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gliozzi@di.unito.it, daniele.theseider dupre@uniupo.it)

TECHNICAL REPORT TR-INF-2020-09-02-UNIPMN
(September 2020)



Research Technical Reports published by DiSIT, Computer Science Institute, Università
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and its relations with self-organising maps
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Abstract. In this paper we describe a concept-wise multi-preference semantics
for description logic which has its root in the preferential approach for modeling
defeasible reasoning in knowledge representation. We argue that this proposal,
beside satisfying some desired properties, such as KLM postulates, and avoiding
the drowning problem, also defines a plausible notion of semantics. We motivate
the plausibility of the concept-wise multi-preference semantics by developing
a logical semantics of self-organising maps, which have been proposed as pos-
sible candidates to explain the psychological mechanisms underlying category
generalisation, in terms of multi-preference interpretations.

1 Introduction

Conditional logics have have their roots in philosophical logic. They have been studied
first by Lewis [21, 23] to formalize hypothetical and counterfactual reasoning (if A were
the case then B) that cannot be captured by classical logic with its material implication.
From the 80’s they have been considered in computer science and artificial intelligence
and they have provided an axiomatic foundation of non-monotonic and common sense
reasoning [8, 19]. In particular, preferential approaches [19, 20] to common sense reason-
ing have been more recently extended to description logics, to deal with inheritance with
exceptions in ontologies, allowing for non-strict forms of inclusions, called typicality or
defeasible inclusions (namely, conditionals), with different preferential semantics [10, 4]
and closure constructions [6, 5, 13, 24].

In this paper we consider a “concept-aware” multipreference semantics [15] that
has been recently introduced for a lightweight description logic of the EL⊥ family,
which takes into account preferences with respect to different concepts, and integrates
them into a preferential semantics. To support the plausibility of this semantics we
show that it can be can used to provide a logical semantics of self-organising maps [18].
Self-organising maps (SOMs) have been proposed as possible candidates to explain the
psychological mechanisms underlying category generalisation. They are psychologically
and biologically plausible neural network models that can learn after limited exposure to
positive category examples, without any need of contrastive information.

We show that the process of category generalization in self-organising maps produces,
as a result, a multipreference model in which a preference relation is associated to each
concept (each learned category) and the combination of the preferences into a global
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one, following the approach in [15], defines a standard KLM preferential model. The
model can be used to learn or validate conditional knowledge from the empirical data
used in the category generalization process, and the evaluation of conditionals can be
done by model checking, using the information recorded in the SOM.

Based on the assumption that the abstraction process in the SOM is able to identify
the most typical exemplars for a given category, in the semantic representation of a
category, we will identify some specific exemplars (namely, the best matching units of
the category) as the typical exemplars of the category, thus defining a preference relation
among the instances of a category.

The category generalization process can then be regarded as a model building process
and, in a way, as a belief revision process. Indeed, initially we have no belief about
which is the category of any exemplar. During training, the current state of the SOM
corresponds to a model representing the beliefs about the input exemplars considered
so far (concerning their category). Each time a new input exemplar is considered, this
model is revised adding the exemplar into the proper category.

2 Preliminary: the description logic EL⊥

We consider the description logic EL⊥ of the EL family [1]. Let NC be a set of concept
names, NR a set of role names and NI a set of individual names. The set of EL⊥
concepts can be defined as follows: C := A | > | ⊥ | C u C | ∃r.C, where a ∈ NI ,
A ∈ NC and r ∈ NR. Observe that union, complement and universal restriction are not
EL⊥ constructs. A knowledge base (KB) K is a pair (T ,A), where T is a TBox and A
is an ABox. The TBox T is a set of concept inclusions (or subsumptions) of the form
C v D, where C,D are concepts. The ABox A is a set of assertions of the form C(a)
and r(a, b) where C is a concept, r ∈ NR, and a, b ∈ NI .

