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Abstract—In this paper we deal with the problem of making
a set of Fog Infrastructure Providers (FIPs) increase their
profits when allocating their resources to process the data
generated by IoT applications that need to meet specific
QoS targets in face of time-varying workloads. We show
that if FIPs cooperate among them, by mutually sharing
their workloads and resources, then each one of them can
improve its net profit. By using a game-theoretic framework,
we study the problem of forming stable coalitions among
FIPs. Furthermore, we propose a mathematical optimization
model to allocate IoT applications to a set of FIPs, in order to
reduce costs and, at the same time, to meet the correspond-
ing QoS targets. Based on this, we propose an algorithm,
based on cooperative game theory, that enables each FIP
to decide with whom to cooperate in order to increase
its profits. The effectiveness of the proposed algorithm is
demonstrated through an experimental evaluation consider-
ing various workload intensities. The results we obtain from
these experiments show the ability of our algorithm to form
coalitions of FIPs that are stable and profitable in all the
scenarios we consider.

Index Terms—Fog computing, Fog federation, Game Theory,
Coalition Formation

1. Introduction

Large-scale Internet of Things services, such as health-
care [1], smart cities [2], agriculture monitoring [3], and
many others [4], are nowadays pervasive in cyber-physical
systems. These services are based on the collection of very
large volumes of data, produced by an extremely large
number of end devices (sensors, smart personal devices,
vehicles, etc.), located at the edge of the network, that
operate on a 24/7 basis every day of the year and that
often require real-time or near real-time processing [5].

Fog Computing [6] has recently emerged as the most
suitable solution to the processing needs of IoT data, and
has received a lot of attention in the literature [7], [8]. In
Fog Computing, compute, storage, and network resources
are provided by fog nodes that are placed at the edge of the
network, in close proximity to where data are generated.
In this way, IoT data can be processed at the edge of the
network, without the need of transferring it to a centralized
data center, thus greatly reducing latency and avoiding to
congest the core network, unlike the cloud paradigm that,
instead, requires such a transfer.

However, as argued in [9], latency is proportional to
the inverse square root of the number of fog nodes, so

a very large number of fog nodes is required to reduce
it (for instance, it takes four times as many nodes to
reduce latency by half). Hence, latency reduction would be
prohibitively costly for an enterprise that had to purchase
and deploy its own fog nodes, since a very large number
of nodes would be necessary to suitably reduce latency for
data generated by a population of moving users. Further-
more, these costs would be hardly amortized, since the
capacity of these fog nodes would be used only in part
for most of the time, because of the variations in volume,
variety, and velocity of generated data [5].

The emergence of Fog Infrastructure Providers (FIPs),
i.e., operators that provide individual enterprises with the
computing and networking infrastructure needed to host
their fog nodes on a pay-per-use basis, will however
eliminate these costs [9], since these enterprises do not
need to purchase, deploy, and manage their own fog
infrastructures. On the other hand, by multiplexing the
same physical infrastructure among multiple tenants, each
FIPs can maximize the utilization of its resources, thus
amortizing capital and operational costs and making profit.

Furthermore, in many cases (e.g., small urban centers
or rural areas) FIPs will be regional providers that exploit
co-location facilities [9] to cut down operational costs, a
solution that is growing fast in the small-to-medium-size
enterprise arena [10].

In the case where several FIPs share the same co-
location facility (and, hence, their resources are indis-
tinguishable from the perspective of latency perceived
by a user), their profits can be further increased if they
cooperate among them by mutually sharing their users and
infrastructures. In particular, each FIP can improve its net
profit by either (a) reducing energy costs by switching
off (a part of) its infrastructure and offloading its users
to resources belonging to other cooperating FIPs, or (b)
increasing its earnings by attracting users from other FIPs,
or (c) relying on resources of other FIPs to accept more
users than what could do by working alone.

Obviously, it is unreasonable to expect that each FIP
is willing to unconditionally cooperate with the other ones
regardless the benefits it receives. Such a cooperation
arises indeed only if suitable benefits result from it, and
if the risks of monetary losses (caused by violations in
the QoS parameters negotiated with its clients) are kept
within acceptable limits.

In this paper, we devise a decision algorithm that
provides a set of FIPs with suitable means to decide
whether to cooperate with other FIPs, and if so with whom
to cooperate. Our algorithm is based on game-theoretic
techniques, where the process of establishing cooperation



among the FIPs is modeled as a cooperative game with
transferable utility [11] (in particular, as a hedonic game
[12], whereby each FIP bases its decision on its own
preferences).

More specifically, we propose a game-theoretic frame-
work to study the problem of forming stable coalitions
among FIPs, and a mathematical optimization model to
allocate IoT services to a set of resources, in order to
improve profits and, at the same time, to meet service
QoS for FIPs inside the same coalition. We achieve our
goal by devising a coalition formation algorithm to form
stable coalitions that allows each FIP to autonomously and
selfishly decide whether to leave the current coalition to
join a different one or not on the basis of the net profit it
receives for doing so.

In our approach, each FIP pays for the energy con-
sumed to serve each service, whether it belongs to it or to
another FIP, but receives a payoff (computed as discussed
later) for doing so. We prove that the proposed algorithm
converges to a Nash-stable set of disjoint coalitions [13],
whereby no FIP can benefit to leave the current coalition
to join a different one.

Our solution adopts an asynchronous approach in
which each FIP autonomously makes its own decisions,
and where the best solution arises without the need to
synchronize them or to resort to a trusted third party. As
a consequence, the solution we propose can be readily
implemented in a distributed fashion.

