
DiSIT, Computer Science Institute
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Abstract. This report concerns the quantitative evaluation of Stochas-
tic Symmetric Nets (SSN) by means of a fluid approximation technique
particularly suited to analyse systems with a huge state space. In par-
ticular a new efficient approach is proposed to derive the deterministic
process approximating the original stochastic process through a system of
Ordinary Differential Equations (ODE). The intrinsic symmetry of SSN
models is exploited to significantly reduce the size of the ODE system
while a symbolic calculus operating on the SSN arc functions is employed
to derive such system efficiently, avoiding the complete unfolding of the
SSN model into a Stochastic Petri Net (SPN).

Keywords: Stochastic Symmetric Nets, Ordinary Differential Equations, Sym-
metries, Symbolic analysis, Symbolic structural techniques.

1 Introduction

SSNs [7] are a colored extension of SPNs [10]: both formalisms are widely used
for modeling and analysing Discrete Event Dynamic Systems. The underlying
stochastic process, a Continuous Time Markov Chain (CTMC), can be auto-
matically generated and studied using numerical and simulative techniques or
approximated by an ODE system.

This paper extends the result described in [3] in which: (1) we identified a
class of SSNs whose underlying CTMC can be approximated by an ODE system
according to Kurtz’s theorem [8]; (2) we proposed an algorithm to generate
a reduced ODE system exploiting the SSN model symmetries. This algorithm
requires an unfolding step before generating the reduced system.

To overcome this limitation we propose a new approach based on a symbolic
calculus for SSN arc functions to generate the compact ODE system without
prior unfolding. Such calculus was introduced in [4] where a language extending
the arc expressions syntax of SSNs and some operators on the language elements
were presented and applied to SSN structural properties computation. The cal-
culus was implemented in the SNexpression tool [5]. In [6] a more comprehensive
formalization of SSN structural properties and the generalization of all opera-
tors (with some limitations on composition) to work on multisets extended the
method applicability. In this paper the ability to symbolically manipulate the
arc functions of SSNs is exploited to build the reduced set of Symbolic ODEs
(SODEs) directly. The three main contributions are: (1) the definition of the



formulae for the derivation in symbolic form of the terms to be included in each
SODE, (2) the definition of an approach to compute the cardinality of specific
language expressions representing groups of similar terms in a single ODE, that
can thus be compressed in a single term in the SODE, and (3) the definition of
a procedure to express the enabling degree of transition instances appearing in
the SODE in symbolic form. The main steps required to automatically derive
the complete set of SODE have been implemented.

This is the first approach in which the syntax of SSNs is exploited to directly
generate a compact ODE system (we refer to [12] for a general overview on PNs
and fluid approximation). Indeed, even in efficient PN tools (e.g., Snoopy [9]) the
compact representation of colored models is exploited in model construction and
for some basic analysis, but not for the deterministic simulation. In the context
of a fluid framework for PEPA, a result similar to that in [3] was presented
in [13], but the aggregation is based on exact fluid lumpability.

The paper is organized as follows: in Sec. 2 the background and the no-
tation needed to understand the new approach are introduced. In Sec. 3 the
new approach is illustrated on a case study and the main properties needed to
automatically generate the SODE are presented. In Sec. 5 we report a set of ex-
perimental results illustrating the method efficiency. Conclusions and directions
for future work are discussed in Sec. 6.

2 Background

In this section, after presenting the case study used for illustrating the new
approach, the SSN formalism is introduced and a description on how to derive
the SODE system from an SSN model is presented, recalling the results in [3].

2.1 Our case study in a nutshell

Our case study is inspired by the model presented in [11]: Botnets are networks
of compromised machines under the control of an attacker that uses those com-
promised machines for a variety of malicious/nefarious purposes.

Typically, initial infection involves a malware, called Trojan horse, which in-
stalls a malicious code into a vulnerable machine. The injected malicious code
begins its bootstrap process and attempts to join the Botnet. A machine con-
nected to the Botnet becomes a bot and can send spam (a working bot) or infect
new machines (a propagation bot). The bot is inactive most of the time to reduce
the probability to be detected and becomes active only for very short periods.
An infected machine can be recovered if an anti-malware software discovers the
virus or if the computer is physically disconnected from the network. The cor-
responding SSN model is reported in Fig. 1. In the next subsections its main
components are introduced together with the elements of the formalism.

2.2 The SSN formalism

The SSN formalism [7] adds colors to the SPN formalism, so that information
can be associated with the tokens in the net. This feature usually leads to a



more compact system representation which may be exploited during both the
construction and the solution of the model [3, 7].

An SSN is a bipartite directed graph with two types of nodes: places and
transitions. Places, graphically represented as circles, coincide with the state
variables of the system. For instance the places of the Botnet model in Fig. 1
are NoConBot, ConBot, InactiveBot and ActiveBot, corresponding to four pos-
sible phases through which a machine under attack can flow. Places contain to-
kens, whose colors are defined by the color domain cd(), expressed as Cartesian
product of color classes Ci. Color classes can be partitioned in static subclasses
{Ci,j , j = 1, . . . , k}. Colors in a class represent entities of the same nature but
only colors within the same static subclass are guaranteed to behave similarly. A
color class may be ordered and in this case a successor function denoted by ! is
defined on it, which determines a circular order on its elements. In the model of
Fig. 1 there are two color classes: Mac and Loc. The former is partitioned into
four static subclasses of cardinality one (the machine infection states): N(ormal),
I(nfected), W(orking Bot), P(ropagation Bot). The latter, representing machine
locations, is not partitioned into subclasses. The color domains of all the places
is Mac× Loc (representing pairs 〈machine infection state,location〉).

Transitions, graphically drawn as boxes, represent the system events: in our
example, the flow through attack phases and changes in the infection state of a
machine. The instances of a transition t are defined by its color domain cd(t)
defined as a list of typed variables (with types chosen among the color classes) or
as the Cartesian product of its variables types (assuming an implicit order among
its variables). The transition variables appear in the functions labeling its arcs. A
transition instance 〈t, c〉 binds each variable to a specific color of proper type. A
guard can be used to restrict the allowed instances of t: it is a logical expression
defined on cd(t), and its terms, called basic predicates allow one to (1) compare
colors assigned to variables of the same type (x = y, x 6= y); (2) test whether
a color belongs to a given static subclass (x ∈ Ci,j); (3) compare the static
subclasses of the colors assigned to two variables (d(x) = d(y), d(x) 6= d(y)).

For instance RecInitInf is a transition in the model of Fig. 1. Its color domain
is Mac×Mac× Loc (assuming variables’ order x, y, l), restricted by the guard
[x ∈ I ∧ y ∈ N] to the colors that associate variables x and y to the subset of
machines in infected and not infected state respectively.

The state of an SSN, called marking, is defined by the number of colored
tokens in each place. The initial marking of the model in Fig. 1, representing
one infected machine and 1000 not infected machines in each location, is

NoConBot(1000〈N,Loc〉) + ConBot(〈I, Loc〉). (1)
Places and transitions are connected through arcs decorated with arc functions
defining both the enabling conditions for the transition instances and the state
change caused by their firing. The function on the arc connecting place p and
transition t has domain cd(t) and codomain Bag[cd(p)], where Bag[A] is the
set of multisets built on set A, and if b ∈ Bag[A], a ∈ A, b[a] denotes the mul-
tiplicity of a in multiset b. Given a transition instance, the input and output
arc functions map the transition color into (multi)sets of colored tokens match-
ing the corresponding place color domain. Input and output arcs are denoted
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Fig. 1: SSN model for the Botnet.

