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Abstract

Reasoning about exceptions in ontologies is nowadays one of the challenges

the description logics community is facing. The paper describes a preferential

approach for dealing with exceptions in Description Logics, based on the rational

closure. The rational closure has the merit of providing a simple and efficient

approach for reasoning with exceptions, but it does not allow independent handling

of the inheritance of different defeasible properties of concepts. In this work we

outline a possible solution to this problem by introducing a weaker variant of the

lexicographical closure, that we call skeptical closure, which requires to construct

a single base. We develop a bi-preference semantics for defining a characterization

of the skeptical closure.

1 Introduction

Reasoning about exceptions in ontologies is nowadays one of the challenges the de-

scription logics community is facing, a challenge which is at the very roots of the de-

velopment of non-monotonic reasoning in the 80s. Many non-monotonic extensions of

Description Logics (DLs) have been developed incorporating non-monotonic features

from most of the non-monotonic formalisms in the literature [59, 3, 26, 28, 46, 16, 10,

38, 21, 54, 27, 9, 48, 24, 19, 39, 40], or defining new constructions and semantics such

as [45, 8, 12].

We focus on the rational closure for DLs [21, 19, 41, 40, 18] and, in particular,

on the construction developed in [40], which is semantically characterized by minimal
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(canonical) preferential models. While the rational closure provides a simple and effi-

cient approach for reasoning with exceptions, exploiting polynomial reductions to stan-

dard DLs [33, 53, 36, 14], the rational closure does not allow an independent handling

of the inheritance of different defeasible properties of concepts1 so that, if a subclass of

C is exceptional for a given aspect, it is exceptional tout court and does not inherit any

of the typical properties of C. This problem was called by Pearl [56] the “blockage of

property inheritance” problem, and it is an instance of the “drowning problem” in [6].

To cope with this problem Lehmann [51] introduced the notion of the lexicographic

closure, which was extended to Description Logics by Casini and Straccia [23], while

in [24] the same authors develop an inheritance-based approach for defeasible DLs.

Other proposals to deal with this “all or nothing” behavior in the context of DLs are the

Relevant Closure [17] by Casini et al., the logic of overriding, DLN , by Bonatti,et al.

[8, 11], a nonmonotonic description logic in which conflicts among defaults are solved

based on specificity, and the work by Gliozzi [44], who develops a multi-preference se-

mantics for defeasible inclusions in which models are equipped with several preference

relations. The idea of having different preference relations was first proposed by Gil

[29] to define a multi-typicality extension of ALC+Tmin [39], a logic with a different

minimal model semantics w.r.t. the rational closure semantics.

In this paper we will consider a variant of the lexicographic closure. The lexi-

cographic closure allows for stronger inferences with respect to rational closure, but

computing the defeasible consequences in the lexicographic closure may require to

compute several alternative bases [51], namely, consistent sets of defeasible inclusions

which are maximal with respect to the (so called) seriousness ordering. We propose an

alternative notion of closure, the skeptical closure, which can be regarded as a more

skeptical variant of the lexicographic closure, which does not require to generate alter-

native maximally consistent bases for a given concept. Roughly speaking, to check the

defeasible properties of a concept C, the construction builds a single maximal consis-

tent set of defeasible inclusions compatible with C (a base for C), starting from the

defeasible inclusions with highest rank and progressively adding less specific inclu-

sions, when consistent. If there are conflicting defeasible inclusions at a certain stage,

all defeasible inclusions with equal or lower rank are excluded. Our construction re-

quires a polynomial number of calls to an underlying preferential ALC +TR reasoner

to establish the defeasible properties of a concept C.

To develop a semantic characterization of the skeptical closure, we introduce a

bi-preference semantics (BP-semantics), which is still in the realm of the preferential

semantics for defeasible description logics [37, 16, 38], developed along the lines of the

preferential semantics by Kraus, Lehmann and Magidor [49, 50]. The BP-semantics

has two preference relations and is a refinement of the rational closure semantics. We

show that the BP-semantics provides a characterization of the MP-closure, a variant of

the lexicographic closure introduced for ALC in [34, 32] as a sound approximation of

the multipreference semantics. Using this semantic characterization, we show that the

skeptical closure is well-behaved, as it satisfies all the KLM properties of a preferential

consequence relation [49], and that it is neither weaker nor stronger than the Relevant

1By properties of a concept, here we generically mean characteristic features of a class of objects (repre-

sented by a set of inclusion axioms) rather than roles (properties in OWL [55]).
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closure.

Plan of the paper is the following. Section 2 recalls the definition of the rational

closure for ALC in [40] and of its semantics. Section 3 defines the skeptical closure.

Section 4 introduces the bi-preference semantics and Section 5 shows that it provides a

semantic characterization of the MP-closure for ALC. In Section 6, the BP-semantics

is used to define a semantic characterization for the skeptical closure, its KLM prop-

erties are studied, and comparisons with the Relevant Closure are given. Finally, in

Section 7, we discuss related work and conclude the paper.

This work is based on the extended abstract presented at CILC/ICTCS 2017 [30],

where the notion of skeptical closure was first introduced.

2 The rational closure for ALC
We briefly recall the logic ALC+TR which is at the basis of a rational closure construc-

tion proposed in [40] for ALC. The idea underlying ALC+TR is that of extending the

standard ALC with concepts of the form T(C), whose intuitive meaning is that T(C)
selects the typical instances of a concept C, to distinguish between the properties that

hold for all instances of concept C (C ⊑ D), and those that only hold for the typical

such instances (T(C) ⊑ D). Given a set NI of individual names, a set NC of concept

names, and a set NR of role names, the ALC +TR language is defined as follows:

CR := A | ⊤ | ⊥ | ¬CR | CR ⊓ CR | CR ⊔ CR | ∀R.CR | ∃R.CR

CL := CR | T(CR),

where A ∈ NC is a concept name and R ∈ NR a role name. A knowledge base K is

a pair (T ,A), where the TBox T contains a finite set of concept inclusions CL ⊑ CR,

and the ABox A contains a finite set of assertions of the form CR(a) and R(a, b), for

a, b ∈ NI and R ∈ NR. The inclusions of the form CR ⊑ CR are called strict, and the

set of the strict inclusions in T is denoted by StrictT . We call CL an extended concept

and CR an ALC concept (or non-extended concept).

The semantics of ALC with typicality is defined in terms of preferential mod-

els, extending to ALC the preferential semantics by Kraus, Lehmann and Magidor

in [49, 50]: ordinary models of ALC are extended with a preference relation < on

the domain ∆, whose intuitive meaning is to compare the “typicality” of domain el-

ements: x < y means that x is more typical than y. The instances of T(C) are the

instances of concept C that are minimal with respect to <. The instances of a con-

cept C are also called C-elements as they are the elements of the domain belonging

to the interpretation of C. For a set S of domain elements we let min<(S) = {u |
u ∈ S and there is no z such that z < u} be the set of the minimal elements in S w.r.t.

<. The preference relation < is assumed to be well-founded (i.e., there is no infinite

<-descending chain, so that, if S 6= ∅, also min<(S) 6= ∅). In ranked models, which

characterize ALC +TR, < is further assumed to be modular (i.e., for all x, y, z ∈ ∆,

if x < y then either x < z or z < y). Ranked models characterize ALC +TR. Let us

recap their definition.

Definition 2.1 (Preferential and ranked interpretations of ALC +T) A preferential

interpretation M is any structure M = 〈∆, <, I〉 where: ∆ is the domain; < is an
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irreflexive, transitive and well-founded relation over ∆. I is an interpretation func-

tion that maps each concept name C ∈ NC to CI ⊆ ∆, each role name R ∈ NR to

RI ⊆ ∆I ×∆I and each individual name a ∈ NI to aI ∈ ∆. For concepts of ALC,

CI is defined in the usual way in ALC interpetations [2], namely: ⊤I = ∆, ⊥I = ∅,

(¬C)I = ∆\CI , (C ⊓D)I = CI ∩DI , (C ⊔D)I = CI ∪DI and

(∀R.C)I = {x ∈ ∆ | for all y, (x, y) ∈ RI implies y ∈ CI}

(∃R.C)I = {x ∈ ∆ | for some y (x, y) ∈ RI and y ∈ CI}

For the T operator, we have (T(C))I = min<(C
I). When the interpretation I is also

modular, I is called a ranked interpretation.

The notion of satisfiability of a KB in an interpretation I = 〈∆, <, I〉 is defined as

usual:

- I satisfies an inclusion C ⊑ D, if CI ⊆ DI ;

- I satisfies an assertion C(a) (resp., R(a, b)), if aI ∈ CI (resp., (aI , bI) ∈ RI).

In particular, I satisfies an inclusionT(C) ⊑ D if (T(C))I ⊆ DI (i.e, if min<(C
I) ⊆

DI ).

A preferential (ranked) model of a knowledge base K = (T ,A) is a preferential

(ranked) interpretation M that satisfies all inclusions in T and all assertions in A. A

query F (either an assertion CL(a) or an inclusion CL ⊑ CR) is preferentially (ratio-

nally) entailed by a knowledge base K , i.e. K |=ALC+T F (resp., K |=ALC+TR
F ), if

F is satisfied in all the preferential (ranked) models of K . As an example of ALC+TR

knowledge base consider the following:

Example 2.2 Let K = (T ,A) be a knowledge base with TBox T :

T(Student) ⊑ ¬Pay Taxes

T(WStudent) ⊑ Pay Taxes

T(Student) ⊑ Smart

WStudent ⊑ Student

and ABoxA = {Student(tom),WStudent(mary), hasFriend(tom,mary)}. The TBox

states that typical students do not pay taxes, but typical working students (which are

students) do pay taxes, and that typical students are smart. The ABox contains the

individual names tom and mary and the role name hasFriend . In this work, however,

we will manly focus on defeasible reasoning involving TBox.

The definition of the rational closure for ALC and its semantics in [40] exploit

the extension ALC +TR of ALC with typicality, under a ranked semantics. As shown

therein, ALC+TR enjoys the finite model property and finite ALC+TR models can be

equivalently defined by postulating the existence of a function kM : ∆ 7−→ N, where

kM assigns a finite rank to each individual: the rank kM(x) of a domain element

x ∈ ∆ is the length of the longest chain x0 < · · · < x from x to a minimal x0

(s.t. there is no x′ with x′ < x0). The rank kM(CR) of a concept CR in M is

i = min{kM(x) : x ∈ CI
R}.

Although the typicality operatorT itself is nonmonotonic (i.e. T(C) ⊑ D does not

imply T(C ⊓ E) ⊑ D), the logic ALC +TR is monotonic: what is logically entailed
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by K is still entailed by any K ′ with K ⊆ K ′. In [41, 40] a non-monotonic con-

struction of rational closure (RC for short) has been defined for ALC +TR, extending

the construction of RC introduced by Lehmann and Magidor [50] to the description

logic ALC. The definition of RC is based on the notion of exceptionality. Roughly

speaking T(C) ⊑ D holds in the rational closure of T if C is less exceptional than

C ⊓ ¬D. To determine the exceptionality of concepts and inclusions in RC, we build

a non-increasing sequence E0 ⊇ E1 ⊇ E2 . . . of subsets of T , starting from E0 = T .

We recall the construction from [40].

Definition 2.3 (Exceptionality of concepts and inclusions) Let E ⊆ T and C a con-

cept. C is exceptional for E if and only if E |=ALC+TR
T(⊤) ⊑ ¬C. An inclusion

T(C) ⊑ D is exceptional for E if C is exceptional for E. The set of inclusions which

are exceptional for E will be denoted by E(E).

Given a TBox T , we let E0 = T and, for i > 0,

Ei = E(Ei−1 ) ∪ {C ⊑ D ∈ T s.t. T does not occur in C}.

Observe that, being the knowledge base finite, there is an n ≥ 0 such that, for all

m > n,Em = En or Em = ∅. The sequence E0 ⊇ E1 ⊇ . . . determines the rank (the

exceptionality) of defeasible inclusions and of concepts in the RC wrt. the TBox T .

Concept C has rank i in RC (denoted rank(C) = i) iff i is the least natural number for

which C is not exceptional for Ei. If C is exceptional for all Ei then rank(C) = ∞
(C has no rank). The rank of a typicality inclusion T(C) ⊑ D is equal to rank(C).

Example 2.4 Let K be a knowledge base in Example 2.2 with TBox T :

T(Student) ⊑ ¬Pay Taxes

T(WStudent) ⊑ Pay Taxes

T(Student) ⊑ Smart

WStudent ⊑ Student

It is possible to see that, from the construction above, we get:

E0 = T
E1 = {T(WStudent) ⊑ Pay Taxes , WStudent ⊑ Student}.

In particular, concept Student has rank 0, while WStudent has rank 1. The rank of

Student is 0, as Student is non-exceptional for E0 , i.e. E0 6|=ALC+TR
T(⊤) ⊑ ¬Student .

