a t f o rm / p r e b u i l t s / gcc /

l i n u x−x86/arm/arm−eab i −4.7
# >>>>> get the k e r n e l s o u r c e s and checkout the c o r r e c t

commit
$ g i t c l o n e h t t p s : // and ro i d . g o og l e s o u r c e . com/ k e r n e l /

g o l d f i s h . g i t
$ cd ˜/ and ro i d / t e s t−g o l d f i s h / g o l d f i s h
$ g i t checkout d 3 f f c c 7
# >>>>> p r epa r e the env i ronment f o r c r o s s−c omp i l a t i o n
$ e xpo r t ARCH=arm
$ expo r t SUBARCH=arm
$ expo r t
CROSS COMPILE=˜/and ro i d / t e s t−g o l d f i s h /arm−eab i −4.7/ b in /arm−

eab i−
$ e xpo r t Co re sP lu s1=$ ( ( $ ( grep −c p r o c e s s o r / proc / cpu i n f o )

+1) )
# >>>>> add l o a d a b l e module suppo r t to c o n f i g
$ make c l e a n && make mrproper
$ cp . . / c o n f i g . c o n f i g
$ make menuconf ig

The last statement of the listing above, namely make menuconfig, opens a
configuration menu that allows one to select the loadable module support
option from a textual menu.

Finally, the re-configured kernel and its modules can be compiled as fol-
lows:

$ make modu l e s p r epa r e
# >>>> comp i l e the k e r n e l
$ make − j $Co r e sP l u s 1
# >>>> save System .map
$ cp System .map . . / System .map

and the AVD can be rebooted with the new kernel, that now includes loadable
module support, as follows:
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# >>>> s t a r t AVD with the new k e r n e l
$ emu la to r −avd cha tSecu r eTes t −k e r n e l ˜/ and ro i d / t e s t−

g o l d f i s h / g o l d f i s h / a rch /arm/boot / zImage &

1.2.2. Compiling LiME for the Goldfish kernel and using it for memory ac-
quisition

As mentioned before, LiME consists in a kernel module, that needs to be
compiled for the kernel running on the AVD as shown below:

# >>>>> comp i l e LiME l o a d a b l e module
$ cd ˜/ and ro i d / t e s t−g o l d f i s h /
$ g i t c l o n e h t t p s : // g i t hub . com/504 e n s i c s L a b s /LiME . g i t
$ cp Make f i l e . LiME . co s s LiME/ s r c /Make f i l e
$ cd LiME/ s r c
$ make c l e a n && make
$ mv l ime . ko l ime−g o l d f i s h . ko

where the Makefile.LiME.cross file is shown in Figure 1.

Figure 1: The Makefile.LiME.cross file.

Once the module has been compiled, it is pushed to the AVD using the
ADB, and then it is loaded into the kernel by means of the insmod command,
as shown below:

$ cd ˜/ and ro i d / t e s t−g o l d f i s h /
$ adb push l ime−g o l d f i s h . ko / sdca rd / l ime . ko
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$ adb fo rwa rd tcp :4444 tcp :4444
$ adb s h e l l insmod / sdca rd / l ime . ko ” format=l ime path=tcp

:4444 ” &
$ nc l o c a l h o s t 4444 > g o l d f i s h . l ime

The parameters passed to insmod specify that the dump has the LiME’s
native format, and that the corresponding data are sent across a TCP con-
nection identified by port 4444, that has been forwarded to the same port
of the physical machine on which the emulator is running. At the end of
the acquisition, the memory dump is stored in the goldfish.lime file on the
physical machine where the emulator is running.

1.3. Configuring and using Volatility for volatile memory analysis

Volatility [8] is one of the most popular platforms for the analysis of volatile
memory, and supports a wide variety of memory dump formats, processor
architectures, and operating systems.

To use Volatility of a specific system (characterized by its processor ar-
chitecture and operating system), it is necessary to create a volatility profile
storing the information concerning the data structures, the algorithms, and
the symbols that have to be used to correctly parse the memory dumps com-
ing from that system.

Creating a Volatility Linux profile means generating a set of VTypes and
a System.map file for a particular kernel version and packing those together
into one zip file.