An interpretation for EL⊥ is a pair I = 〈∆, ·I〉 where: ∆ is a non-empty domain—a
set whose elements are denoted by x, y, z, . . .—and ·I is an extension function that
maps each concept name C ∈ NC to a set CI ⊆ ∆, each role name r ∈ NR to a binary
relation rI ⊆ ∆ ×∆, and each individual name a ∈ NI to an element aI ∈ ∆. It is
extended to complex concepts as follows: >I = ∆, ⊥I = ∅, (C uD)I = CI ∩DI and
(∃r.C)I = {x ∈ ∆ | ∃y.(x, y) ∈ rI and y ∈ CI}.
The notions of satisfiability of a KB in an interpretation and of entailment are defined as
usual:

Definition 1 (Satisfiability and entailment). Given an EL⊥ interpretation I = 〈∆, ·I〉:
- I satisfies an inclusion C v D if CI ⊆ DI ;
- I satisfies an assertion C(a) if aI ∈ CI and an assertion r(a, b) if (aI , bI) ∈ rI .

Given a KB K = (T ,A),an interpretation I satisfies T (resp. A) if I satisfies all
inclusions in T (resp. all assertions in A); I is a model of K if I satisfies T and A.

A subsumption F = C v D (resp., an assertion C(a), R(a, b)), is entailed by K,
written K |= F , if for all models I =〈∆, ·I〉 of K, I satisfies F .
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3 A concept-wise multi-preference semantics

In this section we describe an extension of EL⊥ with typicality inclusions, defined along
the lines of the extension of description logics with typicality [10, 12], but we exploit
a different multi-preference semantics [15]. In addition to standard EL⊥ inclusions
C v D (called strict inclusions in the following), the TBox T will also contain typicality
inclusions of the form T(C) v D, where C and D are EL⊥ concepts. A typicality
inclusion T(C) v D means that “typical C’s are D’s” or “normally C’s are D’s” and cor-
responds to a conditional implication C |∼ D in Kraus, Lehmann and Magidor’s (KLM)
preferential approach [19, 20]. Such inclusions are defeasible, i.e., admit exceptions,
while strict inclusions must be satisfied by all domain elements.

Let C = {C1, . . . , Ck} be a set of distinguished EL⊥ concepts. For each concept
Ci ∈ C, we introduce a modular preference relation <Ci

which describes the preference
among domain elements with respect to Ci. Each preference relation <Ci

has the same
properties of preference relations in KLM-style ranked interpretations [20], is a modular
and well-founded partial order, i.e., irreflexive and transitive relation, where: <Ci is
well-founded if, for all S ⊆ ∆, if S 6= ∅, then min<Ci

(S) 6= ∅; and <Ci is modular if,
for all x, y, z ∈ ∆, if x <Cj

y then x <Cj
z or z <Cj

y).

Definition 2 (Multipreference interpretation). A multipreference interpretation is a
tupleMCi

= 〈∆,<C1
, . . . , <Ck

, ·I〉, where:

(a) ∆ is a non-empty domain;
(b) <Ci is an irreflexive, transitive, well-founded and modular relation over ∆;
(d) ·I is an interpretation function, as in an EL⊥ interpretation (see Section 2).

Observe that, given a multipreference interpretation, an interpretationMCi
= 〈∆,<Ci

, ·I〉 can be associated to each concept Ci, which is a ranked interpretation as those
considered for EL⊥ plus typicality in [14]. The preference relation <Ci

allows the set
of prototypical Ci-elements to be defined as the Ci-elements which are minimal with
respect to <Ci , i.e., min<Ci

(CI
i ). As a consequence, the multipreference interpretation

above is able to single out the typical Ci-elements, for all distinguished concepts Ci ∈ C.
The multipreference structures above are at the basis of the semantics for ranked

EL⊥ knowledge bases [15], which have been inspired to Brewka’s framework of basic
preference descriptions [3]. A ranked TBox TCi is allowed for each concept Ci ∈ C, and
contains all the defeasible inclusions, T(Ci) v D, specifying the typical properties of
Ci-elements. Ranks (non-negative integers) are assigned to such inclusions; the ones
with higher ranks are considered to be more important than the ones with lower ranks.