In fact, there is a model M of E0 (i.e., of T ) containing a domain element x ∈ ∆
with rank 0 (an instance of T(⊤)), which is also an instance of Student2. Instead,

WStudent has rank 1, as it is exceptional for E0 : i.e. E0 |=ALC+TR
T(⊤) ⊑ ¬

2The instances of T(⊤) in a model are all the elements of the domain which are maximally typical

(as they have rank 0). Observe that here, as in Lehmann’s semantics of the RC, we use a global notion of

preference <, so that T(⊤) can be intended as the set of domain elements which are maximally typical under

“any” respect, in that they do not violate any defeasible inclusion of the knowledge base. A multipreference

semantics, in which an element can be more typical than another under some respect but less typical under

another one, was considered in [44], as a way of defining a refinement of the rational closure and cope with

the inheritance blocking problem.
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WStudent . In fact, no model of T can contain an element y with rank 0 which is an in-

stance of WStudent (as such a y would be a typical WStudent and hence a tax payer,

but also an typical Student and, hence, would not be a tax payer, a contradiction).

One can see that the higher is the rank, the more exceptional (and specific) is a

concept (e.g., WStudent is more specific than Student; WStudent ⊓ Italian ⊓¬Pay
Taxes is more specific thanWStudent). In particular, the rank of the concepts Student

⊓Italian , and Student⊓ Italian ⊓ ¬Pay Taxes is 0; the rank of concepts Student⊓
Italian ⊓ Pay Taxes , WStudent ⊓ Italian and WStudent ⊓Italian ⊓ Pay Taxes is

1; and the rank of WStudent ⊓ Italian ⊓¬Pay Taxes is 2.

Rational closure builds on the notion of exceptionality:

Definition 2.5 (Rational closure of TBox) Let K = (T ,A) be a DL knowledge base.

The rational closure of T is defined as:

RC(T ) ={T(C) ⊑ D | either rank(C) < rank(C ⊓ ¬D) or

rank(C) = ∞} ∪ {C ⊑ D ∈ T | T |=ALC+TR
C ⊑ D}

where C and D are ALC concepts.

In Example 2.4, the query T(Student ⊓ Italian) ⊑ ¬Pay Taxes is in the rational clo-

sure of the TBox T , as rank(Student ⊓ Italian) < rank(Student ⊓ Italian ⊓ Pay

Taxes); so is the query T(WStudent ⊓ Italian) ⊑ Pay Taxes .

Exploiting the fact that entailment in ALC+TR can be polynomially encoded into

entailment in ALC, it is easy to see that deciding if an inclusion T(C) ⊑ D belongs

to the rational closure of TBox is a problem in EXPTIME and requires a polynomial

number of entailment checks to an ALC knowledge base. In [40] it is also shown

that the semantics corresponding to rational closure can be given in terms of minimal

canonicalALC+TR models. In such models the rank of domain elements is minimized

to make each domain element as typical as possible. Furthermore, canonical models

are considered in which all possible combinations of concepts are represented. This is

expressed by the following definitions.

Definition 2.6 (Minimal models of K) Given two ranked models M =〈∆, <, I〉 and

M′ = 〈∆′, <′, I ′〉 of K , we say that M is preferred to M′ (M ≺ M′) if: ∆ =
∆′; CI = CI′

for all (non-extended) concepts C; and, for all x ∈ ∆, it holds that

kM(x) ≤ kM′(x) whereas there exists y ∈ ∆ such that kM(y) < kM′(y).
Given a knowledge base K = (T ,A), we say that M is a minimal model of K

(with respect to TBox) if it is a model satisfying K and there is no model M′, satisfying

K , such that M′ ≺ M.

The models corresponding to rational closure are required to be canonical. This prop-

erty, expressed by the following definition, is needed when reasoning about the (rela-

tive) rank of the concepts: it is important to have them all represented by some instance

in the model.
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Definition 2.7 (Canonical model) Given K = (T ,A), a model M =〈∆, <, I〉 satis-

fying K is canonical if for each set of non-extended concepts {C1, C2, . . . , Cn} consis-

tent with K (i.e., such that K 6|=ALC+TR
C1 ⊓ C2 ⊓ · · · ⊓ Cn ⊑ ⊥), there exists (at

least) a domain element x ∈ ∆ such that x ∈ (C1 ⊓ C2 ⊓ · · · ⊓Cn)
I .

Definition 2.8 (Minimal canonical models of K) M is a minimal canonical (ranked)

model of K , if it is a ranked canonical model of K and it is minimal with respect ≺
(see Definition 2.6) among the ranked canonical models of K .

The following result from [40] establishes a correspondence between satisfiability of a

subsumption in minimal canonical models and the rational closure construction.

Theorem 2.9 Let K = (T ,A) be a knowledge base and C ⊑ D a query (with C

an extended concept). C ⊑ D ∈ RC(T ) if and only if C ⊑ D holds in all minimal

canonical models of K .

Furthermore, by Proposition 13 in [40]: the rank kM(C) of a conceptC in any minimal

canonical model M of K coincides with the rank rank(C) assigned to C by the ratio-

nal closure construction, when rank(C) is finite. When rank(C) = ∞, the concept C

is not satisfiable in any model of the knowledge base.

Example 2.10 Considering again the KB in Example 2.4, we can see that defeasible in-

clusions T (Student⊓ Italian) ⊑ ¬Pay Taxes and T(WStudent Italian) ⊑ Pay

Taxes are satisfied in all the minimal canonical models of K . In fact, for the first inclu-

sion, in all the minimal canonical models of K , Student ⊓ Italian has rank 0, while

Student⊓ Italian ⊓ Pay Taxes has rank 1. Thus, in all the minimal canonical models

of K each typical Italian student must be an instance of ¬Pay Taxes .

Instead, the defeasible inclusion T(WStudent) ⊑ Smart is not minimally entailed

from K and, consistently, this inclusion does not belong to the rational closure of

T . Indeed, the concept WStudent is exceptional for E0, as it violates the defeasible

property of students that, normally, do not pay taxes. For this reason, WStudent does

not inherit “any” of the defeasible properties of Student , the well known “blocking of

property inheritance problem” of rational closure [56].

To overcome this weakness of RC, Lehmann introduced the notion of lexicographic

closure [51], which strengthens the rational closure by allowing, roughly speaking, a

class to inherit as many as possible of the defeasible properties of more general classes,

giving preference to the more specific ones. The lexicographic closure has been ex-

tended to the description logic ALC by Casini and Straccia in [23]. In the example

above, the property of students of being smart would be inherited by working students,

as it is consistent with all other (strict or defeasible) properties of working students. In

the general case, there may be exponentially many alternative bases (sets of defaults)

to be considered for a given concept, which are all maximally preferred, and the lexi-

cographic closure has to consider all of them to determine which defeasible inclusions

can be accepted. The next section proposes a weaker approach, which leads to the

construction of a single base for each concept.
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3 The Skeptical Closure

Given an ALC concept B, one wants to identify the defeasible properties of typical

B-elements (if any). Assume that the rational closure of the knowledge base K has

already been constructed and k is the (finite) rank of concept B in the rational closure3.

The typical B elements in the minimal canonical models of K are clearly compatible

(by construction) with all the defeasible inclusions in Ek (by Definition 2.3 in the pre-

vious section) , but they might satisfy further defeasible inclusions with lower rank, i.e.

those belonging to E0 ,E1 , . . . ,Ek−1 .

For instance, in the example above, concept WStudent has rank 1, and for working

students all the defeasible inclusions in set E1 above hold (and, in particular, typical

working students pay taxes). Among the defeasible inclusions in E0 , while the defea-

sible inclusion T(Student) ⊑ ¬Pay Taxes is not compatible with the above property

of typical students, the defeasible property T(Student) ⊑ Smart is compatible, and

there may be typical WStudent which are Smart.

In general, there may be alternative maximal sets of defeasible inclusions compati-

ble with B, among which one would prefer those that maximize the sets of defeasible

inclusions with higher rank. This is indeed what is done by the lexicographic closure

[51], which considers alternative maximally preferred sets of defaults called ”bases”,

that, roughly speaking, maximize the number of defaults with higher ranks with respect

to those with lower ranks (degree of seriousness), and where situations which violate a

number of defaults with a certain rank are considered to be less plausible than situations

which violate a lower number of defaults with the same rank. In general, there may be

exponentially many alternative sets of defeasible inclusions (called bases in [51]) which

are maximal and consistent for a given concept B, and the lexicographic closure has

to consider all of them to determine if a defeasible inclusion is to be accepted or not.

As a difference, in the following we define a construction which skeptically builds a

single set of defeasible inclusions compatible with a concept B. The advantage of this

construction is that it only requires (for each concept B) a polynomial number of calls

to the underlying preferential ALC +TR reasoner.

Let B be a concept with rank k in the rational closure. In order to see which are

the defeasible inclusions compatible with B (beside those in Ek), we first single out

the defeasible inclusions which are individually consistent with B and Ek. This is

done while building the set SB of the defeasible inclusions which are not overridden

by those in Ek. As the set SB might not be globally consistent with B, for the presence

of conflicting defaults, we will consider the sets of defaults in SB with the same rank,

going from k − 1 to 0 and we will add them to Ek, if consistent (starting from the

highest rank). When we find an inconsistency among defaults with rank i in SB , we

stop. In this way, we extend Ek with all defeasible inclusions in SB with rank from

k − 1 to i + 1, which are not conflicting with each other and can be inherited by B

instances (even though the construction of rational closure has excluded them from

Ek). Instead, as there is some conflict among defaults with rank i in SB, we exclude

all defaults with rank from 0 to i.

3When rank(B) = ∞, the defeasible inclusion T(B) ⊑ D belongs to the rational closure of TBox for

any D. Hence, we assume T(B) ⊑ D also belongs to the skeptical closure, and we defer considering this

case until Definition 3.5. So far, we always assume k to be finite.
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For an ALC concept B with rank(B) = k, let us define the set SB of typicality

inclusions T(C) ⊑ D in the TBox T which are individually compatible with B with

respect to Ek as:

SB = {T(C) ⊑ D ∈ T | Ek ∪ {T(C) ⊑ D} 6|=ALC+TR
T(⊤) ⊑ ¬B}4.

For instance, in Example 2.4, for B = WStudent , which has rank 1, we have that

SWStudent = {T(Student) ⊑ Smart , T(WStudent) ⊑ PayTaxes}

is the set of defeasible inclusions compatible with WStudent wrt. E1. The defeasible

inclusion T(Student) ⊑ ¬Pay Taxes is not included in SWStudent as it is not (indi-

vidually) compatible withWStudent (the conflicting defaultT(WStudent) ⊑ PayTaxes

with rank 1 overrides it).

Clearly, although each defeasible inclusion in SB is compatible with B, it might

be the case that overall the set SB is not compatible with B, i.e., Ek ∪ SB |=ALC+TR

T(⊤) ⊑ ¬B.

Let us consider the following variant of Example 2.4.

Example 3.1 Let T be the TBox:

T(Student) ⊑ Young

T(Student) ⊑ ¬PayTaxes
T(Employee) ⊑ PayTaxes

T(Student ⊓ Employee) ⊑ ¬Young
Let B = Student ⊓ Employee . While concepts Student and Employee have rank 0,

the concept Student ⊓Employee has rank 1. In this example, E0 = T and

E1 = StrictT ∪ {T(Student ⊓ Employee) ⊑ ¬Young}.

The property that typical employed students are not young overrides the property that

students are typically young. Indeed the default T(Student) ⊑ Young is not individu-

ally compatible with Student⊓Employee . Instead, the defeasible propertiesT(Student) ⊑
¬PayTaxes and T(Employee) ⊑ Pay- Taxes are both individually compatible with

Student⊓ Employee , and

SB = {T(Student) ⊑ ¬PayTaxes , T(Employee) ⊑ PayTaxes}.

Nevertheless, the overall set SB is not compatible with Student ⊓ Employee . In fact,

the two defeasible inclusions in SB are conflicting.

When compatible with B, SB is the unique maximal basis with respect to the seri-

ousness ordering in [51] (as defined for constructing the lexicographic closure). How-

ever, when SB is not compatible with B, we cannot use all the defeasible inclusions in

SB to derive conclusions about typical B elements. In this case, we could either use

the defeasible inclusions in Ek only, as in the rational closure, or we could additionally

4Notice that the defeasible inclusions with rank ≥ k are already in Ek and are always compatible with

Ek . For each B, the rank rank (B) = k is used here and below to select the set Ek with respect to which

compatibility is to be checked.
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use a subset of the defeasible inclusions SB with rank less than k = rank(B) (i.e.,

inclusions not in Ek). This is essentially what is done in the lexicoghaphic closure,

where (in essence) the most preferred subsets of SB are selected according to a lexi-

cographic order, which prefers defaults with higher ranks to defaults with lower ranks.

In our construction, instead, we consider the subsets SB
k−1

, . . . , SB
1 , SB

0 of the set SB

defined above, adding to Ek all the defeasible inclusions in SB with rank k−1 (let this

set be SB
k−1

), provided they are (altogether) compatible with B wrt. Ek. Then, we add

all the defeasible inclusions in SB with rank k − 2 which are individually compatible

with B wrt. Ek ∪ SB
k−1

(let this set be SB
k−2

), provided they are altogether compatible

with B wrt. Ek ∪ SB
k−1

, and so on and so forth, for lower ranks, until a set SB
h−1

is

found, which is incompatible with the previous inclusions and Ek. This leads to the

construction below.

