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UML class diagrams supporting formalism definition in
the Draw-Net Modeling System

Daniele Codetta-Raiteri
DiSIT, Istituto di Informatica, Università del Piemonte Orientale

Viale Teresa Michel 11, 15121 Alessandria, Italy
e-mail: dcr@di.unipmn.it

Abstract

The Draw-Net Modeling System (DMS) is a customizable framework supporting the design
and the solution of models expressed in any graph-based formalism, thanks to an open architec-
ture. During the years, many formalisms (Petri Nets, Bayesian Networks, Fault Trees, etc.) have
been included in DMS. A formalism defines all the primitives that can be used in a model (nodes,
arcs, properties, etc.) and is stored into XML files. The paper describes a new way to manage
formalisms: the user can create a new formalism by drawing a UML Class Diagrams (CD); then
the corresponding XML files are automatically generated. If instead the user intends to edit an
existing formalism, a “reverse engineering” function generates the CD from the XML files. The
CD can be handled inside DMS, and acts an intuitive and graphical “meta-model” to represent the
formalism. An application example is presented.

Keywords: Draw-Net, formalisms, models, UML, Class Diagram, XML, meta-model, Petri Net.

Acronym list:
CD Class Diagram
DMS Draw-Net Modeling System
MDE Model Driven Engineering
PN Petri Net
UML Unified Modeling Language
XML eXtensible Markup Language

1 Introduction
The design of complex systems can be fruitfully supported by modeling: both qualitative and quan-
titative measures can be evaluated on the models, and the results can be used to guide the design.
Models are the basis of Model Driven Engineering (MDE) techniques [1], and it is very important
to pursue the goal of embedding in a single flexible framework the possibility of choosing among
multiple modeling formalisms and solution methods, in order to represent and evaluate the system
by means of the most suitable model and solver. Software tools for performance and dependability
analysis have been developed with this goal in mind, such as Möbius [2] and SHARPE [3], but the set
of supported formalisms is usually predefined and closed.

The Draw-Net Modeling System (DMS) [4, 5] is a customizable framework supporting the design
and the solution of models expressed in any graph-based formalism. The system is characterized by
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an open architecture and includes an XML based language family that can be used to define existing
as well as new formalisms and the models expressed through such formalisms. The original idea
behind DMS, that differentiates it from the other approaches, is the possibility of easily adding new
formalisms and the fact that it favours the reuse and integration of existing tools for solving models.
The addition of new formalisms does not need to recompile the source code of DMS, and solvers can
be integrated with a little programming effort.

During the years, many formalisms (Petri Nets [6, 7, 8], Bayesian Networks [9, 10, 11], Fault
Trees [12, 13, 14], etc.) and the corresponding solvers have been included in DMS. The formalisms
can be created or edited by manually manipulating the corresponding XML files which have a quite
complex structure. So, the Draw-Net Formalism Generator (DNForGe) was implemented inside
DMS, and is the graphical editor allowing the user to create or modify all the formalism primitives in
a more intuitive way (Sec. 2).

This paper describes a third way to manage formalisms, which has been recently implemented
and exploits UML [15] and Class Diagrams (CD) in particular: by means of Draw-Net (the model
editor of DMS), the user can create a new formalism by drawing a CD model where several types of
class represent the primitives of the formalism (nodes, arcs, properties, constraints, solvers); then, the
corresponding XML files are automatically generated, and can be used to build models according to
the formalism, still by means of Draw-Net. If instead the user intends to edit an existing formalism, a
“reverse engineering” function generates the CD from the XML files (Sec. 3).

Sec. 4 concludes the report with possible future work.

2 DMS general architecture
DMS is a Java-based framework exploiting the DNlib library [4, 5]. The general architecture of DMS
is composed by the following main levels (Fig. 1.a).

2.1 The formalism level
The formalism level defines all the primitives that can be used to design a model. A formalism is
defined as the tuple F = {E,P,C, S,H, TP} where

• E is the set of Elements;

• P is the set of Properties;

• C is the set of Constraints;

• S is the structure function associating each element to its properties;

• H is the inheritance function setting that one or more elements inherit the properties of a spe-
cific (abstract) element;

• TP is the property typing function setting the type of each property.

Elements correspond to the possible nodes and arcs in the model. For example, in the Petri Net
(PN) formalism [3], the elements are places, transitions, input/output arcs.

Properties are the attributes associated with an element. For example, in PN, the properties of a
place are the initial number of tokens (or initial marking) and the mean number of tokens (a measure);
a property of a transition is its throughput (mean number of tokens moved by the transition); a property
of an arc is its weight (number of tokens moved through the arc). Moreover, an element has graphical
properties (shape, size, color, etc.). Properties are typed: they can only contain values of a specific
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type (integer, float, string, Boolean, etc.); for example, the initial marking property is integer; the
throughput property is float.

Constraints are logical propositions that describe required consistency relations among elements
and properties of a model. For example, in a PN, constraints tell that an arc can only connect places
to transitions, and transitions to places.