Consider, for instance, the ranked knowledge baseK = 〈Tstrict, TEmployee, TStudent,
TPhDStudent,A〉, over the set of distinguished concepts C = {Employee,Student ,
PhDStudent}, with empty ABox, and with Tstrict the set of strict inclusions:

Employee v Adult Adult v ∃has SSN .> PhdStudent v Student
Young uNotYoung v ⊥ ∃hasScholarship.> uHas no Scholarship v ⊥;

the ranked TBox TEmployee = {(d1, 0), (d2, 0)} contains the defeasible inclusions:
(d1) T(Employee) v NotYoung
(d2) T(Employee) v ∃has boss.Employee;
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the ranked TBox TStudent = {(d3, 0), (d4, 1), (d5, 1)} contains the defeasible inclu-
sions:

(d3) T(Student) v ∃has classes.>
(d4) T(Student) v Young
(d5) T(Student) v Has no Scholarship

and the ranked TBox TPhDStudent = {(d6, 0), (d7, 1)} contains the inclusions:
(d6) T(PhDStudent) v ∃hasScholarship.Amount
(d7) T(PhDStudent) v Bright

Exploiting the fact that for an EL⊥ knowledge base we can restrict our consideration
to finite domains [1], and considering canonical models which are large enough to
contain a domain element for each possible consistent concept occurring in K (and
its complement), the ranked knowledge base K above gives rise to canonical models,
where the three preference relations <Employee , <Student , and <PhDStudent represent
the preference among the elements of the domain ∆ according to concepts Employee,
Student , and PhDStudent , respectively.

While we refer to [15] for the construction of the preference relations <Ci
’s from a

ranked knowledge base K, in the following we will recall the notion of concept-wise
multi-preference interpretation which can be obtained by combining the preference
relations <Ci into a global preference relation <. This is needed for reasoning about the
typicality of arbitrary EL⊥ concepts C, which do not belong to the set of distinguished
concepts C. For instance, we may want to verify whether typical employed students
are young, or whether they have a boss. To answer these questions both preference
relations <Employee and <Student are relevant, and they might be conflicting for some
pairs of domain elements as, for instance, tom is more typical than bob as a student
(tom <Student bob), but more exceptional as an employee ( bob <Employee tom).

To define a global preference relation, we take into account the specificity relation
among concepts, such as, for instance, the fact that a concept like PhdStudent is more
specific than concept Student . The idea is that, in case of conflicts, the properties of
a more specific class (such as that PhD students normally have a scholarship) should
override the properties of less specific class (such as that students normally do not have
a scholarship).

Definition 3 (Specificity). A specificity relation among concepts in C is a binary relation
�⊆ C × C which is irreflexive and transitive.

For Ch, Cj ∈ C, Ch � Cj means that Ch is more specific than Cj . The simplest notion
of specificity among concepts with respect to a knowledge base K is based on the
subsumption hierarchy: Ch � Cj if Tstrict |=EL⊥ Ch v Cj and Tstrict 6|=EL⊥ Cj v
Ch. This is one of the notions of specificity considered for DLN [2]. Another one is
based on the ranking of concepts in the rational closure of K.

Let us recall the notion of concept-wise multipreference interpretation [15].