Definition 3.2 Let K = (T ,A) be a knowledge base and B a concept such that

rank(B) = k. Given two sets of defeasible inclusions S, S′ ⊆ T , S is globally com-

patible with B w.r.t. Ek ∪ S′ if

Ek ∪ S ∪ S′ 6|=ALC+TR
T(⊤) ⊑ ¬B

Definition 3.3 Let K be a knowledge base and B a concept such that rank(B) = k.

The skeptical closure of K wrt. B is the set of inclusions Ssk,B = Ek ∪SB
k−1

∪SB
k−2

∪

. . . ∪ SB
h where:

• SB
i ⊆ Ei − Ei+1 is the set of defeasible inclusions with rank i which are indi-

vidually compatible with B wrt. Ek ∪ SB
k−1

∪ SB
k−2

∪ . . .∪SB
i+1 (for each finite

rank i < k);

• h is the least j (for 0 ≤ j < k) such that SB
j is globally compatible with B wrt.

Ek ∪ SB
k−1

∪ SB
k−2

∪ . . . ∪ SB
j+1, if such a j exists; Ssk,B = Ek, otherwise.

Intuitively, Ssk,B contains, for each rank j, all the defeasible inclusions having rank j

which are compatible with B and with the more specific defeasible inclusions (having

rank > j). As SB
h−1

is not included in the skeptical closure, it must be that Ek∪SB
k−1

∪
SB
k−2

∪ . . .∪Sh∪SB
h−1

|=ALC+TR
T(⊤) ⊑ ¬B, i.e., the set SB

h−1
contains conflicting

defeasible inclusions which are not overridden by more specific ones. In this case, the

inclusions in SB
h−1

(and, similarly, all the defeasible inclusions with rank lower than

h− 1) are not included in the skeptical closure w.r.t. B.

Example 3.4 For the knowledge base K in Example 2.4, where B = WStudent has

rank 1, we have SB
0 = {T(Student) ⊑ Smart}, which is compatible with WStudent

wrt. E1. Hence, Ssk,B = E1 ∪ SB
0 .

Let us define when a defeasible inclusion belongs to the skeptical closure of a TBox

T .

Definition 3.5 Let K = (T ,A) be a knowledge base andT(B) ⊑ D a query. T(B) ⊑
D is in the skeptical closure of T if either rank(B) = ∞ holds in the rational closure

construction of T , or rank(B) is finite and Ssk,B |=ALC+TR
T(⊤) ⊑ (¬B ⊔D) (for

B and D ALC concepts).
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Once the rational closure of T has been computed, the identification (for a given

concept B) of the defeasible inclusions in Ssk,B requires a number of entailment

checks which is linear in the number of defeasible inclusions in TBox. First, the

individual compatibility with B of each defeasible inclusion in T (wrt. some set

Ek ∪ SB
k−1

∪ SB
k−2

∪ . . . ∪ SB
i+1, which depends on the rank i of the inclusion) has

to be checked to compute all the SB
i ’s (requiring one ALC +TR entailment check, for

each defeasible inclusion). Then, a compatibility check is needed, to verify the global

compatibility of SB
i , for each rank i from k − 1 to 0, in the worst case. As the maxi-

mum number or ranks in the rational closure is bounded by the number of defeasible

inclusions in TBox (but it might be significantly lower in practical cases), computing

the skeptical closure for a concept B requires a number of entailment checks which

is, in the worst case, O(2 × |T |). As deciding ALC + TR entailment is in EXPTIME

[42, 36], checking whether a query T(C) ⊑ D is in the skeptical closure of a TBox T
is still a problem in EXPTIME.

Although computing the rational closure is already EXPTIME-hard (from hardness

of subsumption in ALC with general TBox [2]) differently from the RC construction,

which requires a quadratic number of calls to an ALC + TR reasoner to compute the

TBox ranking, here, after computing the ranking, we still need a linear number of

entailment checks for any concept B in a query T(B) ⊑ D.

Example 3.6 For the knowledge base K in Example 2.4, we have seen that, for B =
WStudent (with rank 1), SB

0 = {T(Student) ⊑ Smart} is (globally) compatible with

WStudent w.r.t. E1, and Ssk,B = E1 ∪ SB
0 . It is possible to see that Ssk,B |=ALC+TR

T(⊤) ⊑ (¬WStudent ⊔ Smart) (that is, for all the most typical elements of the do-

main satisfying Ssk,B , they are not WStudent’s or they are Smart). T(WStudent) ⊑
Smart is then in the skeptical closure of TBox. In this case, the typical property of

students of being Smart is inherited by working students.

Example 3.7 For the knowledge base K ′ in Example 3.1, as we have seen, B =
Student⊓ Employee has rank 1, E1 = {T(Student ⊓ Employee) ⊑ ¬ Young}, and

SB = {T(Student) ⊑ ¬PayTaxes , T(Employee) ⊑ PayTaxes}. In this case, as

SB
0 = SB contains conflicting defaults about tax payment, SB

0 is not (globally) com-

patible with Student⊓ Employee and E1, so that Ssk,B = E1.

Let us consider the following knowledge base from [34] to see that, in the skeptical

closure, inheritance of defeasible properties, when not overridden by more specific

concepts, applies to concepts of all ranks.

Example 3.8 Consider a knowledge base K = (T ,A), where A = ∅ and T contains

the following inclusions:

Penguin ⊑ Bird BabyPenguin ⊑ Penguin

T(Bird) ⊑ Fly T(Bird) ⊑ NiceFeather

T(Penguin) ⊑ ¬Fly T(Penguin) ⊑ BlackFeather

T(BabyPenguin) ⊑ ¬BlackFeather .

Here, we expect that the defeasible property of birds having a nice feather is inherited

by typical penguins, even though penguins are exceptional birds regarding flying. We
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also expect that typical baby penguins inherit the defeasible property of penguins that

they do not fly, although the defeasible property BlackFeather is instead overridden for

typical baby penguins, and that they inherit the typical property of birds of having nice

feather. We have that rank(Bird) = 0, rank(Penguin) = 1, rank(BabyPenguin) =
2 as, in the rational closure construction, inclusions T(Bird) ⊑ Fly and T(Bird) ⊑
NiceFeather have rank 0, whileT(Penguin) ⊑ ¬Fly andT(Penguin) ⊑BlackFeather

have rank 1 and E2 = StrictT ∪ {T(BabyPenguin) ⊑ ¬BlackFeather}.

For B = BabyPenguin , we get SB
1 = {T(Penguin) ⊑ ¬Fly} and SB

0 = {T
(Bird) ⊑ NiceFeather}. Also, SB

1 is globally consistent with B wrt. E2, and SB
0 is

globally consistent with B wrt. E2∪SB
1 . Hence, S sk ,B = E2 ∪ SB

1 ∪ SB
0 = {T(Baby -

Penguin) ⊑ ¬BlackFeather ,T(Penguin)⊑ ¬Fly , T(Bird) ⊑ NiceFeather}. The

query T(BabyPenguin) ⊑ NiceFeather ⊓ ¬Fly ⊓ ¬Black - Feather is in the skep-

tical closure of TBox T , as Ssk,B |=ALC+TR
T(⊤) ⊑ ¬BabyPenguin ⊔(Nice-

Feather⊓ ¬Fly ⊓ ¬BlackFeather).

To see that the notion of skeptical closure is rather weak, let us slightly modify

Example 3.1.

Example 3.9 Let us remove the last inclusion from the TBox T in Example 3.1:

T(Student) ⊑ Young

T(Student) ⊑ ¬PayTaxes
T(Employee) ⊑ PayTaxes

Let B = Student ⊓ Employee . As in Example 3.1, the rational closure assigns rank 0
to concepts Student and Employee and rank 1 to Student ⊓ Employee . In this case,

E0 = T , E1 = ∅ and

SB
0 = {T(Student) ⊑¬Pay Taxes , T(Student) ⊑ Young , T(Employee) ⊑

PayTaxes}.

As SB
0 is not (globally) compatible with Student⊓ Employee and E1, again Ssk,B =

E1. Therefore, the defeasible property that typical students are young is not inherited

by typical employed students, and the inclusion T(Student ⊓ Employee) ⊑ Young is

not in the skeptical closure of T .

The skeptical closure is a weak construction: in Example 3.9 due to the conflicting

defaults concerning tax payment for Employee and Student (both having rank 0) also

the property that typical students are young is not inherited by the typical employed

students. Notice that, the property that typical employed students are young would be

accepted in the lexicographic closure of K ′, as there are two bases, the one including

T(Student) ⊑¬Pay Taxes and the other one including T(Employee) ⊑ Pay Taxes ,

both containing T(Student) ⊑ Young .

In the next section, we introduce a semantics based on two preference relations. We

will show that this semantics characterizes a variant of the lexicographic closure intro-

duced in [34] and exploit it to define a semantic construction for the weaker skeptical

closure.
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4 Refined, bi-preference interpretations

To capture the semantics of the skeptical closure, we build on the preferential seman-

tics for rational closure of ALC + TR, introducing a notion of refined, bi-preference

interpretation (for short, BP-interpretation), which contains an additional notion of

preference with respect to an ALC +TR interpretation. We let an interpretation to be

a tuple M = 〈∆, <rc, <, I〉, where the triple 〈∆, <rc, I〉 is a ranked interpretation as

defined in Section 2 and < is an additional preference relation over ∆, with the proper-

ties of being irreflexive, transitive and well-founded (but we do not require modularity

of <). In BP-interpretations, < represents a refinement of <rc.

Definition 4.1 (BP-interpretation) Given a knowledge base K, a bi-preference inter-

pretation (or BP-interpretation) is a structure M = 〈∆, <rc, <, I〉, where ∆ is a

domain, I is an interpretation function as defined in Definition 2.1, where, in particu-

lar, (T(C))I = min<(C
I), and <rc and < are preference relations over ∆, with the

properties of being irreflexive, transitive, well-founded. Furthermore <rc is modular.

The bi-preference semantics builds on a ranked semantics for the preference rela-

tion <rc, providing a characterization of the rational closure of K , and exploits it to

define the preference relation < which is not required to be modular. As we will see,

this semantics provides a sound and complete characterization of a variant of the lex-

icographic closure for ALC , the multipreference closure (MP-closure, for short), first

introduced in [34], and we will use it to define a semantic characterization of the skep-

tical closure. The BP-semantics is weaker than the multipreference semantics in [44]

(as the MP-closure is a sound but incomplete construction for the multipreference se-

mantics). It does not exploit multiple preferences w.r.t. aspects and it directly builds

on the preference relation <rc.

Let kM,rc be the ranking function associated in M with the modular relation <rc,

which is defined as the ranking function kM for ranked models in Section 2. Similarly,

the ranking function is extended to concepts by letting the rank kM,rc(C) of a concept

C in a BP-interpretation M (w.r.t. the preference relation <rc) to be kM,rc(C) =
min{kM,rc(x) : x ∈ CI}.

Given a BP-interpretation M = 〈∆, <rc, <, I〉 and an element x ∈ ∆, we say that

x violates the typicality inclusion T(C) ⊑ D if x ∈ (C ⊓ ¬D)I , and that x satisfies

T(C) ⊑ D if x 6∈ (C ⊓ ¬D)I . Let us define when a BP-interpretation is a model of a

knowledge base K:

Definition 4.2 (BP-model of K) Given a knowledge baseK = (T ,A), a BP-interpretation

M = 〈∆, <rc<, I〉 is a BP-model of K if it satisfies both its TBox T and its ABox A,

in the following sense:

(1) for all strict inclusions C ⊑ D in T (i.e., T does not occur in C), CI ⊆ DI ;

(2) for all typicality inclusions T(C) ⊑ D in T , min<rc
(CI) ⊆ DI ;
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(3) < satisfies the following specificity condition:

x < y if (i) y violates some defeasible inclusion T(C) ⊑ D ∈ T satisfied by x and

(ii) for every T(Cj) ⊑ Dj ∈ T , which is violated by x and satisfied by y,

there is a T(Ck) ⊑ Dk ∈ T , which is violated by y and satisfied by x,

such that kM,rc(Cj) < kM,rc(Ck).

(4) for all C(a) in ABox, aI ∈ CI ; and, for all R(a, b) in ABox, (aI , bI) ∈ RI ;

While the satisfiability conditions (1), (2) and (4) are the same as in Section 2 for the

ranked model 〈∆, <rc, I〉, the specificity condition (3) requires the relation < to satisfy

the condition that, if y violates defeasible inclusions more specific than those violated

by x, then x < y (in particular, the condition kM,rc(Cj) < kM,rc(Ck) means that

concept Ck is more specific than concept Cj , as Ck has a higher rank in the rational

closure).

In the definition above we do not impose the further requirement that, for all in-

clusions T(C) ⊑ D, min<(C
I) ⊆ DI holds. However, we can easily see that this

condition follows from condition (2) and from the property that <rc⊆< holds.