I,O[p, t] : cd(t)→ Bag[cd(p)]. A transition instance 〈t, c〉 is enabled in marking
m if ∀p ∈• t, ∀c′ ∈ cd(p)I[p, t](c)[c′] ≤ m[p][c′] (•t and t• represent the set of input
and output places of t, respectively). An enabled instance may fire causing a state
change from m to m′ defined as follows: ∀p,m′[p] = m[p]− I[p, t](c) +O[p, t](c).

The arc functions are formally expressed as sums of tuples, with each tuple
element chosen from a set of predefined basic functions whose domain is the
transition color domain and whose codomain is Bag[Ci], for a given color class
Ci. The tuples may have an associated guard, expressed with the same syntax
of transition guards, allowing to include or exclude the tuple from the sum
depending on the truth value of the guard for a given transition instance. The
basic functions are: projection, denoted by a variable in the transition color
domain (e.g., x and l appearing in the arc expression 〈x, l〉); successor, denoted
!x, where x is a variable whose type is an ordered class; a constant function
returning all elements in a class (or subclass), denoted SCi

(or SCi,j
). A linear

combination of basic functions is a class function, e.g. SCi − x, where x is of
type Ci, is a class function returning all elements of class Ci except element x.

The stochastic behavior of an SSN model is characterized by the assumption
that the firing of any enabled transition occurs after a random delay sampled
from a negative exponential distribution. A function ω is associated with each
transition and defines its firing rate as follows:

ω(t, c) =

{
ri if condi(c), i = 1, . . . , n;
rn+1 otherwise

where condi is a boolean expression comprising standard predicates on the tran-
sition color instance. Hence, the firing rate ri ∈ R+ of a transition instance can
depend only on the static subclasses of the colors assigned to the transition vari-
ables and on the comparison of variables of the same type. We assume that the



conditions condi are mutually exclusive. For instance, the rate associated with
transition InitInf representing the infection propagation event is 10.0 if q = l,
otherwise 2; also BeBot, representing the start of Working or Propagation Bot
activity, has rate 20.0 if (y ∈ W ) and 2 if (y ∈ P ). The stochastic process driv-
ing the dynamics of an SSN model is a CTMC, where the states are identified
with SSN markings and the state changes correspond to the marking changes in
the model. In this context we assume that all the transitions of the SSN use an
infinite server policy, and we define the intensity of 〈t, c〉 in marking m as:

ϕ(m, t, c) = ω(t, c) min
〈pj ,c′〉:I[pj ,t](c)[c′]6=0

⌊
m[pj ][c

′]

I[pj , t](c)[c′]

⌋
where the last factor is e(m, t, c), the enabling degree of 〈t, c〉 in m.

2.3 From SSN models to ODE

In [2] a class of SPN was identified whose stochastic behavior can be approx-
imated through a deterministic process in agreement with the Kurtz’s results
in [8]: considering an SPN model whose places are all covered by P-semiflows
and whose transitions use an infinite server policy, the underlying CTMC satis-
fies the density dependent property (i.e. the intensities of the transitions can be

expressed as a function of the density of the tokens m(p)
N where N is a constant

depending on the P-semiflows and the initial marking) and it is possible to derive
a set of ODE providing a good deterministic approximation of the average num-
ber of tokens in the places when the number of interacting objects (i.e. tokens)
is large. In [3] we showed that similar results can be derived for SSN models
and we described how to automatically generate the ODE system from an SSN
model through the net unfolding: the average number of tokens in each place of
the unfolded net is approximated through the following ODE:

dxi(ν)

dν
=

|T |∑
j=1

ϕ(x(ν), tj)(O[pi, tj ]− I[pi, tj ]) (2)

where x(ν) is a vector of real numbers representing the average number of tokens
in the model places at time ν, T is the set of the net transitions, and ϕ(x(ν), tj)
is a function defining the intensity of transition tj in the state x(ν) as follows:

ϕ(x(ν), tj) = ω(tj) min
l:I[pl,tj ]6=0

xl(ν)

I[pl, tj ]
, (3)

where ω(tj) is obtained by ω(t, c) through the unfolding of 〈t, c〉 into tj .
In [3], we proposed a translation method which reduces the size of the ODE sys-
tem by automatically exploiting the model symmetries. This is achieved through
the notion of “symbolic” ODE (SODE): a compact representation for a set of
equivalent ODE, where the actual color identity is abstracted away, but the abil-
ity to distinguish different colors and to establish their static subclass is retained.
However, this method still required an initial unfolding of the model to generate
the ODE system that is automatically reduced in a second step. The goal of this
paper is instead to directly derive the SODE from the SSN.



2.4 Symbolic manipulation of SSN arc functions

In this section the definitions and notations required to explain how to derive the
set of SODE are introduced: the method is based on symbolic manipulation of
expressions of a language L (that look like SSN arc functions with a few syntac-
tical extensions) through a set of operators (difference, transpose, composition).

The elements of language L have the following syntax:∑
j

λj [g
′
j ]Tj [gj ], λj ∈ N

where Tj is a tuple of class functions while [gj ] and [g′j ] are called respectively
guard and filter. These expressions denote functions D → Bag[D′]; D and D′

are in turn defined as Cartesian products of color classes. The components in a
tuple Tj correspond one-to-one to the elements in the Cartesian product D′: they
are intersections (∩) of basic class functions from set4 BS = {v, S − v, SC , SCk

}
denoting functions D → Bag[C], where C is one of the basic color classes in
D′, v is a variable of type C, and Ck is a static subclass of C. The functions
in BS are a subset of SSN class functions. The intersection is not part of the
arc functions syntax, but allows any SSN arc function to be rewritten to a L
expression. For instance (vi, vj variables of type C): 〈SCk

−vi, vi〉[vi ∈ Ck] (/∈ L)
≡ 〈SCk

∩ (S − vi), vi〉[vi ∈ Ck] (∈ L); 〈S − vi − vj , vi, vj〉[vi 6= vj ] (/∈ L) ≡
〈(S−vi)∩ (S−vj), vi, vj〉[vi 6= vj ] (∈ L). Symbols [gj ], [g′j ] are defined on D and
D′, respectively. Symbol [g], where g is a SSN standard predicate defined on D,
denotes a function D → D: [g](d) = d if g(d) = true, [g](d) = ∅ if g(d) = false.
Observe that the SSN arc function syntax may include guards but not filters.

Language L is closed with respect to a set of operators among which the trans-
pose and the difference; SNexpression (www.di.unito.it/~depierro/SNex) im-
plements the rules for symbolically treating these operators.

Definition 1 (Transpose). Let f : D → Bag[D′] be a function, its transpose
f t : D′ → Bag[D] is defined as: f t(x)[y] = f(y)[x],∀x ∈ D′, y ∈ D.

Definition 2 (Difference). Let f, g : D → Bag[D′] be two functions. The
difference f − g : D → Bag[D′] is defined as: f − g(x) = f(x)− g(x),∀x ∈ D.