Through DNForGe the user can manipulate the definition of a formalism and automatically gener-
ate the corresponding three XML files containing the elements, their properties (including the graph-
ical ones), and the solver(s) associated with the formalism. An expert user may avoid the use of
DNForGe and directly manipulate the XML files (Fig. 1.a).

2.2 The model level
The model level describes a system using the primitives defined in the formalism to specify a model
which is defined by the tuple M = {F, I,m0, T, V } where

• F is the formalism;

• I is the set of element instances (every i ∈ I represents an instance of an element of F );

• m0 ∈ I is the main element;

• T is the element typing function associating i ∈ I with the formalism element to which i
corresponds (the element must not be abstract);

• V is the assignment function which specifies the property values (V (i, p) is the value of property
p of instance i ∈ I).

The user exploits Draw-Net to select a formalism among the available ones, load its definition
from the XML files, and design models conforming that formalism (Fig. 1.a). For example, the PN
model of the producer/consumer system (Fig. 4) is composed by two transitions (representing the
producer and the consumer respectively) and one place (representing the buffer).

2.3 The solver level
The solver level concerns the analysis or the simulation of the model. Still by means of Draw-Net the
user can set the results to compute, save the model into one XML file, and execute the solver on the
model. For instance, the user may require the analysis of the PN model in order to compute the mean
number of tokens inside the place representing the buffer. The results produced by the solver can be
shown by Draw-Net at the end of the model solution (Fig. 1.a).

3 CD based management of formalisms
Fig. 1.b shows how formalisms are now managed through CD. A “reverse engineering” function
has been implemented in order to generate the CD of the existing formalisms. To this aim, the CD
formalism has been included in DMS; by means of Draw-Net, the user selects the CD formalism,
creates an empty CD model, sets the path of the XML files containing the formalism definition,
and executes the XML2UML filter which reads the contents of the XML files and generates the
representation of the formalism in terms of classes. The resulting CD is saved into a file (still in XML
format). At this point, the user can open the CD as an ordinary model, and edit the formalism by
manipulating the CD.
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Figure 1: a) DMS general architecture. b) CD based management of formalisms.

When the changes to the CD have been completed, the user saves the CD, and executes the
UML2XML filter which generates the three XML files containing the formalism specification ac-
cording to the classes in the CD. The updated version of the formalism can be used to design models.
If the formalism needs to be edited again, this can be done exploiting its CD, in the same way just de-
scribed, or by resorting to DNForGe (Fig. 1.a); the contents of the XML files containing the formalism
specification, maintain the same format with both solutions.

If a new formalism is needed, by means of Draw-Net, the user selects the CD formalism, creates
an empty CD model, and inserts all the necessary classes, as shown in Fig. 2 for the PN formalism;
then the user saves the CD, and finally executes the UML2XML filter.

3.1 Types of classes in the CD
In UML, a CD specifies a set of classes, where a class acts as a template defining the common
attributes of a set of objects (instances); a class is graphically represented by a rectangle. Multiple
types of arcs are available, but in this work, only two of them are applied:

• the composition arc indicates that the objects of a class (container) are composed by objects of
other classes (a diamond points the container class);

• the generalization arc is used to express that a class is the specialization of a parent class (a
closed triangle points the parent class).

Fig. 3.a shows the complete CD representing the existing PN formalism, obtained from the XML
files, by means of the “reverse engineering” function. This CD will be used as a running example
during the presentation of the types of classes representing the definition of a formalism. All the
classes have an attribute called Id (string) where we can assign a name to the class. In order to be
graphically distinguishable, the types of classes have different colours:

Main (orange) represents the main element m0 (Sec. 1). An instance of this class in the model will
correspond to the model itself. Only one class of this type can be present in the CD. This class has no
attributes.
Example. In Fig. 3.a the Main class represents a PN model.
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Figure 2: The CD of the PN formalism, edited by means of Draw-Net.
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Solver (black) is used to set the reference to a solver. The CD contains as many Solver classes
as the number of solvers associated with the formalism. Each Solver class is connected to the Main
class by means of a composition arc because a solver concerns the whole model. The Solver class is
characterized by the following attributes necessary to execute the solver:

• Command (string) contains the name of the executable file implementing the solver;

• CommandPath (string) contains the path to find the executable solver;

• Parameters (string) contains possible arguments to be passed to the executable file.

Example. In Fig. 3.a, one solver is connected to the main element; in particular, the executable file is
PNsolver.bat.

Element (blue) represents a type of node or a type of arc that can be used in the model. This class
has the following attributes:

• Abstract (Boolean) indicates whether the element is abstract or not (in the first case, it cannot
be instanced in the model and can only be a generalization of other elements);

• Parent (enumeration) can be equal to “node” or “edge”.

Example. In Fig. 3.a, three Element classes represent the possible elements in a PN; the attribute
Parent is set to “node” in the classes called Place and Transition, and is set to “edge” for the class
IOarc (input/output arc). For all the three classes, the attribute Abstract is set to false.