To demonstrate the effectiveness of the algorithm we
propose, we carry out a thorough experimental evaluation
considering real-world traffic traces, and a set of realistic
scenarios. The results we obtain indicate that our algo-
rithm allows indeed a population of FIPs to significantly
improve their profits thanks to the combination of energy
reduction and satisfaction of QoS requirements.

The contributions of this paper can be summarized as
follows:

• we consider the problem of improving the profit
of a set of FIPs that share the same co-location
facility;

• we model the problem as a cooperative game with
transferable utility;

• we devise a distributed algorithm enabling oper-
ators to find the coalition improving their profits
under stability concerns.

The rest of this paper is organized as follows. Section 2
describes the details of the system model, and it presents
the problem statement. Section 3 introduces the coalition
formation game and we evaluate the system in Section 4
using simulations. Finally, we end the paper with related
work (in Section 5) and conclusions (in Section 6).

2. System Model and Problem Statement

2.1. System Model

We consider a system, whose architecture is schemat-
ically depicted in Figure 1, where a large population of
geo-distributed IoT devices, located in a set of n distinct
geographic areas, generates very large amounts of data
that require real-time or near-real-time processing. These

devices may be either stationary (e.g., smart homes, IP
cameras, smart traffic lights, etc.) or mobile (e.g., smart-
phones, tablets, connected cars, etc.).

Without loss of generality, we assume that each area
j is covered by a single co-location facility, each one
hosting a set of fog nodes that run a set of applications
in charge of processing the data generated by the devices.
These applications are encapsulated into a set of Virtual
Machines (VMs), hosted on the fog nodes. In the rest of
this section, we describe the characteristics of the three
main components of the system, namely the fog nodes,
the applications, and the VMs.

2.1.1. The Fog Nodes. We assume that the various co-
location facilities host a set of resource-rich fog nodes [14]
(e.g., Cloudlets [15] or Micro Data Centers [16]) be-
longing to a population of m FIPs. For instance, the co-
location facility of area j in Figure 1 hosts fog nodes
belonging to FIPs x and y.

Each fog node z is characterized by its CPU capacity
cz , which is measured by means of a suitable benchmark
(e.g., GeekBench [17]), and by its power consumption
wz(u), which is computed as [18]:

wz(u) = Wmin
z + u ·

(
Wmax
z −Wmin

z

)
(1)

where u ∈ [0, 1] is the CPU utilization of the fog node,
and Wmin

z and Wmax
z denote its power consumption (in

Watts) when its CPU is in the idle state and when it is
fully utilized, respectively. 1

We assume all the fog nodes of the same FIP i located
in a given area j are identical among them, i.e. they
are characterized by the same CPU capacity and energy
consumption.

2.1.2. The Applications. The data generated by the IoT
devices are processed by a set of K distributed appli-
cations S = {S1, S2, . . . , SK}. Each application Si is
associated with its owner, and is present with one or more
instances in the various areas.

The instances of Si located in a given area j process
all the data generated for Si by the devices located in
that area, with the possible exception of data that are
forwarded to a cloud data center by the corresponding
Smart Gateway (which is in charge of deciding whether
data must be uploaded to the cloud or not [19]). We
assume that the load requests arriving to Si in a given
area are fairly split among the instances of Si allocated
in that area.

We assume that the load of data processing requests
submitted to application Si in any area j varies over time,
and is described by its load profile curve l(i, j) expressing,
as function of time, the rate at which requests are sub-
mitted. The load profile curve can be indeed accurately
built by estimating both the request rates generated by
stationary devices and mobile users, and by aggregating
them into a single measure.

Each application Si is characterized by its QoS target,
which is quantified by the maximum value Qi that the
average request processing time Ti can take (in other
words, it must be ensured that Ti ≤ Qi).

1. This model, albeit simple, has been shown to provide accurate
estimates of power consumption for different host types when running
several benchmarks representative of real-world applications [18].



Figure 1. System architecture.

Each application Si is associated with its reference
FIP Ref (Si), i.e., the FIP that hosts the VMs running the
instances of Si. We assume that a given FIP k can be
the reference FIP of several distinct applications, that we
denote as App(k).

An application Si and the corresponding Ref (Si) are
bound by a contractual obligation stating that the owner
of Si will pay to Ref (Si) a certain amount of money
per each unit of time, computed according to an agreed-
upon revenue rate Rk,i. In addition, Ref (Si) will pay the
owner of Si an amount of money per each unit of time
during which the QoS target of Si is not met, computed
according to the agreed-upon penalty rate Lk,i.

2.1.3. The Virtual Machines. The instances of any ap-
plication Sj are embedded into a set of identical VMs,
each one hosting a single instance, that are instantiated
from a common master VM, denoted as VM j .

VM j is characterized by the amount of time τj it takes
to process a single request that, without loss of generality,
it is assumed to be determined only by the amount of
physical CPU capacity allocated to that VM, 2 and that
this amount is the same for all its instances, and remains
constant for all their lifetimes.

To ensure that all the instances of VM j exhibit the
same value of τj , we assume that each one of them
receives, on the fog node k on which it runs, a suitable
amount of CPU capacity Uk,j determined as follows.