The multiset difference is: b, b′ ∈ Bag[A], a ∈ A, (b− b′)[a] = max(0, b[a]− b′[a]).
In the sequel the language, its operators and its properties are the key formal

tools to define the SODE characterizing an SSN model without unfolding it. In
particular the difference and transpose operators allow us to define and express
in symbolic form the functions R(t, p) and A(t, p), where t is a transition and
p is a place connected to t. Function R(t, p), called Removed By, defines which
instances 〈t, c′〉 of t withdraw tokens of color c ∈ cd(p) from place p. Function
A(t, p), called Added By, defines which instances 〈t, c′〉 add tokens of color c ∈
cd(p) into place p. R(t, p)(c)[c′] and A(t, p)(c)[c′] denote the number of tokens
of color c withdrawn by/ added by instance 〈t, c′〉 from/to p.

R(t, p) : cd(p)→ Bag[cd(t)]; R(t, p) = (I[t, p]−O[t, p])t

4 To keep the presentation simple, ordered classes are not considered here, but the
presented results extend to models including them.



A(t, p) : cd(p)→ Bag[cd(t)]; A(t, p) = (O[t, p]− I[t, p])t

For instance, place ActiveBot (whose cd is Mac×Loc) is connected to tran-
sition RecActive with cd : x ∈ Mac, y ∈ Mac, l ∈ Loc and with guard y ∈ N .
The expression for R(RecActive,ActiveBot) = (〈x, l〉[y ∈ N ])t, is 〈x̃, SN , l̃〉 de-
noting a function from cd(ActiveBot) to Bag[cd(RecActive)]. Here the names ỹ
and l̃ indicate respectively the first occurrence of class Mac and of class Loc in
cd(ActiveBot), while the color identifying an instance of RecActive is indicated
as 〈x, y, l〉. As expected the instances of RecActive that remove tokens of color
〈x̃, l̃〉 from ActiveBot are those with x = x̃, y ∈ N, l = l̃.

3 The symbolic ODE generation method

The approach for deriving the SODE corresponding to a given place p comprises
two steps. Let x[p, c] be the number of c-colored tokens in place p at time ν (in
order to keep notation simple we will omit time dependency).
Step 1. For each transition t connected to place p: if there is an arc from p to t
compute R(t, p), if there is an arc from t to p compute A(t, p).
Step 2. The differential equation for place p and color c ∈ cd(p) is defined as:

dx[p, c]

dν
=

∑
〈t,c′〉:p∈t•,c′∈A(t,p)(c)

ϕ(x(ν), t, c′)(A(t, p)(c)[c′]) −
∑

〈t,c′〉:p∈•t,c′∈R(t,p)(c)

ϕ(x(ν), t, c′)(R(t, p)(c)[c′]), (4)

Each sum spans over all instances 〈t, c′〉 that withdraw (negative sum) or add
(positive sum) tokens of color c from/to p. The intensity of 〈t, c′〉 is multiplied
by A(t, p)(c)[c′] or R(t, p)(c)[c′] (i.e., by the number of tokens of color c added
to or withdrawn from p by 〈t, c′〉) to get the actual flow of tokens in/out p.

Due to the symmetry of SSN arc functions the above procedure can be done
for just an arbitrary color c ∈ cd(p). This statement is only partially true, in fact
the symmetry is surely preserved only in subsets of cd(p) containing colors that
cannot be distinguished through standard predicates operating on cd(p): for this
reason a partial unfolding of the places may be needed (e.g. due to the pres-
ence of static subclasses). In order to apply the symbolic approach the intensity
ϕ(x(ν), t, c′) must also be symmetric: this may require the partial unfolding of
transitions. Special care should be taken in case the cd(t) includes variables with
same type: in this case one should treat separately instances in which the same
color or different colors are assigned to these variables since this may influence
both the rate of 〈t, c′〉 and the number of tokens of color c flowing in or out of p.

Symbolic representation of ODE Due to symmetries, each summation over the
color domain of a given transition t in equation (4) may be computed efficiently
by grouping instances with “similar” rate and same number of tokens moved
into or out of the place. This may be achieved by expressing equation (4) in a
compact, symbolic way. As anticipated, a preliminary partial unfolding of some
nodes of the original SSN may be needed: each place p′ in the partially unfolded
net, derives from a place p in the original model and an SSN predicate g on cd(p)



taking into account the partition of color classes in subclasses, and the possibility
that elements of same class in the tuples of cd(p) be equal or different. In the
partially unfolded net a filter [g] prefixes the function on any arc connected to
p′; notation p[g] shall be used for the place names in the partially unfolded net
to put in evidence the original place name and predicate g. If cd(p) contains
only one occurrence of C and g is [c ∈ Cj ] we shall use the notation pCj

. For
what concerns transitions, each t′ in the partially unfolded net must satisfy
∀c1, c2 ∈ cd(t′) : ω(t′, c1) = ω(t′, c2) = ω(t′), in this case the unfolded transitions
t′ deriving from transition t in the original model shall be characterized by a
guard which is the conjunction of t guard and the condition condi associated
with value ri in the definition of ω(t). This kind of partial net unfolding will be
illustrated on the example.

The terms of the SODE corresponding to place p are based on the symbolic
expressions A(t, p) and R(t, p), formally expressed as weighted sums of tuples∑

i λiFi, λi ∈ N, Fi = [gi]Ti[g
′
i], ∀c ∈ cd(p),∀c′ ∈ cd(t) Fi(c)[c

′] ≤ 1. Each
term of R and A can be seen as a parametric set of t’s instances, each one
withdrawing/putting λi tokens of color c from/to p. Hence we need to compute
the cardinality of each parametric set, that may depend on c ∈ cd(p).

Definition 3 (Constant-size function). A guarded function F [g] : D →
Bag[D′] is constant-size if and only if ∃k ∈ N : ∀c ∈ D, g(c)⇒ |F (c)| = k.

The above definition includes the particular case g ≡ true. The cardinality |F [g]|
of a constant-size function is equal to |F (c)|, for any c s.t. g(c) is true.

A guarded tuple T [g] ∈ L is constant size if and only if, for each T ’s compo-
nent (a class function) f , f [g] is constant size. The following property defines a
syntactical condition for a (guarded) class function f [g] being constant size:

Property 1. f [g] is constant-size if: f either belongs to the basic-set BS of class
functions or it takes one of these forms

a)
⋂

j∈Q, |Q|<|C|

S − vj b) SCk

⋂
j∈J,|J|<|Ck|

S − vj

where in b) for each vj : g ⇒ vj ∈Ck.

The cardinalities of terms of type a) and b) are |C| − |Q| and |Ck| − |J |, respec-
tively. The cardinalities of functions in BS can be easily inferred. For instance,
function S − v1 ∩ S − v2[v1 6= v2], where v1, v2 are two variables of type C, is
constant size, with cardinality |C| − 2.

When transposing a given expression with the SNexpression tool each term
[g′]T [g] in the resulting sum is such that T [g] is constant size. We finally state a
syntactical condition on a filter [g′] ensuring that [g′]T [g] ∈L is constant-size.