Proposition 4.3 Given a knowledge base K and a BP-model M = 〈∆, <rc, <, I〉 of

K , <rc⊆<.

Proof 4.4 We show that x <rc y implies x < y. If x <rc y, then for some r,

kM,rc(x) = r < kM,rc(y). As M is a minimal canonical BP-model of K , by the

correspondence with the rational closure, x satisfies all the defeasible inclusions in

Er. Instead, y falsifies some defeasible inclusion T(Ck) ⊑ Dk with rank(Ck) = r.

As x can only falsify defeasible inclusions with rank less then r, by condition (3) in

Definition 4.2, x < y. Therefore, <rc⊆<.

Corollary 4.5 Given a knowledge base K and a BP-model M = 〈∆, <rc, <, I〉 of K ,

for all inclusions T(C) ⊑ D, min<(C
I) ⊆ DI holds.

Proof 4.6 From item (2) in Definition 4.2, we know thatmin<rc
(CI) ⊆ DI . By Propo-

sition 4.3, <rc⊆<, from which it follows that min<(C
I) ⊆ min<rc

(CI). Hence, the

thesis follows.

We define logical entailment under the BP-semantics as follows: a query F (with

form CL(a) or CL ⊑ CR) is logically entailed by K in the BP-semantics (written

K |=BP F ) if F holds in all BP-models of K . The following result can be easily

proved for BP-entailment:

Theorem 4.7 (a) If K |=ALC+TR
F then also K |=BP F ; (b) if T does not occur in

F the other direction also holds: If K |=BP F then also K |=ALC+TR
F .

Proof 4.8 (Sketch) For part (a), by contraposition, assume K 6|=BP F . Let M =
〈∆, <rc, <, I〉 be a BP-model of K falsifying F . It is easy to see that N = 〈∆, <, I〉
is a preferential model of K (which follows from (1) and (4) in Definition 4.2 and from
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Corollary 4.5), and that N falsifies F . From N we can build a ranked model N ′ of

K falsifying F by letting, for all x ∈ ∆, kN ′(x) to be the length of the longest chain

w0 < · · · < w from w to a minimal w0 (i.e., there is no w′ such that w′ < w0).

Therefore, K 6|=ALC+TR
F .

For part (b), by contraposition, if K 6|=ALC+TR
F , then there is an ALC + TR

model N = 〈∆, <rc, I〉 of K falsifying F . We can define a BP-model of K , M =
〈∆, <rc, <, I〉, letting x < y iff (i) and (ii) in Definition 4.2 hold. It is easy to see

that < is irreflexive, transitive and well-founded and, by construction, M satisfies

conditions (1)-(4) of Definition 4.2. Hence, M is an BP-model of K . Also, as F does

not contain typicality inclusions, it is easy to see that M falsifies F , i.e., K 6|=BP F .

To define a notion of minimal canonical BP-model for K , we proceed as in the semantic

characterization of the rational closure in Section 2. Let dM be a function associated

with the preference relation< such that, for any element x ∈ ∆: if x ∈ min<(∆), then

dM(x) = 0; otherwise, dM(x) is the length of the longest path x0 < x1 < . . . < x

from x to an element x0 such that dM(x) = 0.

Although < is not assumed to be modular, for each domain element x, dM(x)
represents the distance of x from the most preferred elements in the model, and can be

used for defining a notion of preference≺BP among BP-models of K . Let MinRC(K)
be the set of all BP-models M = 〈∆, <rc, <, I〉 of K such that 〈∆, <rc, I〉 is a min-

imal canonical model of K according to the semantics of rational closure in Section

2 (Definition 2.8). Thus, the models in MinRC(K) are those built from the minimal

canonical models of the rational closure of K . The minimal (canonical) BP-models of

K will be the models in MinRC(K) which also minimize the distance dM(x) of each

domain element x.

Definition 4.9 (Minimal canonical BP-Models) Given two BP-models of K , M =
〈∆, <rc, <, I〉 and M′ = 〈∆′, <′

rc, <
′, I ′〉 in MinRC(K), M′ is preferred to M

(written M′ ≺BP M) if

• ∆ = ∆′, I = I ′, and

• for all x ∈ ∆, dM′(x) ≤ dM(x);
• for some y ∈ ∆ , dM′(y) < dM(y)

A BP-interpretation M is a minimal canonical BP-model of K if M is a model of K ,

M ∈ MinRC(K) and there is no M′ ∈ MinRC(K) such that M′ ≺BP M.

We denote by |=min
BP the entailment with respect to minimal canonical BP-models: for

a query F , K |=min
BP F if F is satisfied in all the minimal canonical BP-models of K .

Observe that, according to this definition, for computing the minimal (canonical)

BP-models of K one first needs to compute the set of the minimal (canonical) models

of K which characterize rational closure of K . Then, among such models, one can

select those which are minimal with respect to ≺BP .

Clearly, as for minimal canonical BP-modelsM = 〈∆, <rc, <, I〉 of a KB, 〈∆, <rc

, I〉 is also a minimal ranked model of the RC, as defined in Section 2, <rc corresponds

to the preference relation in minimal canonical models of the rational closure of ALC,

and the rank kM,rc(x) of domain elements will be the same as in the minimal models

of rational closure. Thus, by Theorem 2.9, the value of kM,rc(C), for any concept C,
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in a minimal canonical BP-model is equal to rank(C), the rank assigned to C by the

rational closure construction in Section 2. The rank of domain elements with respect

to <rc is used to determine the preference relation < on domain elements, according

to condition (3).

Example 4.10 Let us consider the TBox T in Example 2.4:

T(Student) ⊑ ¬Pay Taxes

T(WStudent) ⊑ Pay Taxes

T(Student) ⊑ Smart

WStudent ⊑ Student

In all minimal canonical BP-modelsM, kM,rc(Student) = 0, while kM,rc(WStudent)
= kM,rc (WStudent ⊓ Smart) = kM,rc(WStudent ⊓ ¬Smart) = 1, as in the model

of the rational closure. Let x and y be two elements in the domain of M such that:

kM,rc(x) = kM,rc(y) = 1, x ∈ WStudent ⊓ Pay Taxes ⊓ Smart , and y ∈ WStu-

dent ⊓Pay Taxes ⊓ ¬Smart . Such elements x and y exist in M, as M is canonical,

and the two conceptsWStudent ⊓ Pay Taxes ⊓ Smart , andWStudent ⊓ Pay Taxes

⊓¬Smart have rank 1 in the RC. As y violates the typicality inclusion T(Student) ⊑
Smart , which is satisfied by x, and there is no typicality inclusion which is satisfied by

y and violated by x, by condition (3) in Definition 4.2, it must be that x < y.

Hence, in all the minimal canonical BP-models M of the KB, the domain elements

z which are instances of T(WStudent), not only must be instances of WStudent⊓
Pay Taxes (as the defeasible inclusionT(WStudent) ⊑ Pay Taxes must be satisfied

by all typical working students), but also must be instances of WStudent ⊓ Pay Taxes

⊓Smart , as they are preferred in M to WStudent ⊓ Pay Taxes ⊓ ¬Smart instances.

Therefore, T(WStudent) ⊑ Smart holds in M.

In Example 2.4 entailment in minimal canonical BP-models captures the defeasible

inclusions which belong to the skeptical closure. However, this is not the general case.

Example 4.11 Let us consider, as a variant of Example 3.1, a knowledge base K =
(T ,A) with A = ∅ and the following TBox T :

T(Student) ⊑ Young

T(Student) ⊑ ¬PayTaxes ⊓ ∃hasSSN .⊤
T(Employee) ⊑ PayTaxes ⊓ ∃hasSSN .⊤
T(Student ⊓ Employee) ⊑ ¬Young

stating that typical students (and typical employee) have a social security number. As in

Example 3.1 in all the minimal canonical BP-modelM of K , we have kM,rc(Student)=
kM,rc (Employee) = 0 and kM,rc(Student⊓ Employee) = 1, as in the rational

closure. As E1 = StrictT ∪ {T(Student⊓ Employee) ⊑ ¬Young}, in the skeptical

closure construction:

SB
0 = {T(Student) ⊑ ¬PayTaxes ⊓ ∃hasSSN .⊤,T(Employee) ⊑ PayTaxes⊓

∃hasSSN .⊤}
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and the set SB
0 is not (globally) compatible with Student⊓ Employee and E1, so that

Ssk,B = E1. Hence, T(Student ⊓ Employee) ⊑ ∃hasSSN .⊤ is not in the skeptical

closure of the KB. However, it is easy to see that this defeasible inclusion is satisfied in

all the minimal canonical BP-modelsM ofK . i.e.,K |=min
BP T(Student ⊓ Employee) ⊑

∃hasSSN .⊤.

To see why K |=min
BP T(Student ⊓ Employee) ⊑ ∃hasSSN .⊤, let M = 〈∆, <rc

, <, I〉 be a minimal canonical BP-model of K and let

y ∈ T((Student ⊓ Employee))I = min<(Student ⊓ Employee)I ⊆

min<rc
(Student ⊓ Employee)I

(the last inclusion follows from Proposition 4.3. To show that y ∈ (∃hasSSN .⊤)I sup-

pose, for a contradiction, that y 6∈ (∃hasSSN .⊤)I . As y ∈ (Student ⊓ Employee)I ,

y violates both the second and the third defeasible inclusions in T . In the canonical

model M, however, there must be an element x ∈ min<rc
(Student ⊓ Employee)I

such that x ∈ (¬PayTaxes ⊓ ∃hasSSN .⊤)I , so that x does not violate the second

defeasible inclusion T(Student) ⊑ ¬PayTaxes ⊓ ∃hasSSN .⊤, which is violated by

y. Also, x satisfies the inclusions in E1, so that there is no inclusion which is violated

by x and not by y. Hence, x < y must hold in M, by condition (3) of Definition 4.2,

which contradicts the hypothesis that y ∈ min<(Student ⊓ Employee)I .

The example above shows that entailment in minimal canonical BP-models is too

strong for providing a characterization of the skeptical closure: T(Student ⊓ Employee)
⊑ ∃hasSSN .⊤ is minimally entailed by K , but it is not in the skeptical closure of K .

In the next section we consider a stronger closure construction, which is characterized

by minimal canonical BP-models and, from this result, in Section 6 we can provide a

semantic construction for the skeptical closure.

The previous example clarifies that the skeptical closure, is syntax dependent and,

in particular, a defeasible inclusion T(A) ⊑ B ⊓C , in general, is not equivalent to

the conjunction of T(A) ⊑ B and T(A) ⊑ C . This is a problem of all refinements of

the rational closure. As observed by Lehmann, the lexicographic closure construction

is “extremely sensitive to the way defaults are presented” and “the way defaults are

presented is important” [51]. The rational closure, instead, is not syntax dependent.

5 Correspondence between BP-models and a variant of

lexicographic closure

In this section we show that the semantics of minimal canonical BP-models introduced

in the previous section provides a characterization of the multipreference closure (MP-

closure) for ALC, a closure introduced in [34, 32] as a sound approximation of the

multipreference semantics for ALC [44].

A study of the MP-closure in the propositional case has been done in [35], showing

that the MP-closure can be regarded as a natural variant of Lehmann’s lexicographic

closure, when abandoning the maximal entropy assumption. In the propositional case,

MP-closure is proved to be weaker than the lexicographic closure, but stronger than the
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relevant closure [17]. In the following, we consider the MP-closure construction for the

description logic ALC and prove that the typicality inclusions which belong to the MP-

closure of a TBox T are those entailed by T under the minimal canonical BP-models

semantics defined in Section 4, thus providing a sound and complete characterization

of the MP-closure for ALC, that we will exploit in defining a characterization of the

skeptical closure.

Let B be a concept with rank k. Informally, we want to consider all the possi-

ble maximal sets of typicality inclusions S which are compatible with Ek and with

B, i.e. the maximal sets of defeasible properties that a B element can enjoy be-

sides those in Ek. For instance, in Example 3.1, if B = Student ⊓ Employee , with

rank(B) = 1, we have two possible alternative ways of maximally extending the set

E1, containing the defeasible inclusion T(Student ⊓ Employee) ⊑ ¬Young: either

with the defeasible inclusion T(Student) ⊑ ¬Pay Taxes or with the defeasible in-

clusion T(Employee) ⊑ Pay Taxes . As we have seen in Example 3.1, these two

defeasible inclusions are conflicting, and in the skeptical closure we do not accept any

of them. However, here we consider all alternative maximally consistent scenarios,

compatible with the fact that the concept B = Student⊓ Employee is nonempty. In

none of these scenarios the defeasible property that normally students are young can be

accepted, as it is incompatible with the more specific property that normally students

who are employee are not young.