First, a profiling experiment is carried out by running
VM j on a reference fog node x (e.g., using the method-
ology described in [21], [22], [23]) in which the amount
of physical capacity allocated to VM j is progressively
increased until its measured processing time reaches the
value τj , and the corresponding value Ux,j of allocated
physical CPU capacity is recorded. Then, the amount of
physical capacity Uk,j that must be allocates to VM j on

2. The extension to multiple types of physical resources (e.g., RAM
and storage) and to multiple classes of VMs, each one with different
physical resource requirements, is straightforward (e.g., see [20]).

fog node k 6= x to obtain a response time τj is computed
as [20]:

Uk,j = Ux,j
cx
ck

(2)

where ck and cx denote the physical CPU capacity of fog
node k and x, respectively, that are measured as discussed
in Section 2.1.1.

For instance, if Ux,j = 0.6, cx = 1 and ck = 2,
then Uk,j = 0.6 · 0.5 = 0.3 (i.e., if the physical CPU
capacity doubles, τi is obtained by allocating half of the
CPU capacity with respect to the reference fog node).

In order to meet the QoS target of Si in area j, it
is necessary to suitably choose the number Ni,j of VMs
allocated on fog nodes located in that area so as to ensure
that Ti ≤ Qi. This value, however, depends on the value
of the load intensity λi,j(t), which is not constant but
varies, as already discussed, according to the load profile
l(i, j).

Similarly what has been done for cellular networks
in [24] to determine λi,j(t), we proceed as follows: we
discretize l(i, j) by splitting the time axis into uniform
disjoint sub-intervals [r, r + ∆t) of length ∆t time units.
Then, the value λi,j(s) for any sub-interval s is approxi-
mated as a constant value set to the peak load in that sub-
interval. Once the values of λi,j(s) have been computed
as above, they are fed as input into a queuing model
representing the set of VMs of Si allocated in area j. The
solution of this model yields the minimum number Ni,j(s)
of VMs in sub-interval s that results in the satisfaction of
the inequality Ti ≤ Qi.

In particular, the set of VMs associated to application
Si in area j is modeled as an M/M/c-FCFS queuing
station [25] with c = Ni,j(s), given that the service times
of all the instances of VM i are identical and the incoming
stream of processing requests is fairly distributed among
them.

For these queuing systems, it can be shown that in any
time interval – and in particular in each sub-interval s –
the average response time Ti is given by Eq. (3) (where,



for readability purposes, we drop the dependence on s):

Ti =
n̄

λi,j
=

C

µNi,j − λi,j
+

1

µ
(3)

where:

• µ = 1
τi

is the request service rate;
• n̄ = ρ

1−ρC + ρNi,j is the average number of
requests in the station, both in the queue and
receiving service, and ρ =

λi,j

µNi,j
is the offered

load to the station;
• C = [1 + (1− ρ)(

Ni,j !

(ρNi,j)Ni,j
)
∑Ni,j−1

k=0
(Ni,jρ)

k

k! ]−1

is the probability of a request to be enqueued
before being served.

From Eq. (3) it follows that, in order to have Ti ≤ Qi,
Ni,j must satisfy the following inequality:

Ni,j ≥
C

Qi − 1
µ

+
λi,j
µ

(4)

Furthermore, to ensure the stability of the system, we must
have that:

Ni,j >
λi,j
µ

(5)

2.2. Problem Statement

Let us now describe the problem that is faced by a FIP
i that has to allocate, for each application Sk ∈ App(i),
the corresponding set of VMs on its fog nodes located in
area j (denoted as FN(i, j). Without loss of generality,
we focus on a single area, given that FIPs allocate their
respective VMs submitted in a given area independently
from those submitted to other areas. The extension to other
areas is thus straightforward.

FIP i aims at getting a net profit (i.e., the difference
between its revenues and costs) as high as possible, given
the request for the allocation of all the applications Sk ∈
App(i).

The net profit rate Pi,j (i.e., the profit it makes per
unit of time) is computed as the following difference:

Pi,j =
∑

Sk∈App(i)

Ri,knk,j −
( ∑
f∈FN (i,j)

wf (uf )Ei,j+

∑
Sk∈App(i)

1[0,Nk,j)(nk,j)Li,k

)
(6)

where nk,j ≤ Nk,j is the number of VMs for Sk that are
actually allocated (see below), Ei,j is the energy cost for
FIP i in area j (expressed as a cost rate per unit of time),
uf is the overall physical capacity of fog node FN(i, j)
allocated to the VMs it hosts, and 1Ω(x) is the indicator
function which has value 1 if x ∈ Ω and 0 otherwise.

(6) has the following meaning:

• the first term of the difference is the sum of the
revenue rates Ri,k that FIP i charges (per unit of
time) to each application Sk for hosting nk,j of
its VMs;

• the second term of the difference represents the
costs that FIP i incurs (per unit of time) to run
the above VMs. This cost, in turn, is given by

the sum of two costs, namely (1) the energy cost
rates resulting from the execution of overall CPU
capacity allocated to all the VMs it hosts (see
Eq. 1), and (2) the possible monetary penalty rates
Li,k that FIP i incurs when the QoS of some
application Sk ∈ App(i) is not met (i.e., when
nk,j < Nk,j).

Maximizing the net profit rate is a challenging task
which involves solving an optimization problem that takes
into account the current workload, the electricity price and
the application penalties. In Section 3.2, we provide more
details about the solution to this optimization problem.