Property 2. [g′]T [g]∈L is constant-size if T [g] is constant size and

1. g′ is a conjunctive form composed only of (in)equations ci = (6=)cj , i < j,
2. for each (in)equation ci = (6=)cj the corresponding class-C functions fi, fj

in T are such that fj ≡ fi,



Condition (2) says that tuple components referred to by any (in)equation in the
filter must be equal.
Proof of Property 2 Let us constructively prove Property 2 by sketching the
general algorithm for computing tuple cardinality.

We can express [g]T [g′] : D → Bag[D′] as (
⊗

C∈D′ [gC ]TC)[g′], where [gC ]TC
: D → Bag[Ce], e being the number of repetitions of C in D′. In other words we
consider separately the subtuples of T involving each class C and the terms in
g involving those components. Note that it may be gC = true for some colour
class C. The function [g]T [g′] is constant-size iff every [gC ]TC [g′] is constant-size
and in this case

∣∣[g]T [g′]
∣∣ =

∏
C

∣∣[gC ]TC [g′]
∣∣.

Let us focus on [gC ]TC [g′]. Let J(gC) = {j}, s.t. cj occurs in gC , in other
words J(gC) identifies the set of variables cj of type C appearing in gC . We
can partition gC (a conjunctive form) into {g1, . . . , gn}, such that for each gi, gj ,
i 6= j, J(gi)∩J(gj) = ∅ (in this way we separate independent subsets gi of terms
in gC)). The terms in gi can be partitioned in equalities and inequalities: let us
introduce the notation gi = gi,eq ∧ gi,neq to separate the two parts of gi. Note
that gi,eq or gi,neq may be simply true. Without loss of generality, we assume
that equalities in gi,eq take all the form cj = cx (for an arbitrarily fixed cj), and
gi,eq 6≡ true ∧ gi,neq 6≡ true ⇒ J(gi,eq) ∩ J(gi,neq) = {j}, in other words if gi
contains both equalities and inequalities there is just one variable cj occuring
both in gi,eq and in gi,neq.

Under the initial hypothesis, all elements in subtuple TC corresponding to
the index set J(gi) are equal. Let λ (> 1) be their cardinality, and let us denote
cardi the cardinality of the TC ’s subtuple corresponding to J(gi) after being
filtered through gi. If gi,neq ≡ true (gi just contains equalities) then cardi is
simply λ. Otherwise gi,neq can be seen as a system of inequalities among n =
|J(gi,neq)| integer variables on the domain {1, . . . , λ}. Let G be the connected
graph of order n representing such a system: the number of system’s solutions
(= card(i), for the particular form of gi) is the chromatic polynomial value
P (G,λ), corresponding to the number of distinct λ-colourings of G.

Finally, the cardinality of [gC ]TC [g′] is obtained by multiplying
∏

i card(i)
by the cardinality of TC components not corresponding to any index in J(gi).

2

Example: the tuple [c1 6= c2 ∧ c2 6= c3]〈SC1− c, SC1− c, SC1− c, S, c〉[c∈C1] has
domain C and co-domain C×C×C×C (i.e. C4 ); each ci appearing in the filter
represents the i− th element in tuple T , C = C1 ∪ C2 hence |C| = |C1|+ |C2|
and |C1| = 4, |C2| = 2. Observe that the first three elements in the tuple are
equal, and this is coherent with the hypothesis that elements compared in some
term of the filter g′ must be equal. The tuple can be divided in two independent
sub-tuples: the first [c1 6= c2 ∧ c2 6= c3]〈SC1 − c, SC1 − c, SC1 − c〉[c ∈ C1] and
the second 〈S, c〉[c∈C1]. The guard makes the elements SC1 − c constant size:
without this guard the size would be |C1| if c /∈ C1 and |C1| − 1 if c∈C1.

The filter of the second subtuple is true. The filter of the first subtuple
doesn’t involve any equality while it comprises two inequalities. The cardinality
of the tuple elements are: |SC1 − c| = |C1| − 1, |S| = |C|, |c| = 1.



The first subtuple has as many elements as the number of possible colorings of
a graph G with three nodes, each one associated with one of the three variables
c1, c2, and c3, and an edge between pairs of variable-nodes that appear in an
inequality of the filter. Since |SC1 − c| = |C1| − 1 = 3 in this case P (G, 3) = 12.
The filter of the second subtuple is true, hence its cardinality is simply |S||c| =
|C| = 6. Finally the cardinality of the complete tuple is 12 ∗ 6 = 72.

Property 3. Any expression e∈L can be rewritten as a weighted sum of constant-
size terms [g′i]Ti[gi].

The SNexpression tool can be instrumented to produce expressions in the form
introduced in Property 3. The expression obtained from the tool does not have
a canonical form: depending on the order of application of the rewriting rules
the expression terms may be grouped in different ways; it is however guaranteed
that the terms Fi = [gi]Ti[g

′
i] appearing in R or A are pairwise disjoint and

constant-size. Thus, according with the transpose semantics, a term [gi]Ti[g
′
i] of

R or A represents a set of ni = |[gi]Ti[g′i]| t’s colour instances each one with-
drawing/adding exactly λi (the term’s coefficient in the weighted sum) tokens
from/to place p (these instances satisfy the predicate g′i).

If, in addition, all t colour instances matching [gi]Ti[g
′
i] had the same enabling-

degree and hence consequently the same intensity (denoted by ϕ(x(ν), t)), we
could directly express the SODE relating place p:

dx[p, c]

dν
=

∑
t:p∈t•,Fi inA(t,p)

λiniϕ(x(ν), t)−
∑

t:p∈•t,Fj inR(t,p)

λjnjϕ(x(ν), t) (5)

Each term in the SODE is a product of four factors: the cardinality of the ex-
pression identifying a set of (ni) homogeneous transition instances, the number
(λi) of tokens withdrawn/added by any transition instance in the set, the base
rate ω of any transition instance in the set, and its enabling degree (the two fac-
tors are combined in ϕ). The last factor depends on the number of colored tokens
required by the arc functions labelling the input arcs of any transition instance
in the set. Some terms [gi]Ti[g

′
i] of A or R may have to be split into equivalent

sums of tuples representing classes of transition instances with the same enabling
degree. The procedure for computing the enabling degree is described later.



Fig. 2: Partially unfolded (sub)net (note
filters [c ∈ N/I/P/W ]) including all tran-
sitions connected to place NoConBotN .

Rates in SODE for NoConBotN
ω1 = ω(RecActive, c, c′∈P, l)
ω2 = ω(RecActive, c, c′∈W, l)
ω3 = ω(RecInactive, c, c′∈P, l)
ω4 = ω(RecInactive, c, c′∈W, l)
ω5 = ω(InitInf , c, c′∈I, c′′∈P, l, l)
ω6 = ω(InitInf , c, c′∈I, c′′∈P, l, l′ 6= l)
ω7 = ω(RecInitInf , c, c′∈I, l)

place (NoConBotN , c, l);g = c ∈ N
A(RecActive, .) 〈SMac, c, l〉[g]
A(RecInactive, .) 〈SMac, c, l〉[g]
R(InitInf [l=q], .) 〈c, SI , SP , l, l〉[g]

R(InitInf [l 6=q], .) 〈c, SI , SP , l, S − l〉[g]

A(RecInitInf , .) 〈SI , c1, l〉[g]

Table 1: List of rates in the NoConBotN
equation and functions A and R needed
to derive it, where g = (c∈N).