VTypes can be extracted from the compiled Linux kernel file vmlinux if
available, otherwise with the dwarfdump tool (a tool that parses the debug-
ging information from ELF files, such as Linux kernel and Linux modules).

The System.map file can be instead created, for the Android system, by
compiling the target kernel as discussed below.

First of all, we need to use a makefile to cross-compile Volatility for the
ARM processor architecture, as the one shown in Fig. 2 that we use in our
work. Then, we create the profile Android Goldfish 3.4.67-01413-gd3ffcc7.zip
using the commands listed below:

# >>>>> comp i l e V o l a t i l i t y module
$ cd ˜/ and ro i d / t e s t−g o l d f i s h /
$ g i t c l o n e h t t p s : // g i t hub . com/ v o l a t i l i t y f o u n d a t i o n /

v o l a t i l i t y . g i t
$ cp Make f i l e . V o l a t i l i t y . c r o s s v o l a t i l i t y / t o o l s / l i n u x /

Make f i l e
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Figure 2: The Makefile.Volatility.cross file.

$ cd v o l a t i l i t y / t o o l s / l i n u x /
$ make
# >>>>> c r e a t e V o l a t i l i t y p r o f i l e
$ z i p − j A n d r o i d Go l d f i s h 3 .4.67−01413− gd3 f f c c 7 . z i p module .

dwar f ˜/ and ro i d / t e s t−g o l d f i s h / g o l d f i s h /System .map
$ cp And r o i d Go l d f i s h 3 .4.67−01413− gd3 f f c c 7 . z i p ˜/ and ro i d /

t e s t−g o l d f i s h / g o l d f i s h /
$ cp And r o i d Go l d f i s h 3 .4.67−01413− gd3 f f c c 7 . z i p ˜/ and ro i d /

t e s t−g o l d f i s h / v o l a t i l i t y / p l u g i n s / o v e r l a y s / l i n u x /

The last step necessary to run Volatility consists in setting two environ-
ment variables called VOLATILITY LOCATION and VOLATILITY PROFILE :
the first one has to point to the memory dump file to analyze, while the sec-
ond one has to point to Volatility profile as follows:

$ cd ˜/ and ro i d / t e s t−g o l d f i s h / v o l a t i l i t y /
$ e xpo r t VOLATILITY LOCATION=f i l e ://˜/ and ro i d / t e s t−g o l d f i s h

/ g o l d f i s h . l ime
$ e xpo r t VOLATILITY PROFILE=L i nu xAnd r o i d Go l d f i s h 3 4 67

−01413−gd3ffcc7ARM

In our work, we use Volatility to search the memory area used by the
ChatSecure process for the known passphrase as follows. First, we discovered
the Process ID (PID) of the ChatSecure process by means of the linux psaux
Volatility plugin, that prints the list of active processes, as shown below:

$ python v o l . py l i n u x p s a u x
V o l a t i l i t y Foundat ion V o l a t i l i t y Framework 2 .5
Pid Uid Gid Arguments
1 0 0 / i n i t
2 0 0 [ k th readd ]
3 0 0 [ k s o f t i r q d /0 ]
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. . .
2876 10060 10060 i n f o . g u a r d i a n p r o j e c t . o t r . app . im
. . .

From the output of the linux psaux plugin, we see that the PID of ChatSecure
is 2876 (the corresponding process is named
info.guardianproject.otr.app.im).

Then, we can search the memory area associated with the above process
by means of the yarascan Volatility plugin [1], that is able to scan for pattern
or regular expressions anywhere in process or kernel memory. In the exam-
ple below, we show how yarascan can be used to search for the passphrase
“thisisthepassword2016 ” (the one shown in Fig. 3) in the memory space of
process with PID=2876:

$ python v o l . py l i n u x y a r a s c a n −Y ” t h i s i s t h e p a s swo r d 2 0 1 6 ” −
p 2876

In the example above, flag -Y indicates the pattern to search for, while flag
-p restricts the scan to the memory area of the specific process.

Figure 3: Passphrase in the volatile memory of the device.
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