Definition 4 (concept-wise multipreference interpretation). A concept-wise multi-
preference interpretation (or cwm-interpretation) is a tupleM = 〈∆,<C1 , . . . , <Ck

, <
, ·I〉 such that:

(a) ∆ is a non-empty domain;
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(b) for each i = 1, . . . , k, <Ci
is an irreflexive, transitive, well-founded and modular

relation over ∆;
(c) < is a (global) preference relation over ∆ defined from <C1

, . . . , <Ck
as follows:

x < y iff (i) x <Ci
y, for some Ci ∈ C, and

(ii) for all Cj ∈ C, x ≤Cj
y or ∃Ch(Ch � Cj and x <Ch

y)

(d) ·I is an interpretation function, as defined for EL⊥ interpretations (see Section 2),
with the addition that, for typicality concepts, we let:

(T(C))I = min<(C
I)

where Min<(S) = {u : u ∈ S and @z ∈ S s.t. z < u}.

Relation < is defined from <C1 , . . . , <Ck
based on a modified Pareto condition: x < y

holds if there is at least a Ci ∈ C such that x <Ci
y and, for all Cj ∈ C, either x ≤Cj

y
holds or, in case it does not, there is some Ch more specific than Cj such that x <Ch

y
(preference <Ch

in this case overrides <Cj
). The idea is that, for two PhD students (who

are also students) Bob and Mary, if mary <Student bob and bob <PhDStudent mary ,
we will have bob < mary , that is, Bob is regarded as being globally more typical than
Mary as he satisfies more properties of typical PhD students wrt Mary although Mary
may satisfy additional properties of typical students wrt Bob.

It has been proven [15] that, given a cwm-interpretationM = 〈∆,<C1
, . . . , <Ck

, <
, ·I〉, the relation< is an irreflexive, transitive and well-founded relation. Hence, the triple
M′ = 〈∆,<, ·I〉 is a KLM-style preferential interpretation, as those introduced for EL⊥
with typicality [11] (and it is not necessarily a modular interpretation). A cwm-model of
a ranked EL⊥ knowledge base K is then defined as a specific preferential interpretation
which builds over the preference relations <Ci

, constructed from the ranked TBoxes
TCi

, and satisfies all strict inclusions and assertions in K. The notion of cwm-entailment,
defined in the obvious way, satisfies the KLM postulates of a preferential consequence
relation, and does not suffer from the drowning problem. In the next section we motivate
the plausibility of this concept-wise multipreference semantics showing that it is well
suited to provide a semantic characterization of self-organising maps [18].

4 Self-organising maps

Self-organising maps (SOMs, introduced by Kohonen [18]) are particularly plausible
neural network models that learn in a human-like manner. In particular: SOMs learn to
organize stimuli into categories in an unsupervised way, without the need of a teacher
providing a feedback; can learn with just a few positive stimuli, without the need for
negative examples or contrastive information; reflect basic constraints of a plausible
brain implementation in different areas of the cortex [22], and are therefore biologi-
cally plausible models of category formation; have proven to be capable of explaining
experimental results.

In this section we shortly describe the architecture of SOMs and report Gliozzi
and Plunkett’ similarity-based account of category generalization based on SOMs [16].



6

Roughly speaking, in [16] the authors judge a new stimulus as belonging to a category by
comparing the distance of the stimulus from the category representation to the precision
of the category representation.

SOMs consist of a set of neurons, or units, spatially organized in a grid [18].
Each map unit u is associated with a weight vector wu of the same dimensionality

as the input vectors. At the beginning of training, all weight vectors are initialized to
random values, outside the range of values of the input stimuli. During training, the input
elements are sequentially presented to all neurons of the map. After each presentation of
an input x, the best-matching unit (BMUx) is selected: this is the unit i whose weight
vector wi is closest to the stimulus x (i.e. i = argminj ‖x− wj‖).

The weights of the best matching unit and of its surrounding units are updated in order
to maximize the chances that the same unit (or its surrounding units) will be selected
as the best matching unit for the same stimulus or for similar stimuli on subsequent
presentations. In particular, it reduces the distance between the best matching unit’s
weights (and its surrounding neurons’ weights) and the incoming input. Furthermore, it
organizes the map topologically so that the weights of close-by neurons are updated in a
similar direction, and come to react to similar inputs. We refer to [18] for the details.