The Botnet example Let us illustrate the idea on the Botnet example to point
out the main problems that have to be solved to automatize the whole process.
Only the equation for place NoConBotN , obtained by partially unfolding place
NoConBot , is developed completely since similar arguments apply to the other
places. The method generates one distinct equation for each place in the partially
unfolded net: since all places in the BotNet model have cd(p) = Mac×Loc and
only Mac is partitioned in four static subclasses, each place p will be unfolded
into four new places pI , pN , pW and pP , and filters [c ∈ X], where X stands
for a static subclass of Mac, will prefix the functions on the arcs connected to
place pX as shown in Fig.2. In some cases it is possible to simplify the partially
unfolded net taking into account the transition guards: in Fig.2 for instance some
filters are not present because the transition guards make them redundant (e.g.
see the arc from RecActive to NoConnBotN ), moreover if the combination filter-
transition guard results in a surely empty function, then the arc can be deleted
(this is the case for the arc from ActiveBotW and transitions InitInf [g]). On
the Botnet example only a subset of colors can be found in the model places as
explained hereafter: this allows to further simplify the partially unfolded model.
The first element (Mac) of tokens in NoConBot can only be in N or in I, those
in Active/InactiveBot can only be in W and P (see grey-colored empty instances
in Fig.2), finally those in place ConBot can only be in I.

Table 1 shows the expressions A and R for each transition connected to place
NoConBotN from which we can generate a differential equation with several
terms, depending on the number of terms in the expressions A and R. Observe
that some term may need to be transformed into an equivalent sum of terms to
separate the transition instances with different enabling degree or rate.



In our model we assume that all transitions have uniform base rate except
InitInf and BeBot : the former has a different rate depending whether the two
locations l′ (of the machine which is going to be infected) and l (of the bot
which is going to propagate the infection) are equal or different. The latter has a
different rate for working bot and propagation bot generation. Hence the partial
unfolding shall generate two instances of InitInf , InitInf [l=l′] and InitInf [l 6=l′]

(see Fig.2), and two instances of BeBot : BeBotW and BeBotP .
In the following equation we denote with x[pX , c, l] the mean number of

tokens in the place instance 〈pX , c, l〉 (where X is one of the static subclasses in
Mac). Thus, the differential equation corresponding to 〈NoConBotN , c, l〉 is:

dx[NoConBotN , c, l]

dν
= |P |ω1x[ActiveBotP , c

′, l] + |W |ω2x[ActiveBotW , c′, l]+

+ |P |ω3x[InactiveBotP , c
′, l] + |W |ω4x[InactiveBotW , c′, l] + ω7x[NoConBotI , c

′, l] +

− |P ||I|ω5 min(x[NoConBotI , c
′, l], x[ActiveBotP , c

′′, l]) +

− |P ||I|(|Loc| − 1)ω6 min(x[NoConBotI , c
′, l], x[ActiveBotP , c

′′, l]),

where rates ωi are defined in Table 1. Coefficients |P | and |W | in the first four
terms are the cardinality of the tuples 〈SP , c1, l1〉 and 〈SW , c1, l1〉 respectively:
these are obtained by splitting the term 〈SMac, c1, l1〉[c1 ∈ N ], common to
A(RecActive,NoConBotN ) andA(RecInactive,NoConBotN ), into 〈SP , c1, l1〉[g]+
〈SW , c1, l1〉[g] (the terms 〈SI , c1, l1〉[g] + 〈SN , c1, l1〉[g]) do not appear because
they correspond to instances of RecActive and RecInactive that will never be en-
abled). Coefficients |P ||I| and |P ||I|(|Loc|−1) in the last two terms of the SODE
are the cardinalities of tuples 〈c1, SI , SP , l1, l1〉 and 〈c1, SI , SP , l1, SLoc − l1〉, re-
spectively. We omit the factor 1 preceding the ωi, derived from the coefficient of
the corresponding term in A or R.

Computation of the enabling degree Let us consider the SODE for place p. The
contribution due to a transition t connected to p is expressed byR(t, p) orA(t, p),
whose weighted terms λi[gi]Ti[g

′
i] represent parametric sets of ni = |[gi]Ti[g′i]|

instances of t, that withdraw/add λi tokens from/to p. We need a method to
derive the enabling degree of such instances, by possibly splitting terms with
ni > 1 into subterms denoting instances with same enabling degree.

Let Fi = [gi]Ti[g
′
i] be one such term. Due to symmetries, for each place p′∈•t

we just have to evaluate the arc function I[p′, t] on an arbitrary element of the
parametric set Fi. This operation corresponds to a composition of two elements
of L: I[p′, t]◦Tri, where Tri is a cardinality-1 symbolic tuple representative of Fi.
This particular composition is supported by the SNexpression tool and results
in an element of L.

Definition 4 (Composition). Given l1 and l2 in L where l2 has constant size
equal to 1, the composition l1 ◦ l2 is defined as l1 ◦ l2(c) = l1(l2(c)); where l1 is
evaluated on the single element in the (multi)set returned by l2(c).

The representative tuple Tri has the same co-domain as Fi and domain De,
which may be equal to D of Fi or be extended. If ni = 1 the representative tuple
Tri coincides with [gi]Ti[g

′
i]. Otherwise it is defined as [gi]T

′
i [g
′′
i ], according to

Table 2, which maps Ti components to the corresponding T ′i ones; a conjunction



of additional predicates may be introduced. The type of class-functions on the
first row is the only admitted in constant-size tuples. Symbols ch are new vari-
ables (index h must exceed the number of repetitions of C in D) that occur only
once in Tri. These symbols cause an extension of the original domain.

Table 2: Syntactical rules to derive a representative tuple

Ti component f , |f [g′i]| = 1 S SCk

⋂
w∈A S − cw SCk

⋂
w∈A S − cw

T ′i component f ch ch ch ch
g′′i = g′i ∧ . . . - - ch∈Ck

∧
w∈A ch 6= cw ch∈Ck

∧
w∈A ch 6= cw

As an example, consider 〈S − c1 ∩S − c2, c1〉[c1 6= c2], with domain C2. Its
representative, with domain C3, is 〈c3, c1〉[c1 6= c2 ∧ c1 6= c3 ∧ c2 6= c3].

The following property formalizes the notion of representative tuple:

Property 4. Let c′ ∈ De, and let c′D ∈ D denote the projection on D of c′

- ∀c′ ∈ De : Tri(c
′) ∈ [gi]Ti[g

′
i](c
′
D);

- ∀c ∈ D : [gi]Ti[g
′
i](c) =

⋃
c′∈De, c′D=c Tri(c

′).

The composition I[p′, t] ◦ Tri results in
∑

j λjFj , Fj = [gj ]Tj [g
′
j ]. If this

summation contains a single term then λ1 is the coefficient to be used as divisor
of x[p′], in the formal expression of the enabling degree of t. Otherwise it can
be rewritten5 so that its terms are pairwise disjoint (Fj1 ∩ Fj2 ≡ ∅), and guards
[g′j ] are either equal or mutually exclusive.