Intuitively, when the number of VMs to allocate on a
fog node FN(i, j) is so small that the resulting net profit
is negative, FIP i must decide whether it is more profitable
to not allocate any VM on FN(i, j) (thus opting to pay
the monetary penalties for violating the QoS of the related
applications), or it is instead better to allocate the VMs
anyways to avoid paying high application penalties. Also,
when the number of VMs is so large that it needs more
than one fog node to allocate them, FIP i must decide
whether it is more profitable to allocate all of them, or
it is instead better to allocate only the ones that leads to
a positive profit (thus paying the monetary penalties for
those applications whose QoS is not met).

In this paper, we show that a way to improve the net
profit of a FIP is through cooperation, meaning that two
or more FIPs in the same area of interest join to form a
coalition where they share their workloads and their fog
nodes to serve them.

Specifically, with cooperation, FIP i can try to reduce
her/his energy consumption costs by allocating (some of)
its VMs to the fog nodes of other FIPs, so that its fog
nodes can be turned off. Also, FIP i can try to increase its
revenues either by hosting VMs from other FIPs (so that
it can better amortize its energy consumption costs) or by
relying on fog nodes of other FIPs to allocate VMs that,
if working alone, it could not host (thus incurring into
monetary penalties for violating the QoS of the related
applications).

Clearly, FIPs are willing to cooperate with each other
only if they receive suitable incentives to do so that make
cooperation at least as profitable as working alone. The
lack of these suitable incentives leads to the so called
unstable coalitions, that is to coalitions where a partici-
pating FIP prefers either to leave her/his current coalition
to move to a more profitable one or to work alone.

In Section 3, we better formalize this cooperation
process in the framework of the game theory and we
propose a decentralized algorithm to form stable coalitions
among a group of FIPs, so that no FIP in the same
coalition has incentive to leave her/his current coalition
to join a better one.

3. The coalition formation game

We assume that the agents (also called players) may
join/leave a coalition without any permission require-
ments, that is, a player is always accepted by a coalition
to which it is willing to join, and it can leave a coalition
without any permission. One way to describe such a
process is to model it as a coalition formation game.



In particular, in this paper we use a type of coalition
formation games, known as hedonic coalition formation
games (also called hedonic games) [13].

An hedonic game is a game where: i) the gain of any
player depends solely on the members of the coalition to
which the player belongs, and ii) the coalitions arise as a
result of the preferences of the players over their possible
set of coalitions. In other words, in this type of coalition
games every player is only interested in which players are
in its coalition and does not take into account how players
in other coalitions are grouped together.

The hedonic games are usually analyzed in terms
of the stability of coalition structures: the focus lies on
finding the conditions for the existence of stable outcomes
(i.e., a coalition or a set of coalitions). An outcome (e.g.,
a set of coalitions) is said to be stable if no player (or
possibly no coalition of players) can deviate from the
outcome so as to reach a subjectively better outcome.
Several notions of stability have been defined in literature
some of which allows to guarantee stability against single
player moves, i.e. Nash stability, while other and also
allows group movements, i.e.the core (see [12], [13] for
details).

Lack of stability causes possible monetary losses for
the following reasons: i) a player (in our case a FP) that
has joined a coalition with the expectation of receiving
users from other players is penalized if, after switching
on additional resources to accommodate these users, these
other players leave the coalition; ii) a player that has
accepted more users than those that it can serve without
incurring into a penalty, expecting to use the resources of
other players to accommodate them, is penalized if these
players leave the coalition.

A coalition C ⊆ N represents an agreement among
the players in C to act as a single entity (i.e., they must
agree to share their own resources and users among them).
At any given time, the set of players is partitioned into
a coalition partition Π, that we define as the set Π =
{C1, C2, . . . , Cl, }. That is, for k = 1, . . . , l, each Ck ⊂
N is a disjoint coalition such that

⋃l
k=1 Ck = N and

Cj ∩ Ck = ∅ for j 6= k. Given a coalition partition Π,
for any player i ∈ N , we denote by CΠ(i) the coalition
Ck ∈ Π such that i ∈ Ck.

An hedonic coalition formation game is a pair (N ,�
), where N is the set of players, and �i a preference
profile that specifies, for every player i ∈ N , a reflexive,
complete, and transitive binary relation �i on Ni (set of
all coalitions that include player i). The binary relation
�i is called preference relation.

In its partition form, a coalition game is defined on
the set N by associating a utility value u(C|Π) to each
subset of any partition Π of N . For hedonic games the
utility value of a coalition C is independent of the other
coalitions, that is, and therefore, u(C|Π) = u(C). In
particular, we define the coalition value u(C) as the net
profit rate of coalition C that we compute as the solution
of the profit maximization problem that is presented in
Section 3.2.

To set up the coalition formation process, we need
to specify the preference relation so that each player can
order and compare all the possible coalitions it belongs to,
and hence it can build preferences over them. This can be
done by using a preference function πi(C) that describes

the preference of player i (with i ∈ N ) for any coalition
C ∈ 2N . Formally the preference function for player i can
be defined as πi : 2N −→ R. In this manner we can say
that a player i prefers the coalition C to T iff,

πi(C) ≥ πi(T )⇐⇒ C �i T . (7)

We assume that the preference relation is chosen to be
equal to the utility allocated to the player in a coalition.
In other words, we have that πi(C) = φi(C), where φi(C)
is the utility received by player i in coalition C.