The learning process is incremental: after the presentation of each input, the map’s
representation of the input (and in particular the representation of its best-matching unit)
is updated in order to take into account the new incoming stimulus. At the end of the
whole process, the SOM has learned to organize the stimuli in a topologically significant
way: similar inputs (with respect to Euclidean distance) are mapped to close by areas in
the map, whereas inputs which are far apart from each other are mapped to distant areas
of the map.

Once the SOM has learned to categorize, to assess category generalization, Gliozzi
and Plunkett [16] define the map’s disposition to consider a new stimulus y as a member
of a known category C as a function of the distance of y from the map’s representation
of C. They take a minimalist notion of what is the map’s category representation: this
is the ensemble of best-matching units corresponding to the known instances of the
category. They use BMUC to refer to the map’s representation of category C and define
category generalization as depending on two elements:

– the distance of the new stimulus y with respect to the category representation
– compared to the maximal distance from that representation of all known instances

of the category

This captured by the following notion of relative distance (rd for short) [16] :

rd(y, C) =
min‖y −BMUC‖

maxx∈C‖x−BMUx‖
(1)

where min‖y − BMUC‖ is the (minimal) Euclidean distance between y and C’s
category representation, and maxx∈C‖x−BMUx‖ expresses the precision of category
representation, and is the (maximal) Euclidean distance between any known member of
the category and the category representation.

With this definition, a given Euclidean distance from y toC ′s category representation
will give rise to a higher relative distance rd if the maximal distance between C and its
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Fig. 1. An example of SOM. The set of rectangles stands for the input presented to the SOM (in
the example the input is three-dimensional). This is presented to all neurons of the SOM (these
are the neurons-dots-in the upper grid) in order to find the BMU .
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known examples is low (and category representation is precise) than if it is high (and
category representation is coarse). As a function of the relative distance above, Gliozzi
and Plunkett then define the map’s Generalization Degree of category C membership to
a new stimulus y.

It was observed that the above notion of relative distance (Equation 1) requires there
to be a memory of some of the known instances of the category being used (this is
needed to calculate the denominator in the equation). This gives rise to a sort of hybrid
model in which category representation and some exemplars coexist. An alternative
way of formulating the same notion of relative distance would be to calculate online the
distance between known category instance currently examined and the representation of
the category being formed.

By judging a new stimulus as belonging to a category by comparing the distance of
the stimulus from the category representation to the precision of the category representa-
tion, Gliozzi and Plunkett demonstrate [16] that the Numerosity and Variability effects
of category generalization, described by Griffiths and Tenenbaum [25], and usually ex-
plained with Bayesian tools, can be accommodated within a simple and psychologically
plausible similarity-based account, which contrasts what was previously maintained. In
the next section, we show that their notion of relative distance can also be used as a basis
for a logical semantics for SOMs.

5 Relating self-organising Maps and multi-preference models

We aim at showing that, once the SOM has learned to categorize, we can regard the
result of the categorization as a multipreference interpretation. Let X be the set of input
stimuli from different categories, C1, . . . , Ck, which have been considered during the
learning process.

For each category Ci, we let BMUCi be the ensemble of best-matching units
corresponding to the input stimuli of category Ci, i.e., BMUCi = {BMUx | x ∈
X and x ∈ Ci}. We regard the learned categories C1, . . . , Ck as being the concept
names (atomic concepts) in the description logic and we let them constitute our set of
distinguished concepts C = {C1, . . . , Ck}.

To construct a multi-preference interpretation we proceed as follows: first, we fix
the domain ∆s to be the space of all possible stimuli; then, for each category (concept)
Ci, we define a preference relation <Ci

, exploiting the notion of relative distance of a
stimulus y from the map’s representation of Ci. Finally, we define the interpretation of
concepts.