Let Di = Ei−Ei+1 be the set of typicality inclusions with rank i ≥ 0. Given a set

S of typicality inclusions of the TBox, we let Si = S ∩Di, for all ranks i = 0, . . . , n
in the rational closure, thus defining a partition of the typicality inclusions with finite

rank in S, according to their rank5. We introduce a preference relation among sets of

typicality inclusions as follows:

Definition 5.1 Let S, S′ ⊆ T \StrictT be two sets of typicality inclusions. S′ ≺ S (S′

is preferred to S) if and only if there is a rank h (0 ≤ h ≤ n) such that, Sh ⊂ S′
h and,

for all ranks j > h, S′
j = Sj .

The meaning of S′ ≺ S is that, considering the highest rank h in which S and S′ do

not contain the same defeasible inclusions, S′ contains more defeasible inclusions in

Dh than S.

The preference relation ≺ introduced above differs from the one used in the lexi-

cographic closure as the lexicographical order in [51, 23] considers the size of the sets

of defaults for each rank. Here, the comparison of the sets of defeasible inclusions

with the same rank is based on subset inclusion (Sh ⊂ S′
h) and on equality among sets

(S′
j = Sj) rather than on the comparison of the size of the sets (|Sh| < |S′

h|) and on

their equality in size (|S′
j | = |Sj |), as in the lexicographic closure. For this reason, the

partial order relation ≺ introduced above is not necessarily modular, which fits with the

fact that in BP-interpretations, the partial order relation < is not required to be modular.

Definition 5.2 ( [34]) Let T be a TBox, B a concept such that rank(B) = k and

S ⊆ T \StrictT . S is a maximal set of defeasible inclusions compatible with B in T

5As before we can ignore the defeasible inclusions with infinite rank when we consider a set of defaults

maximally compatible with a concept B (with rank k) and with EK , as all defeasible inclusions with infinite

rank already belong to Ek .

18



if:

• Ek 6|=ALC+TR
T(⊤) ⊓ S̃ ⊑ ¬B 6 and

• there is no S′ ⊆ T \StrictT such that S′ ≺ S and Ek 6|=ALC+TR
T(⊤) ⊓ S̃′ ⊑

¬B.

Remember that S̃ is the materialization of S, i.e., S̃ = ⊓{(¬C⊔D) | T(C) ⊑ D ∈ S}.

Informally, S is a maximal set of defeasible inclusions compatible with B in T if there

is no set of typicality inclusions S′ which is consistent with B and Ek and is preferred

to S since it contains more specific defeasible inclusions. To check if a subsumption

T(B) ⊑ D is in the MP-closure of TBox we consider all the maximal sets of defeasible

inclusions S that are compatible with B.

Definition 5.3 ( [34]) A query T(B) ⊑ D is in the MP-closure of T if either the rank

of concept B in the rational closure of T is infinite or rank(B) = k is finite and for all

the maximal sets of defeasible inclusions S that are compatible with B in T , we have:

Ek |=ALC+TR
T(⊤) ⊓ S̃ ⊑ (¬B ⊔D).

The construction is similar to the lexicographic closure [51, 23] although, as said

above, the lexicographic order ≺ used here is different. In particular, for propositional

logic, we have proved in [35] that the MP-closure is weaker than Lehmann’s lexico-

graphic closure, and stronger than the Relevant Closure [17]. This result, however,

cannot be lifted from the propositional case to the description logic ALC, as the lexico-

graphic closure in [23] and the Relevant Closure in [17] are based on a slightly different

RC constructions for ALC, compared with the MP-closure defined here, and exploit

ALC entailment over a materialization of the knowledge base rather than ALC + TR

entailment (as Definition 5.3 above). While we refer to [40] for a discussion of differ-

ent rational closure constructions for ALC, Example 5.9 below shows that the lexico-

graphic closure is not weaker than the MP-closure.

Verifying whether a query T(B) ⊑ D is in the MP-closure of a TBox T , in the

worst case, requires to consider a (possibly) exponential number of maximal subsets

S of defeasible inclusions compatible with B in T (exponential in the number of typ-

icality inclusions in T ). Instead, computing subsumption in the skeptical closure of

T , only requires (for each concept B) a polynomial number (in the size of T ) of calls

to entailment checks in ALC +TR, which can be computed by a linear encoding into

ALC [33].

To reconcile the definition of the MP-closure with the definition of the skeptical

closure in Section 3, we prove the following lemma.

Lemma 5.4 Given a TBox T , for any rank k in the rational closure of T , and for any

set H of defeasible inclusions in T :

Ek ∪H |=ALC+TR
T(⊤) ⊑ ¬B ⇐⇒ Ek |=ALC+TR

T(⊤) ⊓ H̃ ⊑ ¬B.

6We keep the formulation used in [34], as it is better suited for proving the correspondence with the

BP-semantics. Although T(⊤) ⊓ S̃ ⊑ ¬B is not in the language of inclusions in the knowledge base, it is

equivalent to T(⊤) ⊑ ¬S̃⊔¬B. We will see below, in Lemma 5.4, that Ek |=ALC+TR
T(⊤)⊓ S̃ ⊑ ¬B

is also equivalent to Ek ∪ S |=ALC+TR
T(⊤) ⊑ ¬B.
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Proof 5.5 (⇐) By contraposition, suppose Ek ∪ H 6|=ALC+TR
T(⊤) ⊑ ¬B. Then,

there is an ALC+TR model M = 〈∆, <, I〉 of Ek ∪H , and a domain element x ∈ ∆
such that kM(x) = 0 and x ∈ BI .

We show that x ∈ H̃I . Let us consider any typicality inclusion T(C) ⊑ D in H .

We show that x is an instance of its materialization ¬C ⊔ D, i.e., x ∈ (¬C ⊔D)I . If

x 6∈ CI , the conclusion follows trivially. If x ∈ CI , considering that x has rank 0 in

M and that M satisfies T(C) ⊑ D, x is a typical C element and hence it must be

x ∈ DI . Therefore, x ∈ (¬C ⊔D)I . As this holds for all the typicality inclusion in H ,

x ∈ H̃I and, hence, x ∈ (T(⊤) ⊓ H̃ ⊓B)I , which proves the thesis.

(⇒) By contraposition, let Ek 6|=ALC+TR
T(⊤) ⊓ H̃ ⊑ ¬B. Then, there is a

model M1 = 〈∆1, <1, I1〉 of Ek, and a domain element x ∈ ∆1 such that x ∈
(T(⊤) ⊓ H̃ ⊓B)I1 , i.e., kM1

(x) = 0, x ∈ H̃I1 and x ∈ BI1 .

The model M1 might not satisfy all the typicality inclusions T(C) ⊑ D in H . Let

us consider a model M of Ek ∪ H . Such a model must exist, otherwise, the TBox

T would be unsatisfiable and any concept would have an infinite rank in the rational

closure of T . Conversely, we know that B has a finite rank k. Hence, let M = 〈∆, <

, I〉 be a finite minimal canonical model of Ek ∪ H . Existence of a finite, minimal,

canonical models of a consistent TBox in ALC + TR is guaranteed by Theorem 7 in

[40]). Suppose that ∆ and ∆1 are disjoint. We build from M and M1 a new model

M′ of Ek ∪H in which the concept T(⊤) ⊓B is satisfiable.

Let us define M′ = 〈∆′, <′, I ′〉 as follows: ∆′ = ∆ ∪ ∆1; I ′ is defined on the

elements of ∆ as I in M, and on the elements of ∆1 as I1 in M1. For the interpretation

of concepts: for x ∈ ∆, x ∈ CI′

if and only if x ∈ CI ; for x ∈ ∆1, x ∈ CI′

if and

only if x ∈ CI1 . For the interpretation of roles R ∈ NR: for x, y ∈ ∆, (x, y) ∈ RI′

if and only if (x, y) ∈ RI ; for x, y ∈ ∆1, (x, y) ∈ RI′

if and only if (x, y) ∈ RI1 ;

and, for any two elements x ∈ ∆ and y ∈ ∆1, (x, y) 6∈ RI′

and (y, x) 6∈ RI′

. For

all individual constants a ∈ NI , we let aI
′

= aI . Finally, for all w ∈ ∆, we let

kM′(w) = kM(w), for the element x ∈ ∆1 (which is an instance of T(⊤) ⊓ H̃ ⊓ B),

we let kM′(x) = 0; finally, for all y ∈ ∆1 (y 6= x), we let kM′(y) = n+ 1+ kM1
(y),

where n is the highest rank value of kM in M (n is finite as each element in M has a

finite rank).

It is easy to show that by construction the resulting model M′ satisfies Ek ∪ H .

Let C ⊑ D be strict inclusion in Ek ∪ H . Let y ∈ CI′

. There are two cases: either

y ∈ ∆ or y ∈ ∆1. In the first case, y ∈ CI in M. As M satisfies K , y ∈ DI and, by

definition of M′, y ∈ DI′

. In the second case, y ∈ CI1 . As M1 satisfies all the strict

inclusions in T (which belong to Ek), y ∈ DI1 and, by definition of M′, y ∈ DI′

.

Let T(C) ⊑ D be a defeasible inclusion in Ek ∪H . If rank(C) ≥ k, then by the

construction of the rational closure T(C) ⊑ D is in Ek and hence is satisfied both in

M and in M1. Let z ∈ (T(C))I
′

, then either z ∈ ∆ or z ∈ ∆1. In the first case, z

is C-minimal in M and z ∈ DI . Hence, by definition of M′, z ∈ DI′

. In the second

case, z is C-minimal in M1 and z ∈ DI1 . Hence, by definition of M′, z ∈ DI′

.

If rank(C) = j < k, then T(C) ⊑ D is in H but not in Ek. As the rank of C in

the rational closure is finite, by Proposition 13 in [40] (recalled in Section 2), C has

a finite rank j in any minimal canonical model of the TBox T . Hence, C is consistent

with the TBox T , as well as with its subset Ek ∪H ⊆ T . As M is a canonical model

of Ek ∪ H ⊆ T , there must be an element in w ∈ ∆ such that w ∈ CI . Therefore,
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each minimal C element in M either is x (and, in this case, x is in (¬C ⊓ D)I
′

and

hence in DI′

), or it is an element z ∈ ∆. As M satisfies H , it satisfies T(C) ⊑ D and,

hence, z ∈ D.

From this, we can conclude that M′ is a model satisfying Ek ∪H , which contains

an element x with rank kM′(x) = 0 such that x ∈ B. Therefore, Ek ∪ H 6|=ALC+TR

T(⊤) ⊑ ¬B, which concludes the proof.

Example 5.6 Let us consider again the knowledge base K = (T ,A) of Example 4.11,

with A = ∅ and the following TBox T :

T(Student) ⊑ Young

T(Student) ⊑ ¬PayTaxes ⊓ ∃hasSSN .⊤
T(Employee) ⊑ PayTaxes ⊓ ∃hasSSN .⊤
T(Student ⊓ Employee) ⊑ ¬Young

We have seen that the typicality inclusion T(Student ⊓ Employee) ⊑ ∃hasSSN .⊤ is

not in the skeptical closure of T , but it holds in all the minimal canonical BP-models

of K . We can see that T(Student ⊓ Employee) ⊑ ∃hasSSN .⊤ follows from the MP-

closure of TBox T . In fact, in this example there are two maximal sets of defeasible

inclusions compatible with B = Student ⊓ Employee (where rank(B) = 1):

S = {T(Student) ⊑ ¬PayTaxes ⊓ ∃hasSSN .⊤, T(Student ⊓ Employee) ⊑
¬Young}

S′ = {T(Employee) ⊑ PayTaxes ⊓ ∃hasSSN .⊤, T(Student ⊓ Employee) ⊑
¬Young}

S is partitioned, according to the ranks of defaults, as follows:

S0 = {T(Student) ⊑ ¬PayTaxes ⊓ ∃hasSSN .⊤};
S1 = {T(Student ⊓ Employee) ⊑ ¬Young}; S2 = ∅

and S′ is partitioned as follows:

S′
0 = {T(Employee) ⊑ PayTaxes ⊓ ∃hasSSN .⊤};

S′
1 = {T(Student ⊓ Employee) ⊑ ¬Young}; S′

2 = ∅.

Observe that neither S ≺ S′ nor S′ ≺ S and hence both S and S′ are maximal sets of

defeasible inclusions compatible with B. As Ek |=ALC+TR
T(⊤) ⊓ S̃ ⊑ (¬(Student⊓

Employee) ⊔ ∃hasSSN .⊤), and the same holds for for S′, it follows that T(Student⊓
Employee) ⊑ ∃hasSSN .⊤ is in the MP-closure of T . In this case, S and S′ corre-

spond to the bases of the lexicographic closure of T .

It is easy to see that any defeasible inclusion in the skeptical closure of T is as well in

its MP-closure.

Proposition 5.7 T(B) ⊑ D is in the skeptical closure of a TBox T , then T(B) ⊑ D

is in the MP-closure of T .