An allocation is said to be efficient if for any coalition
C ∈ Π, the sum of the individual utilities allocated to the
coalition participants is equal to the coalition utility, that
is ∑

i∈C

φi(C) = u(C). (8)

The key point in hedonic games concerns the stability
of this kind of games. The literature on hedonic games
leads to different definition of stability concepts (see [13]
for details). In this paper we focus the attention on the
Nash-stability because we are interested in those games
where the players only perform individual moves. In other
words, we assume that moves of groups of players are
not allowed. A partition Π is said to be Nash-stable if no
player can benefit from moving from his coalition CΠ(i)
to another existing coalition Ck, that is,

∀i, k : i ∈ CΠ(i) �i Ck ∪ {i},where Ck ∈ Π ∪ {∅}. (9)

Note that, as pointed out in [13], the Nash-stability is a
noncooperative notion of stability in the sense that players
do not need permission to leave/join a coalition.

Identifying conditions (sufficient and/or necessary) for
the existence of stability in hedonic games has been active
area of research. In particular, [13] shows that symmetric
additively separable preferences guarantee the existence
of a Nash-stable partition. In this class of hedonic game
each player, in order to express its preference over the set
of possible coalitions, assigns a value to any other player.
The value of a coalition, therefore, is simply the sum of
the values he assigns to the members of his coalition.
A player is preferences are additively separable if there
exists a function v : N ×N −→ R such that ∀C1, C2 such
that i ∈ C1 and i ∈ C2,

C1 �i C2 ⇐⇒
∑
j∈C1

v(i, j) ≥
∑
j∈C2

v(i, j), (10)

where v(i, i) = 0. Additively separable preferences are
symmetric if v(i, j) = v(j, i), for every i, j ∈ N .

In [26] a variation of stability that accounts for the
Nash-stability (as defined by Equation (9)), and for the
notion of efficiency. In that paper the set of efficient
allocations of a Nash-stable coalition partition has been
called Nash-stable core.3

In [26] the Nash-stability has been rephrased to an
optimization problem aiming at deriving the functions
v(·, ·) (for any player i ∈ N ) satisfying the property
defined by Equation (10). In other words, if it is possible to
derive the functions v(·, ·) satisfying the property defined

3. Although, the rationale behind the name ’Nash-stable core’ reminds
to the idea of finding all the efficient allocation methods in a Nash-stable
coalition, the word core might be confuse with the completely different
concept of core stability.



by Equation (10) then the preference relations �i satisfy
the satisfying symmetric additively separable property,
and hence there exists a Nash-stable coalition partition.

Since symmetric additively separable is a strong con-
dition, it is not surprising that the recasting of the sta-
bility problem into an optimization problem does not
provide any dramatic improvement to the class of hedonic
games satisfying the Nash-stability condition. However,
the rephrasing has been used to go beyond the limits of
the symmetric additively separable property. In [26] the
optimization problem has been relaxed and this allows
the definition of a Nash-stability condition that overcomes
all the limitations of the symmetric additively separable
property. The price to pay for the relaxed version of the
Nash-stability is the efficiency. That is, the method does
not guarantee that coalition’s utility is totally allocated.

3.1. The Coalition Formation Algorithm

In this section, we now develop a decentralized al-
gorithm to reach a Nash-stable partition. We use the
results presented in [26] where the problem of finding a
Nash-stable partition in a hedonic coalition formation has
been formulated as a non-cooperative game. According
to the discussion presented in [26] the hedonic coalition
formation problem can be seen as a weakly acyclic game
[27], [28]. That is, the game evolves in turns and players
are allowed to choose their strategies once in each turn. In
[29] is showed that such games always converge to a pure-
strategy Nash equilibrium, meaning that at some point the
Nash stable equilibrium will be played. Once such strategy
profile has been played it will be played forever. However,
randomizing players’ strategies is one possible solution
to weekly acyclic games; a more suitable approach for
an algorithmic solution is described in [27]. Here players
are forced to make their decision subsequently, selected
in each turn according to a specific order. Specifically by
using a random scheduler, the sequence of players choices
( each of which represents the player’s best response )
reaches an equilibrium if there exists at least one.

To describe the decentralized coalition forma-
tion algorithm we denote a scheduler by Σ =
{s(1),s(2), . . . ,s(N)}. A scheduler is a random permu-
tation of players’ indices and, in particular, the sched-
uler of l-th round denoted by s(l) is a tuple s(l) =
{s1(l), s2(l), . . . , sN (l)}, where si(l) identifies the i-th
player selected to play in the round l. Hence, each round
includes N steps that correspond to single players’ deci-
sions. It is important to notice that in this game, the set
of actions available to each player is equal to the number
of coalitions in the game in that moment. For example,
in the case of all players apart and considering singletons
as coalitions a player may join any other agent or not to
move.

A strategy tuple in step s is denoted as σ(s) =

{σ(s)
1 , σ

(s)
2 , . . . , σ

(s)
N }, where σ(s)

i is the strategy of player
i in step s. The strategy tuples σ(s) and σ(s−1) differ in at
most one position. That is, the position corresponding to
the player that takes its turn in step s. On the other hand
σ(s) and σ(s−1) are identical if the player that takes its
turn in step s does not change its previous strategy. We
denote by Π

(s)
l the partition in step s of the l-th round,

and by Πl the partition obtained at the end of the l-th
round.

Furthermore, we denote by C(s)
i = {j : σ

(s)
j =

σ
(s)
i ,∀j ∈ N} the set of players that share the same

strategy with player i. In this manner we have that pref-
erence relation of player i, denoted by πi(C), verifies the
following relation

πi(C(s)
i ) > πi(C(s−1)

i )⇐⇒ C(s)
i �i C(s−1)

i .