Let ∆s be the set of all the possible stimuli, including all input stimuli (X ⊆ ∆s)
as well as the best matching units of input stimuli (i.e., {BMUx | x ∈ X} ⊆ ∆s). For
simplicity, we will assume that the space of input stimuli is finite.

Once the SOM has learned to categorize, the notion of relative distance rd(x,Ci)
of a stimulus x from a category Ci introduced above can be used to build a binary
preference relation <Ci

among the stimuli in ∆s w.r.t. category Ci as follows: for all
x, x′ ∈ ∆s,

x <Ci x
′ iff rd(x,Ci) < rd(x′, Ci) (2)
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Each preference relation <Ci
is a strict partial order relation on ∆s. The relation <Ci

is
also well-founded as we have assumed ∆s to be finite.

We exploit this notion of preference to define a concept-wise multipreference inter-
pretation associated with the SOM, that we call a cwm-model of the SOM. We restrict
the DL language to the fragment of EL⊥ (plus typicality) not admitting roles, as in the
self-organising map we do not have a representation of role names.

Definition 5 (multipreference-model of a SOM). The multipreference-model of the
SOM is a multipreference interpretationMs = 〈∆s, <C1

, . . . , <Ck
, ·I〉 such that:

(i) ∆s is the set of all the possible stimuli, as introduced above;
(ii) for each Ci ∈ C, <Ci is the preference relation defined by equivalence (2).

(iii) the interpretation function ·I is defined for concept names (i.e. categories) Ci as
follows:

CI
i = {y ∈ ∆s | rd(y, Ci) ≤ rdmax,Ci

}

where rdmax,Ci
is the maximal relative distance of an input stimulus x ∈ Ci from

category Ci, that is, rdmax,Ci
= maxx∈Ci

{rd(x,Ci)}. The interpretation function
·I is extended to complex concepts according to Definition 2.

Informally, we interpret as Ci-elements those stimuli whose relative distance from
category Ci is not larger than the relative distance of any input exemplar belonging to
category Ci. Given <Ci , we can identify the most typical Ci-elements wrt <CI

as the
Ci-elements whose relative distance from category Ci is minimal, i.e., the elements in
min<Ci

(CI
i ). Observe that the best matching unit BMUx of an input stimulus x ∈ Ci

is an element of ∆s. Hence, for y = BMUx, the relative distance of y from category Ci,
rd(y, Ci), is 0, as min || y − BMUCi ||= 0. Therefore, min<Ci

(CI
i ) = {y ∈ ∆s |

rd(y, Ci) = 0} and BMUCi
⊆ min<Ci

(CI
i ).

5.1 Evaluation of concept inclusions by model checking

We have defined a multipreference interpretationMs where, in the domain ∆s of the
possible stimuli, we are able to identify, for each category Ci, the Ci-elements as well as
the most typical Ci-elements wrt <Ci . We can exploitMs to verify which inclusions are
satisfied by the SOM by model checking, i.e., by checking the satisfiability of inclusions
over modelMs. This can be done both for strict concept inclusions of the form Ci v Cj

and for defeasible inclusions of the form T(Ci) v Cj , where Ci and Cj are concept
names (i.e., categories).

For the verification that a typicality inclusion T(Ci) v Cj is satisfied in Ms

we have to check that the most typical Ci elements wrt <Ci
are Cj elements, that is

min<Ci
(CI

i ) ⊆ CI
j . Note that, besides the elements in BMUCi

, min<Ci
(CI

i ) may
contain other elements of ∆s having relative distance 0 from Ci. As we do not know, for
all the possible input stimuli in ∆s, whether they belong to min<Ci

(CI
i ) or to CI

j , as an
approximation, we only check that all elements in BMUCi are Cj elements, that is:

for all input stimuli x ∈ Ci, rd(BMUx, Cj) ≤ rdmax,Cj
(3)
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Let the relative distance of BMCCi
from Cj be defined as

rd(BMCCi
, Cj) = maxx∈Ci

{rd(BMUx, Cj)}

the maximal relative distance of BMUCi from Cj . Then we can rewrite condition (3)
simply as

rd(BMCCi
, Cj) ≤ rdmax,Cj

.