Property (red) represents a property of an element (possibly the main one), such as the initial
marking of a place in a PN. A Property class is connected to the corresponding Element class (or the
Main class) by means of a composition arc; in this way, the structure function (Sec. 2) is represented.
The attributes of the Property class are:

• Default value (string) contains the initial value of the property (if necessary);

• Type (enumeration) can be set to “integer”, “float”, “string”, “Boolean”, “enumeration”, or
“fixedArray” (property type function (Sec. 2));

• Size is used to the set the dimension of the array when Type is set to “fixedArray”;

• Plane (enumeration) can be set to “model”, “query”, or “result”, in order to express that the
property will be used to characterize the element, require the computation of a certain measure
by the solver, or show the corresponding result, respectively.

The inheritance function (Sec. 2), modelled by the generalization arc, allows an element to inherit the
properties of another element, possibly an abstract one.
Example. The element Place has three properties: tokens defines the initial marking of the place,
its type is integer, its default value is 0, and is on the model plane; computeMean specifies whether
the solver has to compute the mean number of tokens or not, its type is Boolean, its default value
is false (not to be computed), and is on the query plane; finally, mean, is used to show the value
returned by the solver (Fig. 1.a), so its type is float, and is on the result plane. The properties of the
element Transition are computeThroughput (query plane) and throughput (result plane). The element
IOarc has the property weight on the model plane. In Fig. 3.b, the Element class INHarc (inhibitor
arc) is added to the existing PN formalism. In particular, the property weight of IOarc is inherited by
INHarc, by means of the generalization arc from INHarc to IOarc.
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Figure 3: a) The CD of the PN formalism. b) The addition of a new element.
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Constraint (yellow) has two attributes, From (string) and To (string), where we write the names of
the types of node that an arc can connect in the model. Each Constraint class is connected to the
Element class representing the type of arc.
Example. IOarc has two constraints establishing that this kind of arc can go from a transition to a
place, or from a place to a transition. INHarc has one constraint: from a place to a transition.

Menu (green) establishes how an element or a property is displayed in the menu panels of Draw-
Net. This class has two attributes, Icon (string) and Label (string), setting the path to an image file,
and a description, respectively. Each Menu class is connected to the corresponding Element or Prop-
erty.
Example. The property tokens of the element Place will appear in the property menu panel of Draw-
Net on a line composed by the icon PlaceIcon.png and the label “initial marking”; the property com-
puteMean will appear on a line composed by same icon and the label “Compute mean marking?”; the
property mean will have the label “Mean # of tokens” (Fig. 4).

shapeNode (grey) describes how a specific node graphically appears in the drawing area of Draw-
Net. The attributes are: Shape, FillColor, FillStyle, StrokeColor, StrokeStyle, rotation, size_x, size_y.
A ShapeNode class is connected to the corresponding Element class.
Example. The shape of a place is an ellipse with size 24 px x 24 px, black stroke color, and white fill
color. The shape of a transition is a rectangle with size 24 px x 4 px, black stroke color, and black fill
color.

shapeArc describes how a specific arc graphically appears in the drawing area. Its attributes define
aspects such as the colour, the style, and the width.
Example. An IOarc is a black continuous line ending with a black triangle. The INHarc instead, ends
with a white small circle.

3.2 Building the system model
The CD defining the PN formalism, has been edited by means of Draw-Net: after the introduction of
the inhibitor arc (Fig. 3.b), the updated XML definition of PN can be automatically generated by the
UML2XML filter. Then, still by means of Draw-Net, we can select the PN formalism, and build the
PN model of the producer/consumer system (Fig. 4). In particular, it contains: one instance of the
Element class Place in order to model the buffer; two instances of Transition to produce and consume
items (tokens) in the buffer (place); two instances of IOarc to move tokens; one instance of INHarc to
disable the production of tokens. In particular, the property tokens of the place is set to 0 (the buffer
is initially empty); the property weight is equal to 1 for both input/output arcs (one token is produced
or consumed after the firing of a transition); the property weight is equal to 10 for the inhibitor arc, in
order to suspend the production of tokens when the content of the buffer reaches 10 items.

4 Conclusions and future work
DMS is a customizable framework supporting any graph-based formalism. The CD based definition
of formalisms provides a graphical and intuitive way to manage existing and new formalisms. In this
way, the model designer can exploit a familiar language such as UML, and avoids manipulating XML
files or learning how DNForGe works. Several types of classes permit to distinguish the primitives
composing a formalism; the CD acts as a “meta-model” and can be handled by Draw-Net itself,
without the support of UML editors. To this aim, the CD formalism and two filters (UML2XML
and XML2UML) have been introduced in DMS. An application example has been shown: the PN
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Figure 4: A PN model edited by means of Draw-Net.
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formalism has been defined as a CD (Fig. 3); then the PN model of the producer/consumer system
has been designed according to that formalism (Fig. 4).

DMS was designed to deal with single-formalism models, such as PN models, and multi-formalism
models [16], i.e. container models composed by several sub-models, each conforming to a different
formalism [4, 5]. At the moment, the CD representation does not deal yet with multi-formalism, but
this can be faced as future work. Another development can be the definition of other types of con-
straint, possibly involving properties; for instance, the initial marking of a place cannot be negative.
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