It is easy to verify that a Nash-stable partition is reached,
at a given l + 1-th round, when Πl = Πl+1.
A three players example (cont’d). The algorithm starts
from the Π0 = {(1), (2), (3)}, that is the partition where
each player is alone. This corresponds to the strategy tuple
{s1,s2,s3} (each player chooses a different strategy).
Table 1 shows two possible evolutions of the example in
the previous section.

Round / Schedule Step Player Strategy tuple Partition
0 {s1,s2,s3} {(1), (2), (3)}

1 - (2,1,3)
1 2 {s1,s1,2,s3} {(1, 2), 3)}
2 1 {s1,2,s1,2,s3}
3 3 {s1,2,s1,2,s3}

2 - (1,3,2)
1 1 {s1,2,s1,2,s3} {(1, 2), 3}
2 3 {s1,2,s1,2,s3}
3 2 {s1,2,s1,2,s3}

0 {s1,s2,s3} {(1), (2), (3)}

1 - (3,1,2)
1 3 {s1,s2,s2,3} {1, (2, 3)}
2 1 {s1,2,3,s2,s2,3} {(1, 2, 3)}
3 2 {s1,2,3,s1,2,3,s2,3}

2 - (2,3,1) 1 2 {s1,2,3,s1,2,3,s2,3} {(1, 2), 3}
2 3 {S1,2,3, S1,2,3, S1,2,3}
3 1 {s1,2,3,s1,2,3,s1,2,3}

TABLE 1. TWO SAMPLE EXECUTIONS OF THE ALGORITHM

In the first example reported in Table 1, the extracted
scheduling for the first round is (2, 1, 3). Hence, according
to its preference profile, Player 2 forms a coalition with
Player 1 choosing strategy s1,2. Then is Player 1 turn,
and choosing to coalesce with Player 2 is its best response
strategy. Therefore after the second step in turn one the
only coalition formed is {1, 2} and player 3 apart. In turn
3 Player 3 has no any available options other than staying
alone, given that join the grand coalition does not improve
its payoff. After that, the first run is finished and a new
scheduling for the upcoming round is extracted. However,
from the current partition structure does not matter the
order in which players are scheduled. That is, strategy
profile {s1,2,s1,2,s3} is a Nash equilibrium and players
have no incentive to deviate from that.

Again, in the second example, the game begins with
all players apart and the extracted scheduler is (1, 3, 2).
Player 3 begins and coalesces with Player 2. Player 1
is the next to play, and the only move available to him
better than playing alone is to join the grand coalition.
Therefore, at this point of the game, the formed coalition
gathers all the players. For Player 2, the coalition {1, 2, 3}
is the most preferable and it is happy to be part of it.
After Player 2 moves the round is over and the second
round begins with scheduling (2, 3, 1). Now is Player 1
turn and it faces the same choice as before; since at the
previous step Player 1 chose the best it could and now the
situation is unchanged, it will choose again to stay in the
grand coalition. Eventually is Player 3 turn which does
not get any benefit from leaving the grand coalition an
so it will remain there. Given that there is no any player



who benefits from unilaterally deviate from the strategy
profile {s1,2,3,s1,2,3,s1,2,3} a Nash-stable equilibrium is
reached.

3.2. Computation of the Optimal Coalition Allo-
cation Profit

The coalition formation process described in the above
sections requires the computation of the coalition net profit
rate u(C) for any coalition C of FIPs that may form.

As discussed in Section 2.2, this computation involves
solving an optimization problem that, given a geographic
area h and a coalition C of FIPs located in this area, seeks
to find the optimal allocation of the set V of VMs where
to run instances of the applications A =

⋃
i∈C App(i)

to host in this area onto the set F =
⋃
i∈C FN (i, h) of

fog nodes, so as to maximize the overall net profit rate of
coalition C. The set V is given by the union of the Nj,h(t)
VMs required by each application j ∈ A to meet its target
QoS in the discretization interval t.

To this purpose, we define a Mixed Integer Linear
Program (MILP) to model the problem of allocating a set
V of VMs onto a set F of fog nodes so that the overall
net profit rate of the coalition C is maximized.

The resulting optimization model is shown in Figure 2,
where we use the same notation defined in Section 2 and
where we denote as p(·) the function p : F → C which
maps, in the given area of interest h, a fog node to its
FIP, and as s(·) the function s : V → A which maps a
VM to the (instance of) application it runs. Also, to ease
readability, we simplify the model by dropping from it
the dependence from the discretization interval t (e.g., we
denote as Nj,h, instead of Nj,h(t), the required number of
VMs to allocate in order to meet the QoS of application
j).

In the optimization model, we define the following
decision variables:

• xi: a binary decision variable which is equal to 1
if fog node i is powered on, and 0 otherwise;

• yi,j : a binary decision variable which is equal
to 1 if VM j is allocated on fog node i, and 0
otherwise;

• ui: a non-negative real decision variable which
represents the total fraction of CPU capacity of
fog node i that has been allocated to the VMs it
hosts;

• nk: a non-negative integer decision variable which
denotes the number of VMs allocated to run in-
stances of application k.

The objective function of the optimization model rep-
resents the overall net profit rate earned by the coalition
C of FIPs, which is defined as the difference between
the revenues obtained by the allocation of VMs, and the
costs due both to the electricity power absorbed by the
powered-on fog nodes and to QoS violations (if any).