Observe that the relative distance rd(BMCCi , Cj) also gives a measure of plausibility
of the defeasible inclusion T(Ci) v Cj : the lower is the relative distance of BMUCi

from Cj , the more plausible is the defeasible inclusion T(Ci) v Cj .
Verifying that a strict inclusion Ci v Cj is satisfied, requires to check that CI

i is
included in CI

j . Exploiting the fact that the map is organized topologically, and using
the relative distance rd(BMCCi , Cj) of BMCCi from Cj , we verify that the relative
distance of BMCCi from Cj plus the maximal relative distance of a Ci-element from
Ci is not greater than the maximal relative distance of a Cj-element from Cj :

rd(BMCCi
, Cj) + rdmax,Ci

≤ rdmax,Cj
(4)

where rdmax,C = maxy∈C{rd(y, C)}. That is, the Ci-element most distant from Cj is
nearer to Cj than the most distant Cj-element.

Computing conditions (3) and (4) on the SOM, may be non trivial, depending on
the number of input stimuli that have been considered in the learning phase (the size of
the set X of input exemplars). However, from a logical point of view, this is just model
checking. Gliozzi and Plunkett have considered self-organising maps that are able to
learn from a limited number of input stimuli, although this is not generally true for all
self-organising maps [16].

5.2 Combining preferences into a preferential interpretation

The multipreference interpretationMs introduces in Definition 5 allows to determine
the set of Ci-elements for all learned categories Ci and to define the most typical Ci-
elements, exploiting the preference relation <Ci

. However, we are not able to define the
most typical Ci t Cj-elements just using a single preference. Starting fromMs, we
construct a concept-wise multipreference interpretationMsom that combines the prefer-
ential relations inMs into a global preference relation <, and provides an intepretation
to all typicality concepts such as, for instance, T(Ci u Cj u Ch). The interpretation
Msom is constructed fromMs according to Definition 4.

The construction exploits a notion of specificity. Observe that the specificity relation
between two concepts Ci and Cj can be determined based on the single modelMs of
the SOM. Ci � Cj if Ci v Cj is satisfied inMs and Cj v Ci is not satisfied inMs.

Definition 6 (cwm-model of a SOM). The cwm-model of a SOM is a cwm-interpretation
Msom = 〈∆s, <C1

, . . . , <Ck
, <, ·I〉, such that the tuple 〈∆s, <C1

, . . . , <Ck
, ·I〉 is a

multipreference model of the SOM according to Definition 5, and < is the global prefer-
ence relation defined from <C1

, . . . , <Ck
, according as in Definition 4, point (c).
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In particular, inMsom, as in all cwm-interpretations (see Definition 4), the interpre-
tation of typicality concepts T(C) is defined based on the global preference relation
< as (T(C))I = min<(C

I), for all concepts C. Here, we are considering concepts in
the fragment of EL⊥ language without roles, which are built from the concept names
C1, . . . , Cn (the learned categories). The model Msom can be considered a sort of
(unique) canonical model for the SOM, representing what holds in that state of the SOM
(e.g., after the learning phase). The logical inclusions that “follow from the SOM” are
therefore the inclusions that hold in the single modelMsom (the situation is similar to
the case of Horn clauses, where there is a unique minimal canonical model describing
all the (atomic) logical consequences of the knowledge base).

AsMsom is a cwm-interpretation, the result that the triple 〈∆s, <, ·I〉 is a prefer-
ential interpretation as in KLM approach [19, 20] holds forMsom, and tells us that the
modelMsom provides a logical semantics for the SOM which is well-defined, asMsom

is a preferential consequence relation, and therefore satisfies all KLM properties of a
preferential consequence relations.