We can thus partition the summation into subsums
∑

j1
+
∑

j2
. . . of terms

characterized by having the same guard, i.e., (
∑

jh
λjh [gjh ]Tjh)[g′h]. The guard

of each subsum (that, we recall, is a function cd(t) → cd(t)) identifies a subset
of t’s instances that require the same number λjh tokens of a color cjh from
place p′, so that the enabling degree (w.r.t. input place p′) can be expressed
as: x[p′]/λ∗h, λ∗h = max({λjh}). These guards are applied as filters to split the
parametric set Fi of t’s instances, into subsets with constant enabling degree
(w.r.t. p′): formally λiFi 7→ λi(

∑
h[g′h ∧ gi]Ti[g′i]).

By repeatedly applying the procedure on the obtained subterms on the re-
maining places of •t, we finally get the SODE expression for Fi, that will take
the form: λi

∑
h nihωteih(x), where eih(x) = minp′∈•t(x[p′]/λ∗ih),

∑
h nih = ni.

Example Let us illustrate the procedure on the Botnet model. When building
the SODE of place 〈NoConBotN , c ∈N, l ∈ Loc〉 all the connected transitions
should be considered: they are shown in Fig.2. Let us consider only one of them:
InitInf[l 6=l′]: in Tab.1 we find the expression for R((InitInf[l 6=l′], c, c

′ ∈ I, c′′ ∈
P, l, l′), (NoConBotN , c ∈ N, l ∈ Loc)), namely 〈c, SI , SP , l, S − l〉[c ∈ N ]. The
last term in the SODE of NoConBotN originates from this expression which
represents |I||P |(|Loc| − 1) transition instances. A representative tuple for it is:
〈c, c′, c′′, l, l′〉[c∈N, c′∈ I, c′′∈P, l 6= l′]; to compute its enabling degree we need
to know how many tokens are required in each input place (ActiveBotP and
NoConBotN ) to ensure its enabling. We already have the number of tokens (of
color 〈c ∈ N, l ∈ Loc〉) required in NoConBotN since it is the coefficient of the

5 In the SNexpression implementation there is an option to enforce such rewriting.



Fig. 3: Second SSN model

considered term in R that is 1; the multiset of tokens required in ActiveBotP
by the representative instance of InitInfl 6=l′ can be computed by performing
the composition 〈c′′, l′〉[c′′ ∈ P ] ◦ 〈c, c′, c′′, l, l′〉[c ∈ N, c′ ∈ I, c′′ ∈ P, l 6= l′] re-
sulting in 〈c′′, l′〉[c′′ ∈ P ], so it is only one token, hence the enabling degree is
e(x, InitInf[l 6=l′], c, c

′∈I, c′′∈P, l, l′) = min(x(NoConBotI , c, l), x(ActiveBotP , c
′′, l′)).

Similar arguments apply to InitInf[l=l′]. In the other terms of the SODE the
min function does not appear because the corresponding transitions have only
one input place: for each of them the procedure illustrated above indicates that
only one colored token is required by the input arc function composed with the
representative tuple (so the divisor in the enabling degree formula is simply 1).

4 Second SSN example

This section provides another model: it is small but it shows some interesting
situations not illustrated in the Botnet example. The SSN model of Fig. 3 has
only one color class C with two static subclasses C1, C2. Note that in the color
domain of place P2 class C appears twice. Due to the transition guard, the first
element of the pairs in P2 must necessarily belong to C1. In order to compute the
SODE we have to consider a partial unfolding of the model based on the static
partition of the places color domain. We denote P0−i and P1−i, i = 1, 2 the two
instances of P0 and P1. The possible instances of P2 instead are: P2−11, P2−12
with double index due to the repetition of C in cd(P2), and first index equal
to one due to the transition guard. Place P2−11 has repetition of class C in its
color domain and when the two elements belong to the same static subclass the
case in which the two elements are equal or different must be separated: P2−11eq
and P2−11neq. The partially unfolded model is shown in Fig.4 while in Fig. 5 it
is shown a simplified version of the same partially unfolded model.
Let’s compute the R and A expressions for each place instance.

R(T, P0−1) = 1〈S − c1 ∩ SC1, c1〉[c1 ∈ C1] + 2〈c1, S − c1 ∩ SC1〉[c1 ∈ C1] +
2〈c1, SC2〉[c1 ∈ C1] + 3〈c1, c1〉[c1 ∈ C1]

R(T, P0−2) = 1〈SC1, c1〉[c1 ∈ C2]



Fig. 4: Second SSN model after partial unfolding

Fig. 5: Second SSN model after partial unfolding and simplification

R(T, P1−1) = 1〈SC1, c1〉[c1 ∈ C1]
R(T, P1−2) = 1〈SC1, c1〉[c1 ∈ C2]
A(T, P2−11eq) = 1〈c1, c2〉[c1 ∈ C1, c2 ∈ C1, c1 = c2]
A(T, P2−11neq) = 1〈c1, c2〉[c1 ∈ C1, c2 ∈ C1, c1 6= c2]
A(T, P2−12) = 1〈c1, c2〉[c1 ∈ C1, c2 ∈ C2]

Now let us consider the ODE from the point of view of P0−1 (i.e. restriction
of P0 for c ∈ C1). The instances of T that withdraw tokens from this place
are given by R(T, P0−1) above, according to its expression such instances are
partitioned into four disjoint sets. Let us analyse a representative instance Tr
belonging to each of these sets in order to determine their enabling degree.

Any instance Tr = 〈T, c2, c1〉 of T , with c1, c2 ∈ C1, c2 6= c1, representing one
of the instances in 〈S − c1 ∩ SC1 , c1〉[c1 ∈ C1] withdraws 1 token c2 ∈ C1 from
P0−1 and 2 tokens c1 ∈ C1 from P0−1 plus 1 token c2 ∈ C1 from P1−1. This is
obtained by composing I(P0−1, T ) and I(P1−1, T ) with the representative tuple
Tr. The enabling degree of 〈T, c2, c1〉 in set 〈S − c1 ∩ SC1

, c1〉[c1 ∈ C1] is:

min(x(P0−1)/1, x(P0−1)/2, x(P1−1)/1) = min(x(P0−1)/2, x(P1−1)/1)

There are |〈S − c1 ∩ SC1 , c1〉[c1 ∈ C1]| = |C1| − 1 instances of T of this kind.