The maximization of this objective function is bound
to the following constraints:

• Eq. (11b) assures that no VM is allocated on a fog
node that will be powered off;

• Eq. (11c) states that each VM is hosted by no more
than one fog node;

maximize u(C) =
∑
k∈A

RRef (k),knk,h

−
[∑
i∈F

(
xiW

min
i + (Wmax

i −Wmin
i )ui

)
Ep(i),h

+
∑
k∈A

(
nk,h < Nk,h

)
LRef (k),k

]
(11a)

subject to∑
j∈V

yi,j ≤ |V|xi, ∀i ∈ F , (11b)∑
i∈F

yi,j ≤ 1, ∀j ∈ V, (11c)

ui =
∑
j∈V

yi,jUi,j , ∀i ∈ F , (11d)

ui ≤ xi, ∀i ∈ F , (11e)

nk =
∑
i∈F

∑
j∈V,

s(j)=k

yi,j , ∀k ∈ S, (11f)

nk ≤ Nk,h, ∀k ∈ A, (11g)
xi ∈

{
0, 1
}
, ∀i ∈ F , (11h)

yi,j ∈
{
0, 1
}
, ∀i ∈ F , j ∈ V, (11i)

ui ∈ R∗, ∀i ∈ F , (11j)
nk ∈ N, ∀k ∈ A. (11k)

Figure 2. The optimization model for the maximization of the coalition
net profit rate.

• Eq. (11d) defines the value of the variable ui as
the sum of the CPU capacity requirements of the
VMs allocated on fog node i;

• Eq. (11e) ensures that the allocated CPU capacity
of a powered-on fog node is not exceeded;

• Eq. (11f) defines the value of the variable nk as the
number of allocated VMs where to run instances
of application k;

• Eq. (11g) ensures that for each application no
more VMs are allocated than needed;

• Eqs. 11h–11k define the domain of decision vari-
ables xi, yi,j , ui and nk, , respectively.

4. Experimental Evaluation

To assess the effectiveness of the proposed coalition
formation algorithm in increasing the net profits for a
population of FIPs, we perform an experimental evaluation
in which we run our algorithm for various scenarios. In
these scenarios, we vary the workload of each application
and we assess the impact of it on the performance of the
proposed algorithm.

The results we obtain from these experiments show the
ability of our algorithm to form coalitions of FIPs that are
stable and profitable in all the scenarios we consider.

In the rest of this section, we first provide the settings
we use in our experimental scenarios (Section 4.1), and
then we show the results we obtain by applying our
proposed algorithm to these scenarios (Section 4.2).



TABLE 2. PARAMETERS USED IN THE EXPERIMENTAL SCENARIOS.
SUBSCRIPTS i AND j TAKE VALUES ON THE SET {1, 2, 3}.

Parameter Value

|App(i)| Number of applications associated to FIP i 1
Ei,j Electricity price for FIP i in area j 0.0001 $/Wh

|FN (i, j)| Number of fog nodes for FIP i in area j 3
Li,j Penalty rate for FIP i and application j 0.022 $/h
m Number of FIPs 3
n Number of applications 3
Qi Max request processing time for application i 0.7 sec
Ri,j Revenue rate for FIP i and application j 0.0022 $/h
Ui,j CPU demand for any VM j and fog node i 0.05
Wmax

j Max power consumption of fog node j 200 W
Wmin

j Idle power consumption of fog node j 100 W
τj Request processing time of any VM j 0.5 sec

4.1. Experimental Setup

In this section, we present the settings of the scenarios
used in our experimental evaluation, which are summa-
rized in Table 2 and Table 3.

In a given geographic area h, we consider m = 3
identical FIPs, each of which is in charge of running
instances of a different application (i.e., App(i) = {Si},
for i = 1, . . . , 3). The physical infrastructure of each FIP
consists of 3 identical fog nodes whose idle and maximum
power consumptions Wmin

j and Wmax
j are set to 100 W

and 200 W, respectively (for j = 1, . . . , 3). This number of
fog nodes ensures that, in the scenarios we consider, each
FIP, when working in cooperation, is able to accept on
her/his fog nodes all the workload of the other FIPs that
are member of the same coalition. For each application
j, its master VM VM j is characterized by a request
processing time τj of 0.5 sec and, to achieve this value,
it requires a physical CPU capacity Ui,j of 0.05 for every
fog node i (i.e., each VM of application j consumes 5%
of the physical CPU capacity of each fog node i).

We assume that the electricity price Ei,h charged
hourly to each FIP i is the same for all FIPs and we set it
to 0.0001 $/Wh [30]. Also, we set the revenue rate Ri,j
that each FIP i earns for hosting a VM j to 0.0022 $/hour.
We derived this value by assuming that each FIP reaches
the break-even point when the load of one of her/his fog
node (i.e., the total CPU capacity of the fog node allocated
to VMs) is 30%, which is a value – that depends on the
specific parameters we set for our experimental evaluation
– that we have suitably chosen to study the formation of
coalitions with different structures as function of the load.
On the one hand, this value is sufficiently large that each
FIP is willing to cooperate with all the other FIPs at low
loads (by hosting the VMs of all FIPs on a single fog
node), but on the other hand, it is sufficiently small that
an FIP is willing to join to a coalition only with some other
FIP at medium loads or to not join at all at high loads (to
avoid paying energy consumption costs that (s)he cannot
amortize).

Finally, for each application j, we set its QoS param-
eter Qj to 0.7 sec and the related monetary penalty rate
Li,j to 0.022 $/hour for each FIP i, which is 10 times the
revenue rate Ri,j . We choose this value for the penalty
rate so that an FIP always prefer allocating VMs for the
applications (s)he hosts than refuse them for reducing
energy consumption costs.