Proof 5.8 (Sketch) Suppose T(B) ⊑ D is in the skeptical closure of T . Then, either

rank(B) = ∞ in the rational closure construction of T and, hence, T(B) ⊑ D is in

the MP-closure, or rank(B) is finite and Ssk,B |=ALC+TR
T(⊤) ⊑ (¬B ⊔D), where

Ssk,B = Ek ∪ SB
k−1

∪ SB
k−2

∪ . . . ∪ SB
h . We show that Ssk,B ⊆ S for each maximal

set S of defeasible inclusions compatible with B in T .
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We prove that SB
k−j ⊆ S for all j = 1, . . . , k − h, by induction on j. For j = 1,

we show that SB
k−1

⊆ S. By the global compatibility condition, Ek ∪ SB
k−1

6|=ALC+TR

T(⊤) ⊑ ¬B and all defeasible inclusions with rank k not in SB
k−1

are individually

incompatible with B wrt. Ek (and none of them can belong to S). By Lemma 5.4,

Ek 6|=ALC+TR
T(⊤) ⊓ S̃B

k−1
⊑ ¬B. Also, by maximality of S, it is easy to see that it

cannot be the case that some defeasible inclusion in SB
k−1

does not belong to S. The

inductive step is similar. As all SB
k−j are included in S, Ek ∪ S |=ALC+TR

T(⊤) ⊑

(¬B ⊔D) and, by Lemma 5.4, Ek |=ALC+TR
T(⊤) ⊓ S̃ ⊑ (¬B ⊔D). As this is true

for each maximal set S of defeasible inclusions compatible with B in T , T(B) ⊑ D is

in the MP-closure of a TBox T .

From Proposition 5.7 and Example 5.6 it follows that the skeptical closure is strictly

weaker than the MP-closure. Before establishing a correspondence between the MP-

closure and BP-semantics, let us show that the lexicographic closure allows conclu-

sions which are not in the MP-closure.

Example 5.9 If we modify the knowledge base in Example 5.6 above, by adding to the

TBox the typicality inclusion T(Student) ⊑ ¬PayTaxes ⊓ Smart we would get again

two maximal sets of defeasible inclusions compatible with B = Student ⊓ Employee

in the MP-closure construction:

S = {T(Student) ⊑ ¬PayTaxes ⊓ ∃hasSSN .⊤,

T(Student) ⊑ ¬PayTaxes ⊓ Smart ,T(Student ⊓ Employee) ⊑ ¬Young}
S′ = {T(Employee) ⊑ PayTaxes ⊓ ∃hasSSN .⊤,

T(Student ⊓ Employee) ⊑ ¬Young}
As Ek 6|=ALC+TR

T(⊤) ⊓ S̃ ′ ⊑ (¬(Student ⊓ Employee) ⊔ ¬PayTaxes ⊓ Smart),
then T(Student ⊓Employee) ⊑ ¬PayTaxes ⊓ Smart is not in the MP-closure of T .

As a difference, only S corresponds to a base in the lexicographic closure, as S con-

tains two defaults with rank 0 and one with rank 1, while S′ contains just one default

with rank 0 and one with rank 1. The lexicographic closure can then conclude that

employed students do not pay taxes and are smart.

To show that the typicality inclusions derivable form the MP-closure of a TBox T
are exactly those that hold in all its minimal canonical BP-models, we prove the next

two propositions. The first one shows that the MP-closure is sound with respect to

the minimal canonical BP-semantics: If T(B) ⊑ D is in the MP-closure of T , then

T |=min
BP T(B) ⊑ D. Let us prove the contrapositive.

Proposition 5.10 Let K = (T ,A) be a knowledge base and B a concept with a finite

rank rank(B) = k in the rational closure of T . If there is a minimal canonical BP-

model M = 〈∆, <rc, <, I〉 of K and an element x ∈ ∆ such that x ∈ min<(B
I) and

x 6∈ DI , then there is a maximal set of defeasible inclusions S compatible with B in T ,

such that Ek 6|=ALC+TR
T(⊤) ⊓ S̃ ⊑ (¬B ⊔D).

Proof 5.11 Assume that for some minimal canonical BP-model M = 〈∆, <rc, <, I〉
of K there is an element x ∈ ∆ such that x ∈ min<(B

I) and x 6∈ DI . We construct

S as the set of all the defeasible inclusions in TBox which are not violated in x, i.e.

S = {T(C) ⊑ E ∈ TBox | x ∈ (¬C ⊔E)},
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and we show that, S is an MP-basis for B and Ek 6|=ALC+TR
T(⊤) ⊓ S̃ ⊑ (¬B ⊔D).

Let MRC = 〈∆, <rc, I〉. By construction, MRC is a minimal canonical model of

the rational closure of K . By Proposition 12 in [40], MRC
k (i.e. the model obtained by

MRC by collapsing all the elements with rank ≤ k to rank 0, and updating each other

rank k + i to i) satisfies Ek, that is, MRC
k |=ALC+TR

Ek. Also, as rank(B) = k and

x ∈ T(B)I , x must have rank k in MRC , and hence rank 0 in MRC
k (and, clearly,

kM,rc(x) = k in M). Thus, x ∈ T(⊤)I holds in MRC
k , but also x ∈ BI and

x ∈ S̃I (by definition of S). Therefore MRC
k 6|=ALC+TR

T(⊤) ⊓ S̃ ⊑ ¬B. Hence,

Ek 6|=ALC+TR
T(⊤) ⊓ S̃ ⊑ ¬B, i.e. S is a set of defeasible inclusions compatible

with B.

Observe that, as x 6∈ DI , Ek 6|=ALC+TR
T(⊤)⊓S̃⊓¬D ⊑ ¬B, thenEk 6|=ALC+TR

T(⊤) ⊓ S̃ ⊑ (¬B ⊔ D), i.e., if S is an MP-basis for B, T(B) ⊑ D does not follow

from the MP-closure of TBox. To see that S is an MP-basis for B, we have to show that

S is a maximal set of defeasible inclusions compatible with B in T . Suppose, for a con-

tradiction, that there is a set S′ such that S′ ≺ S and Ek 6|=ALC+TR
T(⊤)⊓ S̃′ ⊑ ¬B.

Then, there must be a ALC + TR model N = 〈∆′, <′
rc I ′〉 of Ek and an element

y ∈ ∆′, having rank 0 in N such that: y ∈ (S̃′ ⊓B)I
′

.

As M is canonical, then MRC is canonical as well. Hence, there must be an

element z ∈ ∆ such that z ∈ (S̃′ ⊓ B)I (i.e., the interpretation of all non-extended

concepts in z is the same as in y in N ). As y has rank 0 in N , y satisfies all the

defeasible inclusions in Ek. Hence, the concept S̃′⊓B must have rank k in the rational

closure and, therefore, z must have rank k in MRC . Thus, z ∈ (T(⊤) ⊓ S̃′ ⊓ B)I in

MRC
k , and, clearly, kM,rc(z) = k in M.

Since S′ ≺ S there must be some h such that, Sh ⊂ S′
h and, for all j > h, S′

j = Sj .

Thus, there is some defeasible inclusion T(C′) ⊑ E′ ∈ S′ with rank h in RC, such that

T(C′) ⊑ E′ 6∈ S. Therefore, z does not violate T(C′) ⊑ E′ (i.e., z ∈ (¬C′ ⊔ E′)I ),

while x violates it (i.e., x ∈ (C′ ⊓ ¬E′)I ). On the other hand, all the defeasible

inclusions violated by z and not by x cannot have a rank ≥ h in RC, as x satisfies

only the inclusions S (by construction of S) and, for all j ≥ h, S′
j = Sj (the typicality

inclusions with infinite rank are trivially satisfied both in x and in z). Therefore, z < x

holds in M by condition (3), and x cannot be a typical B element, thus contradicting

the hypothesis.

The next proposition shows that the MP-closure is complete with respect to the

minimal canonical BP-semantics: If T |=min
BP T(B) ⊑ D, then T(B) ⊑ D is in the

MP-closure of the TBox T . Let us prove the contrapositive.

Proposition 5.12 Let K = (T ,A) be a knowledge base and T(B) ⊑ D a query such

that B has a finite rank in RC. If T(B) ⊑ D is not in the MP-closure of T , then there

is a minimal canonical MP-model M = 〈∆, <rc, <, I〉 of K and an element x ∈ ∆
such that x ∈ min<(B

I) and x 6∈ DI .

Proof 5.13 Let rank(B) = k in RC. If T(B) ⊑ D is not in the MP-closure of T , then

there is a maximal set of defeasible inclusions S compatible with B in T , such that

Ek 6|=ALC+TR
T(⊤) ⊓ S̃ ⊑ (¬B ⊔D). Then

Ek 6|=ALC+TR
T(⊤) ⊑ ¬(S̃ ⊓B ⊓ ¬D)
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and concept S̃ ⊓ B ⊓ ¬D is not exceptional with respect to Ek and, in the rational

closure of T , it must have rank less or equal to k. As rank(B) = k, it must be

rank(S̃ ⊓B ⊓ ¬D) = k.

Let us consider any minimal canonical ALC + TR model N = 〈∆′, <RC , I
′〉 of

K . As rank(S̃ ⊓ B ⊓ ¬D) = k, by Proposition 13 in [40] (recalled in Section 2), the

concept S̃⊓B⊓¬D must have rank k in any minimal canonical model of K . Therefore,

kN (S̃ ⊓B ⊓ ¬D) = k, and there is an element y ∈ ∆ such that y ∈ (S̃ ⊓B ⊓ ¬D)I
′

and kN (y) = k.

From N we build a minimal canonical MP-model M = 〈∆, <rc, <, I〉 of K falsi-

fying T(B) ⊑ D as follows. We let ∆ = ∆′, I = I ′, <rc=<RC and we define < as

follows:

x < y iff (i) y violates some defeasible inclusion T(C) ⊑ D ∈ T satisfied by x and

(ii) for all T(Cj) ⊑ Dj ∈ T , which is violated by x and not by y,

there is a T(Ck) ⊑ Dk ∈ T , which is violated by y and not by x,

such that kM,rc(Cj) < kM,rc(Ck).

Observe that, for all concepts C, kM,rc(C) = kRC(C) = rank(C), the rank of C in

the rational closure. We have to show that M is a minimal canonical MP-model of T
and that y ∈ (T(B) ⊓ ¬D)I .

We first show that M is an MP-model of K , that it is canonical and that it is

minimal among the canonical MP-models of K . To show that M is an MP-model of

K , we observe that, by definition of <, condition (3) in Definition 4.2 holds for M by

construction.

It can be easily seen that < is an irreflexive, asymmetric and transitive relation.

Also, M satisfies all the assertions in A and all the strict inclusions E ⊑ F in T , since

N does, ∆ = ∆′ and I = I ′. To see that M is an MP-model of T , we have also to

show that for all T(E) ⊑ F in T , min<rc
(EI) ⊆ F I holds. This follows from the

fact that min<RC
(EI′

) ⊆ F I′

holds in N and that, by definition of M, <rc=<RC

and I = I ′.

We show that M is a canonical BP-model of K: If not, there are C1, C2, . . . , Cn

such that T 6|=BP C1 ⊓ C2 ⊓ · · · ⊓ Cn ⊑ ⊥, but there is no x ∈ ∆ such that x ∈
(C1 ⊓ C2 ⊓ · · · ⊓ Cn)

I . As, by Theorem 4.7, T 6|=ALC+TR
C1 ⊓ C2 ⊓ · · · ⊓ Cn ⊑ ⊥,

this would contradict the hypothesis that N is an ALC +TR canonical model of T .

We prove the minimality of M. If, by absurdum, M were not a minimal canonical

BP model, then there would be a BP model M′′ = 〈∆′′, <′′
rc, <

′′, I ′′〉 in MinRC(K),
such that ∆′′ = ∆, I ′′ = I , and M′′ ≺BP M. Observe that the ranking function in

M′′ must be the same as in M (i.e., kM′′,rc(y) = kM,rc(y) for all y ∈ ∆) as it is

determined by a minimal canonical ALC +TR model of K (and hence by the rational

closure of TBox T ).

Concerning <′′, as M′′ is an BP interpretation, <′′ must satisfy condition (3) in

Definition 4.2. If x < y in M then (i) and (ii) hold by construction of M and, then,

x <′′ y by (3), since kM′′,rc(C) = kM,rc(C) for all concepts C. Hence, <⊆<′′,

which contradicts the hypothesis that that M′′ ≺BP M.

To conclude the proof, we want to show that y ∈ (T(B) ⊓ ¬D)I . We have seen

that in N there is an element y ∈ ∆ such that y ∈ (S̃ ⊓ B ⊓ ¬D)I
′

and kN (y) = k.
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By construction of M, I = I ′ and then y ∈ (B ⊓¬D)I . Furthermore, <rc=<RC and,

hence, kM,rc(y) = kN (y) = k and, also, kM,rc(B) = kN (B) = rank(B) = k.

To see that y ∈ min<(B), it sufficies to show that there is no z ∈ ∆ such that

z ∈ BI and z < y. Suppose for a contradiction that there is such a z. As z is

a B-element, it cannot have rank less than k in the rational closure (it cannot be

kM,rc(z) = j < k = rank(B)). Hence, kM,rc(z) ≥ k.