Table 3: Computation of enabling degree of T for the ODE of P0−1

Tr = representative tuple of 〈S − c1 ∩ SC1 , c1〉[c1 ∈ C1]
Tr = 〈c2, c1〉[c1 ∈ C1, c2 ∈ C1, c2 6= c1]

I[P0−1, T ] ◦ Tr = (1〈c1〉+ 2〈c2〉)[c1 6= c2, c1 ∈ C1, c2 ∈ C1]
I[P1−1, T ] ◦ Tr = 1〈c1〉[c1 6= c2, c1 ∈ C1, c2 ∈ C1]
I[P0−2, T ] ◦ Tr = ∅
I[P1−2, T ] ◦ Tr = ∅

Tr = representative tuple of 〈c1, S − c1 ∩ SC1〉[c1 ∈ C1]
Tr = 〈c1, c2〉[c1 ∈ C1, c2 ∈ C1, c1 6= c2]

I[P0−1, T ] ◦ Tr = (2〈c1〉+ 1〈c2〉)[c1 6= c2, c1 ∈ C1, c2 ∈ C1]
I[P1−1, T ] ◦ Tr = 1〈c2〉[c1 6= c2, c1 ∈ C1, c2 ∈ C1]
I[P0−2, T ] ◦ Tr = ∅
I[P1−2, T ] ◦ Tr = ∅

Tr = representative tuple of 〈c1, SC2〉[c1 ∈ C1]
Tr = 〈c1, c2〉[c1 ∈ C1, c2 ∈ C2]

I[P0−1, T ] ◦ Tr = 2〈c1〉[c1 ∈ C1, c2 ∈ C2]
I[P1−1, T ] ◦ Tr = ∅
I[P0−2, T ] ◦ Tr = 1〈c2〉[c1 ∈ C1, c2 ∈ C2]
I[P1−2, T ] ◦ Tr = 1〈c2〉[c1 ∈ C1, c2 ∈ C2]

Tr = representative tuple of 〈c1, c1〉[c1 ∈ C1]
Tr = 〈c1, c1〉[c1 ∈ C1]

I[P0−1, T ] ◦ Tr = 3〈c1〉[c1 ∈ C1]
I[P1−1, T ] ◦ Tr = 1〈c1〉[c1 ∈ C1]
I[P0−2, T ] ◦ Tr = ∅
I[P1−2, T ] ◦ Tr = ∅

Table 4: Computation of enabling degree of T for the ODE of P0−2

Tr = 〈c2, c1〉[c1 ∈ C2, c2 ∈ C1]

I[P0−1, T ] ◦ Tr = 2〈c2〉[c1 ∈ C2, c2 ∈ C1]

I[P0−2, T ] ◦ Tr = 1〈c1〉[c1 ∈ C2, c2 ∈ C1]

I[P1−1, T ] ◦ Tr) = ∅
I[P1−2, T ] ◦ Tr = 1〈c1〉[c1 ∈ C2, c2 ∈ C1]

Table 5: Computation of enabling degree of T for the ODE of P1−1

Tr = representative tuple of 1〈SC1, c1〉[c1 ∈ C1] = 〈c2, c1〉[c1 ∈ C1, c2 ∈ C1]

I[P0,1, t] ◦ Tr = 1〈c〉[c 6= c′, c ∈ C1, c
′ ∈ C1] + 2〈c′〉[c 6= c′, c ∈ C1, c

′ ∈ C1]+
+3〈c〉[c = c′, c ∈ C1]

I[P0,2, t] ◦ Tr = ∅
I[P1,1, t] ◦ Tr = 1〈c〉[c ∈ C1, c

′ ∈ C1]

I[P0,2, t] ◦ Tr = ∅



Any instance Tr = 〈T, c1, c2〉 with c1, c2 ∈ C1, c2 6= c1, representing one of
the instances in 〈c1, S − c1 ∩ SC1

〉[c1 ∈ C1] withdraws 2 tokens c1 ∈ C1 from
P0−1, 1 token c2 ∈ C1, with c2 6= c1 from P0,1, 1 token c1 ∈ C1, with c2 6= c1
from P1−1. Its enabling degree is:

min(x(P0,1)/1, x(P0,1)/2, x(P1,1)/1) = min(x(P0,1)/2, x(P1,1)/1)

There are |〈c1, S − c1 ∩ SC1
〉[c1 ∈ C1]| = |C1| − 1 instances of T of this kind.

Any instance 〈T, c1, c2〉 with c1 ∈ C1, c2 ∈ C2 belonging to 〈c1, SC2
〉[c1inC1]

withdraws 2 tokens c1 ∈ C1 from P0−1, 1 token c2 ∈ C2 from P0−2, 1 token
c2 ∈ C2 from P1−2. Its enabling degree is:

min(x(P0,1)/2, x(P0,2)/1, x(P1,2)/1)

There are |〈c1, SC2
〉[c1 ∈ C1]| = |C2| instances of T of this kind

Instance 〈T, c1, c1〉 belonging to 〈c1, c1〉[c1 ∈ C1] withdraws 3 tokens c1 ∈ C1

from P0−1 and 1 token of the same color from P1−1. Its enabling degree is:

min(x(P0,1)/3, x(P1,2)/1)

There is only one transition instance of this kind.
The composition operations leading to the above results are summarized in

Table 3. Hence, the ODE for P0,1 is:

dx(P0,1 : c ∈ C1)

dt
= −ω11 ∗ |C1 − 1| ∗min(x(P0,1)/2, x(P1,1)/1)

−ω22 ∗ |C1 − 1| ∗min(x(P0,1)/2, x(P1,1)/1)

−ω32 ∗ |C2| ∗min(x(P0,1)/2, x(P0,2)/1, x(P1,2)/1)

−ω43 ∗ 1 ∗min(x(P0,1)/3, x(P1,1)/1)

where:
ω1 = ω(T, c′, c : c, c′ ∈ C1 ∧ c 6= c′), ω2 = ω(T, c, c′ : c, c′ ∈ C1 ∧ c 6= c′),
ω3 = ω(T, c, c′ : c ∈ C1, c

′ ∈ C2), ω4 = ω(T, c, c : c ∈ C1)
Let us consider place P0,2: its ODE contains only one term deriving from the
single term of R() (of size |C1|); all instances represented by R() have same
enabling degree:

dx(P0,2 : c ∈ C2)

dt
= −|C1|ω(T, c′ ∈ C1, c ∈ C2)min(x(P0,1)/2, x(P0,2)/1, x(P1,2)/1)

Indeed RBm(T, P0−2) contains only one term 1〈SC1, c1〉[c1 ∈ C2] (of size
|C1|), its representative tuple is Tr = 〈c2, c1〉[c1 ∈ C2, c2 ∈ C1]. Composing the
arc functions of T ’s input places with Tr we get the expressions in Table 4.
From those expressions it appears that is not necessary to partition the set of
instances represented by 〈SC1, c1〉[c1 ∈ C2] since all its instances have the same
enabling degree min(x(P0,1)/2, x(P0,2)/1, x(P1,2)/1).
Let us now consider place P1,1, in this case the result of the computation of R()
needs to be rewritten to reflect two cases with different enabling degree, namely



c1 = c2 and c1 6= c2 in both cases c1, c2 ∈ C1. Let us consider an instance
〈T, c1, c2〉 with c1 ∈ C1, c2 ∈ C1) representative of set 〈SC1

, c1〉[c1 ∈ C1]. Table
5 summarizes the result of the composition of the input arc function and the
representative tuple for each input place of T .

The first line refers to place P0,1 and the result comprises three terms: the first
two have got the same guard and correspond to instances 〈T, c1, c2〉 with c1 6= c2),
their enabling degree is x(P0,1)/2 (which is the min(x(P0,1)/1, x(P0,1)/2) where
the values dividing x(P0,1) are the coefficients of the two terms with common
guard [c1 6= c2, c1 ∈ C1, c2 ∈ C1]). The third term correspond to instances
〈T, c1, c2〉 with c1 = c2, their enabling degree is x(P0,1)/3, again the denominator
3 is the coefficient of the tuple with guard [c1 = c2, c1 ∈ C1].

Hence the tuple 〈SC1 , c1〉[c1 ∈ C1] must be split in 〈c1, c1〉[c1 ∈ C1] and
〈S − c1 ∩ SC1

, c1〉[c1 ∈ C1], whose sizes are 1 and |C1| − 1 respectively.