The verification of arbitrary defeasible inclusions onMsom can, in principle, be
done by model checking, but might require to consider all the possibly many input
stimuli, i.e., all domain elements in ∆s, which may be unfeasible in practice. As an
alternative, the identification of the set of strict and defeasible inclusions satisfied by the
SOM over the learned categories C1, . . . , Ck (as done in Section 5.1), allows to define an
EL⊥ knowledge base K and to reason on it symbolically, using for instance an approach
similar to the one described in Section 3 for ranked knowledge bases. In particular,
Answer Set Programming (in particular, asprin) has been used to achieve defeasible
reasoning under the multipreference approach for the lightweight description logic EL+

⊥
[15] . Ranked knowledge bases have been considered, where defeasible inclusions are
given a rank, that provides a measure of plausibility of the defeasible inclusion, and
multipreference entailment is reformulated as a problem of computing preferred answer
sets. As we have seen, a measure of plausibility can as well be assigned to the defeasible
inclusions satisfied by the SOM.

5.3 Category generalization process as iterated belief revision

We have seen that one can give an interpretation of a self-organising map after the
learning phase, as a preferential model. However, the state of the SOM during the
learning phase can as well be represented as a multipreference model (precisely in
the same way). During training, the current state of the SOM corresponds to a model
representing the beliefs about the input stimuli considered so far (beliefs concerning the
category of the stimuli).

The category generalization process can then be regarded as a model building process
and, in a way, as a belief revision process. Initially we do not know the category of the
stimuli in the domain ∆s. In the initial model, call itMsom

0 (over the domain ∆s) the
interpretation of each concept Ci is empty.Msom

0 is the model of a knowledge base K0

containing a strict inclusion Ci v ⊥, for all Ci.
Each time a new input stimulus (x ∈ Ci) is considered, the model is revised adding

the stimulus x (and its best matching unit BMUx) into the proper category (Ci). Not
only the category interpretation is revised by the addition of x and BMUx in CI

i (so
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that Ci v ⊥ does not hold any more), but also the associated preference relation <Ci
is

revised as the addition of BMUx modifies the set of best matching units BMUCi
for

category Ci, as well as the relative distance rd(y, Ci) of a stimulus y from Ci. That is, a
revision step may change the set of conditionals which are satisfied by the model.

If learning phase converges to a solution, the final state of the SOM is captured by
the modelMsom obtained by a sequence of revision steps which, starting fromMsom

0 ,
gives rise to a sequence of modelsMsom

0 ,Msom
i1

, . . .,Msom
ir

(withMsom =Msom
ir

).
At each step the knowledge base is not represented explicitly, but the model Msom

ij
of the knowledge base at step j is used to determine the model at step j + 1 as a
result of revision (Msom

ij+1
= Msom

ij
? Cij (xij )). The knowledge base K (the set of

all the strict and defeasible inclusions satisfied inMsom, can then be regarded as the
knowledge base obtained from K0 through a sequence of revision steps, i.e., K =
K0 ? Ci1(xi1) ? . . . ? Cir(xir). In fact, from any state of the SOM we can construct
a corresponding model, which determines a knowledge base, the set of (strict and
defeasible) inclusions satisfied in that model. It would be interesting to study of the
properties of this notion of revision and compare with the notions of iterated belief
revision studied in the literature [7, 9, 17].

6 Conclusions

We have explored the relationships between a concept-wise multipreference semantics
and self-organising maps. On the one hand, we have seen that self-organising maps can
be given a logical semantics in terms of KLM-style preferential interpretations; the model
can be used to learn or to validate conditional knowledge from the empirical data used
in the category generalization process based on model checking; the learning process in
the self-organising map can be regarded as an iterated belief revision process. On the
other hand, the plausibility of concept-wise multipreference semantics is supported by
that fact that self-organising maps are considered as psychologically and biologically
plausible neural network models.
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