If kM,rc(z) > k, then y <rc z and, by Proposition 4.3, y < z, a contradiction

with the hypothesis that z < y. Then kM,rc(z) = k. Let S′ be the set of defeasible

inclusions not violated by z, i.e., S′ = {T(C) ⊑ E ∈ TBox | z ∈ (¬C ⊔ E)} . Then

z ∈ (S̃′ ⊓ B)I . Let MRC = 〈∆, <rc, I〉 be the ALC + TR model obtained from M,

ignoring the preference relation <. As MRC is a minimal canonical ALC+TR model

of K , by Proposition 12 in [40], MRC
k |=ALC+TR

Ek and, as kM,rc(z) = k, z must

have rank 0 in MRC
k . Therefore, Ek 6|=ALC+TR

T(⊤) ⊓ S̃′ ⊑ ¬B.

As z < y, for all defeasible inclusions T(Cj) ⊑ Aj ∈ T violated by z and

not by y, there is a more specific defeasible inclusion T(Ck) ⊑ Ak ∈ T violated

by y and not by z (that is kM,rc(Cj) < kM,rc(Ck)). Suppose that j is the rank of

the defeasible inclusion with highest rank violated by z and that h is the rank of the

defeasible inclusion with highest rank violated by y. It must be j < h. Therefore,

Sh ⊂ S′
h (as z satisfies all the defeasible inclusions with rank h > j). Therefore, S′ is

preferred to S, S′ ≺ S. However, this contradicts the hypothesis that S is a maximal

set of defeasible inclusions compatible with B in T . Therefore, a z with z < y cannot

exist and y ∈ T(B)I , so that y ∈ (T(B) ⊓ ¬D)I .

We can now establish a correspondence between the minimal canonical BP seman-

tics and the MP-closure.

Theorem 5.14 Given a knowledge baseK = (T ,A) and a queryT(B) ⊑ D, T |=min
BP

T(B) ⊑ D if and only if T(B) ⊑ D follows from the MP-closure of the TBox T .

Proof 5.15 The proof of this result can be done by contraposition and is an easy con-

sequence of Proposition 5.10 and Proposition 5.12. Just observe that, for the “If” part,

when T 6|=min
BP T(B) ⊑ D, concept B must have a finite rank, otherwise T(B) ⊑ D

would be a logical consequence of T , for any concept D. For the “Only if” part, when

T(B) ⊑ D does not follow from the MP-closure of the TBox T , the rank of B in the

rational closure must be finite.

In the propositional case, as a consequence of the property proved by Lehmann and

Magidor [50] that any preferential model defines a preferential consequence relation,

it has been shown that the MP-closure defines a preferential consequence relation [35].

The KLM properties of preferential consequence have been lifted to ALC knowledge

bases by Britz et al. in [16], where formulation of the semantic properties in terms of

defeasible inclusions is provided, while formulations for typicality inclusions can be

found in [38, 31]. Based on the BP-semantics, which is a preferential semantics, it is

immediate to see that the MP-closure for ALC defines a preferential consequence re-

lation. Instead, the MP-closure violates the property of Rational Monotonicity already

in the propositional case (we refer to Example 5 in [35], which is a reformulation of

Lehmann’s musician example [51]). In the next section, we will prove that the skeptical

closure satisfies the KLM properties of a preferential consequence relation as well.
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6 A semantic characterization for the skeptical closure

We have already seen that the skeptical closure is weaker than the MP-closure (Propo-

sition 5.7) and that, for a B with rank k, any maximal set S of defeasible inclusions

compatible with B in T must contain all the defeasible inclusions in Ssk,B . Indeed,

using Lemma 5.4, one can equivalently reformulate the notion of global compatibility

of a set of defeasible inclusions (Definition 3.2) as follows.

Proposition 6.1 For a TBox T , a concept B with finite rank(B) = k and sets S

and S′ of defeasible inclusions, S is globally compatible with B w.r.t. Ek ∪ S′ iff

Ek 6|=ALC+TR
T(⊤) ⊓ S̃ ⊓ S̃′ ⊑ ¬B.

This reformulation makes the relationship between the notions of skeptical closure and

of MP-closure more evident. In particular, when in the MP-closure construction there

is a unique maximal set of defeasible inclusions S compatible with B in T , i.e., such

that Ek 6|=ALC+TR
T(⊤)⊓ S̃ ⊑ ¬B, then Ek ∪ S corresponds to the skeptical closure

Ssk,B of T with respect to B.

When in the MP-closure there are different maximal sets of defeasible inclusions

S1, . . . , Sr compatible with B in T , the skeptical closure is defined to contain, in

addition to Ek, the defeasible inclusions with rank j in S1, . . . , Sr, for those ranks j

from h to k−1 on which S1, . . . , Sr exactly agree (i.e., S1
j = . . . = Sr

j ), where h−1 is

the highest rank on which S1, . . . , Sr disagree (i.e., Sl
h−1

6= Sm
h−1

, for some l and m).

If the sets S1, . . . , Sr disagree on some defeasible inclusion with rank j, no defeasible

inclusion with rank j or lower is included in the skeptical closure.

Based on the reformulation above and on the correspondence between the MP-

closure of a knowledge base and its minimal canonical BP-models in Section 5, we are

now able to provide a semantic characterization of the skeptical closure.

Given a TBox T , let DI(B) be the set of the defeasible inclusions T(C) ⊑ D ∈ T
which are satisfied by all the minimal B elements in any of the minimal canonical BP-

models of T :

DI (B) = {T(C) ⊑ D ∈ K | x ∈ (¬C ⊔ D)I , for any x ∈ min<(B
I) in

any minimal

canonical BP-model M = 〈∆, <rc, <, ·I〉 of T }
Let Confl DI (B) be the set of the conflicting defeasible inclusions for B in T , defined

as the typicality inclusions which are satisfied in some minimal B element in a minimal

canonical BP-model of T , but not in all of them:

Confl DI(B) = {T(C) ⊑ D ∈ K | for some minimal canonical BP-model

M = 〈∆, <rc, <, ·I〉 of T , there are x, y ∈ min<(B
I)

such that x ∈ (¬C ⊔D)I and y ∈ (C ⊓ ¬D)I}
The set Confl DI(B) refers to the defaults with no agreement among minimal B

elements in at least some minimal canonical BP-model of T . We identify the defeasible

inclusions with rank j in DI (B) and in Confl DI (B), respectively, as:

DIj (B) = DI (B) ∩ Dj Confl DIj (B) =
Confl DI (B) ∩Dj

whereDj is the set of all typicality inclusions with rank j in T (as introduced in Section

5). We can now define the set of defeasible inclusions DI Sk(B), which are included
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in the skeptical closure of B, Ssk,B , as follows:

DI Sk(B) =
⋃

j=h,k−1

DIj (B)

where h is the lowest integer, form 0 to k−1, such that, for all j ≥ h, Confl DIj (B) =
∅.

Essentially, DI Sk(B) contains the defeasible inclusions on which all the minimal

canonical models agree, in the following sense: for each rank j, from h to k − 1,

DIj (B) is the set of all the defeasible inclusions of rank j which are satisfied by all the

minimal B-elements in all the minimal canonical BP-model of T . Also, the minimal

B instances of the minimal canonical BP-models of T must agree on accepting or

not all the defeasible inclusions with rank ≥ h (as there are no conflicting defeasible

inclusions for B with rank ≥ h). Instead, minimal B instances disagree on accepting

or not some defeasible inclusion with rank h − 1, and no inclusion with rank h − 1
or lower is included in DI Sk(B). Given these considerations, the next result follows

from Propositions 5.3 and 6.1.

Proposition 6.2 Let T(B) ⊑ D be a query and T a TBox. The defeasible inclusion

T(B) ⊑ D is in the skeptical closure of T iff StrictT ∪DI Sk(B) |=ALC+TR
T(⊤) ⊑

(¬B ⊔D), where StrictT is the set of strict inclusions in T .

Observe that, as each defeasible inclusion T(B) ⊑ D, in DI Sk(B) by construction

is satisfied in all the minimal B-elements of any minimal canonical BP-model of T , it

holds that T |=min
BP T(B) ⊑ D. Then, by Theorem 5.14, T(B) ⊑ D is in the MP-

closure of the TBox T . As we have seen, the skeptical closure is a weaker construction

than the MP-closure.

We exploit Property 6.2 to prove that the skeptical closure is a preferential conse-

quence relation.

Proposition 6.3 The following KLM properties of preferential entailment relation are

satisfied by the skeptical closure:

(LLE) If A ≡ B and T(A) ⊑ C, then T(B) ⊑ C

(RW) If C ⊑ D and T(A) ⊑ C, then T(B) ⊑ D

(REFL) T(A) ⊑ A

(AND) If T(A) ⊑ C and T(A) ⊑ D, then T(A) ⊑ C ⊓D

(OR) If T(A) ⊑ C or T(A) ⊑ D, then T(A) ⊑ C ⊔D

(CM) If T(A) ⊑ D and T(A) ⊑ C, then T(A ⊓D) ⊑ C

Proof 6.4 We prove that each property is satisfied.

• (LLE ): Let A and B be two equivalent ALC+TR concepts. As they are satisfied or

violated by the same domain elements, DI Sk(A) = DI Sk(B).
Suppose T(A) ⊑ C is in the skeptical closure of T . By Proposition 6.2,

StrictT ∪DI Sk(A) |=ALC+TR
T(⊤) ⊑ (¬A ⊔ C)

Then

StrictT ∪DI Sk(B) |=ALC+TR
T(⊤) ⊑ (¬B ⊔ C)

and, hence, T(B) ⊑ C is in the skeptical closure of T .
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• (RW ): Let C and D be two ALC + TR concepts such that |=ALC+TR
C ⊑ D.

Hence, |=ALC+TR
⊤ ⊑ ¬C ⊔D. Suppose T(A) ⊑ C is in the skeptical closure of T .

By Proposition 6.2,

StrictT ∪DI Sk(A) |=ALC+TR
T(⊤) ⊑ (¬A ⊔ C)

and then:

StrictT ∪DI Sk(A) |=ALC+TR
T(⊤) ⊑ (¬A ⊔ C) ⊓ (¬C ⊔D)

Thus:

StrictT ∪DI Sk(A) |=ALC+TR
T(⊤) ⊑ (¬A ⊔D).

Hence, T(A) ⊑ D is in the skeptical closure of T .

• (REFL)T(A) ⊑ A is in the skeptical closure of T as, by Proposition 6.2, it is to see

that

StrictT ∪DI Sk(A) |=ALC+TR
T(⊤) ⊑ (¬A ⊔ A),

which holds for all A, as any propositional tautology is valid in ALC +TR.

• (AND): suppose T(A) ⊑ C and T(A) ⊑ D are in the skeptical closure of T . By

Proposition 6.2,

StrictT ∪DI Sk(A) |=ALC+TR
T(⊤) ⊑ (¬A ⊔ C) and

StrictT ∪DI Sk(A) |=ALC+TR
T(⊤) ⊑ (¬A ⊔D)

then

StrictT ∪DI Sk(A) |=ALC+TR
T(⊤) ⊑ (¬A ⊔ (C ⊓D)).

Hence T(A) ⊑ C ⊓D is in the skeptical closure of T .

• (OR) suppose T(A) ⊑ C is in the skeptical closure of T . By Proposition 6.2,

StrictT ∪DI Sk(A) |=ALC+TR
T(⊤) ⊑ (¬A ⊔ C)

and then

StrictT ∪DI Sk(A) |=ALC+TR
T(⊤) ⊑ (¬A ⊔ (C ⊔D))

and therefore T(A) ⊑ C ⊔D is in the skeptical closure of T .

• (CM ): suppose T(A) ⊑ D and T(A) ⊑ C are in the skeptical closure of T . By

Proposition 6.2,

StrictT ∪DI Sk(A) |=ALC+TR
T(⊤) ⊑ (¬A ⊔D) and

StrictT ∪DI Sk(A) |=ALC+TR
T(⊤) ⊑ (¬A ⊔ C)

As ¬A ⊔C ⊑ ¬A ⊔ ¬D ⊔ C:

StrictT ∪DI Sk(A) |=ALC+TR
T(⊤) ⊑ (¬(A ⊓D) ⊔ C).

We can prove that min<(A
I) = min<((A⊓D)I) in all minimal canonical BM-models

of T .

As T(A) ⊑ D is in the skeptical closure of T , T(A) ⊑ D is in the MP-closure

of T . Then, in all minimal canonical BM-models of T , min<(A
I) ⊆ DI . Then

min<(A
I) ⊆ min<((A ⊓D)I).

The converse also holds. Assume that x ∈ min<(A ⊓ D)I . Suppose for a con-

tradiction that x 6∈ min<(A
I). Then, there would be an element z such that z < x

and z ∈ min<(A
I) (by well-foundedness). But, as z ∈ min<(A

I) and T(A) ⊑ D

holds in all the minimal canonical BP-models of T , z ∈ DI . Therefore, z ∈ (A ⊓D)I

, which (given z < x) contradicts the hypothesis that x ∈ min<((A ⊓D)I . Hence, it

cannot be the case that x 6∈ min<(A
I), and min<((A ⊓D)I) ⊆ min<(A

I).
As min<(A

I) = min<((A ⊓D)I), by construction, it follows that DI Sk(A) =
DI Sk(A ⊓D), and hence: StrictT ∪DI Sk(A ⊓D) |=ALC+TR

T(⊤) ⊑ (¬(A ⊓
D) ⊔C). Thus T(A ⊓D) ⊑ C is in the skeptical closure of T .
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Although we have established that the skeptical closure satisfies all the properties of

a preferential consequence relation, we do not know yet whether it satisfies Rational

Monotonicity or not, and determining whether the skeptical closure is a rational conse-

quence relation still requires investigation.