Considering the other input place P0,2 the composition of I(P0,2) with the
representative tuple results in ∅, similarly for P1,2.

The third line in Table 5 refers to place P1,1 as expected it does not require
any further refinement of the set of T instances and the contribution of P1,1 to
the computation of the enabling degree is independent on the fact that the two
elements of the T instance are equal or different.

Hence 〈T, c1, c1〉 with c1 ∈ C1 has enabling degree min(x(P0,1)/3, x(P1,1)/1)
while 〈T, c1, c2〉 belonging to set 〈S − c1 ∩ SC1

, c1〉[c1 ∈ C1] has enabling degree:
min(x(P0,1)/2, x(P1,1)/1).

In conclusion the ODE for P1,1 is:
dx(P1,1:c∈C1)

dt = −(|C1| − 1)ω(T, c′, c : c′ 6= c, )min(x(P0,1)/2, x(P1,1)/1)
− ω(T, c, c : c ∈ C1)min(x(P0,1)/3, x(P1,1)/1)

Let us now consider P1,2: here we do not need to separate different cases, and
the equation contains only one term as R(T, P1,2); observe that the size of the
tuple 〈SC1, c1〉[c1 ∈ C2] is |C1| and the representative tuple Tr = 〈c2, c1〉[c1 ∈
C2, c2 ∈ C1 is the same already considered for place P0−2 and hence it is possible
to refer to Table 4 for the computation of the enabling degree of this set of T
instances. In conclusion the ODE for place P1−2 is:

dx(P1,2 : c ∈ C2)

dt
= −|C1|ω(T, c′, c : c ∈ C2, c

′ ∈ C1)min(x(P0,1)/2, x(P0,2)/1, x(P1,2)/1)

Concerning places P2,12, P2,11eq and P2,11neq, function A returns a cardinality
one tuple (so there is no need to find a representative tuple for the enabling degree
evaluation). Concerning the computation of the enabling degree, it is sufficient
to follow the same procedure already considered for the other places (see the
three tables above); we report the corresponding ODEs here:

dx(P2,12:c
′∈C1,c∈C2)
dt = +ω(T, c′, c : c′ ∈ C1, c ∈ C2)min(x(P0,1)/2, x(P0,2)/1, x(P1,2)/1)

dx(P2,11eq :c
′∈C1,c∈C1,c=c′)
dt = +ω(T, c′, c : c′ ∈ C1, c ∈ C1, c = c′)min(x(P0,1)/3, x(P1,1)/1)

dx(P2,11neq :c
′∈C1,c∈C1,c 6=c′)
dt = +ω(T, c′, c : c′ ∈ C1, c ∈ C1, c 6= c′)min(x(P0,1)/2, x(P1,1)/1)



5 Experimental results

In this section we report some experimental results showing the effectiveness of
the proposed method on the Botnet example. All the experiments are performed
using a prototype implementation which combines: 1) GreatSPN [1] to draw the
model and to generate R scripts encoding the ODE systems derived by the
unfolded net; 2) SNexpression [5], a java tool, to compute and support the user
into the creation of the SODE system applying the approach presented in this
paper; 3) the R framework to solve the ODE systems (i.e. deSolve package).

The experiments consisted in (1) generating and solving the SODE system
using the new approach and (2) unfolding the SSN model to evaluate the cost of
this operation, which is the dominating cost of the method [3] as |Loc| increases,
and compare the results obtained from the ODE system of the unfolded model
against those obtained from the SODE system.

The SODE system and the reduced ODE system generated with the method
in [3] have the same number of equations, however the equations may not be
identical because the new method may group homogeneous transition instances.
In the Botnet model the equation associated with NoConBotN has one term
representing |Loc| − 1 terms in the corresponding equation from the unfolding.
As a consequence the number of terms in the ODE system grows linearly with
|Loc| while in the SODE it is constant.

We also compared the results obtained by solving the SODE system with
those obtained from the ODE system of the unfolded model when the initial
marking is that in eq.1: using the R function lsoda() for numerically solving the
systems, the difference between the computed solutions is smaller than 1.0e−11.

Table 6: ODE vs. SODE system size

|Loc| Num. of terms Mean solution time (sec.)
ODE ODE/SODE ODE SODE

1 42 (11 eq.) 2.511 (1.57) 0.3790 0.0846

10 600 (110 eq.) 21.43 (15.7) 38.8110 0.2381

20 1600 (220 eq.) 57.14 (31.43) 572.1798 0.2920

50 7000 (550 eq.) 250 (78.58) > 4h 0.2479

Table 7: Unfolding time.

|Loc| Unfolding (sec.)

10 2.484

50 13.219

100 43.949

150 320.979

200 out of memory

The SODE system comprises 7 equations (the number of places in the par-
tially unfolded net is 16 but 9 of them are always empty) and the total number
of terms is 28. The procedure to derive the seven SODE from the net structure
takes slightly less than one second (including the initial partial unfolding) and
does not depend on |Loc|. In Table 6 the number of terms and equations of the
ODE system obtained from the unfolded net and the reduction ratio achieved
when the SODE system is adopted are shown. The fourth and fifth column con-
tain the execution time required to solve the ODE and the SODE system on a
2.50GHz Intel i3-3120M processor with 4GB of RAM. In Table 7 the time re-
quired by the unfolding step is shown as a function of |Loc|; it was not possible to
generate the unfolded model for |Loc| = 200 for insufficient memory. From these



results we can conclude that the SODE approach is effective and overcomes the
limitations of the methods that require the complete unfolding.

6 Conclusions and future work

In this paper we have proposed a new approach for generating a reduced set
of ODE approximating the dynamic behavior of a SSN model: this is based
on the observation that, due to the model symmetries, groups of equivalent
equations, generated from the unfolded model could be substituted by a unique
representative [3] so that the reduced system could be solved more efficiently.

The novelty of the present paper consists in the ability to automatically de-
rive a Symbolic ODE for each group of equivalent ODE without ever computing
the (complete) unfolding of the SSN. The new method is based on a recently
developed extension of a symbolic calculus for the computation of SSN struc-
tural properties and its implementation in the SNexpression tool. In the paper
the steps required to generate the system of SODE are defined in details. Some
preliminary experimental results are reported to compare the new method with
a previous method based on the model unfolding. The results have been ob-
tained through a prototype implementation which combines different tools as
GreatSPN, SNexpression and the R framework. The performance improvement
observed on a relatively simple example may lead to substantial saving in more
complex cases with good symmetric structure (large color classes with a few
static subclasses). The complete implementation of the whole automatic proce-
dure for generating the system of SODE of a SSN model is in progress.

The proposed method relies on the specific way of modeling symmetric sys-
tems provided by the SSN formalism. It is not straightforward to extend it to
other formalisms that allow to express symmetries at the level of the model syn-
tax, in some cases this may be achieved by showing a correspondence between
formalism constructs: this is an interesting topic for future work.

Another foreseen evolution is to extend our approach for cases in which the
deterministic approximation is not suited. In particular we will investigate how to
combine SSN formalism with the diffusion approximation proposed by Kurtz [8]
in which the deterministic process is replaced by the Ito’s process.
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