TABLE 3. THE EXPERIMENTAL SCENARIOS CORRESPONDING TO
DIFFERENT LOAD LEVELS. SUBSCRIPT k TAKES VALUES ON THE SET

{1, 2, 3}.

Scenario λk,h Nk,h αk

Scenario #1 2.1 2 0.1
Scenario #2 5.7 4 0.2
Scenario #3 9.4 6 0.3
Scenario #4 13.3 8 0.4
Scenario #5 17.2 10 0.5
Scenario #6 21.1 12 0.6
Scenario #7 25.0 14 0.7
Scenario #8 28.9 16 0.8
Scenario #9 32.8 18 0.9

Figure 3. Comparison between the case where the providers work
independently with the coalition formation algorithm.

Given the above settings, we study the impact of the
workload on the coalition formation process by varying, in
a controlled way (i.e., by considering each discretization
interval of the traffic load curve separately), the workload
intensity of each application so that the induced load αi,
experienced by each FIP i (when (s)he works alone) on
the fog node where the Nh,i VMs have been allocated,
ranges from 0.1 (i.e., only 10% of the CPU capacity of
the fog node is allocated to VMs) to 0.9 (i.e., the total
allocated CPU capacity on the fog node is 90%), with
increments of 10%. The resulting scenarios are reported
in Table 3, where the first column gives the scenario name,
the second column is the load level of each application k
stated in terms of its workload intensity λk,h in the area of
interest h, the third column contains the minimum number
Nk,h of VMs required to satisfy the QoS parameter Qk
of application Sk in face of the workload λk,h, and the
last column reports the load αi induced on a fog node of
FIP i by λk,h.

To run our experiments, we develop an ad hoc simu-
lator in C++ where we use the IBM ILOG CPLEX solver
12.7.1 [31] for solving the optimization problem discussed
in Section 3.2.

4.2. Experimental Results

Figure 3 summarizes the behaviour of the coalition
formation algorithm for different values of the load (or
of the request arrival rates). In particular, we compare the
social welfare values (i.e., the sum of the provider’s utility)
in case that the providers work independently (symbol



∗ in the figure) vs the case where the providers set up
coalition among them if this increases their profits (symbol
� in the figure). Despite the discrete granularity we can
identify three regions in the figure that correspond to
different coalition formation algorithm outcomes. Region
1 characterizes the low load values. In these cases the
coalition formation algorithm yields the grand coalition,
and the coalition always increases social welfare.

This set of experiments allows to point out that the
cooperation brings greater benefits in case of low loads.
On the other hands, in case of high loads the advantages
decrease as load increases. This behavior is due to the
reduction of waste of resources that occurs in case of
under utilized FIPs.

Despite of its simplicity, the set of experiments sum-
marized by Figure 3, illustrates how to use the distributed
coalition formation algorithm. The fog providers, based
on its own traffic profile estimates, can agree the timing
and the activation frequency of the distributed algorithm.
The goal should be an appropriate trade-off between the
benefits due to the algorithm (e.g., obtaining coalitions
that allow the reduction of costs) and the overhead derived
from too frequent and not very effective activations.

5. Related Works

The game theoretical approach to coalition formation
has been used in many other scenarios. In the field of
cloud computing there is a large body of research, see,
for instance [20], [32], [33], [34]. Similar approaches
have been used to study cooperative behavior in cellular
networks [24], [35], [36]. Coalition formation frameworks
for femtocell networks has been used for different pur-
poses such as mitigating the interference, and resource
and power allocation, examples of such proposals can be
found in [37], [38], [39].

Compared to these works, in our contribution we
consider a much different system architecture, which is
characterized by different properties and, hence, requires
a different solution.

Approaches based on game theory have also been used
in the field of fog computing (or edge computing/femto-
cloud). In these scenarios the emphasis is on optimizing
resources [40], [41], optimization of latency and/or the
energy consumption [42], [43], offloading strategies [44],
[45], and approaches tailored for macro/micro cellular
network scenarios [46], [47].

In this paper we target a goal which is different from
those addressed by the above papers. In particular, we
focus on the problem of increasing the profit of different
FIPs in the presence of applications characterized by
different QoS targets and time-varying workloads.

6. Conclusions

In this paper we have dealt with the problem of making
a set of FIPs increase their profits when allocating their
resources to process the data generated by IoT applications
that need to meet specific QoS targets in face of time-
varying workloads.

To this end, we proposed a cooperative game-theoretic
framework to study the federation formation problem,

and a mathematical optimization model to allocate IoT
applications of the resources of a FIP in order to increase
its net profit.

In the proposed scheme, we model the cooperation
among FIPs as a coalition game with transferable utility
and we devise a distributed algorithm for coalition forma-
tion. With the proposed algorithm, each FIP individually
decides whether to leave the current coalition to join
a different one according to his preference, meanwhile
improving the perceived net profit. Furthermore, we show
that the proposed algorithm converges to a Nash-stable
partition which determines the resulting coalition struc-
ture. Numerical results exhibit the effectiveness of our
approach.

The future developments of this research is following
several directions. In particular, we would like to enhance
the coalition value function in order to account for pos-
sible request losses due to lack of physical resources.
Furthermore, we want to improve the game-theoretic and
optimization models in order to include costs in terms of
loss of revenues as well as other aspects like the ones
related to trustworthiness among FIPs. Finally, we want
to implement and validate the proposed algorithm on a
real testbed.
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