We conclude this section with a comparison of the skeptical closure with the Basic

and the Minimal Relevant Closure introduced in [17] by Casini et al. to overcome the

inferential weakness of rational closure. In [17] it was shown that the Basic Relevant

Closure is weaker than the Minimal Relevant Closure, and the second one is weaker

than the lexicographic closure for ALC. In [35] it was show that, in the propositional

case, the Minimal Relevant Closure is weaker that the MP-closure of a knowledge base.

In the following, we show that the skeptical closure is neither weaker nor stronger than

the Basic (and the Minimal) Relevant closure.

A defeasible knowledge base in [17] is a pair K = 〈T ,D〉 where the DBox D is a

set of defeasible subsumptions D ∼
⊏ C (corresponding to our inclusions T(D) ⊑ C),

and the TBox T , contains strict inclusions. When evaluating a query C ∼
⊏ D, one has

to compute the C-justifications w.r.t. K , that is, the minimal sets of defaults J ⊆ D
making C exceptional (or, supporting¬C). The idea is that, for each C-justification J ,

some defeasible subsumption occurring in J is to be removed from D for consistency

with C, and it is convenient to remove first the subsumptions with lower ranks.

The Relevant Closure algorithm, for a query C ∼
⊏ D, receives in input the rank-

ing in the rational closure of the defeasible subsumptions in D, and a set R of the

defeasible subsumptions which are relevant to the query, i.e., the set of the defeasible

subsumptions which are eligible for removal. The algorithm determines from D a new

set of defeasible subsumptions D′, by removing from D, rank by rank, starting from

the lowest rank 0, all the subsumptions in R with that rank, until the remaining set of

(non-removed) defeasible subsumptions D′ is consistent with T and with C.

In the Basic Relevant closure, the set R of relevant defeasible subsumptions is the

union
⋃
Jj of all the C-justifications Jj w.r.t. K , where a C-justification J wrt. K is

an inclusion-minimal subset of D such that ⊤ ⊑ ¬C is in the preferential entailment of

〈T ,J 〉. By Corollary 1 in [17], a C-justification J can be equivalently defined as an

inclusion-minimal subset of D such that T |= J ⊑ ¬C (J being the materialization

of the defeasible subsumptions in J and |= entailment in ALC). The output D′ of the

algorithm is used, together with T , to check whether or not C ∼
⊏ D follows from D′

and T , i.e., whether T |= D
′
⊓C ⊑ D (where set D

′
is interpreted as a conjunction).

The Minimal Relevant closure exploits the same algorithm as the basic Relevant

closure, but it takes
⋃
Jmin
j , the union of all sets Jmin

j , each one containing the sub-

sumptions with lowest rank in the C-justification Jj , as the set R of relevant defaults

which are eligible for removal.

To see the difference between the skeptical closure and the Basic Relevant Closure,

let us reconsider Example 3.9.

Example 6.5 Let K = 〈T ,D〉 be a defeasible knowledge base in [17], where D is the

set:

1. Student ∼
⊏ Young

2. Student ∼
⊏ ¬PayTaxes
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3. Employee ∼
⊏ PayTaxes

and T = ∅. There is one justification of the exceptionality of Student ⊓ Employee w.r.t.

K , J1 = {2, 3}, therefore, the set R =
⋃
Jj = {2, 3} is used in the basic relevant

closure algorithm. It contains only conditionals with rank 0, which are all removed as

responsible of the exceptionality of Student ⊓ Employee at the first iteration step (for

rank 0). The set of remaining conditionals is D′ = {1} = {Student ∼
⊏ Young}, so that

D
′
= {¬Student ⊔ Young}. Therefore, T |= D

′
⊓ (Student⊓Employee) ⊑ Y oung

holds, and the subsumption Student ⊓ Employee ∼
⊏ Young is in the Basic (as well as

in the Minimal) Relevant Closure of K . Instead, we have seen in Example 3.9 that the

typicality inclusion T(Student ⊓ Employee) ⊑ Young is not in the skeptical closure.

It can be seen that in Examples 5.6 and 5.9 the relevant closure behaves as the MP-

closure and, in the second example, it is more cautious than the lexicographic closure.

The next example shows that the skeptical closure is not weaker than the Relevant

closure, let us consider the following example.

Example 6.6 Let T contain the strict inclusions Ostrich ⊑ Bird , BabyOstrich ⊑
Ostrich , Walk - Slow ⊑ ¬RunFast , and the defeasible inclusions:

1. T(Bird) ⊑ Fly 2. T(Bird) ⊑ WalkSlow

3. T(Ostrich) ⊑ ¬Fly 4. T(Ostrich) ⊑ RunFast

5. T(BabyOstrich) ⊑ ¬RunFast .
We expect that typical baby ostriches inherit the defeasible property of ostriches that

they do not fly, although the defeasible property RunFast is overridden for typical

baby ostriches. What about the property of walking slow? In the skeptical closure,

one can conclude that normally baby ostriches walk slow. In RC: rank(Bird) = 0,

rank(Ostrich) = 1, rank(BabyOstrich) = 2. Then inclusions 1 and 2 have rank

0; inclusions 3 and 4 have rank 1; inclusion 5 has rank 2. For B = BabyOstrich ,

we have S sk ,B = E2 ∪ SB
1 ∪ SB

0 = StrictT ∪ {2, 3, 5}, where E2 = StrictT ∪ {5},

SB
1 = {3}, and SB

0 = {2}. Inclusion 4 is overridden by 5, and 1 is overridden by

3. The query T(BabyOstrich) ⊑ WalkSlow is in the skeptical closure of TBox T ,

as Ssk,B |=ALC+TR
T(⊤) ⊑ ¬BabyOstrich ⊔WalkSlow . This conclusion can be

obtained from the MP-closure as well, as S = {2, 3, 5} is the unique maximal set of

defeasible inclusions compatible with B in T .

The Relevant closure, instead, does not conclude that normally baby ostriches

walk slow. Let K ′ = 〈T ,D〉 be the corresponding defeasible knowledge base, where

T = StrictT and D = {1, 2, 3, 4, 5} is the set of the corresponding defeasible in-

clusions (properly rewritten as: Bird ∼
⊏ Fly, etc.). For B = BabyOstrich there

are three B-justifications wrt. K ′, namely, J1 = {1, 3}, J2 = {4, 5} and J3 =
{2, 4}, and R =

⋃
Ji = {1, 2, 3, 4, 5}. The Basic Relevant Closure algorithm first

removes all the defeasible subsumptions with rank 0 (i.e., 1 and 2), then the defea-

sible subsumptions with rank 1 in R are removed (i.e., 3 and 4), and then stops.

As a result D′ = {5}, and D′ = {¬BabyOstrich ⊔ ¬RunFast}. Then, neither

T |= D̃′ ⊓ BabyOstrich ⊑ WalkSlow nor T |= D̃′ ⊓ BabyOstrich ⊑ ¬Fly hold in

ALC, i.e. it does neither follow that normally baby ostriches walk slow, nor that

normally baby ostriches do not fly. In the Minimal Relevant closure, Jmin
1 = {1},

Jmin
2 = {4} and Jmin

3 = {2}. Hence, R =
⋃
Jmin
i = {1, 2, 4}. After removing the
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subsumptions with rank 0 and then with rank 1, the resulting set of defeasible subsump-

tions is D′ = {3 , 5}. Then, it follows that normally baby ostriches do not fly, but not

that normally baby ostriches walk slow (differently from the skeptical closure).

Concerning the KLM properties of the Relevant Closure, it was shown in [17] that

both the Basic and the Minimal Relevant Closure satisfy the property of a preferential

consequence relation except (OR) and (CM). We have seen in Proposition 6.3 that

the skeptical closure instead satisfies all the properties of a preferential consequence

relation.

7 Conclusions and related work

We have introduced the skeptical closure, a weak variant of the lexicographic closure

[51, 23], which deals with the problem of “all or nothing” affecting the rational closure

without generating alternative “bases”. After the rational closure of the knowledge

base is computed, checking whether a query T(C) ⊑ D belongs to the skeptical clo-

sure requires a polynomial number of calls (in the size of the TBox) to the underlying

preferential ALC +TR reasoner, and is a problem in EXPTIME, as entailment in ALC.

Although it is a weak construction, the skeptical closure appears to be sufficiently

well-behaved as it satisfies all the KLM properties of a preferential consequence re-

lation. We have seen that it is neither weaker nor stronger than the Basic and the

Minimal Relevant Closure introduced by Casini et al. in [17]. Instead, we have proved

it is weaker than the MP-closure which (as the lexicographic closure and the relevant

closure), in general, requires alternative bases to be computed to check entailment of

a defeasible subsumption. The models characterizing the MP-closure for ALC (the

minimal canonical BP-models) are used to provide a semantic characterization of the

skeptical closure, which has been then exploited to show that the skeptical closure sat-

isfies the KLM properties of a preferential consequence relation.

Even if the skeptical closure requires a single basis to be computed for each query,

an experimental evaluation of the approach is needed to verify whether reasoning with

the skeptical closure is feasible in practice and how it compares wrt. the other refine-

ments of the rational closure.

The logic DLN , introduced by Bonatti et al. in [8, 11], also deals with the problem

of inheritance blocking, and builds a single extension of the knowledge base. It cap-

tures a form of “inheritance with overriding”: a defeasible inclusion is inherited by a

more specific class if it is not overridden by more specific (conflicting) properties. As

we have seen in Example 3.9, the skeptical closure behaves differently fromDLN , as in

DLN concept WStudent has an inconsistent prototype: working students inherit two

conflicting properties by superclasses, the property of students of not paying taxes and

the property of workers of paying taxes. In the skeptical closure one cannot conclude

that T(WStudent) ⊑ ⊥ and, using the terminology in [8], the conflict is “silently re-

moved”. In this respect, the skeptical closure appears to be weaker than DLN , although

it shares with DLN (and with the lexicographic closure) a notion of overriding. In [11]

it was shown that DLN satisfies the KLM properties for N-free knowledge bases (when

the normality operator only occurs in the l.h.s. of inclusions), a restriction which also
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holds here for typicality inclusions.

Another refinement of the rational closure, which deals with inheritance blocking,

is the inheritance-based rational closure in [22, 24], a construction which combines

the rational closure with defeasible inheritance networks. Inheritance-based rational

closure, in Example 3.9, is able to conclude that typical working students are young,

relying on the fact that only the information related to the connection of WStudent

and Young (and, in particular, only the defeasible inclusions occurring on the routes

connecting WStudent and Young in the corresponding net) are used in the rational

closure construction for answering the query.

The idea of having different preference relations was first exploited by Gil [29] to

define a multi-typicality formulation of the preferential logic ALC+Tmin [39], a logic

with a preferential but not a ranked minimal model semantics. As a further difference,

here we consider a single typicality operator. An extension of DLs with defeasible roles

and defeasible role subsumptions has been studied by Britz and Varzinczak in [15, 13],

in which multiple preference relations associated with roles are considered.

Another related approach by Bozzato et al. in [12] develops an extension of the

CKR framework in which defeasible axioms are allowed in the global context and can

be overridden by knowledge in a local context. Exceptions have to be justified in terms

of semantic consequence. A translation of extended CHRs (with knowledge bases in

SROIQ-RL) into Datalog programs under the answer set semantics is also defined.

Concerning the multipreference semantics introduced in [44] (and further refined

in [43]) to provide a strengthening of the rational closure, we have shown in [43, 32]

that the MP-closure is a sound construction for the multipreference semantics. Here,

we have given a semantic characterization of the MP-closure for ALC in terms of

minimal canonical BP-models, a semantics that, as a consequence, is weaker than the

multipreference semantics.

The relationships among the above variants of rational closure and the notions of

rational closure defined for DLs in the contexts of fuzzy logic [20] and probabilistic

logics [52, 60] have not been investigated so far. In the propositional logic case, it

has been shown in [4] that the KLM preferential logics and the rational closure [49,

50], the probabilistic approach [1], the system Z [56] and the possibilistic approach

[5, 4] are all related with each other, and similar relations might be expected to hold

for non-monotonic extensions of description logics as well. The relationships with c-

representations [47], which are able to handle forms of irrelevance and inheritance in

the propositional case, are to be investigated as well.

As the definitions of rational closure for expressive DLs [36], for low complexity

DLs [57, 58, 36, 25], and for all DLs [7] have been recently investigated, a natural

question arising is whether the skeptical closure and other closure constructions defined

for ALC can be extended to these DLs as well. This investigation is left for future work.
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